Chapter IV

Results

I. Preliminary screening for antimicrobial activity of some Thai medicinal plants

The antibacterial activities of the crude extracts were shown in Table 11 by inhibition zone diameters and the weight received from the extraction of each plant when macerated 500 g.

Seven plant extracts which inhibited a wide range of test organisms and gave much more clear inhibition distances were selected for further study. There were as followed;

- 1. Putranjiva roxburghii Wall.
- 2. Croton sublyratus Kurz.
- 3. Clerodendrum petasites Moore
- 4. Croton crassifolius Geisel
- 5. Stephania glabra (Roxb.) Miers.
- 6. Terminalia citrina Roxb. ex. Flem.
- 7. Eleutherine palmifolia (L.) Merr.

Table 11 Antimicrobial activities of plant extracts

Plant	Weight of crude extract	Total Total Chamber's Cham.								
	(8)	Staphylococcus aureus ATCC 25923	Pseudomonas aeruginosa ATCC 27853	Klebsiella pneumoniae	Streptococcus pyogenes A 6/49	Haemophilus influenza				
Putranjiva roxburghii Wall.	46.7820	18.3	0	0	16.7	0				
Croton sublyratus Kurz.	31.5229	18.7	0	0	22.2	19.5				
Croton crassifolius Geisel	9.4806	0	14.0	0	14.6	14.2				
Dendropthoe pentandra Miq.	21.8785	0	0	0	0	0				
Cyperus rotundus Linn.	32.3680	13.6	0	0	0	14.2				
Clerodendrum petasites Moore	11.5072	13.1	0	0	15.0	15.9				
Lantana camara Linn.	14.3466	0	0	. 0	14.6	. 0				
Capparis micracantha DC.	32.6857	0	0	0	15.7	0				
Stephania glabra (Roxb.) Miers.	36.9622	27.8	0	0	29.3	22.3				
Germinalia citrina Roxb.ex.Flem.	25.0909 *	20.4	15.2	0	18.9	15.6				
Eleutherine palmifolia (L) Merr.	23.9365	25.5	0	0	28.4	28.6				

II. Antibacterial activities of the plant extracts

Seven residues in I were extratcted with petroleum ether, chloroform, and ethanol. Each extract was weighed and tested for antibacterial activity in order to choose only three extracts for further study. The results were shown in Table 12 and Table 13.

Table 12 Weight of crude extracts

	Weight of extract (g)					
Plant	Petroleum ether	Chloroform	Ethanol			
Putranjiva roxburghii Wall.	8.7310	1.0246	24.0584			
Croton sublyratus Kurz.	10.9339	4.8496	9.0510			
Clerodendrum petasites Moore	2.8209	2.5760	2.6882			
Croton crassifolius Geisel	0.7389	0.4402	3.5629			
Stephania glabra (Roxb.) Miers.	0.0651	29.6200	5.6004			
Terminatia citrina Roxb.ex.Flem.	12.0503	1.2337	6.4722			
Eleutherine palmifolia (L.) Merr.	4.9905	2.3856	10.2072			

Table 13 Antibacterial activities of plant extracts with different solvents

Plant	Solvent*	Average Inhibition zone diameters (mm.)							
Trains	Corvence	Staphylococcus aureus ATCC 25923	Pseudomonas aeruginosa ATCC 27853	Klebsiella pneumoniae ATCC 10031	Streptococcus pyogenes A 6/49	Haemophilus influenza			
1. <u>Putranjiva</u> <u>roxburghii</u> Wall.	Pet. ether CHCl ₃ EtOH	0 18.6 20.1	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 19.2 14.4	0 26.1 16.5			
2. <u>Croton</u> <u>sublyratus</u> Kurz.	Pet. ether CHCl _a EtOH	0 24.9 0	0 0 0	0 · 0 · 0	0 22.4 14.5	15.6 27.5 14.8			
3. <u>Clerodendrum</u> <u>petasites</u> Moore	Pet. ether CHCl _a EtOH	0 17.1 0	0 0 0	0 0 0	0 19.3 0	0 21.2 0			
4. <u>Croton</u> <u>crassifolius</u> Geisel	Pet. ether CHCl ₃ EtOH	0 17.6	0 0 0	0 0 0	0 20.0 14.1	15.0 20.6 0			

Table 13 (cont.)

Plant	Solvent*					
		Staphylococcus aureus ATCC 25923	Pseudomonas aeruginosa ATCC 27853	Klebsiella pneumoniae ATCC 10031	Streptococcus pyogenes A 6/49	Haemophilus influenzae
	Pet. ether	22.8	**	_**	25.2	17.2
5. Stephania glabra (Roxb.) Miers.	CHCl ₃	30.3	0	0	33.4	27.1
	EtoH	15.0	0	.0	25.1	15.2
	Pet. ether	21.3	0	0	15.8	16.4
6. Terminalia citrina Roxb.ex.Flem.	CHCl ₃	18.4	0	0 .	14.4	0
	EtoH	24.3	19.3	0 •	16.9	17.7
	Pet. ether	27.6	0	0	27.4	23.1
7. Eleutherine palmifolia (L.) Merr.	CHCl ₃	19.6	0	0	18.9	16.7
	EtoH	0	0	0	0	0

^{*} Pet. ether = petroleum ether, CHCl3 = chloroform, EtOH = ethanol

^{**} The extract of Stephania glabra (Roxb.) Miers. with petroleun ether wasn't tested against P. aeruginosa ATCC 27853 and K. pneumoniae ATCC 10031 because of the low yield. In addition, the result from Table 6 showed no activity of this plant against these organisms

Eleutherine palmifolia (L.) Merr. extracted with petroleum ether and chloroform and Stephania glabra (Roxb.) Miers. extracted with chloroform were selected to determine the antibacterial activity. The results in Table 14 showed that Eleutherine palmifolia (L.) Merr. with petroleum ether extraction could inhibit S.aureus ATCC 25923 at the concentration of 93.75 µg/disc, S.pyogenes A 6/49 at 375 µg/disc, and H. influenizae at 187.50 µg/disc.

Table 14 The inhibitory concentrations of Eleutherine palmifolia (L.) Merr. and Stephania glabra (Roxb.) Miers.

	Concentration Test (ug/disc)	Ave	age	inhibit	ion zor	ne diam	neter	s (mm)
Plant	Test (ug/disc) organisms	46.875	93.75	187.50	375.0	750.0	1250	2500	5000
	Staphylococcus aureus	0	15.3	18.3	19.4	20.5	23.2	25.5	26.
Eleutherine palmifolia (L.) Merr.	Streptococcus pyogenes	0	0	0	14.8	17.7	20.8	22.5	24.
with petroleum ether	A 6/49 Haemophilus influenzae	0	0	15.6	17.2	18.4	20.4	22.3	24.
	Staphylococcus aureus ATCC 25923	0	0	0	0	0	15.2	18.6	20.
Eleutherine palmifolia (L.) Merr. with chloroform	Streptococcus pyogenes	0	0	0	0	0	16.1	17.9	19.
With Chickers in	Haemophilus influenzae	0	0	0	0	0	0	16.6	19.
	Staphylococcus aureus ATCC 25923	0	0	0	0	0	14.5	17.1	21.
Stephania glabra (Roxb.) Miers.	Streptococcus pyogenes	0	0	0	0	18.1	20.7	23.3	27.
0.00000	Haemophilus influenzae	0	0	0	0	0	14.2	17.6	22.

III Determination and isolation of antibacterial substances

A. Determination of antibacterial substances by TLC

The Eleutherine palmifolia (L.) Merr.petroleum ether extract was developed on pre-coated TLC aluminium sheet and chloroform was used as solvent. Determination by colour shown in UV light(366 nm), there were five main groups of substances (see Figure 2, p 104).

Direct assay was used to find out the location of the antibacterial substances. The inhibition zone was presented only in the third group of TLC sheet, which presented two black spots in UV light (yellow spots in visible light), as shown in Table 15.

Table 15 Location of antibacterial substances of Eleutherine palmifolia (L.) Merr. on TLC

Zone diameter	Separa	sted TLC	aluminium	n sheet	(group)
Test organism	1)A 0 9/	2	3	4	5
Staphylococcus aureus	0	0	25.2	0	0

B. Isolation of antibacterial substance from Petroleum ether extract of Eleutherine palmifolia (L.) Merr. bulb Column chromatography was used to separated the substance. The solvent system were chloroform: hexane (8:2), cholroform and methanol, respectively. The antibacterial substance was crystallized in hexane yielding yellow needle crystal and was designated as EP₂ (Fig 1, p 103). The development of the crystal on TLC plates with five solvent systems confirmed that the substance obtained was pure.

C. Characterization of Isolated compound

- 1. Solubility: EP₂ was soluble in chloroform and acetone; slightly soluble in ethanol; non-soluble in water
- 2. The Rf values were determined from the chromatoplate Rf = distance of spot moving from starting point distance of solvent from starting point
 - a.) 0.41 in Silica gel G/ chloroform (Fig 3, p 105)
 - b.) 0.21 in Silica gel G/chloroform :hexane (8:2)
 (Fig 4, p 106)
 - c.) 0.36 in Silica gel G/ chloroform : benzene (8:2) (Fig 5, p 107)
 - d.) 0.39 in Silica gel G/benzene : acetone (9:1) (Fig 6, p 108)
 - e.) 0.24 in Silica gel G/petroleum ether : ethyl acetate : chloroform (67:33:10) (Fig 7, p 109)
- 3. Melting point 166-167° c (yellow needle crystal)
- 4. Specific rotation $[\alpha]^{25}_{n}: -100 \quad (0.1\% \text{ in chloroform})$

5. Ultraviolet absorption spectra ↑ max (EtOH) : 246, 267, 396 nm.

6. Infrared absorption spectrum (KBr disc) $\sqrt{\text{max}}$ 740, 780, 840, 910, 990, 1050, 1255, 1290, 1450-80 (C-O-C), 1590 (C=C), 1650 (C=O), 1660 (C=O), 2940, 3000 (C-H, benzene ring) cm⁻¹

7. Nuclear magnetic resonance spectrum (300 MHz, TMS as internal reference, CDC1, as solvent)

δ(ppm) 1.344 (3H,d) CH_a -1' 1.538 (3H, d) CH -3' 2.233 (1H, ddd) Haxiai -2' 2.694 (1H, dd) H - -2' 3.93-3.99 (1H, m) H-1' 4.007 (3H, s) OCH, -(8 or 5) 5.016 (1H, q (broad)) H-3' 7.288 (1H, dd) H-7 or H-6 (proton near-OCH_a) 7.651 (1H, t) H-6 or H-7 (proton in the middle)

7.745 (1H, dd) H-5 or H-8

8. Mass spectrum

m/z (% relative intensity)

 $273 (M^{+} +1, 18.6), 272 (M^{+}, 94.1), 257(100),$ 244(17.3), 243(50.7), 242(23.1), 229(25.8), 228(11.7), 215(18.4), 214(28.4), 213(18.7), 201(10.3), 135 (10), 129(10.2) (11.4),

UV, IR, NMR and Mass spectra were The concluded for the structre of EP2 as a naphthoquinone and the molecular formula was assigned as $C_{is}H_{is}O_{4}$.

The two possible structures of EP_2 (EP_{2A} EP which were different at the position of -OCH s and substitution (Fig III).

EPZA

EP₂₈

Figure III Two possible structures of EP2

Further spectroscopic such as long range decoupling experiment of $^{13}\text{C-NMR}$, and/or chemical techniques were necessary for the identification of EP_2 .

IV Laboratory evaluation of antibacterial activity of EP2

A. Antimicrobial susceptibility test

50 isolates of each pathogenic organisms, S. aureus and S. pyogenes obtained from the clinical specimens were tested for antimicrobial susceptibility with 5 various antimicrobial agent discs. The results were shown in Table 16 and Table 17.

B. <u>Determination of Minimal Inhibitory Concentration</u> (MIC) of EP

The activity of EP_2 against S.aureus and S.pyogenes in cumulative percentage of MIC_s (µg/ml) was shown in Table 18. EP_2 inhibited 100% of both S. aurues and S. pyogenes at the concentration of 40 and 60 µg/ml, respectively.

Figure IV and Figure V showed the relationship between the cumulative percentage of inhibited organisms and log MIC values. By interpolating to the minimal inhibitory concentration of 50 and 90 cumulative percentage inhibited, the MIC_{so} and MIC_{so} were obtained. The overall geometric means and range of the MIC_s of EP₂ against S. aureus and S. pyogenes were shown in Table 19.

Table 16 Antimicrobial susceptibility patterns against Staphylococcus aureus

No.of	Hospita)			Susceptibility	i	
Specimen	,	Cephalothin	Clindsmycin	Erythromycin	Penicillin	Tetracycline
1	Cu	S	S	s	R	S
2	Cu	5	5	R	R	R
3	Cu	S	\$ \$	S	R	S
4	Cu	S	S	5	R	S
5	Cu	S	S	S	R	R
6	Cu	S	S	S	R	s
7	Cu	S	S	5	R	R
8	Cu	S	S	S	R	R
9	Cu	S	S	S	R	S
10	Cu	S	S	S	R	5
11	Cu	S	S	S	R	R
12	Cu	S	S	S	R	R
13	Cu	S	S	S	R	S
14	Cu	R	R	R	R	R
15	Cu	S	S	S	R	S
16	Cu	5	S	S	R	S
17	Cu	S	S	5	R	S
18	Cu	5	S	S	S	R
19	Cu	S	S	S	R	R
20	Cu	S	S	5	R	R
21	Cu	S	S	5	R	S
22	Cu	S	S	S	R	R
23	Cu	S	S	S	R	S
24	Cu	R	S	R	R	R
25	Cu	S	S	S	I	S

Table 16 (cont.)

No.of Specimen	Hospita)	Susceptibility							
specimen.		Cephalothin	Clindamycin	Erythromycin	Penicillin	Tetracyc)ine			
26	Cu	S	S	S	R	5			
27	Cu	S	S	S	R	S			
28	Cu	S	S	S	\$	R			
29	Cu	S	S	S	R	S			
30	Cu	S	S	S	S	S			
31	Cu	S	S	S	R	S			
32	Cu	S	S	S	R	S			
33	Cu	S	S	S	R	R			
34	Cu	S	S	S	R	S			
35	Cu	\$	S	S	R	5			
36	Cu	S	S	S	R	5			
37	Cu	S	S	S	R	S			
38	Cu	R	R	R	R	R			
39	Cu	S	S	S	R	S			
40	Cu	S	S	S	R	R			
41	Cu	R	S	R	R	R			
42	Cu	S	S	R	R	S			
43	Cu	S	S	S	R	5			
44	Cu	S	S	S	R	S			
45	Cu	S	S	S	R	S			
46	Cu	S	S	S	R	R			
47	Cu	S	5	S	I	S			
48	Cu	S	S	S	R	S			

Table 16 (cont.)

No.of	Hospital	Susceptibility						
Specimen		Cephalothin	Clindsmycin	Erythromycin	Penicillin	Tetracycline		
49	Cu	S	s	s	R	S		
50	Cu	S	S	S	R	R		
Total no								
organism Total no		46	48	44	3	31		
	rganisms	50	50	50	50	50		
sescept i	ble		06640					
organism	1	92	96	88	6	62		

N.B.

Cu = Chulalongkorn Hospital

S = súsceptible; I = intermediate; R = resistant

Table 17 Antimicrobial susceptibility patterns against Streptococcus pyogenes

No.of	Hospital			Susceptibility	y	σ.
Strains		Cephalothin	Clindamycin	Erythromycin	Penicillin	Tetracyclin
1	Si	S	s	s	S	R
2	Si	S	S	S	S	R
3	Si	S	S	S	S	R
4	Si	S	S	S	\$	R
5	Si	S	5	S	S	R
6	Si	S	5	S	S	R
7	Si	S	S	S	S	S
8	Si	S	S	S	S	R
9	Si	S	S	S 5	S	R
10	Si	S	S	S	S	R
11	Si	S	S	S	S	R
12	Si	S	S	5	S	R
13	Si	S	S	5	S	R
14	Si	S	S	S	S	R
15	Si	\$	S	S	S	R
16	Si	S	S	S	S	R
17	Si	S	S	S	5	R
18	Si	s	S	S	S	R
19	Si	S	S	S	5	R
20	Si	S	S	S	S	I
21	Si	S	S	S	S	R
22	Si	S	S	S	S	R
23	Si	S	S	S	5	I
24	Si	S	S	S	S	R
25	Si	S	S	S	S	R

Table 17 (cont.)

No.of	Hospital			Susceptibility	У	
Strains		Cephalothin	Clindsmycin	Erythromycin	Penicillin	Tetracycline
26	Si	S	s	S	S	R
27	Si	S	S	S	S	R
28	Cu	S	S	S ⁻	S	R
29	Si	S	S	S	S	R
30	Si	S	S	S	S	R
31	Cu	S	S	S	S	R
. 32	Cu	S	S	5	S	R
33	Cu	S	S	S	S	R
34	Cu	S	S	S	S	R
35	Si	S	S	\$	S	R
36	Cu	S	S	5	S	I
37	Cu	S	S	S	S	R
38	Cu	S	S	S	s	S
39	Cu	S	S	S	S	R
40	Cu	5	5	\$	S	R
41	Cu	S	S	S	S	R
42	Cu	S	S	S	S	R
43	Cu	5	S	S	S	R
44	Cu	5	S	s	S	R
45	Cu	S	S	S	S	R
46	Cu	S	S	S	S	I
47	Si	S	S	S	S	I
48	Cu	S	S	S	S	R

Table 17 (cont.)

No.of	Hospital		Susceptibility						
Strains		Cephalothin	Clindamycin	Erythromycin	Penicillin	Tetracycline			
49	Cu	S	s	S	S	R			
50	Cu	S	S	S	5	R			
Total no suscept	ible ms	50	50	50	50	2			
organis Percent	of	50	50	50	50	50			
sescept organis		100	100	100	100	4			

N.B. Si = Siriraj Hospital

Cu = Chulalongkorn Hosital

Table 18 Cumulative percentage of Staphylococcus aureus and Streptococcus pyogenes to MIC (µg/ml) of EP2

. Organism	No. of Strains	Cumulative percentage of isolated strains inhibited at concentrations (µg/ml) of							
		10	20	30	40	50	60	70	
Staphylococcus aureus	50	2	32	94	100	100	100	100	
Streptococcus pyogenes	50	0	30	66	92	96	100	100	

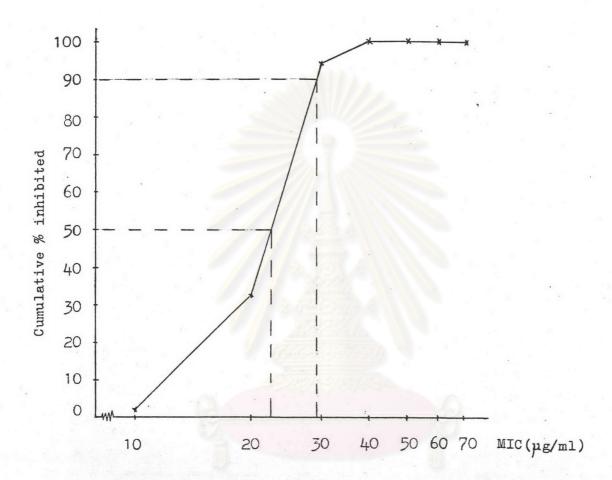


Figure IV The activity of EP₂ against

Staphylococcus aureus

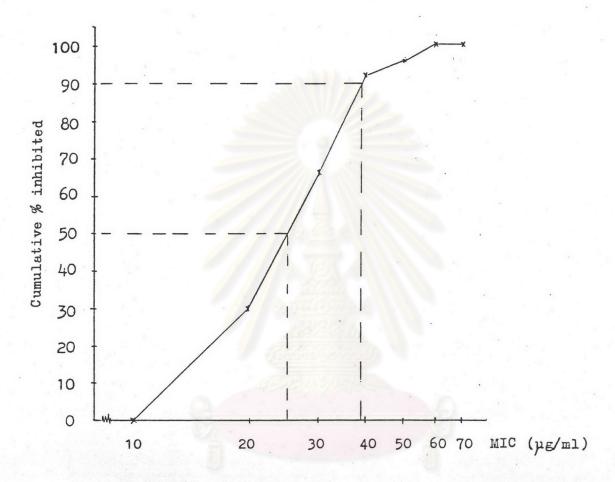


Figure V The activity of EP₂ against

Streptococcus progenes

Table 19 The overall geometric and range of MIC, of EP, against Staphylococcus aureus and Streptococcus pyogones

Organism	No.of Strains	MIC range	MIC _{so}	MIC so	
Staphylococcus aureus	50	10-40	22.5	29.2	
Streptococcus pyogenes	50	20-60	25.0	39.0	

