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CHAPTER I

INTRODUCTION

In [9], [10], [7] and [8] the authors used the word a “ local subsemigroup ”of

a semigroup S to mean a subsemigroup of S of the form eSe where e is an

idempotent of S. It is easily seen that if S is a regular semigroup, then so is the

local subsemigroup eSe of S. We are motivated by this definition to define “ local

subsets ”and “ local subsemigroups ”of S in a more general sense as follows : By

a local subset of a semigroup S we mean a subset of S of the form eAe where A is

a subsemigroup of S and e is an idempotent of S. A local subset of a semigroup

S need not be a subsemigroup of S. Then it is interesting to find a necessary and

sufficient condition for an idempotent e of S which guarantees that eAe becomes

a subsemigroup of S for a given subsemigroup A of S. We call a local subset

eAe of S a local subsemigroup of S if eAe is a subsemigroup of S. It is also

interesting to investigate the regularity of certain local subsemigroups of some

regular semigroups.

Transformation semigroups are considered very important in the area of semi-

groups as symmetric groups are crucial in the area of groups. It is well-known

that every group can be embedded in a symmetric group. In Semigroup Theory,

it is known that every semigroup can be embedded in some full transformation

semigroup while every inverse semigroup can be embedded in a symmetric inverse

semigroup (1-1 partial transformation semigroup).

In Linear Algebra, linear transformations and matrices play very important

roles. Also, semigroups of linear transformations under composition and matrix

semigroups are certainly important in Semigroup Theory.

Let X be a nonempty set and let P (X), T (X), I(X) and G(X) be the par-

tial transformation semigroup, the full transformation semigroup, the symmetric
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inverse semigroup (the 1-1 partial transformation semigroup) and the symmetric

group on X, respectively. It is well-known that P (X) and T (X) are regular and

I(X) is an inverse semigroup.

If V is a vector space over a field F , let L(V ) be the semigroup, under com-

position, of all linear transformations on V . It is known that L(V ) is a regular

semigroup. Let GL(V ) be the group of all isomorphisms on V . The full n × n

matrix semigroup over F is denoted by Mn(F ) and denote by Gn(F ) for the group

of all nonsingular n × n matrices over F .

The preliminaries and notation used for this work are given in Chapter II.

In Chapter III, we prove that for every idempotent α of P (X), αT (X)α is a

local subsemigroup of P (X). We provide necessary and sufficient conditions for

an idempotent α in P (X) when X is finite for which αI(X)α and αG(X)α are

local subsemigroups of P (X). These characterizations automatically imply that

these local subsemigroups of P (X) are regular semigroups.

We study local subsemigroups of L(V ) when V is finite-dimensional and Mn(F )

in Chapter IV. Note that if dim V = n, then there is an isomorphism θ : L(V ) →

Mn(F ) which preserves ranks. We characterize an idempotent α in L(V ) for which

αGL(V )α is a local subsemigroup of L(V ). By making use of this characterization,

we give a necessary and sufficient condition for an idempotent A of Mn(F ) so

that AGn(F )A is a local subsemigroup of Mn(F ). An explicit form of the local

subsemigroup AGn(F )A is also determined. Moreover, we have that these local

sunsemigroups of L(V ) and Mn(F ) are regular.



CHAPTER II

PRELIMINARIES

The cardinality of a set A will be denoted by |A|.

For any mapping α, the image of x in the domain of α will be written as xα.

For semigroups S and S ′, we write S ∼= S ′ if S and S ′ are isomorphic, that is,

there is a bijection ϕ : S → S ′ such that (xy)ϕ = (xϕ)(yϕ) for all x, y ∈ S.

The element e of a semigroup S is called an idempotent if e2 = e. The set of

all idempotents of S is denoted by E(S), that is,

E(S) = {x ∈ S |x2 = x}.

If S has an identity and U(S) is the unit group (or the group of units of S), then

it is clear that

a−1ea ∈ E(S) for all e ∈ E(S) and a ∈ U(S).

An element a of a semigroup S is called regular if a = axa for some x ∈ S and

S is called a regular semigroup if every element of S is regular. A semigroup S is

said to be an inverse semigroup if for every a ∈ S, there is a unique element a−1

such that a = aa−1a and a−1 = a−1aa−1. It is well-known that a semigroup S is

inverse if and only if S is regular and any two idempotents of S commute with

each other ([1], p. 28).

If e ∈ E(S), then (eSe)(eSe) = e(SeeS)e ⊆ eSe, so eSe is a subsemigroup of

S. In [9], [10], [7] and [8] the authors used the word a “ local subsemigroup ” of

a semigroup S to mean a subsemigroup of S of the form eSe for some e ∈ E(S).

Notice that e is the identity of the semigroup eSe. Moreover, if S is regular, then so

is the local subsemigroup eSe of S. To see this, let a ∈ S. Then eae = (eae)x(eae)

for some x ∈ S, so eae = (eae)(exe)(eae) and exe ∈ eSe. This definition motivates
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us to define local subsemigroups of S in a more general sense as follows : By a local

subset of a semigroup S we mean a subset of S of the form eAe where e ∈ E(S)

and A is a subsemigroup of S. A local subset of S need not be a subsemigroup

of S. By a local subsemigroup of S we mean a local subset of S which is also a

subsemigroup of S. Observe that the local subsemigroup eAe of S has e as its

identity if e ∈ A or S has an identity and A contains the identity of S.

Let X be a nonempty set. A mapping from a subset of X into X is called a

partial transformation of X. Let 0 be the partial transformation of X with empty

domain. The domain and the range (image) of a partial transformation α of X

are denoted by dom α and ran α, respectively. The identity mapping on a set A

is denoted by 1A. Here 1∅ = 0. For ∅ 6= A ⊆ X, and x ∈ X, let Ax denote the

partial transformation of X whose domain and range are A and {x}, respectively.

For a partial transformation α of X and ∅ 6= A ⊆ dom α, let α|A be the restriction

of α to A. The partial transformation semigroup on X, denoted by P (X), consists

of all partial transformations of X and the semigroup operation is composition,

that is,

αβ =











0 if ran α ∩ dom β = ∅,

(α|(ran α∩dom β)α−1 )(β|ran α∩dom β
) if ran α ∩ dom β 6= ∅.

Then 0 and 1X are the zero and identity of P (X), respectively. Notice that for

α, β ∈ P (X),

dom(αβ) = (ran α ∩ dom β)α−1 ⊆ dom α,

ran(αβ) = (ran α ∩ dom β)β ⊆ ran β

for x ∈ X, x ∈ dom(αβ) ⇔ x ∈ dom α and xα ∈ dom β,

dom α =
˙⋃

x∈ran α

xα−1,

where
˙⋃

means a disjoint union. For α ∈ P (X), α may be written by a bracket

notation as follows :

α =





xα−1

x





x∈ran α

.
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The following subsets of P (X) are cleary subsemigroups of P (X) :

T (X) = {α ∈ P (X) | dom α = X},

I(X) = {α ∈ P (X) | α is injective},

G(X) = {α : X → X | α is bijective}.

Notice that G(X) is a subgroup of P (X). The semigroup T (X), I(X) and G(X)

are called the full transformation semigroup, the 1-1 partial transformation semi-

group or the symmetric inverse semigroup on X and the symmetric group on X,

respectively. It can be seen that

G(X) ⊆ T (X) ⊆ P (X) , G(X) ⊆ I(X) ⊆ P (X),

G(X) is the unit group or the group of units of all P (X), T (X) and I(X), that is,

G(X) is the greatest subgroup of P (X), T (X) and I(X) having 1X as its identity.

It is well-known that P (X) and T (X) are regular semigroups ([3], p. 4 or [5], p. 63)

and I(X) is an inverse semigroup ([1], p. 29, [3], p. 4 or [5], p. 149). It can be seen

that for α ∈ P (X),

α ∈ E(P (X)) ⇔ ran α ⊆ dom α and xα = x for all x ∈ ran α,

that is,

E(P (X)) = {α ∈ P (X) | ran α ⊆ dom α and α|ran α
= 1ran α}.

Hence

E(T (X)) = {α ∈ T (X) |α|ran α
= 1ran α} ([3], p. 12),

E(I(X)) = {1A |A ⊆ X} ([3], p. 4),

E(T (X)) ∪ E(I(X)) ⊆ E(P (X)).

Consequently, if α ∈ E(P (X)), then for every x ∈ ran α, x ∈ xα−1. Also, for

a ∈ X, Xa ∈ E(T (X)) and for ∅ 6= A ⊆ X and x ∈ X, Ax ∈ E(P (X)) if and

only if x ∈ A.
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Let α ∈ E(P (X)). Then αP (X)α is a local subsemigroup of P (X). It will be

shown in Section 3.1 that the local subset αT (X)α is always a local subsemigroup

of P (X). However, the local subsets αI(X)α and αG(X)α of P (X) need not be

local subsemigroups of P (X), as shown by the following examples.

Example 2.1. Let X = {1, 2, 3, 4} and let α ∈ E(P (X)) be defined by

α =





1 {2, 3}

1 2



 .

Then

αI(X) =





1 {2, 3}

1 2



 I(X)

= {0}
⋃











1

a



 | a ∈ {1, 2, 3, 4}







⋃











{2, 3}

a



 | a ∈ {1, 2, 3, 4}







⋃











1 {2, 3}

a b



 | a, b ∈ {1, 2, 3, 4} and a 6= b







and hence

αI(X)α = (αI(X))





1 {2, 3}

1 2





=







0,





1

1



 ,





1

2



 ,





{2, 3}

1



 ,





{2, 3}

2



 ,





1 {2, 3}

1 2



 ,





1 {2, 3}

2 1



 ,





{1, 2, 3}

2











.

But





{1, 2, 3}

2









1 {2, 3}

2 1



 =





{1, 2, 3}

1



 /∈ αI(X)α, so αI(X)α is not a local

subsemigroup of P (X).
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Example 2.2. Let X = {1, 2, 3} and let α ∈ E(T (X)) be defined by

α =





1 {2, 3}

1 2



 .

Then

αG(X) =





1 {2, 3}

1 2



 G(X)

=











1 {2, 3}

a b



 | a, b ∈ {1, 2, 3} and a 6= b







.

Thus

αG(X)α = (αG(X))





1 {2, 3}

1 2





=











1 {2, 3}

1 2



 ,





1 {2, 3}

2 1



 ,





{1, 2, 3}

2











.

But





{1, 2, 3}

2









1 {2, 3}

2 1



 =





{1, 2, 3}

1



 /∈ αG(X)α, so αG(X)α is not a

local subsemigroup of P (X).

Example 2.3. Let X = {1, 2, 3, 4} and define α ∈ E(P (X)) by

α =





1 2 3

1 2 3



 (= 1{1,2,3}).

Then

αG(X) =





1 2 3

1 2 3



 G(X)

=











1 2 3

a b c



 | a, b, c ∈ {1, 2, 3, 4} are distinct







,
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so

αG(X)α = (αG(X))





1 2 3

1 2 3





=











1 2 3

a b c









1 2 3

1 2 3



 | a, b, c ∈ {1, 2, 3, 4} are distinct







.

It follows that for every β ∈ αG(X)α, | dom β| ≥ 2. We have that





1 2 3

3 2 4









1 2 3

1 2 3



 =





1 2

3 2



 ∈ αG(X)α,





1 2 3

2 4 1









1 2 3

1 2 3



 =





1 3

2 1



 ∈ αG(X)α.

But





1 2

3 2









1 3

2 1



 =





1

1



 /∈ αG(X)α, thus αG(X)α is not a local subsemi-

group of P (X).

Observe that 0I(X)0 = {0} = 0G(X)0, 1XI(X)1X = I(X), 1XG(X)1X =

G(X) and for every a ∈ X, XaI(X)Xa = {0, Xa} and XaG(X)Xa = {Xa}.

These are trivial local subsemigroups of P (X). The following examples show

nontrivial local subsets of the form αI(X)α and αG(X)α of P (X) which are local

subsemigroups of P (X).

Example 2.4. Let X = {1, 2, 3, 4} and define α ∈ E(T (X)) by

α =





{1, 2} {3, 4}

1 3



 .

Then

αI(X) =





{1, 2} {3, 4}

1 3



 I(X)
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= {0}
⋃











{1, 2}

a



 | a ∈ {1, 2, 3, 4}







⋃











{3, 4}

a



 | a ∈ {1, 2, 3, 4}







⋃











{1, 2} {3, 4}

a b



 | a, b ∈ {1, 2, 3, 4} and a 6= b







.

It follows that

αI(X)α = (αI(X))





{1, 2} {3, 4}

1 3





=







0,





{1, 2}

1



 ,





{1, 2}

3



 ,





{3, 4}

1



 ,





{3, 4}

3



 ,





{1, 2} {3, 4}

1 3



 ,





{1, 2} {3, 4}

3 1



 ,





{1, 2, 3, 4}

1



 ,





{1, 2, 3, 4}

3











which is clearly a subsemigroup of P (X). Hence αI(X)α is a local subsemigroup

of P (X).

Example 2.5. Let X = {1, 2, 3, 4} and let α ∈ E(T (X)) be defined by

α =





{1, 2} {3, 4}

1 3



 .

We have that

αG(X) =





{1, 2} {3, 4}

1 3



 G(X)

=











{1, 2} {3, 4}

a b



 | a, b ∈ {1, 2, 3, 4} and a 6= b







.

Then

αG(X)α = (αG(X))





{1, 2} {3, 4}

1 3
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=











{1, 2} {3, 4}

1 3



,





{1, 2} {3, 4}

3 1



,





{1, 2, 3, 4}

1



,





{1, 2, 3, 4}

3











which is clearly a subsemigroup of P (X). Hence αG(X)α is a local subsemigroup

of P (X).

Example 2.6. Let X = {1, 2, 3, 4} and let α ∈ E(P (X)) be defined by

α =





1 2

1 2



 (= 1{1,2}).

Then

αG(X) =





1 2

1 2



 G(X)

=











1 2

a b



 | a, b ∈ {1, 2, 3, 4} are distinct







and hence

αG(X)α = (αG(X))





1 2

1 2





=







0,





1

1



 ,





1

2



 ,





2

1



 ,





2

2



 ,





1 2

1 2



 ,





1 2

2 1











= I({1, 2}).

Therefore αG(X)α is a local subsemigroup of P (X).

Next, let V be a vector space over a field F and L(V ) the semigroup, under

composition, of all linear transformations α : V → V . Recall that for α ∈ L(V ),

the kernel of α is

ker α = {v ∈ V | vα = 0}.
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Then for α ∈ L(V ), α is a monomorphism if and only if kerα = {0}. We also

have that

dim V = dim(ker α) + dim(ran α)

([6], p. 187). Thus if V is finite-dimensional, then for α ∈ L(V ), α is a monomor-

phism if and only if α is an epimorphism. Let GL(V ) be the set of all isomorphisms

of V . Then

GL(V ) = {α ∈ L(V ) | ker α = {0} and ran α = V }.

Then GL(V ) is the unit group (or the group of units) of L(V ). Therefore we have

dim V < ∞ ⇒ GL(V ) = {α ∈ L(V ) | ker α = {0}}

= {α ∈ L(V ) | ran α = V }.

For X ⊆ V , let 〈X〉 be the subspace of V spanned by X. If X ⊆ V , then for

v ∈ 〈X〉, v may be written as

v =
∑

x∈X

axx where ax ∈ F for all x ∈ X

which means a finite sum in the sense that ax = 0 for all but a finite number of x.

If B is a basis of V and {wv | v ∈ B} ⊆ V , then there is a unique α ∈ L(V )

such that vα = wv for all v ∈ B, in this case, α can be written as

α =





v

wv





v∈B

.

Hence if α ∈ L(V ) and B is a basis of V , then we may write α as

α =





v

vα





v∈B

.

If α ∈ L(V ) and X is a nonempty subset of V , then

〈Xα〉 = {
∑

x∈X

ax(xα) | ax ∈ F and ax = 0 for all but a finite number of x}

= {(
∑

x∈X

axx)α | ax ∈ F and ax = 0 for all but a finite number of x}
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= {
∑

x∈X

axx | ax ∈ F and ax = 0 for all but a finite number of x}α

= 〈X〉α.

The following facts of linear transformations will be used.

Proposition 2.7. Let α ∈ L(V ) and B a basis of V . If α|B is injective and Bα

is a basis of V , then α ∈ GL(V ).

Proof. Since Bα spans V , it follows that

V = 〈Bα〉 = 〈B〉α = V α = ran α.

Let v ∈ ker α. Then v =
∑

u∈B

auu, a finite sum, for some au ∈ F . Thus

0 = vα =
∑

u∈B

au(uα).

Since α|B is 1-1, uα 6= wα if u 6= w in B. But Bα is linearly independent over F ,

it follows from the above equality that au = 0 for all u ∈ B. This implies that

v = 0. Thus ker α = {0}. Hence α ∈ GL(V ), as desired.

Proposition 2.8. Let α ∈ L(V ), B1 a basis of ker α and B2 a basis of ran α. If

for every v ∈ B2, let v′ ∈ vα−1, then B1∪̇ {v′ | v ∈ B2} is a basis of V .

Proof. To show that B1∪̇ {v′ | v ∈ B2} is linearly independent over F , let

∑

u∈B1

auu +
∑

v∈B2

bvv
′ = 0 where au ∈ F for u ∈ B1

and bv ∈ F for v ∈ B2.

Then

0 = (
∑

u∈B1

auu +
∑

v∈B2

bvv
′)α

= 0 +
∑

v∈B2

bv(v
′α) since B1 ⊆ ker α
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=
∑

v∈B2

bvv since v′ ∈ vα−1 for all v ∈ B2.

Since B2 is linearly independent over F , bv = 0 for all v ∈ B2. Thus

∑

u∈B1

auu = 0.

But since B1 is linearly independent over F , we have au = 0 for all u ∈ B1.

Next, to show that 〈B1∪̇ {v′ | v ∈ B2}〉 = V , let w ∈ V . Then wα ∈ 〈B2〉, so

wα =
∑

v∈B2

cvv for some cv ∈ F .

But v′α = v for all v ∈ B2, so

wα =
∑

v∈B2

cv(v
′α) =

(

∑

v∈B2

cvv
′

)

α.

Thus w −
∑

v∈B2

cvv
′ ∈ ker α = 〈B1〉 which implies that

w −
∑

v∈B2

cvv
′ =

∑

u∈B1

duu for some du ∈ F .

Hence w =
∑

u∈B1

duu +
∑

v∈B2

cvv
′ ∈ 〈B1∪̇ {v′ | v ∈ B2}〉.

Therefore the proposition is proved.

Proposition 2.9. ([4], p. 211). If α ∈ E(L(V )), then V = ker α ⊕ ran α.

Proposition 2.9 yields the following result.

Corollary 2.10. If α ∈ E(L(V )), B1 is a basis of ker α and B2 is a basis of

ran α, then B1∪̇B2 is a basis of V .

Hence for every w ∈ ker α r {0}, {w} ∪ B2 is a linearly independent subset

of V (since w /∈ 〈B2〉 = ran α).
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Notice that for α ∈ E(L(V )), vα = v for all v ∈ ran α. Then Corollary 2.10

can be considered as a consequence of Proposition 2.8. If B1 is a basis of ker α

and B2 is a basis of ran α, then α can be defined on the basis B1∪̇B2 of V by

α =





u v

u 0





u∈B2
v∈B1

.

Proposition 2.11. Assume that U and W are vector spaces over F and U and W

are vector space isomorphic by an isomorphism ϕ : U → W . Define ϕ̄ : L(U) → L(W )

by

αϕ̄ = ϕ−1αϕ for all α ∈ L(U).

Then ϕ̄ is a semigroup isomorphism.

Proof. It is evident that ϕ−1αϕ ∈ L(W ) for all α ∈ L(U). Let α, β ∈ L(U).

Then

ϕ−1(αβ)ϕ = (ϕ−1αϕ)(ϕ−1βϕ),

ϕ−1αϕ = ϕ−1βϕ ⇒ α = ϕ(ϕ−1αϕ)ϕ−1 = ϕ(ϕ−1βϕ)ϕ−1 = β.

If λ ∈ L(W ), then ϕλϕ−1 ∈ L(U) and ϕ−1(ϕλϕ−1)ϕ = λ. This proves that

ϕ̄ : L(U) → L(W ) is a semigroup isomorphism, as desired.

Next, let n be a positive integer and F a field. We let Mn(F ) be the mul-

tiplicative semigroup of all n × n matrices over F which may be called the full

n × n matrix semigroup over F . Let Gn(F ) be the set of all nonsingular n × n

matrices over F . Then Gn(F ) is the unit group of Mn(F ). Let V be a vector space

over F of dimension n. Then there is an isomorphism θ : L(V ) → Mn(F ) which

preserves ranks, that is, dim(ranα) (= rank α) = rank(αθ) for all α ∈ L(V ) ([6],

p. 330, 336, 339). This implies that GL(V )θ = Gn(F ) and 1V θ = In, the identity

n × n matrix over F .

For A ∈ Mn(F ) and i, j ∈ {1, . . . , n}, let Aij be the entry of A in the ith row

and jth column.
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For k ∈ {0, 1, . . . , n}, let D
(k)
n ∈ Mn(F ) be defined by

D(0)
n = 0, the zero matrix in Mn(F ),

for k > 0, (D(k)
n )ij =











1 if i = j ∈ {1, . . . , k},

0 otherwise.

For example,

D
(1)
3 =











1 0 0

0 0 0

0 0 0











, D
(4)
5 =























1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0























.

Notice that for all k ∈ {1, . . . , n}, D
(k)
n ∈ E(Mn(F )), rank(D

(k)
n ) = k and for every

C ∈ Gn(F ),

rank(C−1D(k)
n C) = rank D(k)

n = k

([6], p. 338). Moreover, C−1D
(k)
n C ∈ E(Mn(F )) for all k ∈ {1, . . . , n} and C ∈

Gn(F ). In fact, the following result is known.

Proposition 2.12. ([2], p. 226).

E(Mn(F )) = {C−1D(k)
n C | k ∈ {0, 1, . . . , n} and C ∈ Gn(F )}.

Recall that for A ∈ Mn(F ), A is row-equivalent to In if and only if A ∈ Gn(F )

([4], p. 23).



CHAPTER III

LOCAL SUBSEMIGROUPS OF PARTIAL

TRANSFORMATION SEMIGROUPS

Throughout this chapter, X will be represented a nonempty set. In this chapter,

we are concerned with the local subsets αT (X)α, αI(X)α and αG(X)α of P (X)

where α ∈ E(P (X)). We consider when they become local subsemigroups of P (X)

in terms of α. The local subsets αI(X)α and αG(X)α of P (X) are considered

when X is finite. In addition, we show that these local subsemigroups are regular

semigroups. If α = 0, they are all {0}, a trivial local subsemigroup. Then we

consider only α ∈ E(P (X)) r {0}.

3.1 The Local Subsemigroups αT (X)α of P (X)

The aim of this section is to show that for every α ∈ E(P (X)), the local subset

αT (X)α of P (X) is a local subsemigroup of P (X).

First, we provide the following series of lemmas.

Lemma 3.1.1. If α ∈ E(P (X)) r {0}, then for every β ∈ P (ran α), βα = β.

Proof. Recall that ranα ⊆ dom α and xα = x for all x ∈ ran α. If β ∈ P (ran α),

then α|ran β
= 1ran β, so

βα = β(α|ran β
) = β1ran β = β.

Lemma 3.1.2. If α ∈ E(P (X)) r {0}, then αT (ran α) and αP (ran α) are sub-

semigroups of P (X) and

αT (ran α) ∼= T (ran α), αP (ran α) ∼= P (ran α).
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Proof. By Lemma 3.1.1, we have T (ran α)α = T (ran α) and P (ran α)α = P (ran α).

It follows that

(αT (ran α))(αT (ran α)) = α(T (ran α)α)T (ran α)

= αT (ran α)T (ran α) = αT (ran α),

(αP (ran α))(αP (ran α)) = α(P (ran α)α)P (ran α)

= αP (ran α)P (ran α) = αP (ran α).

Hence αT (ran α) and αP (ran α) are subsemigroups of P (X).

Define ϕ : P (ran α) → αP (ran α) by

βϕ = αβ for all β ∈ P (ran α).

Then ϕ is onto. Let β, γ ∈ P (ran α). We have that

(βγ)ϕ = α(βγ)

= α(βα)γ from Lemma 3.1.1

= (αβ)(αγ)

= (βϕ)(γϕ).

Next, assume that βϕ = γϕ. Then αβ = αγ. Let x ∈ dom β. Then x ∈ ran α, so

xα = x. Thus

xβ = (xα)β = x(αβ) = x(αγ) = (xα)γ = xγ,

so x ∈ dom γ. This shows that dom β ⊆ dom γ and xβ = xγ for all x ∈ dom β.

It can be shown similary that dom γ ⊆ dom β and xγ = xβ for all x ∈ dom γ.

Hence β = γ. Therefore we deduce that ϕ is an isomorphism from P (ran α) onto

αP (ran α). But (T (ran α))ϕ = αT (ran α), thus ϕ|T (ran α)
is an isomorphism from

T (ran α) onto αT (ran α). This proves that αT (ran α) ∼= T (ran α) and P (ran α) ∼=

P (ran α), as desired.

Lemma 3.1.3. If α ∈ E(T (X)), then αT (X)α = αT (ran α).
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Proof. Since dom α = X, it follows that for every β ∈ T (ran α), dom(αβ) = X.

Thus αT (ran α) ⊆ T (X). By Lemma 3.1.1, T (ran α)α = T (ran α). Hence

αT (ran α) = αT (ran α)α

= α(αT (ran α))α

⊆ αT (X)α.

If β ∈ T (X), then dom(βα) = X and ran(βα) ⊆ ran α, so

αβα = α((βα)|ran α
) ∈ αT (ran α).

Thus αT (X)α ⊆ αT (ran α), so the result follows.

Lemma 3.1.4. If α ∈ E(P (X)) r {0}, then αP (X)α = αP (ran α).

Proof. By Lemma 3.1.1, P (ran α)α = P (ran α). It follows that

αP (ran α) = αP (ran α)α ⊆ αP (X)α .

If β ∈ P (X), then ran(βα) ⊆ ran α, so

αβα = α((βα)|dom(βα)∩ran α
)

∈ αP (ran α).

Hence αP (X)α ⊆ αP (ran α). Therefore αP (X)α = αP (ran α), as desired.

Lemma 3.1.5. If α ∈ E(P (X))r{0} and dom α ( X, then αT (X)α = αP (ran α).

Proof. Since T (X) ⊆ P (X), αT (X)α ⊆ αP (X)α. But αP (X)α = αP (ran α) by

Lemma 3.1.4, so αT (X)α ⊆ αP (ran α).

For the reverse inclusion, let γ ∈ P (ran α). Let a ∈ X r dom α. Define

γ ∈ T (X) by

γ =





x y

xγ a





x∈dom γ,
y∈Xrdom γ

.
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Since ran γ ⊆ ran α ⊆ dom α and a /∈ dom α, we have

dom α ∩ ran γ = dom α ∩ (ran γ ∪ {a}) = ran γ.

Thus

γα = γ(α|dom α∩ran γ
)

= γ(α|ran γ
)

= γα

= γ from Lemma 3.1.1

This implies that αγ = αγα ∈ αT (X)α.

Hence αT (X)α = αP (ran α).

Theorem 3.1.6. For α ∈ E(P (X)) r {0}, the local subset αT (X)α of P (X) is a

local subsemigroup of P (X) and

αT (X)α ∼=











T (ran α) if dom α = X,

P (ran α) if dom α ( X.

Proof. By Lemma 3.1.3 and Lemma 3.1.5, we have

αT (X)α =











αT (ran α) if dom α = X,

αP (ran α) if dom α ( X.

This fact and Lemma 3.1.2 yield the result that αT (X)α is a local subsemigroup

of P (X) and

αT (X)α ∼=











T (ran α) if dom α = X,

P (ran α) if dom α ( X.

Theorem 3.1.7. For every α ∈ E(P (X)) r {0}, then αT (X)α is a regular semi-

group.
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Proof. By Theorem 3.1.6, αT (X)α is a local subsemigroup of P (X). But since

T (ran α) and P (ran α) are regular semigroups, so by Theorem 3.1.6, αT (X)α is

a regular semigroup, as desired.

3.2 The Local Subsemigroups αI(X)α of P (X)

In this section, we give a necessary and sufficient condition for α ∈ E(P (X))r{0}

when X is finite for which the local subset αI(X)α of P (X) is a local subsemigroup

of P (X). It is also shown that this local subsemigroup of P (X) is always regular.

Observe that in Example 2.1,

|1α−1| = |{1}| = 1 < 2 = | ran α| = |2α−1|

and αI(X)α is not a local subsemigroup of P (X) but in Example 2.4,

|aα−1| = 2 ≥ | ran α| for all a ∈ ran α

and αI(X)α is a local subsemigroup of P (X). This fact is generally true for a

local subset αI(X)α of P (X) to be a local subsemigroup of P (X) when X is

finite.

We shall show that if X is finite, αI(X)α is a local subsemigroup of P (X) if

and only if either

(i) α = 1A for some nonempty subset A of X or

(ii) |aα−1| ≥ | ran α| for every a ∈ ran α,

and this local subsemigroup of P (X) is a regular semigroup.

To obtain the main results, the following series of lemmas is needed.

Lemma 3.2.1. For a nonempty subset A of X, 1AI(X)1A = I(A).

Proof. Let β ∈ I(X). Since 1Aβ1A ∈ I(X), dom(1Aβ1A) ⊆ A and ran(1Aβ1A) ⊆

A, it follows that 1Aβ1A ∈ I(A). This shows that 1AI(X)1A ⊆ I(A). Since 1A
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is the identity of I(A), we have 1AI(A)1A = I(A). But since I(A) ⊆ I(X), it

follows that

I(A) = 1AI(A)1A ⊆ 1AI(X)1A.

Hence 1AI(X)1A = I(A), as desired.

Lemma 3.2.2. Let α ∈ E(P (X)) r {0}. If |aα−1| ≥ | ran α| for every a ∈ ran α,

then αI(X)α = αP (ran α).

Proof. Since I(X) ⊆ P (X), it follows that αI(X)α ⊆ αP (X)α. Therefore by

Lemma 3.1.4, we have αI(X)α ⊆ αP (X)α = αP (ran α).

For the reverse inclusion, let λ ∈ P (ran α). Then dom αλ ⊆ dom α and

ran αλ ⊆ ran λ ⊆ ran α. It follows that

for every c ∈ ran αλ, c(αλ)−1 = (cλ−1)α−1,

dom αλ =
˙⋃

c∈ran αλ

c(αλ)−1 =
˙⋃

c∈ran αλ

(cλ−1)α−1.

Therefore

αλ =





(cλ−1)α−1

c





c∈ran αλ

.

We also have that

for every c ∈ ran αλ, |cλ−1| ≤ | ran α| ≤ |cα−1|.

Then for each c ∈ ran αλ, there is an injective mapping ϕc : cλ−1 → cα−1. This

implies that




x

xϕc





c∈ran αλ
x∈cλ−1

∈ I(X)

and

for every c ∈ ran αλ, ((cλ−1)ϕc)α = {c}.

Thus α





x

xϕc





c∈ran αλ
x∈cλ−1

α ∈ αI(X)α and
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α





x

xϕc





c∈ran αλ
x∈cλ−1

α = α





x

c





c∈ran αλ
x∈cλ−1

= α





cλ−1

c





c∈ran αλ

=





(cλ−1)α−1

c





c∈ran αλ

= αλ.

Then αP (ran α) ⊆ αI(X)α.

Hence the proof is complete.

Lemma 3.2.3. Let α ∈ E(P (X)) r {0} and assume that αI(X)α is a local

subsemigroup of P (X). If |aα−1| = 1 for some a ∈ ran α, then α is injective, that

is, α = 1dom α.

Proof. Note that aα = a since a ∈ ran α and α ∈ E(P (X)) r {0}. Let b ∈ ran α

and suppose that |bα−1| > 1. Let b′ ∈ bα−1 and b 6= b′. Define β, γ ∈ I(X) by

β =





a b

b′ b



 and γ =





b

a



 .

Then

αβα =





xα−1

x





x∈ran α





a b

b′ b









xα−1

x





x∈ran α

=





xα−1

x





x∈ran α





a b

b b





=





aα−1 ∪ bα−1

b



 ∈ αI(X)α and
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αγα =





xα−1

x





x∈ran α





b

a









xα−1

x





x∈ran α

=





xα−1

x





x∈ran α





b

a





=





bα−1

a



 ∈ αI(X)α.

Thus (αβα)(αγα) =





aα−1 ∪ bα−1

a



. Since αI(X)α is a local subsemigroup of

P (X), we have (αβα)(αγα) = αλα for some λ ∈ I(X). Therefore a(αλα) =

aλα = a and b(αλα) = bλα = a. Hence {a, b}λ ⊆ aα−1 = {a} which is a

contradiction since |{a, b}λ| = 2.

This proves that for every b ∈ ran α, bα−1 = {b}. Thus for every x ∈ dom α,

x ∈ (xα)α−1 = {xα}. Therefore xα = x for all x ∈ dom α, that is, α = 1dom α, as

desired.

Lemma 3.2.4. Let X be finite and α ∈ E(P (X)) r {0}. If αI(X)α is a local

subsemigroup of P (X) and α is not injective, then |aα−1| ≥ | ran α| for all a ∈

ran α.

Proof. By Lemma 3.2.3, for every a ∈ ran α, |aα−1| > 1. For every a ∈ ran α, let

a′ ∈ aα−1 and a′ 6= a.

To show that |aα−1| ≥ | ran α| for every a ∈ ran α, we are done if | ran α| = 1.

Assume that | ran α| = k > 1 and let b ∈ ran α. Let

ran α = {b = a1, a2, . . . , ak}.

For each i ∈ {2, . . . , k}, let βi ∈ I(X) be defined by

βi =





a1 ai x

a1 a′
1 x





x∈ran αr{a1,ai}

.
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Then for each i ∈ {2, . . . , k},

αβiα =





xα−1

x





x∈ran α





a1 ai x

a1 a′
1 x





x∈ran αr{a1,ai}





xα−1

x





x∈ran α

=





xα−1

x





x∈ran α





a1 ai x

a1 a1 x





x∈ran αr{a1,ai}

=





a1α
−1 ∪ aiα

−1 xα−1

a1 x





x∈ran αr{a1,ai}

.

If k = 2, then αβ2α = (dom α)a1 . If k > 2, then

(αβ2α)(αβ3α)

=







a1α
−1 ∪ a2α

−1 xα−1

a1 x







x∈ran αr{a1,a2}





a1α
−1 ∪ a3α

−1 xα−1

a1 x





x∈ran αr{a1,a3}

=





a1α
−1 ∪ a2α

−1 ∪ a3α
−1 xα−1

a1 x





x∈ran αr{a1,a2,a3}

.

The following result is easily obtained by induction :

(αβ2α)(αβ3α) · · · (αβkα) =









k
⋃

i=1

aiα
−1

a1









= (dom α)a1 .

Since αI(X)α is a subsemigroup of P (X), we have that (domα)a1 = αγα for

some γ ∈ I(X). Consequently,

(dom α)αγα = ((ran α)γ)α = {a1} = {b}.

It follows that ranα ⊆ dom γ and (ran α)γ ⊆ bα−1. But γ ∈ I(X), so we have

| ran α| = |(ran α)γ| ≤ |bα−1|.

Hence the desired result follows.
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Theorem 3.2.5. Let X be finite and α ∈ E(P (X)) r {0}. Then the local subset

αI(X)α of P (X) is a local subsemigroup of P (X) if and only if either

(i) α = 1A for some nonempty subset A of X or

(ii) |aα−1| ≥ | ran α| for every a ∈ ran α.

Moreover,

αI(X)α











= I(A) if α satisfies (i),

∼= P (ran α) if α satisfies (ii).

Proof. Assume that αI(X)α is a local subsemigroup of P (X) and suppose that

α does not satisfies (i), that is, α is not injective. By Lemma 3.2.4, α satisfies (ii).

Conversely, assume that α satisfies (i) or (ii). If α satisfies (i), then by

Lemma 3.2.1, αI(X)α = 1AI(X)1A = I(A) which is a subsemigroup of P (X).

Assume that α satisfies (ii). Then Lemma 3.2.2 yields αI(X)α = αP (ran α). It

follows from Lemma 3.1.2 that αI(X)α is a subsemigroup of P (X) and αI(X)α ∼=

P (ran α).

Therefore the theorem is proved.

Theorem 3.2.6. Let X be finite and α ∈ E(P (X)) r {0}. If αI(X)α is a local

subsemigroup of P (X), then αI(X)α is a regular semigroup. Moreover, αI(X)α

is an inverse semigroup if α is injective, that is, α = 1dom α ∈ I(X).

Proof. Since for any nonempty set Y , I(Y ) is an inverse semigroup and P (Y ) is

a regular semigroup, the result follows directly from Theorem 3.2.5.

3.3 The Local Subsemigroups αG(X)α of P (X)

In this section, we are concerned with the local subset αG(X)α of P (X). We shall

give a characterization in terms of α determining when the local subset αG(X)α

of P (X) becomes a local subsemigroup of P (X) when X is finite. Also, the local

subsemigroup of P (X) is always regular.



26

We can see from Example 2.2 that domα = X,

|1α−1| = |{1}| = 1 < | ran α| = |2α−1|

and αG(X)α is not a local subsemigroup of P (X) while in Example 2.5, domα = X,

|aα−1| ≥ | ran α| for all a ∈ ran α

and αG(X)α is a local subsemigroup of P (X). Also, in Example 2.3, α = 1{1,2,3},

|{1, 2, 3}| > |X r {1, 2, 3}| and αG(X)α is not a local subsemigroup of P (X)

but in Example 2.6, α = 1{1,2}, |{1, 2}| ≤ |X r {1, 2}| and αG(X)α is a local

subsemigroup of P (X). It will be shown that these are generally true when X is

finite.

We shall prove that if X is finite, then for α ∈ E(P (X)) r {0}, αG(X)α is a

local subsemigroup of P (X) if and only if one of the following statements holds :

(i) α = 1X .

(ii) α = 1A for some nonempty proper subset A of X with |A| ≤ |X r A|.

(iii) domα = X and |aα−1| ≥ | ran α| for all a ∈ ran α.

(iv) | ran α| ≤ |X r dom α| and |aα−1| ≥ | ran α| for all a ∈ ran α.

This local subsemigroup of P (X) is also regular.

First, we give the following series of lemmas.

Lemma 3.3.1. Assume that X is finite and A is a nonempty proper subset of X.

Then 1AG(X)1A is a local subsemigroup of P (X) if and only if |A| ≤ |X r A|.

If this is the case, 1AG(X)1A = I(A).

Proof. We prove by contrapositive that if 1AG(X)1A is a local subsemigroup of

P (X), then |A| ≤ |X r A|. Assume that |A| > |X r A|. First, we claim that

| dom(1Aβ1A)| ≥ |A| r |X r A| for every β ∈ G(X). (1)

To prove (1), let β ∈ G(X). Then

| dom(1Aβ1A)| = | dom 1A(β1A)|
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= |(A ∩ dom(β1A))1−1
A |

= |(A ∩ ((X ∩ A)β−1))1−1
A |

= |(A ∩ (Aβ−1))1−1
A |

= |A ∩ (Aβ−1)|

= |A r (A ∩ (X r Aβ−1))|

= |A| − |A ∩ (X r Aβ−1)|

≥ |A| − |X r Aβ−1|

= |A| − |X r A| since |Aβ−1| = |A|,

so (1) is proved. Let

k = |A| − |X r A| and l = |X r A|.

Then k ≥ 1 since |A| > |X r A|, |A| = k + l and so

|X| = |A| + |X r A| = k + 2l.

Since A ( X, l = |X r A| ≥ 1, so |A| = k + l > k. Next, we claim that

for all distinct a1, a2, . . . , ak ∈ A and distinct b1, b2, . . . , bk ∈ A,





a1 a2 · · · ak

b1 b2 · · · bk



 ∈ 1AG(X)1A. (2)

To prove (2), let a1, . . . , ak ∈ A be distinct and let b1, . . . , bk ∈ A be distinct.

Then

|A r {a1, . . . , ak}| = |A r {b1, . . . , bk}| = l = |X r A|,

so there are bijections ϕ :Ar{a1, . . . , ak} → XrA and ψ :X r A → Ar{b1, . . . , bk}.

Then

β =





a1 · · · ak x y

b1 · · · bk xϕ yψ





x∈Ar{a1,...,ak}
y∈XrA

∈ G(X).

Consequently,

1Aβ1A = 1Aβ|A1A
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= β|A1A

=





a1 · · · ak x

b1 · · · bk xϕ





x∈Ar{a1,...,ak}

1A

=





a1 · · · ak

b1 · · · bk



 since ran ϕ ⊆ X r A,

so





a1 · · · ak

b1 · · · bk



 ∈ 1AG(X)1A. Hence (2) is proved.

Since |A| > k, there are distinct elements a1, . . . , ak, ak+1 ∈ A. Then by (2),

γ =





a1 a2 · · · ak

a2 a3 · · · ak+1



 and λ =





a1 a2 · · · ak

ak a1 · · · ak−1





are elements in 1AG(X)1A. But since

γλ =





a1 a2 · · · ak−1

a1 a2 · · · ak−1





and | dom(γλ)| = k − 1 < k = |A| − |X r A|. It follows from (1) that γλ /∈

1AG(X)1A. This shows that 1AG(X)1A is not a local subsemigroup of P (X).

For the converse, assume that |A| ≤ |X r A|. We will show that 1AG(X)1A =

I(A). By Lemma 3.2.1, 1AI(X)1A = I(A). But since G(X) ⊆ I(X), we have

1AG(X)1A ⊆ 1AI(X)1A = I(A).

For the reverse inclusion, let β ∈ I(A). Then dom β ⊆ A, ran β ⊆ A and

| dom β| = | ran β|. Since |A r dom β| ≤ |A| ≤ |X r A|, there is an injective

mapping ϕ : A r dom β → X r A. Now, we have

β : dom β ⊆ A → ran β ⊆ A is bijective,

ϕ : A r dom β → (A r dom β)ϕ ⊆ X r A is bijective.

Since X is finite, it follows that

|X r A| = |(A r ran β) ∪̇ ((X r A) r (A r dom β)ϕ)|.
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Then there is a bijection ψ : X r A → (A r ran β) ∪̇ ((X r A) r (A r dom β)ϕ).

Define λ : X → X by

λ =





x y z

xβ yϕ zψ





x∈dom β
y∈Ardom β

z∈XrA

.

Then λ ∈ G(X) and

1AG(X)1A 3 1Aλ1A = 1Aλ|A1A

= λ|A1A

=





x y

xβ yϕ





x∈dom β
y∈Ardom β

1A

=





x

xβ





x∈dom β

since ran ϕ ⊆ X r A

= β.

This shows that 1AG(X)1A = I(A).

The lemma is thereby established.

Lemma 3.3.2. Assume that X is finite. If α ∈ E(T (X)) is such that |aα−1| ≥ | ran α|

for every a ∈ ran α, then αG(X)α = αT (ran α).

Proof. If β ∈ G(X), then ran(βα) ⊆ ran α, so we have αβα = α((βα)|ran α
) ∈

αT (ran α). Hence αG(X)α ⊆ αT (ran α).

For the reverse inclusion, let λ ∈ T (ran α). Then

ran α = dom λ =
˙⋃

c∈ran λ

cλ−1.

We also have that

for every c ∈ ran λ, |cλ−1| ≤ | ran α| ≤ |cα−1|.
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Then for each c ∈ ran λ, there is an injective mapping ϕc : cλ−1 → cα−1. It follows

that

for every c ∈ ran λ, ((cλ−1)ϕc)α = {c}.

Define β :
˙⋃

c∈ran λ

cλ−1 −→
˙⋃

c∈ran λ

cα−1 by

β =





x

xϕc





c∈ran λ
x∈cλ−1

.

Then dom β = dom λ = ran α. Since each ϕc is injective, β is injective, and thus

| dom β| = | ran β|. Since X is finite, we have |X r dom β| = |X r ran β|. Let

ψ : X r dom β → X r ran β be a bijection. Define β̄ : X → X by

β̄ =





x y

xβ yψ





x∈dom β
y∈Xrdom β

.

It follows that β̄ ∈ G(X). Also, we have

αβ̄α = α(β̄|ran α
)α

= αβα

= α





x

xϕc





c∈ran λ
x∈cλ−1

α

= α





x

c





c∈ran λ
x∈cλ−1

= α





cλ−1

c





c∈ran λ

= αλ.

Hence the lemma is proved.

Lemma 3.3.3. Assume that X is finite. If α ∈ E(P (X)) is such that | ran α| ≤

|X r dom α| and |aα−1| ≥ | ran α| for all a ∈ ran α, then αG(X)α = αP (ran α).
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Proof. By Lemma 3.1.4, αP (X)α = αP (ran α). Since G(X) ⊆ P (X), it follows

that αG(X)α ⊆ αP (ran α)

For the reverse inclusion, let λ ∈ P (ran α).

Case 1 : λ = 0. Since | ran α| ≤ |X r dom α|, there exists an injective mapping

β : ran α → Xrdom α. Since X is finite, |Xrran α| = |Xrdom β| = |Xrran β|,

so there is a bijection ϕ : X r dom β → X r ran β. Define

β̄ =





x y

xβ yϕ





x∈dom β
y∈Xrdom β

.

Then β̄ ∈ G(X) and

αG(X)α 3 αβ̄α = α(β̄|ran α
)α

= αβα

= α0 since ran β ⊆ X r dom α

= 0

= αλ.

Case 2 : λ 6= 0. Then

ran α ⊇ dom λ =
˙⋃

c∈ran λ

cλ−1

and

for every c ∈ ran λ, |cλ−1| ≤ | ran α| ≤ |cα−1|.

Then for each c ∈ ran λ, there is an injective mapping ϕc : cλ−1 → cα−1. This

implies that

for every c ∈ ran α, ((cλ−1)ϕc)α = {c}.

Define β :
˙⋃

c∈ran λ

cλ−1 →
˙⋃

c∈ran λ

cα−1 by

β =





x

xϕc





c∈ran λ
x∈cλ−1

.
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Then β is injective, dom β = dom λ ⊆ ran α and ran β ⊆ dom α. Since | ran α r

dom β| ≤ | ran α| ≤ |X r dom α|, so there is an injective mapping ϕ : ran α r

dom β → X r dom α. Since X is finite, we have

|X r ran α| = |X r (ran β ∪̇ ran ϕ)|.

Let ψ : X r ran α → X r (ran β ∪̇ ran ϕ) be bijective and define

β̄ =





x y z

xϕc yϕ zψ





c∈ran λ, x∈cλ−1

y∈ran αrdom β
z∈Xrran α

.

Then β̄ ∈ G(X) and

αG(X)α 3 αβ̄α = α(β̄|ran α
)α

= α





x y

xϕc yϕ





c∈ran λ, x∈cλ−1

y∈ran αrdom β

α

= α





x

xϕc





c∈ran λ
x∈cλ−1

α since ran ϕ ⊆ X r dom α

= α





cλ−1

c





c∈ran λ

since ((cλ−1)ϕc)α = {c}

= αλ.

Therefore the lemma is proved.

Lemma 3.3.4. Assume that α ∈ E(P (X))r{0} and αG(X)α is a local subsemi-

group of P (X). If |aα−1| = 1 for some a ∈ ran α, then α is injective, that is,

α = 1dom α.

Proof. Note that aα = a since a ∈ ran α and α ∈ E(P (X)) r {0}. Let b ∈ ran α

and suppose that |bα−1| > 1. Let b′ ∈ bα−1 and b 6= b′. Since |X r {a, b}| =
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|X r {b, b′}|, there is a bijection ϕ : X r {a, b} → X r {b, b′}. Define β, γ ∈ G(X)

by

β =





a b x

b′ b xϕ





x∈Xr{a,b}

and γ =





a b x

b a x





x∈Xr{a,b}

.

Then {a} ∪ bα−1 ⊆ dom(αβα), ({a} ∪ bα−1)(αβα) = {b} and

αγα = α





a b x

b a x





x∈Xr{a,b}

α

=





a bα−1 xα−1

b a x





x∈ran αr{a,b}

α

=





a bα−1 xα−1

b a x





x∈ran αr{a,b}

.

Thus {a} ∪ bα−1 ⊆ dom((αβα)(αγα)) and ({a} ∪ bα−1)((αβα)(αγα)) = {a}.

Since αG(X)α is a local subsemigroup of P (X), we have (αβα)(αγα) = αλα for

some λ ∈ G(X). This implies that

{a} = ({a} ∪ bα−1)αλα = ({a, b}λ)α.

Hence {a, b}λ ⊆ aα−1 = {a} which is a contradiction since |{a, b}λ| = 2.

This proves that for every b ∈ ran α, bα−1 = {b}. Thus for every x ∈ dom α,

x ∈ (xα)α−1 = {xα}. Therefore xα = x for all x ∈ dom α, that is, α = 1dom α, as

desired.

Lemma 3.3.5. Let X be finite and assume that α ∈ E(P (X))r{0} and α is not

injective. If αG(X)α is a local subsemigroup of P (X), then |aα−1| ≥ | ran α| for

every a ∈ ran α.
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Proof. By Lemma 3.3.4, for every a ∈ ran α, |aα−1| > 1. For every a ∈ ran α, let

a′ ∈ aα−1 and a′ 6= a.

To show that |aα−1| ≥ | ran α| for every a ∈ ran α, we are done if | ran α| = 1.

Assume that | ran α| = k > 1 and let b ∈ ran α. Let

ran α = {a1 = b, a2, . . . , ak}.

Since for each i ∈ {2, . . . , k}, |{a1, . . . , ai−1, a
′
1, ai+1, . . . , ak}| = k = ran α, there

is a bijection ϕi : X r ran α → X r {a1, . . . , ai−1, a
′
1, ai+1 . . . , ak}. For each

i ∈ {2, . . . , k}, let βi ∈ G(X) be defined by

βi =





a1 . . . ai−1 ai ai+1 . . . ak x

a1 . . . ai−1 a′
1 ai+1 . . . ak xϕi





x∈Xrran α

.

Then for each i ∈ {2, . . . , k},

αβiα

=





xα−1

x





x∈ran α





a1 . . . ai−1 ai ai+1 . . . ak x

a1 . . . ai−1 a′
1 ai+1 . . . ak xϕi





x∈Xrran α





xα−1

x





x∈ran α

=





a1α
−1 aiα

−1 xα−1

a1 a′
1 x





x∈ran αr{a1,ai}





xα−1

x





x∈ran α

=





a1α
−1 ∪ aiα

−1 xα−1

a1 x





x∈ran αr{a1,ai}

.

If k = 2, then αβ2α = (dom α)a1 . If k > 2, then

(αβ2α)(αβ3α)

=







a1α
−1 ∪ a2α

−1 xα−1

a1 x







x∈ran αr{a1,a2}





a1α
−1 ∪ a3α

−1 xα−1

a1 x





x∈ran αr{a1,a3}
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=





a1α
−1 ∪ a2α

−1 ∪ a3α
−1 xα−1

a1 x





x∈ran αr{a1,a2,a3}

.

By induction, we have

(αβ2α)(αβ3α) · · · (αβkα) =









k
⋃

i=1

aiα
−1

a1









= (dom α)a1 .

Since αG(X)α is a subsemigroup of P (X), we have that (domα)a1 = αγα for

some γ ∈ G(X). Consequently,

(dom α)αγα = ((ran α)γ)α = {a1} = {b}.

It follows that ranα ⊆ dom γ and (ran α)γ ⊆ bα−1. But γ ∈ G(X), so we have

| ran α| = |(ran α)γ| ≤ |bα−1|. Hence the desired result follows.

Lemma 3.3.6. Assume that X is finite and α ∈ E(P (X)) r {0} is such that

dom α ( X and α is not injective. If αG(X)α is a local subsemigroup of P (X),

then | ran α| ≤ |X r dom α|.

Proof. If | ran α| = 1, then we are done. Assume that | ran α| > 1. Let a, b be

distinct elements of ran α and let c ∈ X r dom α. By Lemma 3.3.5, | ran α| ≤

|aα−1| and | ran α| ≤ |bα−1|. Thus

| ran α r {a}| < |bα−1| and | ran α r {b}| < |aα−1|.

Then there are injective mappings ϕ : ran α r {a} → bα−1 ⊆ dom α and ψ :

ran α r {b} → aα−1 ⊆ dom α. Define

β =





x a

xϕ c





x∈ran αr{a}

and γ =





x b

xψ c





x∈ran αr{b}

.
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Then β and γ are injective and dom β = dom γ = ran α. Since X is finite, there are

bijective mappings ϕ′ : X rdom β → X r ran β and ψ′ : X rdom γ → X r ran γ.

Then

β̄ =





x a y

xϕ c yϕ′





x∈dom βr{a}
y∈Xrdom β

and γ̄ =





x b y

xψ c yψ′





x∈dom γr{b}
y∈Xrdom γ

are elements of G(X). Also, we have

αβ̄α = α(β̄|ran α
)α

= αβα

= α





x

xϕ





x∈ran αr{a}

α since c /∈ dom α

= α





x

b





x∈ran αr{a}

since ran ϕ ⊆ bα−1

=





˙⋃

x∈ran αr{a}

xα−1





b

,

αγ̄α = α(γ̄|ran α
)α

= αγα

= α





x

xψ





x∈ran αr{b}

α since c /∈ dom α

= α





x

a





x∈ran αr{b}

since ran ψ ⊆ aα−1

=





˙⋃

x∈ran αr{b}

xα−1





a

.

Consequently, (αβ̄α)(αγ̄α) =





˙⋃

x∈ran αr{a}

xα−1





b





˙⋃

x∈ran αr{b}

xα−1





a

= 0 since

b ∈ bα−1. Thus 0 ∈ αG(X)α.
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To show that | ran α| ≤ |X r dom α|, suppose on the contrary that | ran α| >

|X r dom α|. Let λ ∈ G(X). Then

| ran(αλ)| = | ran α| > |X r dom α|

which implies that ran(αλ) ∩ dom α 6= ∅. It follows that

dom(αλα) = (ran(αλ) ∩ dom α)(αλ)−1 6= ∅,

thus αλα 6= 0. Since λ is arbitrary in G(X), it follows that 0 /∈ αG(X)α which is

a contradiction. Hence we have | ran α| ≤ |X r dom α|, as desired.

Theorem 3.3.7. Let X be finite and α ∈ E(P (X)) r {0}. Then the local subset

αG(X)α of P (X) is a local subsemigroup of P (X) if and only if one of the fol-

lowing statements holds.

(i) α = 1X .

(ii) α = 1A for some nonempty proper subset A of X with |A| ≤ |X r A|.

(iii) domα = X and |aα−1| ≥ | ran α| for all a ∈ ran α.

(iv) | ran α| ≤ |X r dom α| and |aα−1| ≥ | ran α| for all a ∈ ran α.

Moreover,

αG(X)α











































= G(X) if α satisfies (i),

= I(A) if α satisfies (ii),

∼= T (ran α) if α satisfies (iii),

∼= P (ran α) if α satisfies (iv).

Proof. Assume that αG(X)α is a local subsemigroup of P (X).

Case 1 : α is injective and dom α = X. Then α = 1X .

Case 2 : α is injective and dom α ( X. Then α = 1A for some nonempty proper

subset A of X. By Lemma 3.3.1, |A| ≤ |X r A|, so (ii) holds.
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Case 3 : α is not injective and domα = X. Then by Lemma 3.3.5, α satisfies (iii).

Case 4 : α is not injective and domα ( X. By Lemma 3.3.5, |aα−1| ≥ | ran α|

for all a ∈ ran α. From Lemma 3.3.6, | ran α| ≤ |X r dom α|. Hence (iv) holds.

Conversely, assume that α satisfies one of (i) – (iv). If α satisfies (i), then

αG(X)α = 1XG(X)1X = G(X). If α satisfies (ii), then by Lemma 3.3.1, αG(X)α =

1AG(X)1A = I(A).

Assume that (iii) holds. From Lemma 3.3.2, we have αG(X)α = αT (ran α).

By Lemma 3.1.2, αT (ran α) is a subsemigroup of P (X) which is isomorphic to

T (ran α). Hence αG(X)α ∼= T (ran α).

Finally, assume that (iv) holds. Then by Lemma 3.3.3, αG(X)α = αP (ran α).

By Lemma 3.1.2, αP (ran α) is a subsemigroup of P (X) which is isomorphic to

P (ran α). It follows that αG(X)α ∼= P (ran α).

This proves the theorem.

As a consequence of Theorem 3.3.7, we have

Corollary 3.3.8. Let X be finite and α ∈ E(T (X)). Then the local subset

αG(X)α of T (X) is a local subsemigroup of T (X) if and only if either

(i) α = 1X or

(ii) |aα−1| ≥ | ran α| for every a ∈ ran α.

Moreover,

αG(X)α











= G(X) if α satisfies (i),

∼= T (ran α) if α satisfies (ii).

Theorem 3.3.9. Let X be finite and α ∈ E(P (X)) r {0}. If αG(X)α is a local

subsemigroup of P (X), then αG(X)α is a regular semigroup. In addition, if α is

injective, that is, α = 1dom α, then αG(X)α is an inverse semigroup.
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Proof. Since for any nonempty set Y , G(Y ) is a group, I(Y ) is an inverse semi-

group and both T (Y ) and P (Y ) are regular semigroups, the theorem is directly

obtained from Theorem 3.3.7.



CHAPTER IV

LOCAL SUBSEMIGROUPS OF SEMIGROUPS OF

LINEAR TRANSFORMATIONS

Throughout this chapter, let F be a field, V a vector space over F and n a positive

integer. This chapter deals with the local subset αGL(V )α of the semigroup L(V )

and the local subset AGn(F )A of the semigroup Mn(F ). We determine when

αGL(V )α becomes a local subsemigroup of L(V ) in terms of an idempotent α

of L(V ) when V is finite-dimensional. Also, we characterize an idempotent A

of Mn(F ) for which AGn(F )A is a local subsemigroup of Mn(F ). From these

characterizations, we have that these local subsemigroups of L(V ) and Mn(F ) are

regular semigroups.

4.1 The Local Subsemigroups αGL(V )α of L(V )

The aim of this section is to show that if V is finite-dimensional and α ∈ E(L(V )),

then αGL(V )α is a local subsemigroup of L(V ) if and only if either

(i) α = 1V or

(ii) 2 dim(ranα) ≤ dim V .

This local subsemigroup of L(V ) is regular.

First, we provide the following series of lemmas.

Lemma 4.1.1. If α ∈ E(L(V )), then for every β ∈ L(ran α), βα = β.

Proof. See the proof of Lemma 3.1.1.
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Lemma 4.1.2. If α ∈ E(L(V )), then αL(ran α) is a subsemigroup of L(V ) and

αL(ran α) ∼= L(ran α).

Proof. See the proof of Lemma 3.1.2. Note that for β ∈ L(ran α), dom β = ran α,

so dom(αβ) = dom α = V . Hence αL(ran α) ⊆ L(V ).

Lemma 4.1.3. If α ∈ E(L(V )), then αL(V )α = αL(ran α).

Proof. See the proof of Lemma 3.1.3.

Lemma 4.1.4. Assume that V is finite-dimensional and α ∈ E(L(V )). If dim(ker α) ≥

dim(ran α), then αGL(V )α = αL(ran α).

Proof. Since GL(V ) ⊆ L(V ), by Lemma 4.1.3, we have

αGL(V )α ⊆ αL(V )α = αL(ran α).

To show that αL(ran α) ⊆ αGL(V )α, let λ ∈ L(ran α). Then αλ ∈ L(V ) and

ran(αλ) ⊆ ran λ ⊆ ran α = dom λ.

But dim(ker α) ≥ dim(ran α), so we have

dim(ker λ) ≤ dim(ran α) ≤ dim(ker α). (1)

Let B1 be a basis of ker λ and B2 be a basis of ran λ. For each v ∈ B2, let

v′ ∈ vλ−1. By Proposition 2.8, B1∪̇ {v′ | v ∈ B2} is a basis of ran α (= dom λ).

Let B3 be a basis of ran α containing B2. Then

dim(ran α) = |B1∪̇ {v′ | v ∈ B2}| = |B3| = |(B3 r B2) ∪̇B2|.

Since dim V < ∞ and |{v′ | v ∈ B2}| = |B2|, it follows that |B1| = |B3 r B2|. Let

B4 be a basis of ker α. By Corollary 2.10,

B1∪̇ {v′ | v ∈ B2} ∪̇B4 is a basis of V and (2)
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B3 ∪̇B4 is a basis of V . (3)

From (1), we have |B1| ≤ |B4|. Let ϕ : B1 → B4 be injective. Then we have

|B3rB2| = |B1| = |B1ϕ|

which implies that

|B4| = |(B4 r B1ϕ) ∪̇B1ϕ| = |(B4 r B1ϕ) ∪̇ (B3 r B2)|

since B3 ∩B4 = ∅ (see (3)). Let ψ : B4 → (B4 r B1ϕ) ∪̇ (B3 r B2) be a bijection.

Define β ∈ L(V ) on the basis B1 ∪̇ {v′ | v ∈ B2} ∪̇B4 of V (see (2)) by

β =





u v′ w

uϕ v wψ





u∈B1, v∈B2,
w∈B4

. (4)

Since ϕ, v′ 7→ v (v ∈ B2), ψ are injective, B1ϕ ⊆ B4, B2 ⊆ B3, B3 ∩ B4 = ∅

and B4ψ = (B4 r B1ϕ) ∪̇ (B3 r B2), it follows that β restricted to the basis

B1 ∪̇ {v′ | v ∈ B2} ∪̇B4 of V is injective. Also,

(B1 ∪̇ {v′ | v ∈ B2} ∪̇B4)β = B1ϕ ∪̇B2 ∪̇ (B4 r B1ϕ) ∪̇ (B3 r B2)

= B3 ∪̇B4

which is a basis of V by (3). By Proposition 2.7, we deduce that β ∈ GL(V ). We

claim that αβα = αλ. By (2), it suffices to show that

vαβα = vαλ for all v ∈ B1 ∪̇ {v′ | v ∈ B2} ∪̇B4.

Recall that vα = v for all v ∈ ran α. We have that

for u ∈ B1, uαβα = uβα since B1 ⊆ ran α

= (uϕ)α from (4)

= 0 since B1ϕ ⊆ B4 ⊆ ker α,

uαλ = uλ

= 0 since B1 ⊆ ker λ,
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for u ∈ B2, u′αβα = u′βα since u′ ∈ uλ−1 ⊆ ran α

= uα from (4)

= u, since B2 ⊆ ran λ ⊆ ran α

u′αλ = u′λ

= u since u′ ∈ uλ−1,

for u ∈ B4, uαβα = 0 = uαλ since B4 ⊆ ker α.

This implies that αβα = αλ.

This proves that αGL(V )α = αL(ran α), as desired.

Lemma 4.1.5. Assume that V is finite-demensional, α ∈ E(L(V )) and α 6= 1V .

If αGL(V )α is a local subsemigroup of L(V ), then dim(ker α) ≥ dim(ran α).

Proof. Since α 6= 1V , uα = v for some distinct u, v ∈ V . Then uα = uα2 = vα,

so α is not a monomorphism. Thus ker α 6= {0}. Let w ∈ ker α r {0}.

To show that dim(ker α) ≥ dim(ran α), we are done if dim(ran α) = 0. As-

sume that dim(ran α) = k > 0. Let {u1, . . . , uk} be a basis of ranα. By Corollary

2.10, we have that for each i ∈ {1, . . . , k}, u1, . . . , ui−1, w, ui+1, . . . , uk are linearly

independent. Let B0 be a basis of ker α. By Corollary 2.10, B0 ∪̇ {u1, . . . , uk}

is a basis of V . For each i ∈ {1, . . . , k}, let Bi be a basis of V containing

{u1, . . . , ui−1, w, ui+1, . . . , uk}. Since dim V < ∞,

|B0| = dim V − k = |Bir{u1, . . . , ui−1, w, ui+1, . . . , uk}|.

For each i ∈ {1, . . . , k}, let ϕi : B0 → Bi r{u1, . . . , ui−1, w, ui+1, . . . , uk} be a

bijection. For each i ∈ {1, . . . , k}, define βi ∈ L(V ) on the basis B0 ∪̇ {u1, . . . , uk}

of V by

βi =





u1 · · · ui−1 ui ui+1 · · · uk v

u1 · · · ui−1 w ui+1 · · · uk vϕi





v∈B0

.
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By Proposition 2.7, βi ∈ GL(V ) for all i ∈ {1, . . . , k}. Note that uiα = ui for

all i ∈ {1, . . . , k} and vα = 0 for all v ∈ B0. Since w ∈ ker α, we have that for

i ∈ {1, . . . , k},

αβiα

=

(

u1 · · · uk v

u1 · · · uk 0

)

v∈B0

(

u1 · · · ui−1 ui ui+1 · · · uk v

u1 · · · ui−1 w ui+1 · · · uk vϕi

)

v∈B0

(

u1 · · · uk v

u1 · · · uk 0

)

v∈B0

=





u1 · · · ui−1 ui ui+1 · · · uk v

u1 · · · ui−1 0 ui+1 · · · uk 0





v∈B0

.

Then

(αβ1α)(αβ2α) =





u1 u2 · · · uk v

0 u2 · · · uk 0





v∈B0





u1 u2 u3 · · · uk v

u1 0 u3 · · · uk 0





v∈B0

=





u1 u2 u3 · · · uk v

0 0 u3 · · · uk 0





v∈B0

.

The following result holds by induction :

(αβ1α)(αβ2α) . . . (αβkα) =





u1 · · · uk v

0 · · · 0 0





v∈B0

.

Since αGL(V )α is a subsemigroup of L(V ), it follows that the zero map 0 on V

belongs to αGL(V )α. Thus αγα = 0 for some γ ∈ GL(V ). Consequently,

(ran α)γ = (V α)γ ⊆ ker α.

Since γ ∈ GL(V ), dim(ker α) ≥ dim(ran α)γ = dim(ran α).

The proof is thereby completed.

Theorem 4.1.6. Let V be finite-dimensional and α ∈ E(L(V )). Then the local

subset αGL(V )α of L(V ) is a local subsemigroup of L(V ) if and only if either
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(i) α = 1V or

(ii) dim(ker α) ≥ dim(ran α).

Moreover,

αGL(V )α











= GL(V ) if α satisfies (i),

∼= L(ran α) if α satisfies (ii).

Proof. Assume that αGL(V )α is a local subsemigroup of L(V ). If α 6= 1V , then

by Lemma 4.1.5, dim(kerα) ≥ dim(ran α).

Conversely, assume that α satisfies (i) or (ii). If α satisfies (i), then αGL(V )α =

1V GL(V )1V = GL(V ). If α satisfies (ii), then by Lemma 4.1.4, αGL(V )α =

αL(ran α) and by Lemma 4.1.2, it is a subsemigroup of L(V ) which is isomorphic

to L(ran α).

Therefore the theorem is proved.

Since for α ∈ L(V ), dim V = dim(ker α) + dim(ran α), it follows that if

dim V < ∞, then

dim(ran α) ≤ dim(ker α) ⇔ dim(ran α) ≤ dim V − dim(ran α)

⇔ 2 dim(ran α) ≤ dim V.

Hence Theorem 4.1.6 can be restated as follows:

Theorem 4.1.7. Let V be finite-dimensional and α ∈ E(L(V )). Then the local

subset αGL(V )α of L(V ) is a local subsemigroup of L(V ) if and only if either

(i) α = 1V or

(ii) 2 dim(ran α) ≤ dim V .

Moreover,

αGL(V )α











= GL(V ) if α satisfies (i),

∼= L(ran α) if α satisfies (ii).
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As a consequence of Theorem 4.1.7, we have

Corollary 4.1.8. If dim V ≤ 2, then for every α ∈ E(L(V )), αGL(V )α is a local

subsemigroup of L(V ).

Proof. We have α|ran α
= 1ran α and dim(ran α) = 0, 1 or 2. If dim(ranα) = 2, then

ran α = V , so α = 1V . If dim(ran α) = 0 or 1, then 2 dim(ranα) ≤ 2 = dim V .

By Theorem 4.1.7, αGL(V )α is a local subsemigroup of L(V ).

Theorem 4.1.9. Let V be finite-dimensional and α ∈ E(L(V )). If αGL(V )α is

a local subsemigroup of L(V ), then αGL(V )α is a regular semigroup.

Proof. Since for a subspace U of V , GL(U) is a group and L(U) is a regular

semigroup, the result follows from Theorem 4.1.7.

Example 4.1.10. Let F be a field. Consider the vector space F 5 over F with

the usual addition and scalar multiplication. Define α, β : F 5 → F 5 by

(x, y, z, w, t)α = (x, 0, z, 0, t)

(x, y, z, w, t)β = (x, y, 0, 0, 0)

for all x, y, z, w, t ∈ F .

Then α, β ∈ E(L(F 5)), dim(ran α) = 3 and dim(ran β) = 2. Since 2 dim(ranα) =

6 > 5 = dim F 5 and 2 dim(ran β) = 4 < 5 = dim F 5, by Theorem 4.1.7,

αGL(F 5)α is not a local subsemigroup of L(F 5) but βGL(F 5)β is a local sub-

semigroup of GL(F 5) and

βGL(F 5)β ∼= L({(x, y, 0, 0, 0) |x, y ∈ F})

∼= L(F 2)

since {(x, y, 0, 0, 0) |x, y ∈ F} and F 2 are vector space isomorphic ( see Proposition

2.11).
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4.2 The Local Subsemigroups AGn(F )A of Mn(F )

By making use of Theorem 4.1.7 and a relationship between L(V ) and Mn(F ) if

dim V = n, we shall show that for A ∈ E(Mn(F )), AGn(F )A is a local subsemi-

group of Mn(F ) if and only if either

(i) A = In, the identity n × n matrix over F or

(ii) 2 rank A ≤ n.

In addition, we show that if A 6= 0, then the local subsemigroup AGn(F )A is iso-

morphic to Mk(F ) where k = rank A which implies that it is a regular semigroup.

Recall that if dim V = n, then there is a semigroup isomorphism θ : L(V ) →

Mn(F ) such that for all α ∈ L(V ), rank(αθ) = dim(ran α). Note that (E(L(V )))θ =

E(Mn(F )).

Theorem 4.2.1. For A ∈ E(Mn(F )), the local subset AGn(F )A of Mn(F ) is a

local subsemigroup of Mn(F ) if and only if either

(i) A = In or

(ii) 2 rank A ≤ n.

In addition,

AGn(F )A



























= Gn(F ) if A satisfies (i),

= {0} if A = 0,

∼= Mk(F ) if A 6= 0, A satisfies (ii) and rank A = k.

Proof. Let V be a vector space over F of dimension n and θ : L(V ) → Mn(F ) a

semigroup isomorphism such that

rank(αθ) = dim(ran α) for all α ∈ L(V ).

First, assume that AGn(F )A is a local subsemigroup of Mn(F ). Then

(AGn(F )A)θ−1 = (Aθ−1)GL(V )(Aθ−1)
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is a local subsemigroup of L(V ). By Theorem 4.1.7, either

(i) Aθ−1 = 1V or

(ii) 2 dim(ran(Aθ−1)) ≤ dim V = n.

But since 1V θ = In and

dim(ran(Aθ−1)) = rank((Aθ−1)θ) = rank A,

it follows that either

(i) A = In or

(ii) 2 rank A ≤ n.

Conversely, assume that A satisfies (i) or (ii). If A satisfies (i), then AGn(F )A =

Gn(F ). Assume that A satisfies (ii). If A = 0, then AGnA = {0}. Assume that

A 6= 0. Let rankA = k. We have Aθ−1 ∈ L(V ) and dim V = n ≥ 2 rank A =

2 rank((Aθ−1)θ) = 2 dim(ran(Aθ−1)). By Theorem 4.1.7, (Aθ−1)GL(V )(Aθ−1) is

a local subsemigroup of L(V ) and

(Aθ−1)GL(V )(Aθ−1) ∼= L(ran(Aθ−1)).

But ((Aθ−1)GL(V )(Aθ−1))θ = AGn(F )A, so

AGn(F )A ∼= L(ran(Aθ−1)).

Since dim(ran(Aθ−1)) = rank((Aθ−1)θ) = rankA = k, it follows that

L(ran(Aθ−1)) ∼= Mk(F ).

This proves the theorem.

Corollary 4.2.2. For every A ∈ E(M2(F )), AG2(F )A is a local subsemigroup of

M2(F ).

Proof. If rank A ≤ 1, then 2 rankA ≤ 2, so by Theorem 4.2.1, AG2(F )A is a

local subsemigroup of M2(F ).
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Assume that rank A = 2. Then A ∈ E(G2(F )) which implies that A = I2.

Thus AG2(F )A = I2G2(F )I2 = G2(F ).

Theorem 4.2.3. Let A ∈ E(Mn(F )). If AGn(F )A is a local subsemigroup of

Mn(F ), then AGn(F )A is a regular semigroup.

Proof. Since for every positive integer m, Gm(F ) is a group and Mm(F ) is a

regular semigroup, the result follows from Theorem 4.2.1.

Example 4.2.4. Let F be a field and x, y, z ∈ F . Define

A =

















1 0 0 0

x 0 0 0

0 0 1 0

0 0 y 0

















and B =

















1 0 0 0

0 1 0 0

0 0 0 z

0 0 0 1

















Then A2 = A, B2 = B, rank A = 2 and rank B = 3. Then 2 rankA = 4 and

2 rank B = 6 > 4. By Theorem 4.2.1, AG4(F )A is a local subsemigroup of M4(F )

but BG4(F )B is not. Moreover, AG4(F )A ∼= M2(F ).

Finally, by making use of Proposition 2.12, we provide some explicit form of

the local subsemigroup AGn(F )A of Mn(F ).

Lemma 4.2.5. If k is a positive integer such that 2k ≤ n, then D
(k)
n Gn(F )D

(k)
n

is the set of all n × n matrices over F of the form































x11 · · · x1k 0 · · · 0
...

. . .
...

...
...

xk1 · · · xkk 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 0































. (1)
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Proof. We can see that for any matrix A ∈ Mn(F ),

D(k)
n AD(k)

n =































A11 · · · A1k 0 · · · 0
...

. . .
...

...
...

Ak1 · · · Akk 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 0































.

It follows that D
(k)
n Gn(F )D

(k)
n is a subset of the set of all n × n matrices over F

of the form (1).

Conversely, let B ∈ Mn(F ) be of the form (1), that is,

B =































B11 · · · B1k 0 · · · 0
...

. . .
...

...
...

Bk1 · · · Bkk 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 0































.

Since 2k ≤ n, it implies that

B1n = B2,n−1 = · · · = Bk,n−(k−1) = Bk+1,n−k = · · · = Bn1 = 0.

Define B̄ ∈ Mn(F ) by

B̄ij =



























Bi,j if i, j ∈ {1, . . . , k},

1 if i + j = n + 1,

0 otherwise,

that is,
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B̄ =























































B11 B12 B13 · · · B1k 0 · · · 0 0 1

B21 B22 B23 · · · B2k 0 · · · 0 1 0

B31 B32 B33 · · · B3k 0 · · · 1 0 0
...

...
...

. . .
...

...
...

...
...

Bk1 Bk2 Bk3 · · · Bkk ∗ · · · 0 0 0

0 0 0 · · · ∗ • · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 1 · · · 0 0 · · · 0 0 0

0 1 0 · · · 0 0 · · · 0 0 0

1 0 0 · · · 0 0 · · · 0 0 0























































where

∗ := 1 and • := 0 if 2k = n,

∗ := 0 and • := 1 if 2k = n − 1,

∗ := 0 and • := 0 if 2k < n − 1.

It is clearly seen that B̄ is row-equivalent to In. It follows that B̄ ∈ Gn(F ).

Moreover, D
(k)
n B̄D

(k)
n = B, so B ∈ D

(k)
n Gn(F )D

(k)
n .

Hence the proof is complete.

Theorem 4.2.6. Let A = C−1D
(k)
n C ∈ E(Mn(F )) where C ∈ Gn(F ) (see Propo-

sition 2.12). Then the local subset AGn(F )A of Mn(F ) is a local subsemigroup of

Mn(F ) if and only if either k = n or 2k ≤ n. Moreover,

k = n ⇒ AGn(F )A = Gn(F ),

k = 0 ⇒ AGn(F )A = {0},

0 < 2k ≤ n ⇒ AGn(F )A = C−1





















































x11 · · · x1k 0 · · · 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.

xk1 · · · xkk 0 · · · 0

0 · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 · · · 0 0 · · · 0



















|xi,j ∈ F for i, j ∈ {1, . . . , k}



































C.
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Proof. Since A = C−1D
(k)
n C, rank(A) = k.

Assume that AGn(F )A is a local subsemigroup of Mn(F ). By Theorem 4.2.1,

either A = In or 2k ≤ n. If A = In, then k = n, so AGn(F )A = Gn(F ). If k = 0,

then AGnA = {0}.

Assume that k > 0 and 2k ≤ n. By Lemma 4.2.5,

D(k)
n Gn(F )D(k)

n =





















































x11 · · · x1k 0 · · · 0

.

..
. . .

.

..
.
..

.

..

xk1 · · · xkk 0 · · · 0

0 · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 · · · 0 0 · · · 0



















|xi,j ∈ F for i, j ∈ {1, . . . , k}



































.

Hence

AGn(F )A = (C−1D(k)
n C)Gn(F )(C−1D(k)

n C)

= C−1D(k)
n (CGn(F )C−1)D(k)

n C

= C−1D(k)
n Gn(F )D(k)

n C since C ∈ Gn(F )

= C−1(D(k)
n Gn(F )D(k)

n )C

= C−1





















































x11 · · · x1k 0 · · · 0

.

.

.
. . .

.

.

.
.
.
.

.

.

.

xk1 · · · xkk 0 · · · 0

0 · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 · · · 0 0 · · · 0



















|xi,j ∈ F for i, j ∈ {1, . . . , k}



































C.

For the converse, assume that either k = n or 2k ≤ n. If k = n, then A = In,

and if 2k ≤ n, then 2 rank(A) ≤ n. It follows from Theorem 4.2.1 that AGn(F )A

is a local subsemigroup of Mn(F ).

The proof is thereby completed.

Remark 4.2.7. Let A be as in the assumption of Theorem 4.2.6 and 0 < 2k ≤ n.

By Theorem 4.2.1, we have that AGn(F )A ∼= Mk(F ). This can be seen from
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Theorem 4.2.6 since

θ : Mk(F ) → C−1





















































x11 · · · x1k 0 · · · 0

.

..
. . .

.

..
.
..

.

..

xk1 · · · xkk 0 · · · 0

0 · · · 0 0 · · · 0

.

..
.
..

.

..
. . .

.

..

0 · · · 0 0 · · · 0



















|xi,j ∈ F for i, j ∈ {1, . . . , k}



































C

defined by

Aθ = C−1































A11 · · · A1k 0 · · · 0
...

. . .
...

...
...

Ak1 · · · Akk 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 0































C

is an isomorphism. See the proof of Proposition 2.11.
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