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Chapter 1

Introduction

1.1 Introduction

In our solar system, interplanetary space contains many types of particles
at all energies. The particles have several different, origins. Some of them are from
remnants of supernove, some come from other galaxies, and other components are
released from the Sun in the form of the solar wind, which continuously streams
in the radial direction from the Sun and is mostly composed of protons and
electrons. Solar flares and coronal mass ejections (CMEs), huge explosions which
occur occasionally, rapidly eject the bulk plasma at high speeds from atmosphere
of the Sun. If this plasma fluid encounters the interplanetary medium with a
velocity difference greater than the sound speed in this fluid, the collision leads
to a surface of discontinuity in physical properties such as the magnetic field,
plasma speed, plasma density, etc. This discontinuity is called an interplanetary
shock. Shocks also occur-in other regions of the solar system.

In this work we are interested in compression regions, which are structures
related to shocks. A compression region is like a shock, except that the changes
in physical quantities take place over a finite; measurable width (see Figures 1.1
and 1.2). The events of shocks and compressions may occur together as shown
in Figure 1.1.

Both shocks and compressions are able to accelerate particles to high en-

ergies. The particle acceleration at a shock has been studied previously in great
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Figure 1.1: This figure shows an eruption on the Sun associated with a CME.
The ejecta then travel through interplanetary space. The arrows indicate the
direction of the solar wind. The magnetic field lines in the ambient solar wind
have a spiral shape, and they are compressed by the faster ejecta. The shock
front is a discontinuity in the magnetic field and the fluid flow.

detail (Krymskii 1976; Bell 1978; Ruffolo 1999). Here we are interested in the ac-
celeration at a compression which has a structure like the shock. The acceleration
in the compression region is a form of the first-order Fermi acceleration, which is
the mechanism believed to account for most of the cosmic ray particle acceleration
in the universe. The importance of this mechanism is confirmed by its successful
prediction of the power law distribution in momentum of galactic cosmic ray par-
ticles measured on the Earth (Fermi 1954). The transport equation that is used
to describe the particle acceleration at the continuous compression, assuming hy-
perbolic magnetic field lines (Ruffolo-and Chuychai 1999), is developed from the
Fokker-Planck equation (Skilling 1971, 1975). This makes it possible to consider

the acceleration of cosmic rays in such regions in detail for the first time in the

present work.
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Continuous Compression

Figure 1.2: Model magnetic field configuration in the shock case and continuous
compression case, respectively.

1.2 Objectives

e To develop and test a computer program for the simulation of cosmic
ray transport at a fluid compression.

e Study the steady state distribution function of cosmic ray particles near
the compression.

e Study the spectral index of particles that are accelerated at the contin-
uous compression region.

e Compare the results from cosmic ray transport simulations for contin-

uous compression region and a shock.

1.3 ~ Outline of this Thesis

The details of the following chapters are as follow. Chapter 2 is about

cosmic rays, activity on the Sun, the transport of energetic particles along mag-



netic field lines and the concept of Fermi acceleration. Chapter 3 describes a new
equation of cosmic ray transport and explains the configuration of the magnetic
field that we use for simulations. The end of this chapter is about the diffusion-
convection approximation, which is another way to describe the transport of the
cosmic ray particles. The following chapter describes the numerical simulations,
which adapt existing numerical techniques to solve our transport equation. We
also consider the boundary conditions and the simulation procedure. In Chap-
ter 5 we show results from the simulations including the distribution function,
the spectral index, the anisotropy, and the decrease of the distribution function

upstream, and discuss the results. The last chapter presents our conclusions.



Chapter 2
Background Knowledge

2.1 Cosmic Rays

Cosmic rays are high energy particles that travel through space to the
Earth. The interest in cosmic rays lies in the puzzle of their origin and the
mechanisms of how the particles are accelerated to high energy. The data from
observations by spacecraft and detectors on the Earth show that the cosmic rays
come from all directions over the energy range between 0.1 eV and 3 x 10%° eV.
At high energy, there are two specific types of cosmic rays. One type is galactic
cosmic rays (GCR), which have an energy between about 10° eV and 10'%5 eV.
Another is extragalactic cosmic rays, which have an energy over 108 eV. Less
energetic cosmic rays can frequently be detected in association with activity at
the Sun, such as solar flares or CMEs. These are examples of events/sites in the

solar system where there are mechanisms to produce cosmic rays.

2.2 Solar Ejections

2.2.1 Solar Wind

The solar wind is defined as the plasma streaming out in all directions
from the Sun’s hot corona (Parker 1958) to the solar system and it makes up the
interplanetary medium. The first evidence of the existence of the solar wind was
from the Soviet spacecraft, Lunik III, and after that many observers can measure

the details of the solar wind. From those data we know that the speed of the



Figure 2.1: The image of solar flare on the sun is take in the EUV. In this figure
we can see the magnetic loops. Areas of strong magnetic field are called active
regions (http://coke.physics.ucla.edu/laptag/ VanNuys.dir/crs.htm).

solar wind is usually between 200 km/s to 800 km/s, while the sound speed in
the solar wind near Earth is about 50 km/s (Cravens 1997). Variations in the
solar wind speed can affect the Earth’s magnetic field and create storms in the
Earth’s magnetosphere. The main components of the solar wind are protons,
electrons, and He™2. Other abundant ions are O7%, Sit10 N+5 S+10 and Sit?,
but these so-called minor ions form a small component of the solar wind plasma.
Other quantities of the solar wind are its average proton density, about 7 x 10°
m~3, the average magnetic field, about 5 x 10~ G, and the proton and electron

temperatures of 0.4 x 10° Krand 1.5 x 10° K, respectively.

2.2.2 Solar Flares

A solar flare is a sudden variation of brightness at the solar atmosphere.
It occurs when a large magnetic loop (see in Figure 2.1) is built up on the Sun’s

surface and then an amount of particles, including protons, electrons, and heavy



nuclei, are heated, accelerated, and flow out into interplanetary space. The power
release during a flare is typically on the order of 10?7 ergs/s, though the total
energy release can be up to 103 ergs. One can roughly classify flares as impulsive
or gradual events. Impulsive events have large e/p and high 3He/*He abundance
ratios, while gradual events have low e/p and normal *He/*He. Gradual events
are generally associated with CME, and the particles that escape from the Sun
are mainly accelerated at a CME-driven shock (Mason et al. 1984; Lee & Ryan
1986; Reames 1990; Ruffolo 1997). The rate of solar flare occurrences depends
on the 11-year solar cycle.

The solar cycle is the cycle of activity on the Sun’s surface. The period
of high activity is called the solar maximum, while the quiet period of little
activity is called the solar minimum. During solar maximum, there are many solar
flares, CMEs, and sunspots, which are cooler areas that appear as dark points
on the Sun’s surface. The formation of sunspots occurs due to the emergence of
magnetic field lines from the Sun’s surface through the Sun’s photosphere. Then
we can observe the reconnection of the magnetic field lines above the sunspot when
the solar flares and CMEs occur. The magnetic reconnection mainly converts
potential energy to thermal energy in flares and kinetic energy in CMEs. The

periodic variation of the sunspot number is shown in Figure 2.2.

2.2.3 Coronal Mass Ejections

Coronal Mass Ejections (CMEs) are events in which a huge mass of plasma
is ejected from the sun, as shown in Figure 2.3. They are called coronal because
the region of releasing plasma is the corona. The occurrence of coronal mass
ejections is associated with solar flares and the number of CMEs depends on the

solar cycle, too. The plasma in CMEs flows into interplanetary space with a
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Figure 2.2: The number of sunspots observed during the last two solar cycles. A
maximum occurred at around 1989, and the most recent came early in the year
2001 (http://www.sunspotcycle.com).

Figure 2.3: An image of a CME taken in soft X-rays. The huge mass is ejected
from the Sun’s surface (http://ens.lycos.com/ens/jun2000/2000L-06-08-09.html).



velocity of up to 2000 km/s, which is much larger than the solar wind velocity.
The collision between these two plasmas of different velocities can cause a shock

that accelerates particles in that region (see §2.5).

2.3 Interplanetary Magnetic Field

The interplanetary magnetic field is defined as the magnetic field from the
Sun that is pulled from the Sun’s surface by the solar wind into interplanetary
space. Since the Sun rotates and has a continuous outflow of plasma, that makes
the configuration of the magnetic field lines like that in Figure 2.4. From the data
of the Pioneer, Voyager, and other spacecraft, we know that the magnetic field in
space is not only from the Sun, but also from the planets such as Jupiter, Saturn,
and Earth, too. The configuration of the planetary magnetic fields are not like
those of the Sun. They have stable magnetic dipoles; an example of magnetic field
lines near a planet is shown in Figure 2.5. The interaction between those magnetic
field lines and the solar wind makes the solar energetic particles change trajectory

and sometimes allows particle from the Sun to reach the Earth’s atmosphere.

2.4 Charged Particle Motion along a Magnetic
Field

We know that charged particles can move along a magnetic field line subject
to the Lorentz force as shown in Figure 2.6. The orbit of a particle depends on
the angle between the velocity of particle and the magnetic field, the pitch angle,
0. By convention, if @ > 90°, the particle moves outward from the Sun, and when

0 < 90°, this particle will move toward the Sun. Since the irregularity of the
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Figure 2.4: Illustration of the Sun and the magnetic field lines. The irregularity
of the magnetic field occurs due to the turbulence of the solar wind (Parker 1958).
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Figure 2.5: The Earth’s magnetic field lines and the effect from the solar wind
(http://www.oulu.fi/ spaceweb/textbook/fig/masphere.gif).
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Figure 2.6: The trajectory of a particle along magnetic field line, depending on
the pitch angle.
magnetic field from the Sun causes the changes in the pitch angles of particles,

we say there is pitch angle scattering in the interplanetary medium.

2.5 Fermi Acceleration

The mechanism that is used to describe the acceleration of cosmic rays is
the Fermi mechanism (Fermi 1949), which originally considered the interaction
between magnetic field clouds and fast cosmic ray ions, such as protons. In this
process, we assume that a proton has a spiral motion around the magnetic field,
and can undergo reflection. The reflection of a particle can occur from two pro-
cesses. In one process, known as “focusing” or “mirroring”, when a particle moves
in a region with a magnetic field gradient, the pitch angle changes so that the
particle accelerates away from the strong field region. The second process, pitch
angle scattering, involves random changes in the pitch angle, due to irregularities
in the magnetic field.

To understand Fermi’s model, we can visualize the reflection process as

a collision between two masses (see Figure 2.7): the masses m and M refer
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before after
5. g " g
center of mass
collision
L | L;:t "‘” 1t
head-on [ : | — ‘—®
collision @ ‘@
v, U 2 F? i U 2f
following @—' o : )
collision ®—> ®->

Figure 2.7: The elastic collision of particles m of velocity ¢ and M of velocity
U in three reference frames. The velocities before (no subscript) and after the
collision (subscript f) are transformed into frames 1 and 2 to explain head-on
and following collisions, respectively. Note that assuming M > m, then U ~ 0,
U1 ~ Ulfa U2 ~ U2f

to the cosmic ray and the magnetic field structure responsible for the reflection,
respectively. There are two types of collisions: a head-on collision and a following
collision. Since the momentum and the energy are conserved in the center of mass
frame, the magnitude of the velocity is constant in that frame, ¥y = —¢. The
velocity after collision in each frame can be found from a transformation of the
velocity from the center of mass frame to each frame. After transformation, the
speed in the head-on collision frame is v; = v — U; before and vy = v + Uy
afterward, or increased by 2U;. The speed in the following frame is vy = v + U,
before and vyy = v — U, afterward, or decreased by 20;.

First let us consider the case of random collisions. The average rate of

gaining energy per collision of each type can be calculated using
collision rate = nov,; (2.1)

where n is the number density of particles, o is the cross section, and v, is v+ U
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or v — U. For two quantities a and b related by

we have

For a non-relativistic particle, E = (1/2)muv?, so

dE dv
We consider the average change in particle speed dv per collision:
() (following collision rate) - dvy + (head-on collision rate) - dv,
v _=
(total collision rate)
_ no(v—=U)(-2U) + no(v+U)(2U)
B no(v = U) + no(v+U)
_ 2n0U? +2noU?
N 2nov
202
From (2.3) and (2.4), we get
dE 40U

which is to second order in U/v. Therefore, this idea (Fermi 1949) is now called
second-order Fermi acceleration. Note that U < #, so this acceleration process
is not very efficient.

Another idea begins with a shock discontinuity in the magnetic field (de

Hoffmann and Teller 1950), which occurs frequently in nature, where we consider
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shock

B

downstream upstream
(flow speed U,) (flow speed Uy)

Figure 2.8: The particle velocity is changed after interacting with an irregularity
in the of magnetic field. Such events occur both downstream and upstream.

the particle speed along the magnetic field. The large scale irregularities are
compared with the mass M (see Figure 2.7), while the particle is compared with
the mass m. The speed of irregularities upstream and downstream are U; (the
upstream fluid speed) and U, (downstream fluid speed), respectively. Suppose
that a particle reflects due to scattering both downstream (which is a region where
the fluid has already passed the shock) and upstream (the region where the fluid
has not passed), returning to its original position and orientation (Figure 2.8).
After one cycle of a collision, the speed of the particle has changed by twice the
difference between U, and U,. The energy change per cycle in this case is found

from

dv = dv; + dvg,
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= 2(U1 - Uy), (2.6)

SO

% _ 4(U1U—U2)_ (2.7)

This energy gain, to first-order in U/v, is more efficient. This idea, now called

first-order Fermi acceleration (Fermi 1954), is what we study in this work.

AONUUINYUINNS )
ANRINITUNINE AL



Chapter 3
Transport Equations

3.1 Fokker-Planck Equation

The Fokker-Planck Equation is a type of partial differential equation which
is frequently used to describe the motion of particles that do not have collisions
with other particles. The general form of this equation describes the time evo-
lution of a probability distribution, which depends on variables such as time,
spatial, or velocity coordinates. Then the fundamental Fokker-Planck equation

is in the form (Wax 1954)

on . o
ot 8@,-

(@iF) = O, (3.1)
where F' = d"N/[], da; is a function of time, ¢, and the variables {a;}, N is the
number of particles, ) is a source or second order term and a; is the variation
of a; as a function of time. If the second-order term or source term goes to zero,
we call this first-order linear equation the conservative form of the Fokker-Planck
equation, which for example conserves of total number of particles. In this work
we use the Fokker-Planck equation as the transport equation of cosmic rays in the
continuous compression region. The equation that we are interested in is in terms
of the distribution function, F', the distance, 2z, the momentum of a particle, p,

the cosine of the pitch angle, 1, and time, ¢. Then from (3.1) we use a more

specific form,

OF (t,u,2,p) [<AZ>F] 9 [<Au>F] 4 [(Ap>F]

ot T 0z | At ou At

At

~ %
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0 few) o [ peU-T) L , (3.2)
ou | 2 Oup c?
where (u) is the pitch angle scattering coefficient as
p(p) = alp|"" (1= p), (3.3)

a is the scattering amplitude, ¢ controls the form of the scattering coefficient, v
is the particle velocity, U is the solar wind velocity, c is the speed of light, [ is the
unit vector along the magnetic field line (Earl 1984; Ruffolo 1995), F(t, u, 2, p) is
defined (Ng and Wong 1979) as

>N

(dpdzdp)’ (34)

F'(t, py2,p) =

N represents the number of particles inside a flux tube, and (Az)/At, (Au)/At,
and (Ap)/At are the rate of change of a particle’s position, pitch angle, and
momentum in time, respectively. Furthermore, we will find the formulae to specify
those values. In the remainder of this thesis the derivatives are taken to be

operators, acting on all terms immediately to the right.

3.2 Cosmic Ray Transport Equation

The cosmic ray transport equation is adapted from previous work (Skilling

1971) by comparison and correction (Piyanate Chuychai 1999):

AZ . 2020 1 -

<A°"§> _ U+,wl—‘“’62 [ (3.5)
A 1 — 342 P

ISV AR R St Y L AT B
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(Ap) 1—p? | = - oU;, wU 0l
d om j T =3l ve Lo
an Af I LA it g T @ o

2. 00 poU-l~ -
L vl
v Ot c?

(3.7)

Then substituting the above equations into (3.2), we obtain the transport equa-

tion for the cosmic rays,

OF (¢ 2020 - [
% = —3 Uz—lr/u;lz—’uUC2 I,| F streaming
0 1 ="3u? oU: 1—-p2= - . 0U
- — BN V-U-=]-—| F
8pp[ '/ N0 x; 2 v 0t
acceleration

]_— 2 — A — —
—% 2” [UV l—i—uV-U—?)ullljng focusing
oU 0l 2. 0U po?U- 1o
i _ JdVF
cA Ul ot c? vl

differential convection

9,
e

on ‘ scattering  (3.8)

olw) @ ( wol-I
2 Ou (1 c? 4

Each term on the right hand side of (3.8) corresponds to certain physical pro-

cesses that affect F'. The first term, which invelves (Az)/At, is the streaming
and convection term, describing how particles move along the direction z due
to the velocity of the particles and velocity of the solar wind, respectively. The
second term involves the deceleration or acceleration, depending on the physical
situation, of particles (changes in momentum). In this work, we consider a com-

pression of the fluid, so this term represents acceleration. The third and fourth
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terms are focusing differential convection and scattering terms, which concern

changes in pitch angle cosine, p.

3.3 Model Configuration of the Magnetic Field
in a Compression Region

The magnetic field line shape that is chosen for the compression is shown
in Figure 3.1, which shows the structure of the magnetic field in 2 dimensions, in
comparison with the shock case. Here U is the fluid (solar wind) velocity, and the
subscripts 1 and 2 mean the upstream and downstream sides, respectively, while
B is the magnetic field. Simulations are performed by using the configuration
of hyperbolic magnetic field lines, in which the radius of curvature at z = 0 is
adjusted though the value of b/A; the radius of curvature R = bcot #), where b
is half of the conjugate axis, A is the scattering mean free path parallel to the
field, and 0; is parameter related to the upstream-to-downstream difference in
the angle between the magnetic field and normal to the shock.

The function of the magnetic field line in this case is the function of a
hyperbola which has a shape like in Figure 3.2. The equation which describes a

hyperbola is
(y—k)? (z—h)?

a? b2

g (3.9)

The asymptotic lines of this function, which are used to control the shape of the

hyperbola, have the equations

y—k:i%(az—h). (3.10)

The graph is adjusted to be appropriate for this work (Piyanate Chuychai

1999) by rotating the axes passing through the origin as in Figure 3.3. Then the
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Figure 3.1: Model magnetic field configuration in the shock case and continuous
compression case, respectively.

1y

Figure 3.2: The graph of a hyperbola with center (h, k), the foci ¢, transverse
axis 2a, and conjugate axis 2b. The conjugate axis of a hyperbola describes the
width of the region of curvature; if b is small the curve is sharp.
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Figure 3.3: The hyperbolic graph after rotating the axes, for upper and lower
branches, where 6 is defined as the angle of rotation. In each case, the point of
maximum curvature is shifted to the origin.

equation of this graph is given by

e
a? b? %

(3.11)

where the new coordinates (2',y') are related to the old coordinates (x,y) by the

relations
2 =xzcosh +ysinf, y = —xsinf+ ycosh, (3.12)

and substituting equations (3.12) into (3.11) we will get the equation of the
hyperbolic magnetic field line that we use:

o a2 inf — h)?
( xsm@—i—g;cos9 k) (@ C059+?Z251n9 h) = 1. (3.13)
a

We know that this equation permits both branches of the graph, but in
this work we choose only the upper branch for simulating, because of the similarity
with the shock magnetic field that has been presented previously (Ruffolo 1999).
The appropriate origin point is (h, k) = (0, —a). Then equation (3.13) becomes

(—xsinf +ycosh +a)®  (xcosf+ ysinf)?
a? a b? -

1. (3.14)
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The function, y(x), can be found by solving the equation (3.14), which is quadratic

in y, and then the solution is should be in the form

_ —B+VB?2—4AC

3.15
() st (315)
where the constants A, B, and C' are

A = 1—sec’B),sin’0,

B = —a%sec’ ), sin20+ 2btan ), cos, (3.16)

C = x%sec’ 0, sin’ ) — 2zbtan b, sin @ — 22 tan’ 0,

The parameters that we use in this work for describing the structure of the
magnetic field are 0, b, the width of the region of curvature of the magnetic
field line,

0, — 0]

On =", (3.17)

where in the upper branch case 6 = (0, + ), because 0, < 6.

After the magnetic field line is determined, we apply this solution to find
specific terms in the transport equation, which involve the unit vector along the
magnetic field and solar wind, that is, [ and U. If d5is an infinitesimal distance
along B then we obtain

dix B =0. (3.18)

Since we are interested in Cartesian coordinates,
B = B,i + Byj + B.?, (3.19)
the result of the cross product in equation (3.18) is

@ _%_ ez (3.20)



23

N

N

< N

$constant separation Ay
downstream upstream

Figure 3.4: The structure of our model magnetic field compression, where the
angle between magnetic field line and the compression normal on each side is
different, 6, # 0y; however, the flux tube size Ay is constant. In addition, the
solar wind velocity, assumed to be a vector along the z-axis, is not constant along
z.
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In this simulation we are interested in the magnetic field in two dimen-

sions, (z,y), replacing x with z (see Figure 3.4), and then equation (3.20) is

changed to
dy B,
— === 3.21
=B (3.21)
or
dy
B, =B, 3.22
Then equation (3.19) becomes
B=B—=y+2z|- 3.23
(5i+) (3.23)

(3.24)

Then from equation (3.23) the magnitude of B is equal to

|B| = 4/BZ+ B?
d 2
= \/(d%) B2+ B2, (3.25)

Substituting (3.23) and (3.25) into (3.24), we get

dy/dz .

1
= Y+ Z.
\/1 + (dy/dz)” \/ 1+ (dy/dz)’

From Figure 3.4, we see that the solar wind velocity, [7, is changing. A

l

(3.26)

decrease in U along the flow is called a “compression,” i.e., two streams of fluid
have a relative velocity toward each other. The reason is that while the solar wind
is ejected from the sun it drag the magnetic field lines to the interplanetary space,

in the same time the plasma in solar wind is followed along magnetic field. Then
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the changes in the two quantities are interdependent. In this work we assume
that

U=U,z2, (3.27)

and the relation between the magnetic field line and solar wind velocity is assumed

to be
Ua® o U= (3.28)
“ T dy T dy/dz’ '
S0
dy
_y, Y 3.29
c == (3.29)

The constant ¢ can be found by the boundary condition. If the solar wind speed
far upstream is set to —Uy, and dy/dz = — tan 0y, then ¢ = —Uy, - (tan6,;) and

equation (3.27) becomes
_Uln - tan 91 A
—Z

U= 3.30
dy/dz (3:30)

Now we have the parameters that involve the magnetic field line in the
compression region already, and next specific terms in the transport equation are

derived as follows:

1

- ) (3.31)
1+ (dy/dz)?
(3.32)
—Uln-tanﬁl
UQr i 77 3.33
dy/dz (3:33)
(3.34)
4=\
_Uln tan91 1
= . 3.35
dy/dz , (3.35)

1+ (dy/dz)?
(3.36)
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. L,
V-l = g
z
dy dZ?J 3
= - —=-1,°, 3.37
dz dz? ( )
(3.38)
5 o oU,
voUo= 0z
Uy, tan, d?
= 2 (3.39)
(dy/dz)” d=z
(3.40)
oU; oU
L 1 LN~
]8:ri 0z
- 2 (Uln tan91 - d2y) (341)
“\ (dyfdz)* dz*)"

where in our model gradients are non-zero only in the z-direction. Since both U

and [ do not depend on time,

(o5}
=~

T 42
0%, 0, (3.42)
. oU

[ < fg=fo: (3.43)

The terms dy/dz and d*y/dz? can be found by using the configuration of the
magnetic field following equations (3.15) and (3.16). As a result we can solve the

transport equation by numerical techniques as described in Chapter 4.

3.4 Diffusion-Convection Equation

The diffusion-convection equation is widely used to study the propagation

of particles. The general form of this equation is

OF _ 0S

s 1 A 1Iah .44
ot 9z’ (3-44)

where F'"is the particle density, S is the flux of particle density,

OF
=UF - D— 4
S=U - (3.45)
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Figure 3.5: The pitch angle scattering makes particles undergo a random walk in
4, the pitch angle cosine, moving up and down in this graph, while the streaming
velocity along z is v cos f or pv.
which is composed of two terms. One is the convective term, UF', and the other
is the diffusive term, —D 0F/0z, which is related to Fick’s Law, where D is the
diffusion coefficient. The transformation from the pitch angle transport equa-
tion that we use to the diffusion-convection equation uses the so-called diffusion
approximation.

We start by considering the particle motion in g and z, as shown in Figure
3.5 (not considering momentum changes at the moment). The particle density is
in the form F'(¢, z, ). The effect of pitch angle scattering on the particle density
is shown in Figures 3.5 and 3.6. We see that if the distribution in p is nearly
isotropic, the pitch angle scattering implies a random walk in z, and we have a
diffusive process with a small and nearly constant anisotropy (u-dependence) of

the particle density. Earl (1974) described the distribution function for charged
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Figure 3.6: The particle density depends on changes in p. We assume that
particles start at the same (u,z) coordinates. If y has not changed much, the
particle-density; F'; has a sharp shape, but if g has changed greatly (due to
scattering, a random walk in ), F will spread out diffusively in z.
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Figure 3.7: A rough illustration of F' as a summation of Fy, Fi, and F5.

particles diffusing along a magnetic field line by this diffusion approximation. We

applied this derivation to our transport equation by approximating

F(@M;p: Z) ~ FO(tapa Z) + Fl(“apa Z) -+ FQ(,U’apa Z): (346)

where Fy = (F),, Fy is an odd function of y, and F, is an even function of y, as
illustrated in Figure 3.7. The F, function does not lead to a strong flux, so its
effect is neglected in this approximation. The form of 3.46 implies some assump-
tions:

e F'(u) is nearly constant,

e |0F/0t| K |pvoFy /0=,

o |U,,0F, /0% < |pwdF,/0z|.

We substitute (3.46) into (3.8), and then the result is split into even and

odd terms. The even terms give

0F, 0

BV AGNIER
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0 [1— p? oU; . owtU o
—— —3plil =L U — 1| F
o < 2 > . T 0w, v c? v ‘
0 (1—w\| = . oU ai 2. av
_Z Vol+——. 2.2 F

6u< 2 ) ! * 2 ot v o]

) oF, O d U -1

0 p(u)0Fy, 9 p(p) 0 pw F (3.47)

ou 2 Ou  Opu 2 Ou ¢

and the odd terms are
oF, 0 p20?U -1 d
W = —g Uz_ - lz FI_&(MUZZ)FO

0 = Jud oU; 1R A g 0 pu. U

—— WIA7E 4 A Fi+—=1-—F
app [( 2 ) ! O < 2 Y 1+8pv ot~ °
0 [1— u? [ Lol

_£< 3 ) 3plil; Z +uV-U - 2 VI F
9 (142N o+ o0 ol 2. ov

_Z ek SR TR T | o
o ( 2 > R, c ot v ot °
) OF, 9 3 ol -1

p(p) OF1 0 (p) 0 pv o (3.48)

Ou 2 Ou Op 2 Oou
We want an equation that is independent of 1, so we average the odd and even
terms over pu.

Some results that are used to solve the integrals are:
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1 10 o(u)oF,
z L Uttt = A4

where we recall that Fjy is independent of . Then equation (3.47) becomes

om _ 9
ot 0z

T o (1 -o00\1 [!
N U—pFy+ —p |- —|:= Fydy.
+3V 8pp0+8pp<v 815)2/_1”1”

Comparing between equation (3.50) and the diffusion-convection equation (3.44),

o 1 (1
Fy — =—vl,— Fid
0 aZU 2/_1M1M

we can write

OF, 0S . 9 p o - o (1 U 1/1
=0 - R SR DR =[] Fd 3.50
ot 2% ops! )0+3p<v t>21’““’ (3:50)
where
102U -1 1 [t
S = [z—g ——lz F0+vlz§/1uF1du. (3.51)

Now we want to eliminate Fj by finding Fj in terms of F. We start by
integrating (3.48) over p from -1 to v. Then we set the left hand side to zero,

recalling our assumption that 0F; /0t is negligible. The results from integrating

Y 1 -2
dp = —=
/_l,u,u 5
YO 1= P 1 o2
— Fidy = F
Lo (5 i = 5500,

YO (1 —p? 1=
[ () o = A

are




Y0 o(p) OF

/

10 2 O
"0 p(u) Ou

-1 8u 2 8u

We can neglect 0F; /0t and 0F} /0z, so the result is

(=) (=7)
- 2><N-Z+“ﬁ o

@ ot v
oW OF(v) U -le)
+
2 ov

2 2

9
0z

0

1—v
lZF — =P
0 9

2

1—v

2

0

1—v

FO?

c2

and we use the relation

d

0z

F
lzﬂ T Fﬂ%a

[, F
(= Fo) 0z 0z
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(3.52)

oU

ot

>F0

Fy

S | =~

o
ot

(3.53)

to simplify (3.53). Moreover, we set the solar wind vector and the unit vector

along the magnetic field to be constant in time. Then

OF/0v is found in the

form
aFaliv(y) — {1@—;2} Ulzaaio = Fw_(l/ﬂ = (ﬁi_ %> Fo
”U;' ZFU, (3.54)
and we have
fare = = HAse wea s bh k)
Xv <6 = %) Fy+ (/OM du) ”Z' 'R, (3.55)



L[ SN FT(1 =02
+ul, - {/ 1 [+v (V.l— %>] / {(1 v )] dz/d,u} Ey
2 1/ Z 0 p(v)
1 : /ﬂUﬁ-lA
+'Ulz§ [/_1 ( 2 ) du
1 o } LW
= U,Fy— v2lj1 {/ / H [1 L ] dVd/J,} o
2 1) 1o (v) <

¥
V221 S Fre 32 - - 0l
Z— dvdy  F ) .
+lz2{/_1/()lb{%0(’/)} ”“} °<V z) (357
and using integration by parts,
LT (—p?? ] 0F
S = U,F—v= {/ du]
" a1/ el 0z
UZZZI{/I (1 — p?)? ] (—» S 8lz>
+—=- ————du| Fp (V- —— ],
A W07 ’ z
oFy D S s ts
= U,F,— D=2+ =ZF, g.i- 2k : (3.58)
0z l, 2z

where

Lo ,2)2
D = U2l21/ Mdu
4w

is the spatial diffusion coefficient (in z). We can write S in the form:

0F, D ol, 0l
= UFR-D—++F|—+-2
S U:Fo 0z +lz 0<8x+8y>
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F, 1dA
U,Fy — D@ + DFy~

5% 1ds (3.59)

where A is the cross-sectional area of flux tube, and perpendicular to B (and [)

The equation (3.59) can be expressed in terms of an observed intensity,

J, where
Lo N (3.60)
7T Badpdy '
The definition of F' (equation 3.4) and j (equation 3.60) is related by
Fy = 21 Aj (3.61)

(assuming a uniform distribution in the gyrophase). Using the logarithmic deriva-

tive, which is

1 dFy d

Fjdd Lazirto)
2 %(ln A) + dilz(lnj) (3.62)
= %%+%%, (3.63)
we write equation (3.59) in terms of 7.
S = U.F— D%%. (3.64)

Finally we assume Fy'oc p~ 7 (at least locally), to-obtained a diffusion-convection

equation in the steady-state (dFp/dt = 0):

d ._Fydy d y=1 5 =
—D—== - U,Ffy———~(V-U)F,=0. 3.65
dz 7 dz dz 0 (V-U)F ( )
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3.5 Analytic Solutions for Special Cases

Referring to Figure 3.1, the magnetic fields far upstream or far downstream of a
compression and a shock are not different. Then the boundary condition for a
compression can be considered from the boundary condition for a shock (Ruffolo
1999), which is designed to match the solution of the diffusion-convection equation
(e.g., Krymskii 1977). The diffusion approximation should be valid far from the
shock or compression.

The diffusion-convection equation for a shock is

oF B oS
= S (3.66)
where
0F,
= o DS = )
S ULy o (3.67)

on one side of the shock (upstream or downstream), where U is constant, and U
is the fluid speed along z. In our work we define z > 0 to be upstream, so we use
U < 0. Note that we define z along the shock normal, so A(z) is constant and
Fy and j are interchangeable in our work. In the steady-state, equation (3.67)

requires that S be constant on either side of the shock, so the solution is

U
Fy, = ¢ +coexp (Bz> | (3.68)
where ¢; and ¢, are constants. Downstream (z <0), ¢, is set to zero, in order to
avoid divergence; then dF,/0z = 0-and Fj is constant. Far upstream, we assume
that there is a negligible flux of energetic particles, so we set ¢; = 0, and Fj
decays exponentially in z.

Furthermore, we consider the anisotropy of Fy by examining equation

(3.54). In this work, we consider isotropic scattering, so ¢ = 1. The pitch angle
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coefficient is in the form of p(r) = a(1 — v?) (see equation 3.3). Then equation

(3.54) becomes

F, F . 70
oF (v) vl 0F, v <v-1— alz)F0+vU zFO' (3.60)

Now the right hand side of equation (3.69) does not include the variable v. This
means that Fj(v) =0 - Fy - v, where ¢ is called the anisotropy of Fj.
We find ¢ from consideration of equation (3.51). Changing v to u, we

have

1,6
“3 F. (3.70)

= 02U -1

S g &
¢ 3c2

R

Comparing equations (3.70) and (3.64), and recalling that Fp/j is constant, we

have
vl, oU « [ \ oF,
? [(5 B ) F() = —DW, (371)

3D 8F, oU -1
6 = = . 3.72
vl, Fy 0z Iz c? ( )

Recall that far downstream, 0Fp/0z equal to zero (to avoid divergence as z —

—00), SO
5 = ch'f“, (3.73)
- Uzl;“. (3.74)
Since far upstream,
O _ %FU, (3.75)
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then the expected value of § far upstream is

z le
5 = 3 Uil (3.76)

vl, 2’

which depends on the fluid speed and the particle momentum.

In this work, we calculate the § by using U, = 544.3 km/s™' = 0.001816 xc
and for v/U, = 10 or 50. The results from this analytic calculation (which is only
valid far from the shock or compression) and the full simulations are compared

in Chapter 5 .



Chapter 4

Numerical Techniques

4.1 Existing Numerical Techniques

In the simulation work, we use three methods to solve the transport equa-

tion. Each method depends on the variables (2, u, p) and the boundary values.

4.1.1 Crank-Nicolson Finite Difference

This method is used to solve the transport equation in terms of u. Before
going into details of the Crank-Nicolson finite difference method, we will introduce
some simpler examples of finite differencing. Suppose we have a function y(z)
and we want to find the value of this function along x by the approximation
yi ~ y(z;), where z; € [a,b] are discrete. Then we set zy = a, 1 = a + Az,
To=a+2Ax, ..., xny = a+ NAzx = b, where N is the number of intervals Az.
The ordinary differential of y(x) is dy/dz, which can be estimated by the finite

difference method in three ways:

1. Forward differences:

@ o Yi+1 — Vi
dx Az

T

(4.1)

The error of this approximation can be found by a Taylor series expansion. We
replace Ui, ¥i 1, Yix1 by y(zi), y(z;_ 1), y(xiv1), respectively. Then equation (4.1)

is given by

W) —ylm) = ylw) + 1 @A+ 5 (@) (AP + .. y(w)
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y(rit1) — y(o;)
Ax

where the error (1/2)y"(z;)Ax is to first order in Az, i.e., O(Ax).

1
= y(x;) + §y"(xi)Aa: + .., (4.2)

2. Backward differences:

dy

Yi — Yi—1
~ 7 4.3
o (4.3)

Az

T

Then

y(ri) —y(zim) = ylw) — [y(xz) — 1 (x;)Ar + %y"(xi)AxQ — ...,

y(zi) — y(zi1)
Azx

/ 1 "
=y (@) — 5Y (z:)As+. .., (4.4)

so the error is again to first order in Ax.

3. Centered differences:

dy

Yi+1 — Yi—1
P W WS, 4.5
» (4.5)

2Ax

T

Then

W) =yl a) = Yol gl Ant 5y (m) (A + gy (@) (AP ..
4o - (9de + 3w 30
1 " 3
—5Y (T (AT, (4.6)
=\ (@ YAm+ %y'"(mi)(AI)3 PPN

y(%‘ﬂ) - y(xi—1)
2Ax

= ) + () (D) e (47)

Then the error of this approximation is to second order in Az, i.e., O((Ax)?).
We see that the centered difference is a good approximation and is more accurate

than the other two.
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We continue examining finite differences by finding the estimation of the

second order derivative, which can be found by the approximation

Pyl Y =2y + Y
da? |, (Ax)? ’

which has an error of O((Ax)?).
The finite difference method can be applied to a simple parabolic partial

differential equation, such as the diffusion equation,

ap /e

e _ - 4.8
ot orrm (48)
where f is a particle density and
of
=7 —D—.
7 ox

We approximate f by setting /7 =~ f(tn, ;). We want to find f*! fori=1, ...,
N — 1, and after that find f*%, f*? ... Therefore, when we apply the finite

difference method, we will get

- TS S) - sE+ %)

At Az ’
xz\ fi—fio xz\ fir1—fi
_ Do iepblay it
Ax ’ '
and if D is constant in z, we have
A i D
T BF T 191|205 7S (4.10)

Given an initial condition for f°, we now have the equation to solve the distribu-

tion function at every time.
There are various methods for applying finite differencing to solve parabolic

partial differential equations.



41

Explicit Method: This method is related to forward differencing in ¢. From

equation (4.10), in this case the bracketed term is evaluated at time t,:

fin+1 - fzn D n n n
Al = (Ax)? L =200+ ], (4.11)
fi o= [+ (Ax)g [ s — 200+ i-}-l] . (4-12)

The error of this method is aAt + b((Az)?) to leading order, for some constants
a, b. An unstable result will be obtained if At > (Az)?/2D.

Implicit Method: This method is related to backward differencing. Evaluating

the bracketed term at ¢, .4, we get

fin+1 7 fzn D n n n
At T Az LS =207+ i (4.13)
i LB e - g (4.14)

We have to solve a matrix equation because our equations are coupled, linear
equations. Then this method is harder to program than the explicit method but

the results are more stable. The error of this method is still aAt + b((Az)?).

The combination between explicit and implicit methods can reduce the er-

ror from O(At) to O(A¢?). The combination is called the Crank-Nicolson method.

Crank-Nicolson Method:
Crank-Nicolson method «— %explicit method—i—%implicit method

The relation between f"*! and f" is

fin+1 _fln — D in—l _2f7,n+ iﬁ-l + fi—+11 _inn+1+ Z?Ijil (4 15)
At (Ax)? 2 2 o
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=+ PINSE {floy =27 + [l + I =20 fRAY ) (4.16)
If we set r = DAt/2(Ax)?, then equation (4.16) becomes

—rfi 2 7 = i = (L= 20) 7 (4.17)

This is again a coupled set of linear equations, with one equation per ¢ value of
interest. This can be arranged in the form of a matrix equation. If we solve the

matrix equation, we will find the distribution function that we want.

4.1.2 TVD

The Total Variation Diminishing (TVD) method can be used to solve the
streaming-convection part of the transport equation. The TVD algorithm used
by Hatzky (1996) showed a faster running speed than the method used by Ruffolo
(1995). Another advantage of TVD is limiting the amount of numerical diffusion.
Motivated by the results of Hatzky, the algorithm of Roe (1985) was adjusted
to allow a general Courant number, v = v,At/Az, so our simulations can use a
general value of Az (Nutaro et al. 2001).

The TVD method was first described by Harten (1983) for an oscillation-

free scheme. The total variation of a function F'(z) is defined by

oF
= — 4.18
" o
and this expression has a numerical (finite difference) form of
TV (F") =) [F — B (4.19)

l

where [ is the spatial index and n is the time index. The essential requirement of
this method is

TV (F™) < TV (F"), (4.20)
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in which case this method is called total variation diminishing (TVD). The TVD
method gives the possibility of more accurate and oscillation-free solutions. How-
ever, a typical implementation of this method limits the Courant number to
0 < v < 1. An application by Nutaro et al. makes the method able to use a
general value of v, which means we can use various Az. We first consider the
case where v, does not depend on z. Using the TVD method, F' is moved by an
integral number of steps, g, received from rounding v downward. As an example,
when v = 2.6, F' is moved forward by 2 z-grid points, so that ¢ = 2 and the
remainder is equal to 0.6. We call the remainder ', which is between 0 and 1.
We are interested in the distribution function at a grid point [, F;. We get this
value from

At At

Fi & By~ S+ 5%

= (4.21)

where S, is the flux from [ to /' + 1, which depends on 7. We can find the flux

!

from
1
SZIJF% = UZJF%Fz—g + §U;+% (1= %’Jr%)(Fl—gH - Fl—g)@l—g, (4.22)

where v; , isy, 1 Az/At at 2 = 2 — Az/2, and ¢, is the flux limiter (Roe 1985).
2

!
[—

N

If we consider v, dependent on z, then v changes in z, and the distribution

function at [ is set to

1—

F = F.l - ﬁ =9 4.23

1 j{: m Az l+% l,% ) ( . )
m=l—g_

where g, (g_) are rounded-down integers corresponding to v;41/2(7-1/2). The
formula in equation (4.23) is constrained so that g¢ < g_ 4 1; sometimes this
constraint can be avoided by choosing small At. If g, = g_ + 1 the sum will be

Zero.
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4.1.3 Interpolation

An interpolation method is used to estimate an unknown value from neigh-
boring values that are known. Now we present the linear interpolation method
in one dimension (see Figure 4.1). We have a function F'(x) which varies in one

dimension, x. If we know the values of the function at points x; and x;,;, we can

known unknown known

Figure 4.1: Linear interpolation in one dimension. The black circles are the points
where we know the values of £, while the white circle is the point where we want
to find the value of F'.

estimate the value at point z by the relation:

Tijg1 — 2 T =1

F = ———F(z;)) + ———F(x;41). 4.24
(@) = A ) e Fan) (4.24)
We can define
fo— — (4.25)
Tip1 — T4

where f, is the fractional distance of = from z; to z;4,. It has a value between 0
and 1 for interpolation, and for extrapolation, f, < 0 or f, > 1. Equation (4.24)

becomes
F(z) = (1= fo)F(@) + fo F(@i41). (4.26)

We use such an interpolation method to solve for the p-transport of dis-

tribution function. The only part of acceleration of the transport equation (where
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dU /ot is zero in our work) is

OF (t, z, i, p) 0 1—3u? oU; 1—p?= -
orhapmp) 9 11, S T\ F(t, 2, 1, p).
ot 8pp 2 T 0wy 2 v (t,2 1 p)
(4.27)

Referring to equation (3.6), the term in brackets can be interpreted as (1/p)Ap/At
Setting this to the inverse of a characteristic acceleration time, 7,, we have
1 = oU; = 1— 2= -
AN 1 BN (4.28)

T_a K 2 ]31’Z’ 2

which is constant in p, and equation (4.27) becomes

0 1 0
—F(tyz, p, = ———pF(t, z,u,p). 4.29
PTG 95" (t, 2,1, p) (4.29)
Another form is
0 1 0
—pF(t = —————pF(t 4.30
5 PE (& 2 1. p) 2 ” (t, 2, 1, p), (4.30)
where pg is a fixed reference momentum, which has the solution in the form of
(4.31)

pF(t+ At z, p,p) = pe‘At/T“F(t, z, ,u,pe_At/T“).

In other words, from equation (4.30), the value of pF is constant along charac-

teristics, which are straight lines of slope 1/7, in the graph of Inp versus ¢ (see

Figure 4.2).
Referring to Figure 4.2, the value of F'(t;11,p,) can be found from F(t;, p*)

The point p* is defined by the relation

dp p
dt Ta

(4.32)

P = pu (4.33)
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Figure 4.2: The interpolation scheme. The solid lines are at constant t. The
dashes lines are characteristics, along which pF' is constant. The value of
F(tiy1,pw) can be found from F'(¢;,p*), which can be estimated by interpola-
tion between F'(t;, py 1) and F/(t;, py)-
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Figure 4.3: The geometric interpolation between F3,_; and F;, at constant ¢ to
estimate F(p*).
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We use geometric interpolation, which is linear interpolation in a log-
log plot (see Figure 4.3). The value at point p* can be estimated by geometric
interpolation between F,,_; = F(p,_1) and F,, = F(py,) at constant ¢. The value

of F'(p*) can be found by the relation
log F(p*) = (1— fp)logFy_1+ f,logFy, (4.34)

where

log p* = 10gpu.

logpy, — 108 puw-i
Substituting equation (4.35) into equation (4.34), the result is

(4.35)

fo

log F, 1 — log F3,
logpw—l \ lngw

log F(p*) = logFy, 1+ (logp* —logpy—1). (4.36)

If we set

log Fy, 1 — log F,
expon = IR AT , (4.37)
logpw—l N logpw

the equation (4.36) becomes

% expon—+1
e ) , (4.38)

Pw-1

P FP*) = pu-1Fup <
Then p, F(t + At, u, 2, py,) is set equal to p*F(¢,p*). The numerical simulation
in this part (for deceleration or acceleration) is performed in the code decel.c,

shown in Appendix A.

4.1.4 Solving the Diffusion-Convection Equation

The diffusion-convection equation (3.66) is solved by a shooting method.
This equation is divided into two 1%’- order differential equations, for F' and S.
The boundary conditions are F''= 1 and the flux S equal to the fluid speed far
downstream, and S far upstream equal to zero. The details of this solution are

demonstrated in Kanin Aungskulsiri’s senior project.
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4.2 Test for a Single Step and Finding Appro-
priate Step Sizes

It is difficult to solve the transport equation in one step. Therefore, we
employ the operator splitting method (Park and Petrosian 1996; Press et al.
1992, Chap. 19). The right hand side of the transport equation (3.7) is separated
into three components, which depend on each of the operators (9/0u, 0/0z,
0/0p). The distribution function, F(t, i, z, p) is updated in the following steps:

1. Updates F' for u-changing processes over a time At/2.

2. Updates F for p-changing processes over a time Af.

3. Updates F for z-changing processes over a time At.

4. Updates F for p-changing processes over a time At/2.

Since the error of the simulation depends on the step sizes of the variables,
then one way to measure the accuracy of the simulation is testing for a single step
in time, At. We do this by comparison of results between the operator splitting
method and the emuz.c program for the special case of F(t = 0,pu,2,p) = 1,
which is our initial condition, and for which we can readily calculate 0F/0t from
equation (3.8). The program emuz.c (Kanokporn Leerungnavarat’s work, see
Appendix B) is used for calculating each component of (1/F)0F/0t, which are
the streaming-convection, scattering-focusing, and acceleration terms at one time
step, At. The emuz.c program considers each momentum value and varies z from
—16xzstep to 16k zstep, p from —1xmustep to 1xmustep, where zstep and mustep
are the step sizes of the simulation in z and pu, respectively. (Note that z=0 at
the center of the compression, and . is the pitch angle cosine so it varies from -1
to +1.) The summation of the results from each component gives the distribution

function after one time step, F'(At, i, z,p). These values are compared with the
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results for each component from the transport code, using the operator splitting
method over one time step.

The change in the distribution function is indicated by shading in the con-
tour plots of 1 and z (see Figures 4.4-4.5), which show the results from v/Uy,, = 10
and v /Uy, = 50, respectively). Each Figure has two panels. The top panel shows
the results from the emuz.c program, while the bottom panel shows the results
from the hybwind.diag.c program. Both of them have a roughly circular structure
and similar shading. The inner shade indicates maximum F', while expanding to
the outer shade, F' approaches 1. The maximum F' occurs from the acceleration at
the center of the compression. The accelerated particles accumulate as shown by
the high F'. A similar shading pattern in the two panels indicates acceptable step
sizes, Az, At, and Ap. In practice, we vary those values, and look at the shading
and structure, comparing the values of F' from emuz.c and the transport code
for a single step. We want large step sizes for decreasing the run time, but those
values should not cause an unacceptable error. We have also performed complete

simulations for different step sizes to confirm the accuracy of the simulations.

4.3 Simulation Procedure

The purposes of our simulations are to find the steady-state spectral index
(a parameter to describe the particle acceleration), which is related to F' o< p~7,
and to find the relation between F' and z at various compression widths. There are
six cases of running that depend on the particle momentum and the compression
width divided by the scattering mean free path. The procedure of running, shown

in Figure 4.6, is as follows:
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Figure 4.4: The contour plot of AF for v/Uy, = 10,b/\ = 0.2, and the initial
condition F'(uyz) =1.The step sizes are Az = 0.03125 AU, Ay = 2/15, and At =
2.86325 minutes (vAt = 0.03125 AU). Contours indicate AF = 0.0125, 0.0075,

and 0.0025 from the inside to the outside.

solution. Bottom panel: numerical solution.

Top panel: approximate analytic



51
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Figure 4.5: The contour plot of AF for v/Uy, = 50,b/\ = 0.2, and the initial
condition F'(uyz) = 1.The step sizes are Az = 0.00625 AU, Ay = 2/15, and At =
0.6239625 minutes (vA¢ = 0.00625 AU). Contours indicate AF = 0.0025, 0.0015,
and 0.0005 from the inside to the outside. Top panel: approximate analytic
solution. Bottom panel: numerical solution.
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1. Choosing v/Uy, that we are interested in. This value is related to the
particle momentum.

2. Choosing Az, At, and Ap.

3. Testing the accuracy of the distribution function in one time step,
which depends on Az, At, and Ap.

4. Peg run: for estimating the initial value for the distribution function
at low momentum (used as a “peg” or p-boundary condition in the full run).

5. Full run: for finding the steady-state best gamma at different energies
and compression widths, for finding the distribution function versus z, and for
testing the accuracy of the transport equation program.

6. Finding the error of gamma, checking the steady-state running, and
understanding all values from running.

7. Running with other compression widths.

4.4 Simulation Program and Inputs

The program that we use to perform simulations is composed of 9 files:

1. hybwind.c: It is the main program, all functions and initial values are
called from here.

2. decel.c: It is used to calculate the deceleration or acceleration term.

3. field.c: The magnetic structure is defined in this routine.

4. initial.c: It sets the initial value of F.

5. inject.c: It is used to describe the injection of particles during the
simulation (not used in this work).

6. nrutil.c: It reserves memory for arrays used in the program.

7. printout.c: The results are printed out here.
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8. stream.c: It is used to calculate the effects of the streaming and
convection.

9. tridag.c: It is used to solve a tridiagonal matrix equation (from Press
et al. 1988).

The advantage of separating files is that we can develop this program for

many physical problems by changing only certain files. This is called a modular

approach.
1.
2.

© % @

10

11.
12.
13.
14.

The input values of the simulation are:
start time (minutes),

stop time (minutes),

. time step (minutes),

print time (minutes),
number of u grid points,
number of p grid points,
momentum values (MeV/c),

length in the z direction (AU),

. step size in z (AU),

. particle mass (MeV /¢?),

solar wind speed divided by ¢,
parallel scattering mean free path (AU),
scattering power law index,

whether to print extra diagnostic information.

For choosing the previous input values, 1-14, we conveniently set the start

time to be zero and we set the stop time to be sufficient for the simulation to

approach close to a steady-state. We select the time step from single step testing.
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The print time is set to the time step for frequent printing of results. The number
of u grid points is usually used as 15, but it can also be increased for checking
the accuracy. The p-grid points usually follow the momentum values of interest.
In this work we use 5 momentum values. The momentum values are related to
v/Uy,. The length is set to 1 AU in the z direction, where A is set to 1 AU. In
other words, the z range is 1 in units of A (or 0.5 on either side of the shock or
compression). The value of the scattering power law index is set to 1.0, which
means that the scattering is isotropic (a standard assumption). We do not want

to print extra diagnostic information, so this value is set to zero.



Chapter 5

Results and Discussion

5.1 Results

In this work we are interested in the acceleration of cosmic ray particles
to v/Uy, = 50 (or for protons, a kinetic energy E of 3.891 MeV), where v is
the particle velocity and Uy, is the upstream solar wind velocity normal to the
compression region, and also to a lower energy with v/U,,, = 10 (£ = 0.155 MeV).
For each momentum (energy) value we simulate for three cases of the width of
the compression region, that is, b/ = 0.2, b/A; = 0.5, and b/\| = 1.0. Thus
we present results for six cases. The other constant values that we use for these

results are:

the proton mass, m=938.27 MeV /c?,

- the solar wind speed divided by the speed of light far upstream, Uy, /c =
0.001816,

- the scattering mean free path, A = 1.0 AU,

- the angle between the magnetic field line and compression normal far up-

stream, #; = tan!(4.0),

- the angle between the magnetic field line and compression normal far down-

stream, , = tan—1(15.11),
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5.1.1 Distribution Function

From the simulations we get results about the acceleration of particles in terms of
the distribution function of particles averaged over pitch angle, (F'),. From the
distribution function, we can derive the density of cosmic ray particles that can be
accelerated to the momentum of interest by the whole process that we discussed
in Chapter 3. We normalize this value to the particle density far downstream.
For a shock one can observe a peak in the particle density just upstream of the
shock (Ruffolo 1999, Gieseler et al. 1999). In this work, we observe a similar peak
for the narrower compressions. We identify this type of peak as a “mirroring
peak,” which comes from the magnetic mirroring (reflection) of particles when
they encounter the compression region.

The distribution function vs. the distance z normal to the shock or com-
pression plane in each case is shown in Figures 5.1 - 5.4. Here we consider both
the case of a shock (Figure 5.1) and compressions of varying widths for different

particle speeds (Figures 5.2 - 5.7).

5.1.2 Spectral Index

The next set of results involves the spectral index of accelerated particles, v. We
can use the spectral index to describe the efficiency of acceleration because the
results from cosmic ray observations and existing theory have shown that the
relation between (F'), and the particle momentum, p, ought to be a power law,
(F'), o< p~7. Also v is a key measurable quantity and is important in determining
whether a model of acceleration at compressions can explain measured data, as
suggested by Jokipii et al. (2001). Thus we find the spectral index in the steady

state. Simulation results are displayed in Figures 5.8 - 5.14. These figures display
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Figure 5.1: Distribution function averaged over pitch angle cosine vs. the distance
z at v/Uy, = 50, for a shock (b/ A = 0). PA: pitch-angle transport equation, DC:
diffusion-convection equation.
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Figure 5.2: Distribution function averaged over pitch angle cosine vs. the distance
z at v/Uy, = 50, b/ A = 0.2. PA: pitch-angle transport equation, DC: diffusion-
convection equation.
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Figure 5.3: Distribution function averaged over pitch angle cosine vs. the distance
z at v/Uy, = 50, b/ N = 0.5. PA: pitch-angle transport equation, DC: diffusion-
convection equation.
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Figure 5.4: Distribution function averaged over pitch angle cosine vs. the distance
z at v/Uy, = 50, b/A; = 1.0. PA: pitch-angle transport equation, DC: diffusion-
convection equation.
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Figure 5.5: Distribution function averaged over pitch angle cosine vs. the distance
z at v/Uy, = 10, b/ X = 0.2. PA: pitch-angle transport equation, DC: diffusion-
convection equation.
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Figure 5.6: Distribution function averaged over pitch angle cosine vs. the distance
z at v/U, = 10, b/ = 0.5. PA: pitch-angle transport equation, DC: diffusion-
convection equation.
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Figure 5.7: Distribution function averaged over pitch angle cosine vs. the distance
z at v/U, = 10, b/ = 1.0. PA: pitch-angle transport equation, DC: diffusion-
convection equation.
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Figure 5.8: Downstream log(#"), vs. logp at v/U,, = 50, for a shock (b/\ = 0).

the relation between log(F), (far downstream) and log p, where p is in units of
MeV/e. Since 7 depends on the momentum p, we evaluate v by plotting points
(bullets) for the simulation results at momentum values closest to the momentum
of interest, and the line represents the best-fit straight line. The slope of this line
is our determination of —7. The results of the spectral index vs. compression

width for two values of the ratio v/U;,, are shown in Figure 5.15.

5.1.3 Anisotropy

As explained in §3.4 (and using [, = cos 0, where 6 is the angle between
the magnetic field line and the particle momentum), the anisotropy of the particle
distribution, d, is expected to-be =30, /(v cos 0) Uy, v ¢os 8/¢* far upstream and
Upnvcosf/ ¢? far downstream. However, in this work we use U much less than c,
so the value of ¢ far downstream is expected to be close to zero. The anisotropy
vs. z is shown in Figures 5.16 - 5.21. The arrows point to the constant value far

upstream that is expected from equation (3.77).
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Figure 5.9: Downstream log(F'), vs. logp at v/Uy, = 50, b/\ = 0.2.
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Figure 5.10: Downstream log(F), vs. logp at v/Uy, = 50, b/A) = 0.5.
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Figure 5.11: Downstream log(F), vs. logp at v/U,, = 50, b/A = 1.0.
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Figure 5.12: Downstream log(F), vs. log at v/Us, = 10, b/X = 0.2.
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Figure 5.13: Downstream log(F), vs. log at v/Uy, = 10, b/X; = 0.5.
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Figure 5.14: Downstream log(F), vs. log at v/Us, = 10, b/X; = 1.0.
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Figure 5.15: The relation between the spectral index and the compression width,
b/\ for a) v/Uy, = 50 and b) v/Uy, = 10. The linear graph presents the results
from the diffusion approximation, and the circles show the results from pitch-
angle transport simulations.
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Figure 5.18: The anisotropy of the particle distribution vs. z at v/Uy, = 50,
b/N = 1.0.
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Figure 5.19: The anisotropy of the particle distribution vs. z at v/Uy, = 10,
b/A;=0.2.
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Figure 5.20: The anisotropy of the particle distribution vs. z at v/Uy, = 10,
b/ =0.5.
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Figure 5.21: The anisotropy of the particle distribution vs. z at v/Uy, = 10,
b/ =1.0.
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b/).H peak height at v/U,,=50 peak height at v/U,,=10
PA PA
shock 1.25 n/a
0.2 1.06 1.65
0.5 no peak 1.06
1.0 no peak no peak

Table 5.1: The peak height of the particle distribution (F’), vs. z at varying
compression widths. PA: pitch angle transport code. The peak is not obtained
in the diffusion approximation.

5.2 Discussion

The graphs of the distribution function of particles averaged over yu, (F') vs.
z, as shown in Figures 5.1 - 5.4, are very different. The peak heights (normalized
to the far downstream value) depend on the width of the compression region (see
Table 5.1). Comparing a shock and compressions at the same momentum, the
peak height is higher for a shock. The peak height then decreases with increasing
compression width. When we increase the width of the compression to be equal
to or larger than 0.5 (in units of \), a peak is not observed, except that for
v/Uy, = 10, there is still a visible peak at b/Aj = 0.5. The peak in turn increases
with decreasing v/Uy,, or decreasing b/). The peak height at v/U,, = 10 for
the shock is not available (“n/a”) because our model cannot simulate such rapid
acceleration.

Furthermore, in the upstream region we observe that the distribution
function of particles is high near the compression region and decays exponentially
far upstream. The rate of decay can be found by taking the logarithm of (F),

far upstream and plotting In(F'), vs. z. The slope of this graph gives the decay
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decay rate at v/U,,=50 decay rate at v/U,,=10
b/ (unit: AU™) (unit: AU™)
PA DC PA DC
shock -1.03 -1.02 n/a n/a
0.2 -1.03 -1.02 -7.60 -5.10
0.5 -1.04 -1.02 -8.11 -5.10
1.0 -1.05 -1.02 -11.66 -5.10

Table 5.2: The decay rate In(F), vs. z at varying compression width. PA: pitch
angle transport code. DC: diffusion-convection code.

rate (see Table 5.2). We can compare this value with the analytic value from the
diffusion approximation. According to §3.4, the decay rate of (F'), far upstream
is in the form of

—3U,,, sec? 6
i A

ln<F>M == 'U)\”

(5.1)

where we express the diffusion coefficient (in z) as D = v\cos?0/3. After all
values of the variables (see §4.4) are substituted into equation (5.1), we can prove
that the values from the simulation at v/Uy,, = 50 are similar to the values from
analysis. For v/Uy, = 10, the distribution function decays more rapidly than
we expected (see Table 5.2) because the distribution function is close to zero.
PA and DC mean the solutions of pitch angle transport and diffusion-convection
equations, respectively. We stress that the diffusion approximation only applies
far from the shock or compression region. Nonetheless, it provides a useful test
of the full simulation results, which are necessary for understanding the solutions
near the shock or compression.

Another way to check the results from the simulations'is to examine the
anisotropy of the distribution function. According to the anisotropy graphs (see

Figures 5.16-5.21), which are obtained in the steady-state, we see that the ¢ values
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bA, O at v/U,,=50 datv/U,,=10
PA DC PA DC
shock 0.24 0.24 n/a n/a
0.2 0.24 0.24 1.23 1.23
0.5 0.24 0.24 1.25 1.23
1.0 0.25 0.24 1.40 1.23

Table 5.3: The far upstream anisotropy of the particle distribution at varying
compression widths.

far downstream are nearly equal to zero and the asymptotic values far upstream
are shown in Table 5.3. The values of § at v/U, = 50 and v/Uy, = 10 from
PA are similar to the values from DC, except at b/A\; = 1.0, where we observe
that the ¢ from PA has a value larger than for DC because the decay of the
distribution function is close to zero and the simulations become inaccurate.

In Table 5.4, the spectral index, 7, has the lowest value at a shock, which
assumes that b/\ = 0. This means that the acceleration is most efficient at a
shock discontinuity. As b/A increased, the value of v also increased. The increase
of v has been reported before in the case of a parallel compression, which is the
case of magnetic field lines parallel to the normal to the compression (Kriills and
Achterberg 1994). In this work, we have simulated for quasi-perpendicular shocks
and compressions with various momentum values and we found that the value of
v decreased with decreasing momentum. A’ decrease in 7y means an increase in
the acceleration of particles to high energy, because F' o< p™7.

Figure 5.15 shows the results of v received from the pitch angle transport
simulations (solid circles) and the diffusion-convection equation (lines). The ~

value from diffusion-convection increases linearly with the compression width with
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b/).” Yat v/U,,=50 Yatv/U,,=10
PA DC PA DC
shock 1.71 2.08 n/a 2.08
0.2 2.04 2.15 1.76 2.42
0.5 2.24 2.25 2.40 2.89
1.0 2.44 2.42 3.40 3.65

Table 5.4: The spectral index of the particle distribution at varying compression
width.

an approximate slope of 15Uy, /v. At the same, at low b/)\|, where the mirroring
peak is seen, the v value from the pitch angle transport simulations is less than
the diffusion-convection value. The decrease of v at decreasing momentum has
never presented before, even in work with the diffusion-convection approximation.

Note that in this work we have considered a quasi-perpendicular magnetic
field (0, = arctan(4.0) = 75.96°, 6, = arctan(15.11) = 86.21°). Further work will
compare the compressions and the shock at other angles, such as quasi-parallel

and intermediate cases.



Chapter 6

Conclusions

In this work we study the cosmic ray particle acceleration at a compres-
sion region by the first-order Fermi acceleration mechanism. The magnetic field
configuration at the compression region is similar to that at a shock, though it is
continuously curved, as shown in Figure 1.2. We use a transport equation in the
form of a Fokker-Planck equation from the work of Ruffolo & Chuychai (1999)
in order to describe the particle intensity in a flux tube as the function of ¢, z, u,
and p. We use numerical simulations in order to understand how the cosmic ray
particles are accelerated.

The numerical techniques for solving the transport equation are finite
difference methods, including interpolation and TVD methods. We use the op-
erator splitting method to split our transport equation to sequentially solve for
changes (motion) in each variables. In this work, we tested and debugged some
codes from previous works. We control the accuracy by checking a single step of
the simulation, the anisotropy of the distribution function, and the decay of the
distribution function far upstream. We also compare with approximate results
from the diffusion-convection equation (based on the diffusion approximation).

After numerical simulations, we obtained results for two momentum val-
ues, which expressed in terms of v/U;, = 10 and v /Uy, = 50. We set the width
of the compression regions to be b/ = 0.2, b/X; = 0.5, and b/A\j = 1.0 for
each momentum value. We compare results between compressions and a shock,
which have different magnetic field configurations, and compare results from our

transport equation and the diffusion approximation, which does not include pitch
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angle transport processes.

The conclusions are:

1. Particle acceleration can occur at a continuous compression region and
a shock.

2. The acceleration efficiency can be determined by the mirroring peak
and the value of ~.

3. A high acceleration efficiency is found for a narrow compression width
and at low momentum.

4. The mirroring peak is only found from the results of the pitch angle

transport equation, for a narrow compression width.
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Appendix A

C-Language Code for Treatment
of Acceleration

/* d_peg.c -- January 21, 2001.
Special treatment when interpolation not necessary.
Assume that zstep[l] = zstep_peg.
Add condition STATICSH when finding 11, 1_

Use interpolating between peg and p[1] in Fourth case and extrapolating
between p[np] and plnp-1].

d_pow.c -- January 15, 2001.

Correcting bug: frac <-> l-frac in interpolation formulae.
New name clarifies boundary conditions (power laws in p).

decel.c (v) -- April 5, 1999.

Generalizing to treat acceleration (decelrate < 0) as well.
decel.c (v) -- December 16, 1996.

Version for varwind.c.
decel.c (t) -- July 11th, 1995.

Uses t as the independent variable instead of s.

Note that arguments have changed!

As a consequence of using zstep=mustep*v*timestep,
with the same timestep for each p (instead of the same sstep=
v¥timestep), must interpolate between z values.

Deceleration is mnot performed if one of the z wvalues
has a flux of 0 for all mu values.

decel.c -- February 27th, 1994.

Added more comments. Corrected some logical errors in the
if ‘blocks. Corrected a sign error in ci(). (Newton’s method
still converged, but more slowly.)

decel -- March 13th, 1993.
David Ruffolo and Burin Asavapibhop

Department of Physics
Faculty of Science
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Chulalongkorn University
Bangkok 10330, Thailand

x/

#include <stdio.h>
#include <math.h>
#tdefine NMAX 10
#tdefine C 0.1202
#define STATICSH 1

/* Static shock? Used to determine whether
nz should be an even number. */

extern double *xxf, xfint, **peg;

void decel(timestep,np,p,lprint,nz,zstep,nmu,vsw,printextra)
double timestep, *p, *zstep, vsw; int np, nmu, printextra;
long lprint, *nz; {

FILE *fp_g;

double expon, frac, lnp_, 1npO, 1lnpl, *lower, mu, mustep, pi, *upper, z;

int allzero, u, w, rnp;

long 1_, 10, 11;

static double pO;

static int first=1;

static long rnz;

double decelrate();

void nrerror();

if (printextra) printf("Entering decel()...\n");

if (first) {
if ((fp_g = fopen("peg.dat","r")) == NULL)
nrerror("stream: peg.dat not found") ;
fscanf (fp_g,"%kd\n",&rnp);
if (rnp != 1) nrerror("stream: rnp != 1");
fscanf (fp_g,"%1£f\n",&p0) ;
fscanf (fp_g,"%1ld\n",&rnz) ;

first=0;
}

mustep = 2.0;

mustep /= nmu;

lower = upper = fint;

for (u=1;u<=nmu;u++) upperl[ul = 0.0;

/* Away from the p-boundaries:

pf is constant along straight lines (characteristics) in a plot
of 1n(p) vs. t. Therefore, we find the point in the 1ln(p) vs. t
plane where the constant-t line intersects the characteristic
passing through (t+delta t,p). £ is interpolated between

p and the next higher p-grid point along the constant-t line

to find pf at the intersection point, which is then pf at

the next time step.

A slight complication when using t in place of s: f at the
desired z at the next higher p is found by interpolation



between adjacent z values, except when f(mu) is identically
0 at one of those values.

0 -> quantities at the original grid point.

_ —> the next lower p-grid point.

1 —> the next higher p-grid point.

pi —> the characteristic-intersection (ci) point.

*/

for (w=1;w<=np;w++) {
if (w==1) 1lnp_ = log(p0);
if (w>1) 1np_ = log(plw-11);
1np0 = log(plwl);
if (w<np) lnpl = log(plw+1]);
for (10=1;10<=nz[w];10++) {
if (STATICSH) {
z = zstep[w]*(10-nz[w]/2.0-0.5);
} else {
z = zstep[w]*(10-0.5);

}
/* If f[w][10][u]l < O, bomb out. */

if (£[w] [10] [u] < 0) {
printf("w = %d, 1 = %1d, u = %d\n",w,10,u);
nrerror("decel: £ < 0");

/* First case: decelerating, and away from boundary. */
if (decelrate(z,mu,vsw)>0 && w < np) {

/* Find upper[ul, the z-interpolated value of f
at (t,z,pl).
*

if (STATICSH){
1 = z/zstep[w+l] + nz[w+1]/2.0 + 0.5;
frac = z/zsteplw+1l] + nz[w+1]/2.0 + 0.5 - (double)lil;
Yelse{
11 = z/zstep[w+1] + 0.5;
frac = z/zstepl[w+1l] + 0.5 - (double)li;
}

/* Special case: if frac is very close to 0 or 1, no
need to interpolate. */

if (fabs(frac)<le-6 || fabs(frac-1.0)<le-6) {
if (fabs(frac-1.0)<le-6) 11++;
if (11 <1 ||'11 > nzlw+1]) {
for (u=1;u<=nmu;u++) upper[u] = 0.0;
} else {
for (u=1;u<=nmu;u++) upperlul] = flw+1]1[11] [ul;

}
} else {

if (11 <1 || 1141 > nz[w+1]) {
for (u=1;u<=nmu;u++) upperl[u] = 0.0;
} else {
for (allzero=1,u=1;allzero && u<=nmu;u++)
allzero = f[w+1][11][u] == 0.0;

82
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if (lallzero)
for (allzero=1,u=1;allzero && u<=nmu;u++)
allzero = f[w+1][11+1][u] == 0.0;

if (allzero) {
for (u=1;u<=nmu;u++) upperl[u] = 0.0;

} else {
for (u=1;u<=nmu;u++)
upper [ul = (1.0-frac)*f[w+1][11] [u] + frac*f[w+1] [11+1] [ul;

}
}

/* If £f0 or f1 is 0, do not proceed. If one of them

is non-zero, warn the user.
*/

for (u=1;u<=nmu;u++) {
if (£[w][10] [ul *upper[ul == 0.0) {
if (printextra && 10%lprint==1 && w==1 && f[w] [10] [u]'!=0.0) {
printf ("\nNote: f[%d][%d][/%d] = %le, upper[/d] = 0",

w,10,u,f [w] [10] [u] ,u);
} else if (printextra && 10%lprint==1 && w==1 &&

upper [u] !'= 0.0) {
printf ("\nNote: £[)d][%d] [/d]l = O, upper[%d] = %le",
w,10,u,u,upper [ul);

} else {
mu = -1.0 + (u-0.5)*mustep;

/* dp/dt = -p / deceltime = -pxdecelrate */
pi = plw] * exp(timestep*decelrate(z,mu,vsw));

/* Power-law interpolation. expon is the slope
on a log-log plot from (p0,f0) to (p1,f1).
*/

expon = (log(upper[ul)-log(f[w][10][ul)) / (1lnpl-1npO0);
f[w] [10] [u]l *= pow(pi/plw]l,1.0+expon);
}

/* Second case: change from d_pow.c by extrapolating between
g P y P g
plnpl and plnp-1]1 for finding pF at the next time step and
it’s added in the 3rd case.

Third case: accelerating, and away from boundary.
} else if (decelrate(z,mu,vsw)<0 && w > 1) {

/* Find lower[u], the z-interpolated value of f
at (t,z,plw-11).
*

/
if (STATICSH){
1_ = z/zsteplw-1] + nz[w-1]/2.0 + 0.5;
frac = z/zstep[w-1] + nz[w-1]/2.0 + 0.5 - (double)l_;
Yelse{
1_ = z/zstep[w-1] + 0.5;
frac = z/zstep[w-1] + 0.5 - (double)l_;
}
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/* Special case: if frac is very close to 0 or 1, no
need to interpolate. */

if (fabs(frac)<le-6 || fabs(frac-1.0)<le-6) {
if (fabs(frac-1.0)<le-6) 1_++;
if (A_ <1 |] 1_ > nzw-1]) {
for (u=1;u<=nmu;u++) lower[u] = 0.0;
} else {
for (u=1;u<=nmu;u++) lower[u] = flw-1]1[1_] [ul;

} else {
if (1_ <1 |] 1_+1 > nz[w-11) {
for (u=1;u<=nmu;u++) lower[u] = 0.0;
} else {
for (allzero=1,u=1;allzero && u<=nmu;u++)
allzero = f[w-1]1[1_][u]l == 0.0;
if (lallzero)
for (allzero=1,u=1;allzero && u<=nmu;u++)
allzero = flw-1]1[1_+1][u] == 0.0;
if (allzero) {
for (u=1;u<=nmu;u++) lower[u] = 0.0;
} else {
for (u=1;u<=nmu;u++)
lower[u] = (1.0—frac)*f[w-1]1[1_][u]l + fracxf[w-1][1_+1][ul;

/* If f0 or f_ is 0, do not proceed. If one of them
is non-zero, warn the user.
*/

for (u=1;u<=nmu;u++) {

if (f[w][10] [ul*1lower[ul == 0.0) {

if (printextra && 10%lprint==1 && w==1 && f[w][10][u]l!=0.0) {
printf ("\nNote: f[d][%d] [4d] = %le, upper[%d] = 0",
w,10,u,f[w] [10] [ul,u);

} else if (printextra && 10%lprint==1 && w==1 &&
lower[u] '= 0.0) {
printf ("\nNote: f[%d][%d][%d] = O, upperl[’d] = le",
w,10,u,u,lower[ul);

} else {
mu = -1.0 + (u-0.5) *mustep;

/* dp/dt = -p / deceltime = -pxdecelrate */
pi = plw]l * exp(timestep*decelrate(z,mu,vsw));

/* Power-law interpolation. expon is the slope
on a log-log plot from (p0,f0) to (pl,f1).
*/

expon = (log(lower[ul)-log(£[w][10]1[ul)) / (lnp_-1np0);
f[w] [10] [u]l *= pow(pi/plw]l,1.0+expon);
}

/* Fourth case: treatment for the lowest p-grid point. */

} else if (decelrate(z,mu,vsw)<0 && w == 1) {
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/* Find lower[ul], the z-interpolated value of f
at (t,z,p_peg).
*/

if (STATICSH){

1_ = z/zstep[1] + nz[1]1/2.0 + 0.5;

frac = z/zstep[1] + nz[1]1/2.0 + 0.5 - (double)l_;
Yelseq{

1_ = z/zstep[1] + 0.5;

frac = z/zstep[1] + 0.5 - (double)l_;
}

/* Special case: if frac is very close to 0 or 1, no
need to interpolate. */

if (fabs(frac)<le-6 || fabs(frac-1.0)<le-6) {
if (fabs(frac-1.0)<le-6) 1_++;
if (A_ <1 || 1_ > nz[1]) {
for (u=1;u<=nmu;u++) lower[u] = 0.0;
} else {
for (u=1;u<=nmu;u++) lower[u]l = pegl[l_][ul;
}
} else {
if (1_ <1 || 141 > nz[w]) {
for (u=1;u<=nmu;ut++) lower[u] = 0.0;
} else {
for (allzero=1,u=1;allzero && u<=nmu;u++)
allzero = peg[l_][u] == 0.0;
if (lallzero)
for (allzero=1,u=1;allzero && u<=nmu;u++)
allzero = pegll_+1][ul == 0.0;
if (allzero) {
for (u=1;u<=nmu;ut++) lower[u] = 0.0;
} else {
for (u=1;u<=nmu;u++)
lower[u] = (1.0-frac)*pegl[l_][u] + frac*pegl[l_+1][ul;

/* If £0 or f_ is O, do not proceed. If one of them
is non-zero, warn the user.
*/

for (u=1;u<=nmu;u++) {
if (f[w][10] [ul*lower[u]l == 0.0) {
if (printextra && 10%lprint==1 && w==1 && £[w] [10] [u]'!=0.0) {
printf ("\nNote: f[%d] [%d][%d] = %le, upper[/d] = 0",
w,10,u,f [wl[10] [ul,u);
} else if (printextra && 10%lprint==1 && w==1 &&
lower[ul !'=0.0) {
printf ("\nNote: f[%d] [%d]l[%d] = O, upperl[’d] = %le",
w,10,u,u,lower[ul);

} else {
mu = -1.0 + (u-0.5)*mustep;

/* dp/dt = -p / deceltime = -pxdecelrate */

pi = plw] * exp(timestep*decelrate(z,mu,vsw));
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/* Power-law interpolation. expon is the slope
on a log-log plot from (p0,f0) to (p1,f1).
*/
expon = (log(lower[ul)-log(£[1]1[10][ul)) / (1lnp_-1npO0);
£[1]1[10] [u]l *= pow(pi/plw]l,1.0+expon);
}
}
}
}
}

if (printextra) printf("...and leaving decel().\n");



Appendix B

Program for Testing: Evaluation
of OF /0t for F =1

/* Calculate Each components of (1/F)dF/dt (which are: Streaming,
Scattering & Focusing, and Deceleration by varying z from
-16*zstep to 16*zstep (length=5, zstep=0.0062525)and mu from
1*mustep to 15*mustep (mustep = 2.0/15). Lambda =1, Gamma=1.65,
PB=0.2. This program is actually used for checking (1/F) (dF/dt)
which parallels to the code varwind.diag.c which we have run it
for one timestep(2.86325)in 0705C.*/

#include<stdio.h>
#include<math.h>

#tdefine C 0.1202
#define PI (4.0%atan(1.0))
#define THETA1 atan(4.0)
#define THETA2 atan(15.11)
#tdefine PB 0.2

#tdefine S -1

void main(void) {
FILE *fp_out;
double dUzdz(), divl(), Udotl(), 11dUdz(), divU();
double 1z(), Uz(), dydz(), ddydz();
double z, mu, zstep, mustep, length;
int u, 1, nmu;
double vsw,v,lambda, gamma;
double str, decel, scf, scfl, scf2, scf3, scf4, scfb, scf6, scf7, scf8;

vsw=0.001816*C;
v=0.001816*10%C;
nmu=15;
zstep=0.00625;
lambda=1.0;
gamma=1.65;

mustep=2.0/ (double)nmu;

fp_out=fopen("stream.dat","w");
for (u=1;u<=nmu;u++){
mu=-1.0+(u-0.5) *mustep;
for (1=-15;1<=16;1++){
z = (1-0.5)*zstep;
str= -dUzdz(z,vsw)-mu*v*divl (z)+ (muxmuxv*v/(CxC) ) *
(Udotl(z,vsw)*divl(z)+11dUdz(z,vsw)+Udotl (z,vsw)
*divl(z));
fprintf (fp_out,"%.81f ",str*2.86325) ;

}
fprintf (fp_out,"\n");
}
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fclose(fp_out);

fp_out=fopen("scattfo.dat","w");
for (u=1;u<=nmu;u++){
mu=-1.0+(u-0.5)*mustep;
for (1=-15;1<=16;1++){
z=(1-0.5) *zstep;
scf=mu* (v*divl (z)+mu*divU(z,vsw)-3*mu*x11dUdz(z,vsw) -
(mu*v*v/(C*C))*Udotl(z,vsw)*divl(z))
+(v/lambda) *mu*v*Udotl (z,vsw)/(C*xC)
+(-(1-(mu*mu) ) /2) *(divU(z,vsw)-3*11dUdz (z, vsw)
—(vxv/(C*C))*Udotl(z,vsw) *divl(z));
fprintf (fp_out,"%.81f " scf*x2.86325%0.5);

X
fprintf (fp_out,"\n") ;
fclose(fp_out);

fp_out=fopen("scf.dat","w");
for (u=1;u<=nmu;u++){
mu=-1.0+(u-0.5) *mustep;
for (1=-15;1<=16;1++){
z=(1-0.5) *zstep;
scfl=muxv*divl(z) ;
scf2=mu*mu*divU(z,vsw) ;
scf3=mu* (-3*mu*x11dUdz(z,vsw)) ;
scf4=mux* (-mu*v*v/ (C*C) ) *Udotl (z,vsw)*divl(z) ;
scf5=(v/lambda) *mu*v*Udotl(z,vsw)/(CxC) ;
scf6=(-(1- (mu*mu))/2)*divU(z,vsw) ;
scf7=(-(1-(mu*mu) ) /2) * (-3*¥11dUdz(z,vsw)) ;
scf8=(-(1-(mu*mu))/2)*(-v*v/(C*C))*Udotl(z,vsw)*divl(z);
if (u==1 && 1==0){
fprintf (fp_out,"%.81£f\n%.81£f\n’%.81f\n’%.81f\nj,.81f\n
%.81f\n%.81f\n%.81f\n"
) ,scfl,scf2,scf3,scfd,scf5,scf6,scf7,scf8);
}

}
fclose(fp_out);

fp_out=fopen('decel.dat","w");
for (u=1;u<=nmu;u++){
mu=-1.0+(u-0.5) *mustep;
for (1=-15;1<=16;1++){
z=(1-0.5)*zstep;
decel=(gamma-1)* (( (1-mu*mu)/2)*(11dUdz(z,vsw)-divU(z,vsw))
-mu*mu*11dUdz(z,vsw)) ;
fprintf (fp_out,"%.81f " decel*2.86325);

}
fprintf(fp_out,"\n");

3
fclose(fp_out);
}
double dydz(z) double z; {
double terma,termb,termc,th,th_h,out;
double sec2th_h,tan2th_h,dbdz,dcdz;

th_h = fabs(THETA1-THETA2) / 2;



}
/*
*/

if (THETA2 > THETA1) th = -(THETA1+th_h);
if (THETA1 > THETA2) th = -(THETA2+th_h);
tan2th_h = tan(th_h) * tan(th_h);

sec2th_h = 1+tan2th_h;
terma = 1 - sec2th_h*sin(th)*sin(th);
termb = -z*sec2th_h*xsin(2*th) - 2*S*PBxtan(th_h)*cos(th);
termc = zxzxsec2th_h*sin(th)*sin(th)
+ 2xz*xS*PBxtan(th_h)*sin(th)- z*z*tan2th_h;
dbdz = -sec2th_hx*sin(2*th);
dcdz = 2*zxsec2th_h*sin(th)*sin(th)
+ 2%SxPBxtan(th_h)*sin(th)- 2*z*tan2th_h;
out = (0.5/terma) * (-dbdz - S*(termb*dbdz-2*termax*dcdz)
/sqrt (termb*termb-4*terma*termc)) ;
return(out) ;
ddydz

THIS ROUTINE CALCULATES SECOND DERIVATIVE OF HYPER. FUNC.

double ddydz(z) double z; {

}
/*

*/

double terma,termb,termc,th,th_h,out;
double sec2th_h,tan2th_h,dbdz,dcdz,ddcdz,first,second;

th_h = fabs(THETA1-THETA2) / 2;
if (THETA2 > THETA1) th = -(THETAl+th_h);
if (THETA1 > THETA2) = th = -(THETA2+th_h);
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tan2th_h = tan(th_h) * tan(th_h);

sec2th_h = 1+tan2th_h;

terma = 1 - sec2th_hxsin(th)*sin(th);

termb = -z*xsec2th_h*sin(2*th) - 2*xS*PBxtan(th_h)*cos(th);

termc = z*zxgsec2th_h*sin(th)*sin(th) + 2*z*xS*PBxtan(th_h)*sin(th)

- z*zxtan2th_h;

dbdz = -sec2th_h*sin(2*th);
dcdz = 2xzxsec2th_h*sin(th)*sin(th)

+ 2xS*PBxtan(th_h)*sin(th)- 2*z*tan2th_h;
ddcdz = 2%sec2th_hx*sin(th)*sin(th) - 2*tan2th_h;
first = (dbdz*dbdz-2*termaxddcdz) / sqrt(termb*termb-4*terma*termc) ;
second = (termb*dbdz-2*terma*dcdz)*(termb*dbdz-2*terma*dcdz)

/ ((termb*termb-4*terma*termc)
*sqrt (termb*xtermb-4*terma*xtermc)) ;
out = (0.5/terma) * (-S*(first-second)) ;
return(out) ;
Uz

THIS ROUTINE CALCULATES SOLAR WIND SPEED
ALONG z COMPONENT.

double Uz(z,vsw) double z,vsw;

{

¥

/*

double dydz();

return(vswxtan(THETA1) /dydz(z)) ;

1z



THIS ROUTINE CALCULATES THE z-COMPONENT OF THE UNIT VECTOR 1
/ (IN THE DIRECTION TO B).
*

double 1z(z) double =z; {
double dydz();

return(1l / sqrt(dydz(z)*dydz(z)+1));

}
/* Udotl

/ THIS ROUTINE CALCULATES THE DOT PRODUCT BETWEEN U AND 1.
*

double Udotl(z,vsw) double z,vsw; {
double Uz(),1z();

return(Uz(z,vsw) *1z(z)) ;

/* dUzdz
y THIS ROUTINE CALCULATES dUz/dz.
*

double dUzdz(z,vsw) double z,vsw; {
double Uz(),dydz() ,ddydz();

return(-Uz(z,vsw) *ddydz(z) /dydz(z) ) ;
}

/* 114dUdz
/ THIS ROUTINE CALCULATES 1zlzdU/dz.
*
double 11dUdz(z,vsw) double  z,vsw; {
double 1z(),dUzdz();
return(1z(z) *1z(z) *dUzdz(z,vsw) ) ;

/* divU
y THIS ROUTINE CALCULATES THE DIVERGENCE OF VECTOR U.
*

double divU(z,vsw) double z,vsw; {
double dUzdz();

return(dUzdz(z,vsw)) ;
T /* dUzdz
y THIS ROUTINE CALCULATES THE DIVERGENCE OF UNIT VECTOR 1.
*

double divl(z) double z; {
double 1z(),dydz(),ddydz();

return(-dydz(z)*ddydz(z) *1z(z) *1z(z) *1z(z) ) ;
}
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