

Academic year 2001
ISBN 974-03-1050-8
Thesis Title Semigroups admitting skew-ring or skew-semifield structures.

By	Mr. Manoj Siripitukdet
Field of study	Mathematics
Thesis Advisor	Associate Professor Yupaporn Kemprasit, Ph.D.
Thesis Co-advisor	Assistant Professor Amorn Wasanawichit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

THESIS COMMITTEE

มาโนชญ์ สิริพิทักษ์เดช : กึ่งกลุ่มที่ให้โครงสร้างวงเสมือนหรือกึ่งสนามเสมือน (SEMIGROUPS ADMITTING SKEW-RING OR SKEW-SEMIFIELD STRUCTURES) อ. ที่ปรึกษา : รศ. ดร. ยุพาภรณ์ เข็มประสิทธิ์, อ. ที่ปรึกษาร่วม : ผศ.ดร. อมร วาสนาวิจิตร์ จำนวนหน้า 56 หน้า. ISBN 974-03-1050-8

กึ่งวง คือระบบ $(S,+, \cdot)$ โดยที่ $(S,+)$ และ (S, \cdot) เป็นกึ่งกลุ่ม และ • แจกแจงบน + วง เสมือน หมายถึง กึ่งวง $(S,+, \cdot)$ ซึ่ง $(S,+)$ เป็นกลุ่ม เราเรียกสมาชิก 0 ของกึ่งวง $S=(S,+, \cdot)$ ว่า ศูนย์ ของ S ถ้า $x+0=0+x=x$ และ $x \cdot 0=0 \cdot x=0$ ทุกสมาชิก $x \in S$ กึ่งสนามเสมือน คือ กึ่งวง $(S,+, \cdot)$ ซึ่งสลับที่ภายใต้การบวก มีศูนย์ 0 และ $(S \backslash\{0\}, \cdot)$ เป็นกลุ่ม

สำหรับกึ่งกลุ่ม S ให้ S^{0} เป็น S ถ้า S มีศูนย์และ S มีสมาชิกมากกว่า 1 ตัว มิฉะนั้น ให้ S^{0} เป็นกึ่งกลุ่ม S ที่ผนวกศูนย์ 0 เข้าไปด้วย เรากล่าวว่ากึ่งกลุ่ม S ให้โครงสร้างวงเสมือน ถ้ามีการ ดำเนินการ + บน S^{0} ที่ทำให้ $\left(S^{0},+, \cdot\right)$ เป็นวงเสมือน เมื่อ - เป็นการดำเนินการบน S^{0} เราให้นิยาม ของกลุ่มที่ให้โครงสร้างกึ่งสนามเสมือนในทำนองเดียวกัน

ให้ R เป็นวงสลับที่ ซึ่งมีเอกลักษณ์ $1 \neq 0, M_{n}(R)$ เป็นกึ่งกลุ่มของ $n \times n$ เมทริกซ์บน R ทั้ง หมดภายใต้การคูณและ $G_{n}(R)$ เป็นกลุ่มย่อยของ $M_{n}(R)$ ที่ประกอบด้วย $n \times n$ เมทริกซ์บน R ที่หา ตัวผกผันได้ทั้งหมด ให้ V เป็นปริภูมิเวกเตอร์บนวงการหาร, $L(V)$ เป็นกึ่งกลุ่มภายใต้การประกอบ ของการแปลงเชิงเส้น $\alpha: V \rightarrow V$ ทั้งหมด และ $G(V)$ เป็นกลุ่มย่อยของ $L(V)$ ที่ประกอบด้วยสม สัณฐาน $\alpha: V \rightarrow V$ ทั้งหมด ในการวิจัยนี้ เราบอกลักษณะเฉพาะของกึ่งกลุ่มย่อยหลากหลาย ของ $M_{n}(R)$ และ $L(V)$ ว่าเมื่อไรกึ่งกลุ่มย่อยเหล่านี้จะให้โครงสร้างของวงเสมือน เราพิจารณากลุ่ม ย่อยจำนวนมากของ $G_{n}(R)$ และ $G(V)$ และให้ลักษณะเฉพาะที่บอกว่ากลุ่มย่อยเหล่านี้ให้โครงสร้าง ของกึ่งสนามเสมือนเมื่อใด 4919949

จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา คณิตศาสตร์
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2544

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา
ลายมือชื่ออาจารย์ที่ปรึกษษาร่วม
\#\# 4073804423 MAJOR : MATHEMATICS
KEYWORD : SKEW-RINGS / SKEW-SEMIFIELDS / SEMIGROUPS
ADMITTING SKEW-RING STRUCTURE / SEMIGROUPS ADMITTING SKEWSEMIFIELD STRUCTURE

MANOJ SIRIPITUKDET : SEMIGROUPS ADMITTING SKEW-RING OR SKEW-SEMIFIELD STRUCTURES. THESIS ADVISOR : ASSOCIATE PROFESSOR YUPAPORN KEMPRASIT, Ph.D., THESIS COADVISOR : ASSISTANT PROFESSOR AMORN WASANAWICHIT, Ph.D., 56pp. ISBN 974-03-1050-8

A semiring is a system $(S,+, \cdot)$ such that $(S,+)$ and (S, \cdot) are semigroups and \cdot is distributive over + . By a skew-ring we mean a semiring $(S,+, \cdot)$ such that $(S,+)$ is a group. An element 0 of a semiring $S=(S,+, \cdot)$ is a zero of S if $x+0=0+x=x$ and $0 \cdot x=x \cdot 0=0$ for all $x \in S$. A skew-semifield is an additively commutative semiring $(S,+, \cdot)$ with zero 0 such that $(S \backslash\{0\}, \cdot)$ is a group.

For a semigroup S, the semigroup S^{0} is defined to be S if S has a zero and S contains more than one element, otherwise, let S^{0} be the semigroup S with a zero 0 adjoined. A semigroup S is said to admit a skew-ring structure if there exists an operation + on S^{0} such that $\left(S^{0},+,\right)$ is a skew-ring where \cdot is the operation on S^{0}. A group admitting skew-semifield structure is defined similary.

Let R be a commutative ring with identity $1 \neq 0, M_{n}(R)$ the semigroup of all $n \times n$ matrices over R under matrix multiplication and $G_{n}(R)$ the subgroup of $M_{n}(R)$ consisting of all invertible $n \times n$ matrices over R. Let V be a vector space over a division ring, $L(V)$ the semigroup under composition of all linear transformations α : $V \rightarrow V$ and $G(V)$ the subgroup of $L(V)$ consisting of an isomorphisms $\alpha: V \rightarrow V$. In this research, various subsemigroups of $M_{n}(R)$ and $L(V)$ are characterized when they admit a skew-ring structure. Many subgroups of $G_{n}(R)$ and $G(V)$ are considered. We give characterizations determining when they admit a skew-semifield structure.

Department Mathematics Field of Study Mathematics
Academic year 2001

Student's signature
Advisor's signature
Co-advisor's signature

ACKNOWLEDGEMENT

I am very grateful to late Dr. Sidney S. Mitchell, my former advisor, who kindly induced me to this research and supervised me helpfully until he passed away. To me, the most important person for my dissertation is Assoc. Prof. Dr. Yupaporn Kemprasit who continued supervising me kindly under the same topic. I am greatly indebted to her for her helpful advice in preparing and writing my dissertation. I am very thankful to my co-advisor, Assist. Prof. Dr. Amorn Wasanawichit, for his helpfulness. Moreover, I would like to thank Assist. Prof. Dr. Patanee Udomkavanich, Assist. Prof. Dr. Ajchara Harnchoowong, and Assoc. Prof. Dr. Chaweewan Ratanaprasert, the chairman and members of this dissertation. Besides, I would like to thank all of my teachers who have taught me for my knowledge and skills.

In particular, I would like to express my appreciation to my beloved parents and wife for their encouragement throughout my study.

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณัมหาวัทยาล่ย }
\end{gathered}
$$

CONTENTS

PAGE
ABSTRACT IN THAI. iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENT vi
CHAPTER
I. INTRODUCTION AND PRELIMINARIES 1
II. SEMIGROUPS ADMITTING SKEW-RING STRUCTURE 18
2.1 MATRIX SEMIGROUPS. 18
2.2 LINEAR TRANSFORMATION SEMIGROUPS 28
III. GROUPS ADMITTING SKEW-SEMIFIELD STRUCTURE 42
3.1 MATRIX GROUPS. 42
3.2 GROUPS OF LINEAR TRANSFORMATIONS 51
REFERENCES 54
VITA 56

CHAPTER I

INTRODUCTION AND PRELIMINARIES

The multiplicative structure of any ring is by definition a semigroup with zero. Then it is valid to ask whether a given semigroup S has S^{0} isomorphic to the multiplicative structure of some ring. If it does, we say that S admits a ring structure. If the multiplicative structure of a ring R is a group with zero, then R is a skew-field. Thus if a group G admits a ring structure, we may say that G admits a skew-field structure. Semigroups admitting ring structure have long been studied. For examples, see [9], [12], [15], [16], [17], [13], [3], [18] and [10].

By our definitions, skew-rings and skew-semifields are generalizations of rings and skew-fields, respectively. Also, the multiplicative structure of a skewring is a semigroup with zero and that of a skew-semifield is a group with zero. Semigroups admitting skew-ring structure and groups admitting skew-semifield structure are defined analogously and they are also valid to be studied. Matrix semigroups and semigroups of linear transformations are considered important in the area of semigroups. Also, matrix groups and groups of linear transformations are also important groups. The first section of Chapter II gives characterizations determining when some matrix semigroups admit-a skew-ring structure while in the second section, we do the same way on some semigroups of linear transformations. Certain matrix groups are considered in the first section of Chapter III. They are characterized when they admit a skew-semifield structure. In the second section of Chapter III, we are concerned with some groups of linear transformations. The results of determining when they admit skew-semifield structure are provided. In our work, all matrices are over a commutative ring with identity $1 \neq 0$ and all vector spaces are over a division ring.

In the remainder of this chapter, we shall give precise definitions, no-
tations, and basic results which will be used in Chapter II and Chapter III. Moreover, many examples are provided.

For any set X, the cardinality of X will be denoted by $|X|$. For a semigroup S, the semigroup S^{0} is defined to be S if S has a zero and S contains more than one element, otherwise, let S^{0} be the semigroup with a zero 0 adjoined. Observe that by the notation defined above, we have that for any group $G, 0$ is a zero adjoined in G^{0}.

A system $(S,+, \cdot)$ is called a semiring if $(S,+)$ and (S, \cdot) are semigroups and \cdot is distributive over + , that is, $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for all $x, y, z \in S$. A semiring $(S,+, \cdot)$ is said to be additively [multiplicatively] commutative if $(S,+)[(S, \cdot)]$ is commutative. We say that $(S,+, \cdot)$ is commutative if both $(S,+)$ and (S, \cdot) are commutative. An element 0 of a semiring $S=$ $(S,+, \cdot)$ is called a zero if $x+0=0+x=x$ and $x \cdot 0=0 \cdot x=0$ for all $x \in S$. A semiring $(S,+, \cdot)$ is said to be skew-ring if $(S,+)$ is a group. An element e of a skew-ring $(S,+, \cdot)$ is called a left $[$ right $]$ identity of $(S,+, \cdot)$ if $e x=x[x e=x]$ for all $x \in S$ and e is called an identity of S if it is both a left identity and a right identity of S.

The following proposition shows basic properties of skew-rings.
Proposition 1.1 $[[2])$. Let $(S,+, \cdot)$ be a skew-ring. Then the following statements hold.
(i) $0 x=x 0=0$ for all $x \in S$ where 0 is the identity of the group $(S,+)$.
(ii) $-(-x)=x$ for all $x \in S$ where $-x$ is the inverse of x in $(S,+)$.
(iii) $x(-y)=(-x) y=-(x y)$ and $(-x)(-y)=x y$ for all $x, y \in S$.
(iv) For all $x, y, u, v \in S, x y+u v=u v+x y$.
(v) If $S=S^{2}$ where $S^{2}=\{x y \mid x, y \in S\}$, then S is a ring.
(vi) If S has a left identity or a right identity, then S is a ring, hence if
S has an identity, then S is a ring.

We shall give some examples of skew-rings which are not rings.

Example 1. Let $(S,+)$ be a group. Define a binary operation \cdot on S by $x \cdot y=0$ for all $x, y \in S$ where 0 is the identity of the group $(S,+)$. Then $(S,+, \cdot)$ is clearly a skew-ring and in this case, $(S,+, \cdot)$ is called a zero skew-ring. If $(S,+)$ is nonabelian, then $(S,+, \cdot)$ is not a ring.

Example 2 $([2]$, page 6$)$. Let $(R, \overline{+, \cdot})$ be a skew-ring and $M_{n}(R)$ the set of all $n \times n$ matrices with entries from R. Then $\left(M_{n}(R),+, \cdot\right)$ is a skew-ring where + and \cdot are the usual addition and multiplication of matrices, respectively. If $(R,+, \cdot)$ is not a ring, then $\left(M_{n}(R),+, \cdot\right)$ is not a ring.

The next three examples of skew-rings which are not rings follow from the following proposition. Its proof is straightforward and we omit it.

Proposition 1.2. Let $(S,+)$ be a group. Let A be a subset of S such that (i) $0 \oplus A$ where 0 is the identity of $(S,+)$)

$$
\begin{aligned}
& \text { (ii) there is anclement } b \in A^{c} \text { such that } b+b \neq 0 \text { where } A^{c} \boxminus S \backslash A \text {, } \\
& \text { (iii) } A+A^{c} \subseteq A^{c} \text { and } A^{c}+A \subseteq A^{c} \text { and } \\
& \text { (iv) } A+A \subseteq A \text { and } A^{c}+A^{c} \subseteq A \text {. }
\end{aligned}
$$

Define an operation • on S by

$$
x \cdot y=\left\{\begin{array}{lll}
0 & \text { if } & x \in A \text { or } y \in A \\
b & \text { if } & x, y \in A^{c}
\end{array}\right.
$$

Then $(S,+, \cdot)$ is a skew-ring and it is not a ring if $(S,+)$ is nonabelian.

Example 3. Let $G_{n}(\mathbb{R})$ be the set of all $n \times n$ invertible matrices over \mathbb{R}, $A=\left\{X \in G_{n}(\mathbb{R}) \mid \operatorname{det} X>0\right\}$ and Z a matrix in $G_{n}(\mathbb{R})$ defined by

Define an operation \odot on $G_{n}(\mathbb{R})$ by

$$
X \odot Y=\left\{\begin{array}{l}
I_{n} \text { if } X \in A \text { or } Y \in A, \\
Z \text { if } X, Y \notin A .
\end{array}\right.
$$

Then $\left(G_{n}(\mathbb{R}), \oplus, \odot\right)$ is a skew-ring and it is not a ring if $n>1$ where \oplus is the usual multiplication of matrices and I_{n} is the identity $n \times n$ matrix over \mathbb{R}.

Example 4. Let $V_{n}(\mathbb{R})$ be the set of all $n \times n$ matrices X over \mathbb{R} with $\operatorname{det} X=$ ± 1. Then $V_{n}(\mathbb{R})$ is a group under the usual multiplication of matrices. Let $A=\left\{X \mid X \in V_{n}(\mathbb{R})\right.$ and $\left.\operatorname{det} X=1\right\}$ and let Z be defined as in Example 3. Define an operation \odot on $V_{n}(\mathbb{R})$ byod9 9 ?

$$
X \odot Y= \begin{cases}I_{n} & \text { if } X \in A \text { or } Y \in A \\ Z & \text { if } X, Y \notin A\end{cases}
$$

Then $\left(V_{n}(\mathbb{R}), \oplus, \odot\right)$ is a skew-ring where \oplus is the usual multiplication of matrices. It is not a ring if $n>1$.

Example 5. Let S_{n} be the symmetric group of degree n where $n>1$, let $A=\left\{\alpha \in S_{n} \mid \alpha\right.$ is even $\}$ and $\gamma=(12)$. Define an operation \odot on S_{n} by

$$
\alpha \odot \beta= \begin{cases}I & \text { if } \alpha \in A \text { or } \beta \in A \\ \gamma & \text { if } \alpha, \beta \notin A\end{cases}
$$

where I is the identity of S_{n}. If \oplus is the composition of functions, then $\left(S_{n}, \oplus, \odot\right)$ is a skew-ring. It is not a ring if $n>2$.

A semigroup S is said to admit a ring [skew-ring] structure if there exists a binary operation + on S^{0} such that $\left(S^{0},+, \cdot\right)$ is a ring [skew-ring] where \cdot is the operation on S^{0}. Let $\boldsymbol{S R}[\boldsymbol{S} \boldsymbol{S R}]$ denote the class of all semigroups admitting ring [skew-ring] structure. Then $\boldsymbol{S R} \subseteq \boldsymbol{S S R}$. As was mentioned previously, semigroups belonging to the class $\boldsymbol{S} \boldsymbol{R}$ have long been studied. We note here that by Proposition 1.1(vi) a semigroup with a left identity or right identity belonging to $\boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$ must be in $\boldsymbol{S} \boldsymbol{R}$.

An additively commutative semiring $S=(S,+$,$) with zero 0$ is called a skew-semifield if $(S \backslash\{0\}, \cdot)$ is a group. A semifield is a multiplicatively commutative skew-semifield. In fact, a semifield from this definition is referred as a "semifield of zero type" in [14]. By our definition, we see that every skew-field (division ring) and every semifield is a skew-semifield. Skew-semifields are generalizations of both skew-fields and semifields. These are shown by the following

Example 6([11]). Let n be a positive integer greater than 1 and S the set consisting of the zero $n \times n$ matrix and all $n \times n$ matrices over \mathbb{R} of the form

$$
\left[\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & x \\
0 & a_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & a_{n}
\end{array}\right] \text { where } a_{i}>0 \text { for all } i=1,2, \ldots, n
$$

Then under the usual addition and multiplication of matrices, S is a skewsemifield but neither a semifield nor a skew-field. Note that the multiplicative inverse of the above matrix is

For any group G, the center of G will be denoted by $C(G)$.
A group G is said to admit a skew-semifield structure if there exists a binary operation + on G^{0} such that $\left(G^{0},+, \cdot\right)$ is a skew-semifield where \cdot is the operation on G^{0}. Let GSSF denote the class of all groups which admit a skew-semifield structure.

The following two known results are required for our work.

Proposition 1.3([11]). If G is a group such that $a^{2}=1$ and $b^{2}=1$ for some distinct $a, b \in G \backslash\{1\}$, then $G \notin \boldsymbol{G S S F}$.
Proposition 1.4 ([11]). If G cis a group such that $a^{2} \wedge 1$ and $a b \neq b a$ for some $a, b \in G\{\{1\}$, then $G \notin \boldsymbol{G S S F}$.

Next, let R be a commutative ring with identity $1 \neq 0$ and $M_{n}(R)$ denote the multiplicative semigroup of all $n \times n$ matrices over R. Then $M_{n}(R)$ is a semigroup having 0 and I_{n} as its zero and identity, respectively where 0 and I_{n} denote respectively the zero $n \times n$ matrix and the identity $n \times n$ matrix over R. For $A \in M_{n}(R)$, the entry of A in the $i^{\text {th }}$ row and $j^{\text {th }}$ column will be denoted by
$A_{i j}$. It is known that for $A \in M_{n}(R), A$ is invertible over R if and only if $\operatorname{det} A$ is an invertible element in R ([1], page 204). Let

$$
G_{n}(R)=\left\{A \in M_{n}(R) \mid A \text { is invertible }\right\} .
$$

Then we have that

$$
G_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A \text { is an invertible element in } R\right\}
$$

and $G_{n}(R)$ is the greatest subgroup of $M_{n}(R)$ having I_{n} as its identity. For $A \in M_{n}(R), A$ is called an orthogonal matrix if $A A^{t}=I_{n}$. A matrix $A \in M_{n}(R)$ is said to be a permutation matrix if every entry of A is either 0 or 1 and each row and each column contains exactly one 1 . Let

$$
\begin{aligned}
O_{n}(R) & =\left\{A \in M_{n}(R) \mid A \text { is orthogonal }\right\} \\
P_{n}(R) & =\left\{A \in M_{n}(R) \mid A \text { is a permutation matrix }\right\}
\end{aligned}
$$

Since for every $A \in P_{n}(R), A A^{t}=I_{n}$, we have that $P_{n}(R) \subseteq O_{n}(R)$. Clearly, both $O_{n}(R)$ and $P_{n}(R)$ are subgroups of $G_{n}(R)$. Next, let

Then $W_{n}(R) \subseteq V_{n}(R)$. Since $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$ for all $A, B \in M_{n}(R)([8]$, page 351), it follows that both $V_{n}(R)$ and $W_{n}(R)$ are subgroups of $G_{n}(R)$. Next, let

$$
U_{n}(R)=\left\{A \in G_{n}(R) \mid A \text { is upper triangular }\right\}
$$

$$
L_{n}(R)=\left\{A \in G_{n}(R) \mid A \text { is lower triangular }\right\}
$$

Then $U_{n}(R)$ and $L_{n}(R)$ contain every diagonal matrix in $G_{n}(R)$. To show that $U_{n}(R)$ is a subgroup of $G_{n}(R)$, it is clear that for $A, B \in U_{n}(R), A B \in U_{n}(R)$. Next, let $A \in U_{n}(R)$ be fixed. Then $A=D+C$ where

Since A is invertible, $\operatorname{det} A=A_{11} A_{22} \ldots A_{n n}$ which is invertible in (R, \cdot). Thus

and there is a unique element x in $R \backslash\{0\}$ such that $(\operatorname{det} A) x=1$. For $i=$ $1,2, \ldots, n$, set

$$
\hat{A}_{i i}=A_{11} \ldots A_{i-1, i-1} A_{i+1, i+1} \ldots A_{n n}
$$

Let

$$
P=\left[\begin{array}{cccc}
x \hat{A}_{11} & 0 & \ldots & 0 \\
0 & x \hat{A}_{22} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & x \hat{A}_{n n}
\end{array}\right] .
$$

Then $D P=P D=I_{n}$, so $D^{-1}=P \in U_{n}(R)$. Since $A \in G_{n}(R)$, there is $B \in G_{n}(R)$ such that $A B=B A=I_{n}$. We now have $I_{n}=A B=(D+C) B=$ $D B+C B$, so $D^{-1}=D^{-1} I_{n}=D^{-1}(D B+C B)=B+D^{-1} C B$ which implies that $B=D^{-1}-D^{-1} C B$. For $i, j \in\{1,2, \ldots, n\}$ with $i \geq j, C_{i j}=0$, so

$$
\left(D^{-1} C\right)_{i j}=\sum_{k=1}^{n}\left(D^{-1}\right)_{i k} C_{k j}=\left(D^{-1}\right)_{i_{1} C_{1 j}}+\ldots+\left(D^{-1}\right)_{i i} C_{i j}+\ldots+\left(D^{-1}\right)_{i n} C_{n j}=0
$$

since $\left(D^{-1}\right)_{i k}=0$ for all $k \neq i$. Thus $D^{-1} C$ is of the form

that is, $\left(D^{-1} C\right)_{i j}=0$ for all i, j with $i \geq j$. Consequently, for $j \in\{1,2, \ldots, n\}$,

$$
999 \cap\left(D^{-1} C B\right)_{n j}^{6}=\sum_{k=1}^{n}\left(D^{-1} C\right)_{n k} B_{k j}=0
$$

Hence $D^{-1} C B$ is of the form

$$
D^{-1} C B=\left[\begin{array}{ccc}
\star & \ldots & \star \\
\vdots & \ldots & \vdots \\
\star & \ldots & \star \\
0 & \ldots & 0
\end{array}\right]
$$

and so $D^{-1}-D^{-1} C B$ is of the form

$$
D^{-1}-D^{-1} C B=\left[\begin{array}{cccc}
\star & \ldots & \star & \star \\
\vdots & \ldots & \vdots & \vdots \\
\star & \ldots & \star & \star \\
0 & \ldots & 0 & \star
\end{array}\right]=B
$$

Now we see that $B_{n j}=0$ for all $j \in\{1,2, \ldots, n-1\}$. But since $\left(D^{-1} C\right)_{n-1, k}=0$ for all $k \leq n-1$, we have that for $j \in\{1,2, \ldots, n-1\}$,

$$
\begin{aligned}
\left(D^{-1} C B\right)_{n-1, j} & =\sum_{k=1}^{n}\left(D^{-1} C\right)_{n-1, k} B_{k j} \\
& =\sum_{k=1}^{n-1}\left(D^{-1} C\right)_{n-1, k} B_{k j}+\left(D^{-1} C\right)_{n-1, n} B_{n j} \\
& =0+0=0 .
\end{aligned}
$$

Hence $D^{-1} C B$ is of the form

and so $D^{-1}-D^{-1} C B$ is of the form

$$
D^{-1}-D^{-1} C B=\left[\begin{array}{ccccc}
\star & \ldots & \star & \star & \star \\
\vdots & \ldots & \vdots & \vdots & \vdots \\
\star & \ldots & \star & \star & \star \\
0 & \ldots & 0 & \star & \star \\
0 & \ldots & 0 & 0 & \star
\end{array}\right]=B .
$$

By continuing this process, we have that B is of the form

Therefore $B \in U_{n}(R)$. This proves that $U_{n}(R)$ is a subgroup of $G_{n}(R)$.
Similarly, we can show that $L_{n}(R)$ is a subgroup of $G_{n}(R)$.
Next, let V be a vector space over a division ring R and $L(V)$ denote the semigroup under composition of all linear transformations $\alpha: V \rightarrow V$. Then the zero map 0 and the identity map 1_{V} on V are respectively the zero and the identity of $L(V)$. Let

Then $G(V)$ is the greatest subgroup of $L(V)$ having 1_{V} as its identity. Since $\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$ for all $\alpha, \beta \in \square(V)$, we have that $\operatorname{IF}(V)$ is a subsemigroup of $L(V)$ where

จฬาลงกรณ์มหาวิทยาลัย $I F(V)=\{\alpha \in L(V) \mid \operatorname{dim}(\operatorname{Im} \alpha)$ is finite $\}$.

The following two subsemigroups of $L(V)$ contain $G(V)$:

$$
\begin{aligned}
M(V) & =\{\alpha \in L(V) \mid \alpha \text { is one-to-one }\} \\
E(V) & =\{\alpha \in L(V) \mid \text { Im } \alpha=V\}
\end{aligned}
$$

Note that $M(V) \cap E(V)=G(V)$ and $\operatorname{dim} V$ is finite if and only if $M(V)[E(V)]=$ $G(V)$. Let

$$
\begin{aligned}
& A M(V)=\{\alpha \in L(V) \mid \operatorname{dim}(\operatorname{Ker} \alpha) \text { is finite }\} \\
& A E(V))=\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is finite }\}
\end{aligned}
$$

Then $M(V) \subseteq A M(V)$ and $E(V) \subseteq A E(V)$. These two sets may be respectively considered as the set of all "almost one-to-one" linear transformations of V and the set of all "almost onto" linear transformations of V. To show that $A M(V)$ and $A E(V)$ are subsemigroups of $L(V)$, let $\alpha, \beta \in L(V)$. It is clear that $\operatorname{Ker}\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right)=\operatorname{Ker} \alpha$. Since $(\operatorname{Im} \alpha \cap \operatorname{Ker} \beta) \alpha^{-1}=\operatorname{Ker} \alpha \beta$, we have $\operatorname{Im}\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right)$ $=\operatorname{Im} \alpha \cap \operatorname{Ker} \beta$. But
so we have

$$
\operatorname{dim}(\operatorname{Ker} \alpha \beta)=\operatorname{dim}\left(\operatorname{Ker}\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right)\right)+\operatorname{dim}\left(\operatorname{Im}\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right)\right)
$$

$$
\begin{align*}
6 \operatorname{dim}(\operatorname{Ker} \alpha \beta) & =\operatorname{dim}(\operatorname{Ker} \alpha)+\operatorname{dim}(\operatorname{lm} \alpha \cap \operatorname{Ker} \beta) \\
& \leq \operatorname{dim}(\operatorname{Ker} \alpha)+\operatorname{dim}(\operatorname{Ker} \beta) . \tag{1.1}
\end{align*}
$$

Define $\beta^{*}: V / \operatorname{Im} \alpha \rightarrow \operatorname{Im} \beta /(\operatorname{Im} \alpha) \beta$ by

$$
(v+\operatorname{Im} \alpha) \beta^{*}=v \beta+(\operatorname{Im} \alpha) \beta
$$

for all $v \in V$. Then β^{*} is clearly well-defined and a linear transformation of
$V / \operatorname{Im} \alpha$ onto $\operatorname{Im} \beta /(\operatorname{Im} \alpha) \beta$. Hence

$$
\operatorname{dim}(\operatorname{Im} \beta /(\operatorname{Im} \alpha) \beta) \leq \operatorname{dim}(V / \operatorname{Im} \alpha)
$$

Because $\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$, we have

$$
V / \operatorname{Im} \beta \cong(V / \operatorname{Im} \alpha \beta) /(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta),
$$

which implies that

$$
\operatorname{dim}(V / \operatorname{Im} \beta)=\operatorname{dim}((V / \operatorname{Im} \alpha \beta) /(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta))
$$

Also, we know that

$$
\operatorname{dim}(V / \operatorname{Im} \alpha \beta)=\operatorname{dim}(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta)+\operatorname{dim}((V / \operatorname{Im} \alpha \beta) /(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta))
$$

All of these facts yield the following inequality.

$$
\begin{equation*}
\text { 6. } \operatorname{dim}(V / \operatorname{Im} \alpha \beta) \leqq \operatorname{dim}(V / \operatorname{Im} \alpha) \& \operatorname{dim}(V / \operatorname{Im} \beta) . \tag{1.2}
\end{equation*}
$$

By (1.1) and (1.2), we have that $A M(V)$ and $A E(W)$ are subsemigroups of $L(V)$. Observe that dimV is finite if and only if $A M(V)[A E(V)]=L(V)$. Moreover, if $\operatorname{dim} V$ is infinite, then neither $A M(V)$ nor $A E(V)$ contains a zero.

To characterize when any subsemigroup of $L(V)$ containing $G(V)$ belongs to $\boldsymbol{S S R}$, the following two known results are useful.

Proposition 1.5([10]). Let S be a subsemigroup of $L(V)$ containing $G(V)$. If there exists an operation \oplus on S^{0} such that $\left(S^{0}, \oplus, \cdot\right)$ is a ring where \cdot is the
operation on S^{0}, then

$$
\ominus \alpha=\alpha \text { for all } \alpha \in S^{0} \text { or } \ominus \alpha=-\alpha \text { for all } \alpha \in S^{0}
$$

where $\ominus \alpha$ is the additive inverse of α in $\left(S^{0}, \oplus, \cdot\right)$ and $-\alpha$ is the inverse of α under usual addition in $L(V)$.

Proposition 1.6([10]). $G(V) \in \boldsymbol{S R}$ if and only if $\operatorname{dim} V \leq 1$.

Now, let
 $O E(V))=\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha)$ is infinite $\}$.

Assume that $\operatorname{dim} V$ is infinite. Then $0 \in O M(V)$ and $0 \in O E(V)$. Since for $\alpha, \beta \in L(V), \operatorname{Ker} \alpha \beta \supseteq \operatorname{Ker} \alpha$, it follows that $\alpha \beta \in O M(V)$ for all $\alpha, \beta \in O M(V)$. Thus $O M(V)$ is a subsemigroup of $L(V)$. It may be considered as the "opposite semigroup" of $M(V)$. Since for $\alpha, \beta \in L(V), \operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$, we have that

This implies that $\alpha \beta \in O E(V)$ for all $\alpha, \beta \in O E(V)$, so $O E(V)$ is a subsemigroup of $L(V)$. We can consider this semigroup as "the opposite semigroup" of $E(V)$.

Following the definition of the Baer-Levi semigroup on a countably infinite set ([5], page 14), we define

$$
\begin{aligned}
B L(V)= & \{\alpha \in L(V) \mid \alpha \text { is one-to-one and } \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is infinite }\} \\
& \text { where } \operatorname{dim} V \text { is infinite. }
\end{aligned}
$$

Then $B L(V)=M(V) \cap O E(V)$. Let B be a basis of V and let $B_{1} \subseteq B$ be such that $\left|B_{1}\right|=\left|B \backslash B_{1}\right|=|B|$. Let $\varphi: B \rightarrow B_{1}$ be a bijection. Define $\eta \in L(V)$ by $v \eta=v \varphi$ for all $v \in B$. Then η is one-to-one and

$$
\begin{aligned}
\operatorname{dim}(V / \operatorname{Im} \eta) & =\operatorname{dim}\left(V /<B_{1}>\right) \\
& =\operatorname{dim}\left(<\left\{v+<B_{1}>\mid v \in B \backslash B_{1}\right\}>\right) \\
& =\left|B \backslash B_{1}\right|
\end{aligned}
$$

so $\eta \in B L(V)$. Hence $B L(V)$ is a subsemigroup of $L(V)$. The following subset of $L(V)$ should be also considered:

$$
v \mu=\left\{\begin{array}{cll}
v \varphi^{-1} & \text { if } & v \in B_{1} \\
0 & \text { if } & v \in B \backslash B_{1} .
\end{array}\right.
$$

Then $\operatorname{Ker} \mu=<B \backslash B_{1}>$ and $\operatorname{Im} \mu==V$, so $\mu \in O B L(V)$. Hence $O B L(V)$ is a subsemigroup of $L(V)$ which can be considered as "the opposite semigroup" of $B L(V)$. Observe that neither $B L(V)$ nor $O B L(V)$ contains a zero.

For $\alpha \in L(V)$, define

$$
F(\alpha)=\{v \in V \mid v \alpha=v\} .
$$

Then for every $\alpha \in L(V), F(\alpha)$ is a subspace of V and α is said to be almost identical if $\operatorname{dim}(V / F(\alpha))$ is finite. Next, let
$A I(V)=\{\alpha \in L(V) \mid \alpha$ is almost identical $\}$, $G A I(V)=\{\alpha \in G(V) \mid \alpha$ is almost identical $\}$.

Then $1_{V} \in G A I(V) \subseteq A I(V)$. To show that $A I(V)$ is a subsemigroup of $L(V)$ and $G A I(V)$ is a subgroup of $G(V)$, let $\alpha, \beta \in A I(V)$. Then $\operatorname{dim}(V / F(\alpha))$ is finite and $\operatorname{dim}(V / F(\beta))$ is finite. Note that $F(\alpha) \cap F(\beta) \subseteq F(\alpha \beta)$. Let B_{0} be a basis of $F(\alpha) \cap F(\beta)$. Then there are bases B_{1} of $F(\alpha)$ and B_{2} of $F(\beta)$ such that $B_{0} \subseteq B_{1}$ and $B_{0} \subseteq B_{2}$. Thus $B_{0} \subseteq B_{1} \cap B_{2}$. It follows that $F(\alpha) \cap F(\beta)=<B_{0}>\subseteq<B_{1} \cap B_{2}>$. Since $B_{1} \cap B_{2} \subseteq F(\alpha) \cap F(\beta)$, $<B_{1} \cap B_{2}>\subseteq F(\alpha) \cap F(\beta)$. Hence $B_{1} \cap B_{2}$ is a basis of $F(\alpha) \cap F(\beta)$. We also have $B_{1} \cup B_{2}$ is linearly independent. Let B be a basis of V containing $B_{1} \cup B_{2}$.

and so

$$
\left|B \backslash\left(B_{1} \cap B_{2}\right)\right| \leq\left|B \backslash B_{1}\right|+\left|B \backslash B_{2}\right|
$$

But

$$
\begin{aligned}
\operatorname{dim}(V / F(\alpha) \cap F(\beta)) & =\operatorname{dim}\left(V /<B_{1} \cap B_{2}>\right)=\left|B \backslash\left(B_{1} \cap B_{2}\right)\right| \\
\operatorname{dim}(V / F(\alpha)) & =\operatorname{dim}\left(V /<B_{1}>\right)=\left|B \backslash B_{1}\right| \\
\operatorname{dim}(V / F(\beta)) & =\operatorname{dim}\left(V /<B_{2}>\right)=\left|B \backslash B_{2}\right|
\end{aligned}
$$

and both $\operatorname{dim}(V / F(\alpha))$ and $\operatorname{dim}(V / F(\beta))$ are finite, so $\operatorname{dim}(V / F(\alpha) \cap F(\beta))$ is finite. Since $F(\alpha) \cap F(\beta) \subseteq F(\alpha \beta)$, we have $\operatorname{dim}(V / F(\alpha \beta)) \leq \operatorname{dim}(V /(F(\alpha) \cap$ $F(\beta))$). Thus $\operatorname{dim}(V / F(\alpha \beta))$ is finite, so $\alpha \beta \in A I(V)$. Hence $A I(V)$ is a subsemigroup of $L(V)$. If $\alpha \in G A I(V)$, then $F(\alpha)=F\left(\alpha^{-1}\right)$, so $G A I(V)$ is clearly a subgroup of $G(V)$. Note that if $\operatorname{dim} V$ is finite, then $A I(V)=L(V)$ and $G A I(V)=G(V)$. If $\operatorname{dim} V$ is infinite, $A I(V)$ does not contains a zero.

A subgroup of $G(V)$ defining by a fixed basis of V is given as follows: Let B be a basis of V. For finite distinct elements $u_{1}, u_{2}, \ldots, u_{k} \in B$, let $\left(u_{1}, u_{2}, \ldots, u_{k}\right)_{B} \in G(V)$ be defined by

$$
v\left(u_{1}, u_{2}, \ldots, u_{k}\right)_{B}=\left\{\begin{array}{cl}
u_{i+1} & \text { if } v=u_{i} \text { for } i=1,2, \ldots, k-1, \\
u_{1} & \text { if } v=u_{k}, \\
v & \text { if } \quad v \in B \backslash\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},
\end{array}\right.
$$

and let $G_{B}(V)$ be the subgroup of $G(V)$ generated by the set

$$
\left.\left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right)_{B}\right) u_{1}, u_{2} \sigma^{\circ} \cdot u_{k} \text { are distinct elements of } B \text { and } k \in \mathbb{N}\right\}
$$

where \mathbb{N} is the set of positive integers.

CHAPTER II

SEMIGROUPS ADMITTING SKEW-RING STRUCTURE

In this chapter, we divide into two sections. In the first section, we consider some matrix semigroups over a commutative ring with identity $1 \neq 0$ under usual multiplication and investigate them when they belong to the class $\boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$. Likewise, in the second section some semigroups under composition of linear transformations of a vector space over a division ring are considered and investigated in the same way.

2.1. Matrix Semigroups

Throughout this section, let n be a positive integer, $R=(R,+, \cdot)$ a commutative ring with identity $1 \neq 0$. Recall that $M_{n}(R)$ is the full $n \times n$ matrix semigroup under usual multiplication and $G_{n}(R)$ the unit group of $M_{n}(R)$, that is,

For $k, l \in\{1,2, \ldots, n\}$, let $E^{k l} \in M_{n}(R)$ be defined by

$$
E_{i j}^{k l}= \begin{cases}1 & \text { if } i=k \text { and } j=l, \\ 0 & \text { otherwise }\end{cases}
$$

Then $\operatorname{det} E^{k l}=0$ for all $k, l \in\{1,2, \ldots, n\}$ if $n>1$. As was mentioned in Chapter 1 , page 7 ,

$$
G_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A \text { is invertible in } R\right\}
$$

In particular, if R is a field, then

$$
G_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A \neq 0\right\} .
$$

Then $G_{n}(R) \cap\left\{A \in M_{n}(R) \mid \operatorname{det} A=0\right\}=\emptyset$. In fact, $\left\{A \in M_{n}(R) \mid \operatorname{det} A=0\right\}$ is clearly an ideal of the semigroup $M_{n}(R)$. Since $\left(M_{n}(R),+, \cdot\right)$ is a ring where + and \cdot are the usual addition and multiplication of matrices, respectively, we have that $M_{n}(R) \in \boldsymbol{S} \boldsymbol{R}$. However, the first theorem shows that if $n>1$, then $M_{n}(R)$ itself is the only subsemigroup of $M_{n}(R)$ containing $\left\{A \in M_{n}(R) \mid \operatorname{det} A=0\right\}$ which belongs to $\boldsymbol{S} \boldsymbol{S R}$.

Theorem 2.1.1. Let $n>1$ and S a subsemigroup of $M_{n}(R)$ containing every matrix $A \in M_{n}(R)$ with $\operatorname{det} A=0$. If $S \in S S R$, then $S=M_{n}(R)$.

Proof. First, we note that S contains the zero matrix 0 of $M_{n}(R),|S|>1$ and $E^{k l} \in S$ for all $k, l \in\{1,2, \ldots, n\}$. Assume that there exists an operation \oplus on S such that (S, \oplus, \cdot) is a skew-ring where is the multiplication on S. To show that $S=M_{n}(R)$, let $A \in M_{n}(R)$. Define $B, C \in M_{n}(R)$ by

$$
B=\left[\begin{array}{ccccc}
6 \\
A_{11} & \ldots & A_{1, n-1} & 0 \\
A_{21} & \ldots & A_{2, n-1} & 0 \\
\vdots & \ldots & \vdots & \vdots \\
A_{n 1} & \ldots & A_{n, n-1} & 0
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{cccc}
0 & \ldots & 0 & A_{1 n} \\
0 & \ldots & 0 & A_{2 n} \\
\vdots & \ldots & \vdots & \vdots \\
0 & \ldots & 0 & A_{n n}
\end{array}\right]
$$

Then $\operatorname{det} B=0=\operatorname{det} C$, so $B, C \in S$. It follows that $B \oplus C \in S$. But $C E^{n n}=C$ and $B E^{n n}=0=C E^{k 1}$ for all $k \in\{1,2, \ldots, n-1\}$, so

$$
(B \oplus C) E^{n n}=C \text { and }(B \oplus C) E^{k 1}=B E^{k 1} \text { for all } k \in\{1,2, \ldots, n-1\}
$$

Hence for $i \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
(B \oplus C)_{i n} & =\sum_{k=1}^{n}(B \oplus C)_{i k} E_{k n}^{n n} \text { since } E_{k n}^{n n}=0 \text { if } k \neq n \text { and } E_{n n}^{n n}=1 \\
& =\left((B \oplus C) E^{n n}\right)_{i n} \\
& =C_{i n}=A_{i n}
\end{aligned}
$$

and for $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2, \ldots, n-1\}$,

$$
\begin{aligned}
(B \oplus C)_{i j} & =\sum_{k=1}^{n}(B \oplus C)_{i k} E_{k 1}^{j 1} / \text { since } E_{k 1}^{j 1}=0 \text { if } k \neq j \text { and } E_{j 1}^{j 1}=1 \\
& =\left((B \oplus C) E^{j 1}\right)_{i 1} \\
& =\sum_{k=1}^{n} B_{i k} E_{k 1}^{j 1} \\
& =B_{i j}=A_{i j} .
\end{aligned}
$$

Consequently, $A=B \oplus C \in S$.
Hence the theorem is proved.

If I is the ideal $\left\{A \in M_{n}(R) \mid \operatorname{det} A=0\right\}$, then $n=1$ implies that $I^{0} \cong\left(\mathbb{Z}_{2}, \cdot\right)$. The following corollary is obtained directly from Theorem 2.1.1 and the above fact.

Corollary 2.1.2. The ideal $\left\{A \in M_{n}(R) \mid \operatorname{det} A=0\right\}$ of $M_{n}(R)$ belongs to the class $\boldsymbol{S} \boldsymbol{S R}$ if and only if $n=1$.

Recall the subgroups $V_{n}(R)$ and $W_{n}(R)$ of $G_{n}(R)$ that

$$
\begin{aligned}
V_{n}(R) & =\left\{A \in G_{n}(R) \mid \operatorname{det} A= \pm 1\right\}, \\
W_{n}(R) & =\left\{A \in G_{n}(R) \mid \operatorname{det} A=1\right\} .
\end{aligned}
$$

The next theorem shows that every subsemigroup of $G_{n}(R)$ containing $V_{n}(R)$ does not belong to $\boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$ if $n>1$. The following lemma is required.

Lemma 2.1.3. If $A \in M_{n}(R)$ is such that $A B=B A$ for every $B \in W_{n}(R)$, then $A=a I_{n}$ for some $a \in R$ where I_{n} is the identity $n \times n$ matrix over R.

Proof. It is trivial if $n=1$. Assume that $n_{0}>$ Let $s, t \in\{1,2, \ldots, n\}$ be such that $s<t$. Define $B, C \in M_{n}(R)$ by $\square \square d \| d$

and

$$
C_{i j}= \begin{cases}1 & \text { if } i=j \\ 1 & \text { if } i=t \text { and } j=s \\ 0 & \text { otherwise }\end{cases}
$$

Then $\operatorname{det} B=1=\operatorname{det} C$. By assumption, $A B=B A$ and $A C=C A$. Thus
and

$$
\begin{aligned}
& (A B)_{s s}=\sum_{k=1}^{n} A_{s k} B_{k s}=A_{s s} \\
& (B A)_{s s}=\sum_{k=1}^{n} B_{s k} A_{k s}=A_{s s}+A_{t s}
\end{aligned}
$$

$$
(A C)_{t t} \equiv \sum_{k=1}^{n} A_{t k} C_{k t}=A_{t t}
$$

$(C A)_{t t}=\sum_{k=1}^{n} C_{t k} A_{k t}=A_{s t}+A_{t t}$.

Consequently, $A_{t s}=A_{s t}=0$. This proves that

For $k \in\{1,2, \ldots, n\}$, define $D^{(k)} \in M_{n}(R)$ by

Then $\operatorname{det} D^{(k)}=1$ for all $k \in\{1,2, \ldots, n\}$, so $A D^{(k)}=D^{(k)} A$ for every $k \in$ $\{1,2, \ldots, n\}$. From (2.1.3.1) and the definition of D, we have that for $i \in$ $\{1,2, \ldots, n\}$,

$$
\left(A D^{(i)}\right)_{1 i}=\sum_{k=1}^{n} A_{1 k} D_{k i}^{(i)}=A_{11}
$$

and

It then follows that

$$
\left(D^{(i)} A\right)_{1 i}=\sum_{k=1}^{n} D_{1 k}^{(i)} A_{k i}=A_{i i}
$$

$$
\begin{equation*}
A_{11}=A_{i i} \text { for every } i \in\{1,2, \ldots, n\} \tag{2.1.3.2}
\end{equation*}
$$

From (2.1.3.1) and (2.1.3.2), $A=a I$ where $a=A_{11}$.

Theorem 2.1.4. If $n>1$ and S is a subsemigroup of $G_{n}(R)$ containing $V_{n}(R)$, then S does not belong to the class $\boldsymbol{S S R}$.

Proof. Suppose that there exists an operation \oplus on S^{0} such that $\left(S^{0}, \oplus, \cdot\right)$ is a skew-ring where - is the operation on S^{0}. Since $I_{n} \in V_{n}(R) \subseteq S$, by Proposition 1.1(vi), $\left(S^{0}, \oplus, \cdot\right)$ is a ring. Let $A \in S$ be such that $I_{n} \oplus A=0$. Then for every $B \in S$,

$$
B \oplus A B=\left(I_{n} \oplus A\right) B=0=B\left(I_{n} \oplus A\right)=B \oplus B A
$$

aqMa
This implies that $A B=B A$ for every $B \in S$. By Lemma 2.1.3, $A=a I_{n}$ for some $a \in R$. Therefore $I_{n} \oplus a I_{n}=0$. Next, let $C \in M_{n}(R)$ be defined by

$$
C=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Then $C \neq I_{n}, C \neq a I_{n}, C^{2}=I_{n}$ and $\operatorname{det} C=-1$. Thus $C \in V_{n}(R) \subseteq S$. Since $I_{n} \oplus a I_{n}=0$ and $C \neq a I_{n}$, we have $I_{n} \oplus C \neq 0$. Because S is a subsemigroup of the group $G_{n}(R), S$ is cancellative. But

$$
C\left(I_{n} \oplus C\right)=C \oplus C^{2}=C \oplus I_{n}=I_{n} \oplus C
$$

and $I_{n} \oplus C \neq 0$, so we have $C=I_{n}$, a contradiction.
Hence the theorem is proved.

Corollary 2.1.5. $G_{n}(R) \in \boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$ if and only if $n=1$ and $U_{R} \in \boldsymbol{S} \boldsymbol{S R}$ where U_{R} denotes the multiplicative group of all invertible elements of R.

Proof. If $n>1$, then by Theorem 2.1.4, $G_{n}(R) \notin \boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$. Next, assume that $n=1$ and $U_{R} \notin \boldsymbol{S S R}$. But since $G_{1}(R) \cong U_{R}$, we have $G_{1}(R) \notin \boldsymbol{S S R}$.

$$
\text { Conversely, if } n=1 \text { and } U_{R} \in \boldsymbol{S} \boldsymbol{S} \boldsymbol{R} \text {, then } U_{R} \cong G_{1}(R) \in \boldsymbol{S S R} \text {. }
$$

Corollary 2.1.6. $V_{n}(R) \in \boldsymbol{S S R}$ if and only if $n=1$.
Proof. If $n>1$, then $V_{n}(R) \notin \boldsymbol{S S} \boldsymbol{R}$ by Theorem 2.1.4. \sim

$$
\begin{aligned}
& \text { Since } \\
& \text { 9 } V_{1}^{0}(R) \cong(\{0,1,-1\}, \cdot) \cong \begin{cases}\left(\mathbb{Z}_{3}, \cdot\right) & \text { if } \operatorname{char} R \neq 20 \\
\left(\mathbb{Z}_{2}, \cdot\right) & \text { if } \operatorname{char} R=2,\end{cases}
\end{aligned}
$$

the converse holds.

The last theorem of this section shows that if $n>2$, there is no subsemigroup of $G_{n}(R)$ in $\boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$ which contains $W_{n}(R)$.

Theorem 2.1.7. If $n>2$ and S is a subsemigroup of $G_{n}(R)$ containing $W_{n}(R)$, then S does not belong to the class $\boldsymbol{S S R}$.

Proof. Suppose that there exists an operation \oplus on S^{0} such that $\left(S^{0}, \oplus, \cdot\right)$ is a skew-ring where \cdot is the operation on S^{0}. Since $I_{n} \in W_{n}(R) \subseteq S,\left(S^{0}, \oplus, \cdot\right)$ is a ring. Let $A \in S$ be such that $I_{n} \oplus A=0$. Then

$$
B \oplus A B=\left(I_{n} \oplus A\right) B=0=B\left(I_{n} \oplus A\right)=B \oplus B A
$$

for every $B \in S$, so $A B=B A$ for all $B \in S$. By Lemma 2.1.3, $A=a I_{n}$ for some $a \in R$.

Case 1: $\operatorname{char} R=2$. Let $C \in M_{n}(R)$ be defined by

Then $\operatorname{det} C=1$, so $C \in S$. Since $\operatorname{char} R=2, C^{2}=I_{n}$. Also, we have $C \neq I_{n}$ and $C \neq a I_{n}=A$. Thus $I_{n} \oplus C \neq 0$. Since S is cancellative and

$$
\overparen{\sigma} C C\left(I_{n} \oplus C\right)=\overparen{C} \oplus C^{2} \triangleq q \oplus \widetilde{I_{n}} I_{n} \oplus \widetilde{C_{0}}
$$

9
Case 2: char $R \neq 2$. Then $1 \neq-1$. Let $D \in M_{n}(R)$ be defined by

$$
D=\left[\begin{array}{rrrrr}
-1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & -1
\end{array}\right]
$$

Then $D^{2}=I_{n}$ and $\operatorname{det} D=1$, so $D \in S$. Since char $R \neq 2, D \neq I_{n}$. Also, $D \neq a I_{n}=A$ because $n>2$ and $\operatorname{char} R \neq 2$. Thus $I_{n} \oplus D \neq 0$. But

$$
D\left(I_{n} \oplus D\right)=D \oplus D^{2}=D \oplus I_{n}=I_{n} \oplus D
$$

so we have $D=I_{n}$, a contradiction.

Corollary 2.1.8. $W_{n}(R) \in \boldsymbol{S S R}$ if and only if $n=1$.

Proof. If $n>2$, then by Theorem 2.1.7, $W_{n}(R) \notin \boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$.
Next, Assume that $n=2$ and suppose that there exists an operation \oplus on $W_{2}^{0}(R)$ such that $\left(W_{2}^{0}(R), \oplus, \cdot\right)$ is a skew-ring where \cdot is the operation on $W_{2}^{0}(R)$. Since $I_{2} \in W_{2}(R),\left(W_{2}^{0}(R), \oplus, \cdot\right)$ is a ring by Proposition 1.1(vi). Then $I_{2} \oplus A=0$ for some $A \in W_{2}(R)$. It therefore follows that for every $B \in W_{2}(R)$,

$$
B \oplus A B=\left(I_{2} \oplus A\right) B=0=B\left(I_{2} \oplus A\right)=B \oplus B A
$$

Hence $A B=B A$ for all $B \in W_{2}(R)$. By Lemma-2.1.3, $A=a I_{2}$ for some $a \in R$. Thus

Case 1: $\operatorname{char} R=2$. Then $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in W_{2}(R)$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{2}=I_{2}$. Since

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] } & \neq a I_{2}, \text { by }(2.1 .8 .1), I_{2} \oplus\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \neq 0 . \text { But } \\
& \left(I_{2} \oplus\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \oplus I_{2}=I_{2} \oplus\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],
\end{aligned}
$$

and $W_{2}(R)$ is cancellative, so $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=I_{2}$, a contradiction.
Case 2: $\operatorname{char} R \neq 2$. Then $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right] \in W_{2}(R)$ and $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right] \neq I_{2}$. We have that

$$
\left(I_{2} \oplus\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] \oplus I_{2}=I_{2} \oplus\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Since $W_{2}(R)$ is cancellative and $\left[\begin{array}{rr}\frac{-1}{} & 0 \\ 0 & -1\end{array}\right] \neq I_{2}$, it follows that

$$
I_{2} \oplus\left[\begin{array}{rr}
-1 & 0 \tag{2.1.8.2}\\
0 & -1
\end{array}\right]=0
$$

Consequently, $I_{2} \oplus I_{2} \neq 0$, so $I_{2} \oplus I_{2} \in W_{2}(R)$. It is clear that $I_{2} \oplus I_{2} \in C\left(W_{2}(R)\right)$. By Lemma 2.1.3, $I_{2} \oplus I_{2}=b I_{2}$ for some $b \in R$. Hence $1=\operatorname{det}\left(b I_{2}\right)=b^{2}$. It follows that

$$
\begin{gathered}
\left(I_{2} \oplus b I_{2}\right)\left(b I_{2}\right)=b I_{2} \oplus I_{2}=I_{2} \oplus b I_{2} . \\
669 ?
\end{gathered}
$$

If $I_{2} \oplus b I_{2} \neq 0$, then $b I_{2}=I_{2}$, so $b=1$. Thus $I_{2} \oplus I_{2}=I_{2}$ which implies by (2.1.8.2) that $I_{2}=0$, a contradiction. Thus $I_{2} \oplus b I_{2}=0$, so $b I_{2}=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$ by (2.1.8.2). It follows that $b=-1$. Hence by (2.1.8.2), $I_{2} \oplus I_{2}=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$, so $I_{2} \oplus I_{2} \oplus I_{2}=0$. We there have

$$
\begin{equation*}
A \oplus A \oplus A=0 \text { for all } A \in W_{2}(R) \tag{2.1.8.3}
\end{equation*}
$$

It can be seen easily from (2.1.8.3) that

$$
\begin{equation*}
\left(I_{2} \oplus A\right)^{3}=I_{2} \oplus A^{3} \text { for all } A \in W_{2}(R) \tag{2.1.8.4}
\end{equation*}
$$

Since $\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right] \in W_{2}(R)$ and

$$
\left[\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right]^{3}=\left[\begin{array}{lr}
0 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

by (2.1.8.4) and (2.1.8.2), we have

$$
\left(I_{2} \oplus\left[\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right]\right)^{3}=I_{2} \oplus\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]=0
$$

This implies that $I_{2} \oplus\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right]=0$ which is contrary to (2.1.8.2).
The converse holds since $W_{1}^{0}(R) \cong(\{0,1\}, \cdot) \cong\left(\mathbb{Z}_{2}, \cdot\right)$.
Hence the theorem is proved.

2.2. Linear Transformation Semigroups

In this section, we investigatecwhen some semigroups of dinear transformations belong to the class $\boldsymbol{S S R}$. Let V be a vector space over a division ring R. The following semigroups of linear transformations on V given in Chapter I are recalled as follows:

$$
\begin{aligned}
& L(V)=\{\alpha: V \rightarrow V \mid \alpha \text { is a linear transformation }\} \\
& G(V)=\{\alpha: V \rightarrow V \mid \alpha \text { is an isomorphism }\}
\end{aligned}
$$

$$
\begin{aligned}
I F(V)= & \{\alpha \in L(V) \mid \operatorname{dim}(\operatorname{Im} \alpha) \text { is finite }\}, \\
M(V)= & \{\alpha \in L(V) \mid \alpha \text { is one-to-one }\}, \\
E(V)= & \{\alpha \in L(V) \mid \operatorname{Im} \alpha=V\}, \\
A M(V)= & \{\alpha \in L(V) \mid \operatorname{dim}(\operatorname{Ker} \alpha) \text { is finite }\}, \\
A E(V)= & \{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is finite }\}, \\
O M(V)= & \{\alpha \in L(V) \mid \operatorname{dim}(\operatorname{Ker} \alpha) \text { is infinite }\}, \\
O E(V)= & \{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is infinite }\}, \\
B L(V)= & \{\alpha \in L(V) \mid \alpha \text { is one-to-one and dim }(V / \operatorname{Im} \alpha) \text { is infinite }\} \\
& \text { where } \operatorname{dim} V \text { is infinite, } \\
O B L(V)= & \{\alpha \in L(V) \mid \operatorname{dim}(\operatorname{Ker} \alpha) \text { is infinite and } \operatorname{Im} \alpha=V\} \\
& \text { where } \operatorname{dim} V \text { is infinite, } \\
A I(V)= & \{\alpha \in L(V) \mid \alpha \text { is almost identical }\} \\
(= & \{\alpha \in L(V) \mid \operatorname{dim}(V / F(\alpha)) \text { is finite }\} \\
& \text { where } F(\alpha)=\{v \in V \mid v \alpha=v\}) .
\end{aligned}
$$

Since $(L(V),+, \cdot)$ is a ring where + and \cdot are respectively the usual addition and composition of linear transformations, we have that $L(V) \in \boldsymbol{S S R}$. If $\operatorname{dim} V$ is finite, then for each $\alpha \in G(V),(L(V) \backslash G(V)) \cup\left\{\alpha, \alpha^{2}, \alpha^{3}, \ldots\right\}$ is clearly a subsemigroup of $L(V)$ containing $L(V) \backslash G(V)$. Then we ean deduce that in general, there are many proper subsemigroups of $L(V)$ containing $L(V) \backslash G(V)$. The following theorem shows that there is no proper subsemigroup S containing $L(V) \backslash G(V)$ such that $S \in \boldsymbol{S} \boldsymbol{S R}$ if $\operatorname{dim} V>1$.

Theorem 2.2.1. Assume that $\operatorname{dimV}>1$ and let S be a subsemigroup of $L(V)$ such that $L(V) \backslash G(V) \subseteq S$. If $S \in \boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$, then $S=L(V)$.

Proof. Let \oplus be an operation on S such that (S, \oplus, \cdot) is a skew-ring where \cdot is the operation on S. To show that $S=L(V)$, let $\alpha \in G(V)$. Let B be a basis of V. Then $|B| \geq 2$. Let $u \in B$ be fixed. Then $\{u \alpha\}$ and $(B \backslash\{u\}) \alpha$ are not
bases of V. Let $\beta, \gamma \in L(V)$ be defined by

$$
v \beta= \begin{cases}v \alpha & \text { if } v \in B \backslash\{u\} \\ 0 & \text { if } v=u\end{cases}
$$

and

Then we have $\beta, \gamma \notin G(V)$, so $\beta, \gamma \in S$ by assumption. Thus $\beta \oplus \gamma \in S$. We claim that $\beta \oplus \gamma=\alpha$. For each $w \in B$, let $\lambda_{w} \in L(V)$ be defined by

$$
v \lambda_{w}= \begin{cases}w & \text { if } v=w, \\ 0 & \text { if } v \in B \backslash\{w\} .\end{cases}
$$

Then $\lambda_{w} \in S$ for all $w \in B$, and so

We clearly have
สถาบันวิทยบริการ

$$
\begin{gather*}
v\left(\lambda_{v} \beta\right)=v \alpha \text { for all } v \in B \backslash\{u\} \text { and } \\
\lambda_{v} \gamma=0 \text { for all } v \in B \backslash\{u\} . \tag{2.2.1.2}
\end{gather*}
$$

From (2.2.1.1) and (2.2.1.2), we have respectively that

$$
u(\beta \oplus \gamma)=u \lambda_{u}(\beta \oplus \gamma)=u\left(\lambda_{u} \beta \oplus \lambda_{u} \gamma\right)=u \lambda_{u} \gamma=u \alpha
$$

and for $v \in B \backslash\{u\}$,

$$
v(\beta \oplus \gamma)=v \lambda_{v}(\beta \oplus \gamma)=v\left(\lambda_{v} \beta \oplus \lambda_{v} \gamma\right)=v \lambda_{v} \beta=v \alpha
$$

Hence $\alpha=\beta \oplus \gamma \in S$. This proves that $S=L(V)$, as required.

From [8], page 415 and 424, we have that $I F(V)$ is a unique minimal ideal of the ring $(L(V),+, \cdot)$ where + and are respectively the usual addition and composition of linear transformations. Then

Theorem 2.2.2. $\operatorname{IF}(V) \in \boldsymbol{S S R}$ for any dimension of V.

We recall that if $\operatorname{dim} V$ is finite, then $M(V)=G(V)=E(V)$ and $A M(V)=L(V)=A E(V)$. We also note that for every dimension of V, in $M^{0}(V)$ and $E^{0}(V), 0$ is a zero adjoined. Moreover, if $\operatorname{dim} V$ is infinite, then $A M(V)$ and $A E(V)$ have no zero. Next, the subsemigroups $M(V), E(V)$, $A M(V), A E(V)$ are characterized when they belong to the class $\boldsymbol{S S R}$ in terms of the dimensions of V. We give two proofs for each characterization for $M(V)$, $E(V), A M(V)$ and $A E(V)$. However, every proof need suitable constructions of linear transformations. The first proof of each one refers Proposition 1.5. We use Proposition 1.6 for the second proofs of both $M(V)$ and $E(V)$.

Theorem 2.2.3. $M(V) \in \boldsymbol{S S R}$ if and only if $\operatorname{dim} V \leq 1$.

Proof 1. Assume that $M(V) \in \boldsymbol{S S R}$. Since $1_{V} \in M(V)$, by Proposition $1.1(\mathrm{vi}), M(V) \in \boldsymbol{S} \boldsymbol{R}$. Then there exists an operation \oplus on $M^{0}(V)$ such that $\left(M^{0}(V), \oplus, \cdot\right)$ is a ring where \cdot is the operation on $M^{0}(V)$. To show that $\operatorname{dim} V \leq$

1 , suppose on the contrary that $\operatorname{dim} V>1$. Let B be a basis of V and let $u, w \in B$ be distinct. Then $(u, w)_{B} \in M(V),(u, w)_{B} \neq 1_{V},(u, w)_{B} \neq-1_{V}$ and $(u, w)_{B}^{2}=$ 1_{V}. By Proposition 1.5, $1_{V} \oplus(u, w)_{B} \neq 0$. Therefore $1_{V} \oplus(u, w)_{B} \in M(V)$. Thus

$$
(u, w)_{B}\left(1_{V} \oplus(u, w)_{B}\right)=(u, w)_{B} \oplus 1_{V}=1_{V} \oplus(u, w)_{B} \in M(V)
$$

It follows that

$$
u(u, w)_{B}\left(1_{V} \oplus(u, w)_{B}\right)=u\left(1_{V} \oplus(u, w)_{B}\right)
$$

But $1_{V} \oplus(u, w)_{B}$ is a one-to-one map, so $u(u, w)_{B}=u$ and hence $w=u$, a contradiction. Therefore $\operatorname{dim} V \leq 1$.

The converse holds because

$$
M^{0}(V)=G^{0}(V) \cong \begin{cases}\left(\mathbb{Z}_{2}, \cdot\right) & \text { if } \operatorname{dim} V=0, \\ (R, \cdot) & \text { if } \operatorname{dim} V=1 .\end{cases}
$$

Proof 2. Let \oplus be a binary operation on $M^{0}(W)$ such that $\left(M^{0}(V), \oplus, \cdot\right)$ is a skew-ring where is the operation on $M^{0}(V)$. Suppose that $\operatorname{dim} V$ is infinite. Let B be a basis of V. Fix $u, w \in B$ with $u \neq w$. Then there is a bijection φ from B onto $B \backslash\{u, w\}$. Define $\alpha \in L(V)$ by $\alpha /\}$

$$
v \alpha=v \varphi \text { for all } v \in B
$$

Then $\alpha \in M(V)$. Since $B \alpha=B \backslash\{u, w\}$, it follows that $v \alpha(u, w)_{B}=v \alpha$ for all $v \in B$, so we have $\alpha(u, w)_{B}=\alpha$. Consequently,

$$
0=\alpha \ominus \alpha=\alpha(u, w)_{B} \ominus \alpha=\alpha\left((u, w)_{B} \ominus 1_{V}\right)
$$

But since $\alpha \neq 0$, we have $(u, w)_{B} \ominus 1_{V}=0$ so $(u, w)_{B}=1_{V}$, a contradiction. Hence $\operatorname{dim} V$ is finite and thus $M(V)=G(V)$. We then have by Proposition 1.6 that $\operatorname{dim} V \leq 1$.

The converse is obtained as in the first proof.

Theorem 2.2.4. $E(V) \in S S R$ if and only if $\operatorname{dim} V \leq 1$.

Proof 1. Assume that $E(V) \in \boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$ and let \oplus be an operation on $E^{0}(V)$ such that $\left(E^{0}(V), \oplus, \cdot\right)$ is a skew-ring where • is the operation on $E^{0}(V)$. Since $1_{V} \in E(V),\left(E^{0}(V), \oplus, \cdot\right)$ is a ring. Suppose that $\operatorname{dim} V>1$. Let B be a basis of V and $u, w \in B$ such that $u \neq w$. Then $(u, w)_{B} \in E(V),(u, w)_{B} \neq 1_{V}$ and $(u, w)_{B} \neq-1_{V}$. By Proposition 1.5, $1_{V} \oplus(u, w)_{B} \neq 0$. Hence $1_{V} \oplus(u, w)_{B} \in$ $E(V)$, so there exists $z \in V$ such that

But

$$
\left(1_{V} \oplus(u, w)_{B}\right)(u, w)_{B}=(u, w)_{B} \oplus \stackrel{1}{V}^{\varrho} 1_{V} \oplus(u, w)_{B}
$$

$$
\begin{gathered}
\text { so we have } \\
\qquad z\left(1_{V} \oplus(u, w)_{B}\right)(u, w)_{B}=z\left(1_{V} \oplus(u, w)_{B}\right) .
\end{gathered}
$$

It follows that $u(u, w)_{B}=u$. Hence $w=u$, a contradiction. Therefore $\operatorname{dim} V \leq$ 1.

We obtain the converse similarly to the first proof of Theorem 2.2.3.

Proof 2. Let \oplus be a binary operation on $E^{0}(V)$ such that $\left(E^{0}(V), \oplus, \cdot\right)$ is a skew-ring where \cdot is the operation on $E^{0}(V)$. Suppose that $\operatorname{dim} V$ is infinite and let B be a basis of V. Fix $u, w \in B$ with $u \neq w$. Then there is a bijection φ from $B \backslash\{u, w\}$ onto B. Let $\alpha \in L(V)$ be defined by

$$
v \alpha=\left\{\begin{array}{cl}
0 & \text { if } v \in\{u, w\} \\
v \varphi & \text { if } v \in B \backslash\{u, w\}
\end{array}\right.
$$

Then $\operatorname{Im} \alpha=<B \alpha>==V$. It follows that $\alpha \in E(V)$. By the definition of α, we have

$$
\begin{array}{cc}
u(u, w)_{B} \alpha=w \alpha=0=u \alpha, & w(u, w)_{B} \alpha=u \alpha=0=w \alpha, \\
v(u, w)_{B} \alpha=v \alpha \quad \text { for all } v \in B \backslash\{u, w\} .
\end{array}
$$

Then $(u, w)_{B} \alpha=\alpha$, and hence

$$
0=\alpha \ominus \alpha=(u, w)_{B} \alpha \ominus \alpha=\left((u, w)_{B} \ominus 1_{V}\right) \alpha .
$$

But since $\alpha \neq 0,(u, w)_{B} \ominus 1_{V}=0$. Thus $(u, w)_{B}=1_{V}$, a contradiction. Therefore $\operatorname{dim} V$ is finite, and so $E(V)=G(V)$, hence we have by Proposition

Theorem 2.2.5. If $S(V)$ is $A M(V)$ or $A E(V)$, then $S(V) \in \boldsymbol{S S R}$ if and only if $\operatorname{dim} V$ is finite.

Proof 1. Assume that there exists an operation \oplus on $S^{0}(V)$ such that $\left(S^{0}(V), \oplus, \cdot\right)$ is a skew-ring where • is the operation on $S^{0}(V)$. Then $\left(S^{0}(V), \oplus, \cdot\right)$ is a ring since $1_{V} \in S(V)$. Suppose that $\operatorname{dim} V$ is infinite. It follows that $S(V)$ has no zero. Let B be a basis of V and let $u, w \in B$ with $u \neq w$. Define $\alpha \in L(V)$ by

$$
v \alpha=\left\{\begin{array}{lll}
0 & \text { if } \quad v=u \text { or } v=w, \\
v & \text { if } \quad v \in B \backslash\{u, w\}
\end{array}\right.
$$

Then $\alpha^{2}=\alpha, \operatorname{Ker} \alpha=<u, w>$ and $\operatorname{Im} \alpha=<B \backslash\{u, w\}>$. It follows that

$$
\operatorname{dim}(\operatorname{Ker} \alpha)=2 \text { and } \operatorname{dim}(V / \operatorname{Im} \alpha)=\operatorname{dim}(V /<B \backslash\{u, w\}>)=2
$$

Hence $\alpha,-\alpha \in S(V)$. Since $\alpha \neq 1_{V}$ and $\alpha \neq-1_{V}$, it follows from Proposition 1.5 that $1_{V} \oplus \alpha \neq 0$ and $1_{V} \oplus(-\alpha) \neq 0$. Thus $1_{V} \oplus \alpha, 1_{V} \oplus(-\alpha) \in S(V)$. Consequently,

$$
\begin{equation*}
0 \neq\left(1_{V} \oplus \alpha\right) \alpha=\alpha \oplus \alpha^{2}=\alpha \oplus \alpha \tag{2.2.5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \neq\left(1_{V} \oplus(-\alpha)\right)(-\alpha)=(-\alpha) \oplus(-\alpha)^{2}=(-\alpha) \oplus \alpha=\alpha \oplus(-\alpha) \tag{2.2.5.2}
\end{equation*}
$$

สถาบันวิทยบริการ

Hence Proposition 1.5, (2.2.5.1) and (2.2.5.2) yield a contradiction.

$\boldsymbol{S S R}$.

Proof 2. Define α as in the first proof. We have by the definition of α that

$$
\begin{aligned}
u(u, w)_{B} \alpha=w \alpha=0=u \alpha, & w(u, w)_{B} \alpha=u \alpha=0=w \alpha, \\
v(u, w)_{B} \alpha=v \alpha & \text { for all } v \in B \backslash\{u, w\} .
\end{aligned}
$$

Then $(u, w)_{B} \alpha=\alpha$. Hence

$$
0=\alpha \ominus \alpha=\alpha \ominus(u, w)_{B} \alpha=\left(1_{V} \ominus(u, w)_{B}\right) \alpha
$$

But since $\alpha \neq 0$, we have $1_{V} \ominus(u, w)_{B}=0$. Thus $(u, w)_{B}=1_{V}$, a contradiction. Then $\operatorname{dim} V$ is finite.

The converse holds as in the first proof.

The next two theorems show that for any infinite dimension of V, neither $O M(V)$ nor $O E(V)$ is in $\boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$.

Theorem 2.2.6. $O M(V) \notin \boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$ where dim V is infinite.

Proof. Assume that $O M(V) \in \boldsymbol{S S R}$. Let \oplus be a binary operation on $O M(V)$ such that $(O M(V), \oplus, \cdot)$ is a skew-ring where • is the operation on $O M(V)$. Let B be a basis of V. Then there are subsets B_{1} and $\overline{B_{2}}$ such that $B_{1} \cap B_{2}=\emptyset$, $B=B_{1} \cup B_{2}$ and $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Thus V is a direct sum of $<B_{1}>$ and $<B_{2}>$. Let $\alpha, \beta \in L(V)$ be defined by
and

$$
v \beta=\left\{\begin{array}{lll}
0 & \text { if } & v \in B_{1}, \\
v & \text { if } & v \in B_{2} .
\end{array}\right.
$$

Then $\operatorname{Ker} \alpha=<B_{2}>$ and $\operatorname{Ker} \beta=<B_{1}>$, so $\operatorname{dim}(\operatorname{Ker} \alpha)=\left|B_{2}\right|$ and $\operatorname{dim}(\operatorname{Ker} \beta)=$ $\left|B_{1}\right|$. Thus $\alpha, \beta \in O M(V)$. Clearly, $\alpha^{2}=\alpha, \beta^{2}=\beta$ and $\alpha \beta=0=\beta \alpha$. Thus

$$
\begin{equation*}
(\alpha \oplus \beta) \alpha=\alpha^{2} \oplus \beta \alpha=\alpha^{2}=\alpha \tag{2.2.6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(\alpha \oplus \beta) \beta=\alpha \beta \oplus \beta^{2}=\beta^{2}=\beta . \tag{2.2.6.2}
\end{equation*}
$$

By the definitions of α and β, we have

$$
\begin{align*}
& v \alpha=v \text { and } v \beta=0 \text { for all } v \in<B_{1}> \\
& v \beta=v \text { and } v \alpha=0 \text { for all } v \in<B_{2}>. \tag{2.2.6.3}
\end{align*}
$$

Let $u \in \operatorname{Ker}(\alpha \oplus \beta)$. Then $u(\alpha \oplus \beta) \neq 0$. Since $V=<B_{1}>+<B_{2}>, u=u_{1}+u_{2}$ for some $u_{1} \in<B_{1}>$ and $u_{2} \in<B_{2}>$. By (2.2.6.1), (2.2.6.2) and (2.2.6.3),

$$
u(\alpha \oplus \beta) \alpha=u \alpha=\left(u_{1}+u_{2}\right) \alpha=u_{1}
$$

$$
u(\alpha \oplus \beta) \beta=u \beta=\left(u_{1}+u_{2}\right) \beta=u_{2} .
$$

But $u(\alpha \oplus \beta)=0$, so $u(\alpha \oplus \beta) \alpha=0=u(\alpha \oplus \beta) \beta$. It follows that $u_{1}=0=u_{2}$. Hence $u=0$. This proves that $\operatorname{Ker}(\alpha \oplus \beta)=\{0\}$, so $\alpha \oplus \beta \notin O M(V)$, a contradiction. Therefore we have $O M(V) \notin \boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$, as required. \sim

Theorem 2.2.7.OE $(V) \notin S S R$ where dimV is infinite. 6?

Proof. Assume that $O E(V) \in \boldsymbol{S S R}$. Let \oplus be a binary operation on $O E(V)$ such that $(O E(V), \oplus, \cdot)$ is a skew-ring where \cdot is the operation on $O E(V)$. Let B be a basis of V. Then there are subsets B_{1} and B_{2} such that $B_{1} \cap B_{2}=\emptyset$, $B=B_{1} \cup B_{2}$ and $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Let $\alpha, \beta \in L(V)$ be defined by

$$
v \alpha=\left\{\begin{array}{lll}
v & \text { if } & v \in B_{1}, \\
0 & \text { if } & v \in B_{2}
\end{array}\right.
$$

and

$$
v \beta=\left\{\begin{array}{lll}
0 & \text { if } & v \in B_{1}, \\
v & \text { if } & v \in B_{2}
\end{array}\right.
$$

Then $\operatorname{Im} \alpha=<B_{1}>$ and $\operatorname{Im} \beta=<B_{2}>$ which imply that

$$
\begin{aligned}
& \operatorname{dim}(V / \operatorname{Im} \alpha)=\operatorname{dim}\left(V /<B_{1}>\right)=\left|B \backslash B_{1}\right|=\left|B_{2}\right| \\
& \operatorname{dim}(V / \operatorname{Im} \beta)=\operatorname{dim}\left(\overline{\left.V /<B_{2}>\right)}=\left|B \backslash B_{2}\right|=\left|B_{1}\right|\right.
\end{aligned}
$$

Thus $\alpha, \beta \in O E(V)$ and so $\alpha \oplus \beta \in O E(V)$. Since

$$
\begin{aligned}
& \text { for } v \in B_{1}, v \alpha \beta=v \beta=0 \text { and } v \beta \alpha=0 \alpha=0, \\
& \text { for } v \in B_{2}, v \alpha \beta=0 \beta=0 \text { and } v \beta \alpha=v \alpha=0,
\end{aligned}
$$

we have $\alpha \beta=0=\beta \alpha$. Clearly, $\alpha^{2}=\alpha$ and $\beta^{2}=\beta$. Consequently,

$$
66 \alpha(\alpha \oplus \beta)=\alpha \text { and } \beta(\alpha \oplus \beta)=\beta . \approx
$$

Claim that $v \in \operatorname{Im}(\alpha \oplus \beta)$ forall $v \in B$. Let $v \in B$. Then $v \in B_{1}$ or $v \in B_{2}$. 9
Case 1: $v \in B_{1}$. Then $(v \alpha)(\alpha \oplus \beta)=v(\alpha(\alpha \oplus \beta))=v \alpha=v$.

Case 2: $v \in B_{2}$. Then $(v \beta)(\alpha \oplus \beta)=v \beta=v$.

Hence $V==\operatorname{Im}(\alpha \oplus \beta)$, it follows that $\operatorname{dim}(V / \operatorname{Im}(\alpha \oplus \beta))=0$, a contradiction. Therefore $O E(V) \notin \boldsymbol{S S R}$.

We show next that neither $B L(V)$ nor $O B L(V)$ belongs to $\boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$. Each proof needs one lemma.

Lemma 2.2.8. If $\beta \in E(V)$ and $\alpha \in O E(V)$, then $\beta \alpha \in O E(V)$.

Proof. It is clear since $\operatorname{Im} \beta \alpha=V \beta \alpha=V \alpha=\operatorname{Im} \alpha$.

Theorem 2.2.9. $B L(V) \notin \boldsymbol{S S R}$ where dimV is infinite.

Proof. Assume that there exists a binary operation \oplus on $B L^{0}(V)$ such that $\left(B L^{0}(V), \oplus, \cdot\right)$ is a skew-ring where • is the operation on $B L^{0}(V)$. Let B be a basis of V. Then there are subsets B_{1} and B_{2} such that $B_{1} \cap B_{2}=\emptyset, B=B_{1} \cup B_{2}$ and $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Let $\varphi: B \rightarrow B_{1}$ be a bijection and let $\alpha \in L(V)$ be defined by $v \alpha=v \varphi$ for all $v \in B$. Since φ is ono-to-one, α is one-to-one. Also, $\operatorname{Im} \alpha=<B_{1}>$ and hence

Then $\alpha \in B L(V)$. Let $u, w \in B_{2}$ with $u \neq w$. Then $u \alpha \neq w \alpha$. Since $B \alpha=B_{1}$, it follows that $v \alpha(u, w)_{B}=v \alpha$ for all $v \in B$. Hence $\alpha(\widetilde{u} w)_{B}=\alpha$ and thus $\alpha(u, w)_{B} \alpha=\alpha^{2}$. By Lemma 2.2.8, $(u, w)_{B} \alpha \in B L(V)$. Thus

which implies that $(u, w)_{B} \alpha=\alpha$. Therefore $u \alpha=u(u, w)_{B} \alpha=w \alpha$, a contradiction. Hence $B L(V) \notin \boldsymbol{S S R}$.

Lemma 2.2.10. If $\beta \in M(V)$ and $\alpha \in O M(V)$, then $\alpha \beta \in O M(V)$.

Proof. It is directly obtained from the fact that for $v \in V, v \alpha \beta=0$ if and only if $v \alpha=0$ since β is one-to-one.

Theorem 2.2.11. $O B L(V) \notin \boldsymbol{S} \boldsymbol{S} \boldsymbol{R}$ where $\operatorname{dim} V$ is infinite.

Proof. Assume that there exists a binary operation \oplus on $O B L^{0}(V)$ such that $\left(O B L^{0}(V), \oplus, \cdot\right)$ is a skew-ring where is the operation on $O B L^{0}(V)$. Let B be a basis of V. Then there are subsets B_{1} and B_{2} such that $B_{1} \cap B_{2}=\emptyset, B=B_{1} \cup B_{2}$ and $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Let φ be a bijection from B_{1} onto B. Define $\alpha \in L(V)$ by

$$
v \alpha=\left\{\begin{array}{cll}
\overline{v \varphi} & \text { if } & v \in B_{1} \\
\theta & \text { if } & v \in B_{2}
\end{array}\right.
$$

Then $\left.\operatorname{dim}(\operatorname{Ker} \alpha)=\operatorname{dim}\left(<B_{1}\right\rangle\right)=\left|B_{1}\right|$ and $\operatorname{Im} \alpha==V$.Thus $\alpha \in$ $O B L(V)$. Choose $u, w \in B_{1}$ with $u \neq w$ such that $u \alpha, w \alpha \in B_{2}$. Since $\left.\alpha\right|_{B_{1}}$ is one-to-one, $u \alpha \neq w \alpha$. We have $\bar{\alpha}(u \alpha, w \alpha)_{B} \alpha=\alpha^{2}$ by the following equalities.

By Lemma 2.2.10, we have that $\alpha(u \alpha, w \alpha)_{B} \in O B L(V)$. Thus

$$
0=\alpha(u \alpha, w \alpha)_{B} \alpha \ominus \alpha^{2}=\left(\alpha(u \alpha, w \alpha)_{B} \ominus \alpha\right) \alpha
$$

It follows that $\alpha(u \alpha, w \alpha)_{B}=\alpha$. Therefore $u \alpha=u \alpha(u \alpha, w \alpha)_{B}=w \alpha$, a contradiction. Hence $O B L(V) \notin \boldsymbol{S S R}$.

Finally，we prove that the semigroup $A I(V)$ belongs to $\boldsymbol{S S R}$ if and only if $\operatorname{dim} V$ is finite．

Theorem 2．2．12．$A I(V) \in \boldsymbol{S S R}$ if and only if $\operatorname{dim} V$ is finite．

Proof．Assume that $A I(V) \in \boldsymbol{S S R}$ ．Then there exists an operation \oplus on $A I^{0}(V)$ such that $\left(A I^{0}(V), \oplus \cdot \cdot\right)$ is a skew－ring where \cdot is the operation on $A I^{0}(V)$ ．Suppose that $\operatorname{dim} V$ is infinite and B a basis of V ．Fix $u \in B$ ．Define $\alpha \in L(V)$ by

$$
v \alpha= \begin{cases}\frac{0}{} \text { if } & v=u, \\ v & \text { if } \\ v \in B \backslash\{u\} .\end{cases}
$$

Then $F(\alpha)=<B \backslash\{u\}>$ ，so $\operatorname{dim}(V / F(\alpha))=1$ ．Thus $\alpha \in A I(V)$ ．We see that $\alpha^{2}=\alpha$ ，so

which implies that $\alpha=1_{V}$ ，a contradiction．
Conversely，if dimV is finite，then $A I(V)=L(V)$ ，so $A I(V)$ belongs to the class $\boldsymbol{S} \boldsymbol{S R}$ ． 6 ？ 9 ค9月を19山己？
จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER III GROUPS ADMITTING SKEW-SEMIFIELD STRUCTURE

In this chapter, we also divide into two sections. For the first section, we consider when some matrix groups over a commutative ring with identity $1 \neq 0$ belong to the class GSSF. For the second section, some subgroups of linear transformations of a vector space over a division ring are investigated in the same way.

3.1. Matrix Groups

Throughout this section, let n be a positive integer and R a commutative ring with identity $1 \neq 0$. The following matrix groups are recalled.

$$
\begin{aligned}
G_{n}(R) & \doteq\left\{A \in M_{n}(R) \mid A \text { is an invertible } n \times n \text { matrix over } R\right\}, \\
U_{n}(R)\left[L_{n}(R)\right] & =\left\{A \in G_{n}(R) \mid A \text { is upper[lower] triangular }\right\}, \\
P_{n}(R) & =\left\{A \in G_{n}(R) \mid A \text { is a permutation matrix }\right\}, \\
O_{n}(R) & =\left\{A \in G_{n}(R) \mid A \text { is orthogonal }\right\} \\
V_{n}(R) & =\left\{A \in G_{n}(R) \mid \operatorname{det} A= \pm 1\right\} \text { and } \\
W_{n}(R) & =\left\{A \in G_{n}(R) \mid \operatorname{det} A=1\right\} .
\end{aligned}
$$

The purpose of this section is to characterize in terms of n and R when the matrix groups mentioned above belong to the class $\boldsymbol{G S S F}$.

In [11], the matrix groups $G_{n}(F), U_{n}(F)\left[L_{n}(F)\right], P_{n}(F), O_{n}(F), V_{n}(F)$ and $W_{n}(F)$ have been completely characterized in terms of n and F when they are in $\boldsymbol{G S S F} \boldsymbol{F}$ where F is a field. In this section, we generalize these characterizations by replacing F by R. We obtain more general results and the mentioned
results in [11] become our special cases.

Theorem 3.1.1. $G_{n}(R) \in \boldsymbol{G S S F}$ if and only if $n=1$ and $U_{R} \in \boldsymbol{G S S F}$ where U_{R} denotes the multiplicative group of all invertible elements of R.

Proof. Assume that $n>1$. Define $A, B \in G_{n}(R)$ by

Then $A, B \in G_{n}(R) \backslash\left\{I_{n}\right\}, A^{2}=B^{2}=I_{n}$ and $A \neq B$. By Proposition 1.3, $G_{n}(R)$ does not belong to the class $\boldsymbol{G S S F}$.
Next, assume that $n=1 \underset{\sigma}{\text { and }} U_{R} \notin \boldsymbol{G S S F}$. Then $U_{R} \cong G_{1}(R) \notin$ $\boldsymbol{G S S F}$
The converse holds because $G_{1}(R) \cong U_{R}$.

Theorem 3.1.2. $P_{n}(R) \in \boldsymbol{G S S F}$ if and only if $n \leq 2$.

Proof. Assume that $n>2$. Define $A, B \in G_{n}(R)$ by

Then $A, B \in P_{n}(R) \backslash\left\{I_{n}\right\}, A^{2}=B^{2}=I_{n}$ and $A \neq B$. By Proposition 1.3, $P_{n}(R) \notin \boldsymbol{G S S F}$.

Since $P_{1}^{0}(R) \cong(\{0,1\}, \cdot) \cong\left(\mathbb{Z}_{2}, \cdot\right)$ and

$$
P_{2}^{0}(R)=\left(\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\}, \cdot\right) \cong\left(\mathbb{Z}_{3}, \cdot\right)
$$

we have that $P_{1}(R)$ and $P_{2}(R)$ belong to the class $\boldsymbol{G S S F} \boldsymbol{S}$. Hence the converse holds.

Theorem 3.1.3. $U_{n}(R)\left[L_{n}(R)\right] \in \boldsymbol{G S S F}$ if and only if $(i) n=1$ and $U_{R} \in$ $\boldsymbol{G S S F}$ or (ii) $n=2$ and $|R|=2$.

Proof. We prove the theorem for $U_{n}(R)$. For $L_{n}(R)$, the proof can be given similarly. Assume that (i) and (ii) do not hold. Then one of the following conditions holds: (1) $n>2$, (2) $n=1$ and $U_{R} \notin \boldsymbol{G S S F}$ and (3) $n=2$ and $|R|>2$.

Case 1: $n>2$. Then the matrices $A, B \in G_{n}(R)$ defined by
$A=\left[\begin{array}{rrrrr}1 & 1 & 0 & \ldots & 0 \\ 0 & -1 & 0 & \ldots & 0 \\ 0 & 0 & -1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ 0 & 0 & 0 & \ldots & -1\end{array}\right]$,
$B=\left[\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 1 & \ldots & 0 \\ 0 & 0 & -1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ 0 & 0 & 0 & \ldots & -1\end{array}\right]$
are in $U_{n}(R) \backslash\left\{I_{n}\right\}, A^{2}=B^{2}=I_{n}$ and $A \neq B$. Then by Proposition 1.3, $U_{n}(R) \notin$ $\boldsymbol{G S S F}$ if $n>2$.

Case 2: $n=1$ and $U_{R} \notin \boldsymbol{G S S F}$. Then $U_{R} \cong U_{1}(R) \notin \boldsymbol{G S S F}$.

Case 3: $n=2$ and $|R|>2$.
Subcase 3.1: $\operatorname{char} R=2$. Let $a \in R \backslash\{0,1\}$. Then $\left[\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right] \in$ $U_{2}(R) \backslash\left\{I_{2}\right\}$ and $\left[\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right] \neq 0\left[\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right]$. Since $\operatorname{char} R=2,\left[\begin{array}{c}1 \\ 0 \\ 0\end{array}\right]^{2}=I_{2}=$ $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]^{2}$. Thus for this subcase, $U_{2}(R) \notin \boldsymbol{G} \boldsymbol{S} \boldsymbol{S} \boldsymbol{F}$ by Proposition 1.3.

Subcase 3.2: $\operatorname{char} R \neq 2$. Then $-2 \neq 0$ in $R,\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right] \in$ $U_{2}(R) \backslash\left\{I_{2}\right\},\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]^{2}=I_{2}$ and

$$
\left[\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \neq\left[\begin{array}{ll}
1 & -2 \\
0 & -1
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right] .
$$

From Proposition 1.4, $U_{2}(R) \notin \boldsymbol{G S S F}$ for this subcase.
Conversely, assume that $(i) n=1$ and $U_{n}(R) \in \boldsymbol{G S S F F}$ or (ii) $n=2$ and $|R|=2$. If $n=1$ and $U_{R} \in \boldsymbol{G S S F}$, then $U_{R} \cong U_{1}(R) \in \boldsymbol{G S S F}$. Next, assume that $n=2$ and $|R|=2$. Then

$$
U_{2}^{0}(R) \cong\left(\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right\}, \cdot\right) \cong\left(\mathbb{Z}_{3}, \cdot\right)
$$

so $U_{2}(R) \in \boldsymbol{G S S F} \boldsymbol{F}$.

Theorem 3.1.4. $O_{n}(R) \in$ GSSF if and only if $(i) n=1$ and $H \in \boldsymbol{G S S F}$ or (ii) $n=2$ and $|R|=2$ where H is the subgroups of U_{R} consisting of all elements of R of order ≤ 2.

Proof. Assume that (i) and (ii) are not true. Then one of the following conditions holds: (1) $n>2$, (2) $n=1$ and $H \notin \boldsymbol{G S S F}$ and (3) $n=2$ and $|R|>2$.

Case 1: $n>$ 2. Observe that since the matrices A, B defined in the proof of Theorem 3.1.2 are symmetric, they are also orthogonal, hence $O_{n}(R) \notin \boldsymbol{G S S F}$.

Case 2: $n=1$ and $H \notin \boldsymbol{G S S F}$. Then $H \cong O_{1}(R) \notin \boldsymbol{G S S F}$.

Case 3: $n=2$ and $|R|>2$.
Subcase 3.1: char $R=2$. Let $a \in R \backslash\{0,1\}$ and define $C \in M_{2}(R)$ by

$$
C=\left[\begin{array}{cc}
a & 1+a \\
1+a & a
\end{array}\right]
$$

Then $C=C^{t}$ and

$$
C^{2}=\left[\begin{array}{cc}
a^{2}+1+2 a+a^{2} & a+a^{2}+a+a^{2} \\
a+a^{2}+a+a^{2} & 1+2 a+a^{2}+a^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

since char $R=2$. Thus $C \in O_{2}(R) \backslash\left\{I_{2}\right\}$. Also,

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \in O_{2}(R) \backslash\left\{I_{2}\right\},\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]^{2}=I_{2} \text { and }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \neq C \text {. Thus } O_{2}(R) \notin
$$

$\boldsymbol{G S S F}$ by a Proposition 1.3.
Subcase 3.2: char $R \neq 2$. Then $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ are distinct elements of $O_{2}(R) \backslash\left\{I_{2}\right\}$ and $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]^{2}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]^{2}=I_{2}$. It then follows
from Proposition 1.3 that $O_{2}(\underline{R}) \notin \boldsymbol{G S S F}$.

The converse holds because of the following facts.

The last theorem of this section, we investigate when the matrix group $W_{n}(R)$ belongs to the class $\boldsymbol{G S S F}$. The result is the following theorem.

Theorem 3.1.5. $V_{n}(R) \in \boldsymbol{G S S F}$ if and only if $n=1$.

Proof. Assume that $n>1$ and define the matrices A, B as in the proof of Theorem 3.1.1. Then $\operatorname{det} A=1$ or -1 and $\operatorname{det} B=-1$, so $A, B \in V_{n}(R)$. Hence $V_{n}(R) \notin \boldsymbol{G S S F} \boldsymbol{F}$ by Proposition 1.3.

Since

$$
V_{1}^{0}(R) \cong(\{0,1,-1\}, \cdot) \cong\left\{\begin{array}{lll}
\left(\mathbb{Z}_{3}, \cdot\right) & \text { if } & \operatorname{char} R \neq 2 \\
\left(\mathbb{Z}_{2}, \cdot\right) & \text { if } & \operatorname{char} R=2
\end{array}\right.
$$

the converse holds.

Theorem 3.1.6. $W_{n}(R) \in G S S F$ if and only if $n=1$.

Proof. Assume that $n \geq 2$.

Case 1: $n \geq 3$. Let $A, B \in W_{n}(R)$ be defined by

and

Then $A^{2}=B^{2}=I_{n}, A \neq I_{n}$ and $B \neq I_{n}$, so by Proposition 1.3, $W_{n}(R) \notin$ $\boldsymbol{G S S F}$ for this case.

Case 2: $n=2$.

Subcase 2.1: $\operatorname{char} R=2$. Then the matrices $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ are in $W_{2}(R) \backslash\left\{I_{2}\right\},\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]^{2}=I_{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{2},\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \neq I_{2}$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \neq I_{2}$. Hence $W_{2}(R) \notin \boldsymbol{G S S F}$ for this subcase.

Subcase 2.2: char $R \neq 2$. To show that $W_{2}(R) \notin \boldsymbol{G S S F} \boldsymbol{F}$, suppose on the contrary that there exists an operation \oplus on $W_{2}^{0}(R)$ such that ($\left.W_{2}^{0}(R), \oplus, \cdot\right)$ is a skew-semifield where is the operation on $W_{2}^{0}(R)$. Now we have

$$
\left(I_{2} \oplus\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] \Leftrightarrow\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] \oplus I_{2}=I_{2} \oplus\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] .
$$

If $I_{2} \oplus\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right] \neq 0$, then $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]=I_{2}$ so $1=-1$, a contradiction.
Therefore

and $\left.\left(W_{2}^{0}(R)\right), \oplus\right)$ is an abelian group. Since $I_{2} \approx \mathscr{T}_{2} \in C\left(W_{2}(R)\right)$, by Lemma 2.1.3, $I_{2} \oplus I_{2}=a I_{2}$ for some $a \in R$. By (3.1.5.1), $a \neq 0$. Then $\operatorname{det}\left(a I_{2}\right)=a^{2}=1$,

$$
\left(I_{2} \oplus a I_{2}\right)\left(a I_{2}\right)=a I_{2} \oplus I_{2}=I_{2} \oplus a I_{2}
$$

If $I_{2} \oplus a I_{2} \neq 0$, then $a I_{2}=I_{2}$ and so $a=1$. Hence $I_{2} \oplus I_{2}=I_{2}$ which implies by (3.1.5.1) that $I_{2}=0$, a contradiction. Therefore $I_{2} \oplus a I_{2}=0$, so $a I_{2}=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$ by (3.1.5.1) which implies that $a=-1$. Now we have
$I_{2} \oplus I_{2}=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$.
Thus $I_{2} \oplus I_{2} \oplus I_{2}=0$ by (3.1.5.1). Hence

$$
\begin{equation*}
A \oplus A \oplus A=0 \quad \text { for all } A \in W_{2}(R) \tag{3.1.5.2}
\end{equation*}
$$

We obviously obtain from (3.1.5.2) that

$$
\begin{equation*}
\left(I_{2} \oplus A\right)^{3}=I_{2} \oplus A^{3} \quad \text { for all } A \in W_{2}(R) \tag{3.1.5.3}
\end{equation*}
$$

Since $\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right] \in W_{2}(R)$ and

$$
\left[\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right]^{3}=\left[\begin{array}{rr}
0 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

we have from (3.1.5.1) and (3.1.5.3) that

$$
\begin{aligned}
& \qquad\left(I_{2} \oplus\left[\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right]\right)^{3}=I_{2} \oplus\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]=0 . \\
& \text { This implies that } I_{2} \oplus\left[\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right]=0 . \text { By (3.1.5.1), }\left[\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right],
\end{aligned}
$$

$$
\text { و9Nの 6 }{ }_{9} W_{1}^{0}(R) \cong(\{0,1\}, \cdot) \cong\left(\mathbb{Z}_{2}^{0}, \cdot\right) .
$$

Remark 3.1.7. It follows directly from the definitions of skew-rings and skewsemifields that if G is a group such that $G \in \boldsymbol{S S R}$, then $G \in \boldsymbol{G S S F}$. Thus any group which is not in $\boldsymbol{G S S F} \boldsymbol{S}$ must not be in $\boldsymbol{S S R}$. Hence Corollary 2.1.5, Corollary 2.1.6 and Corollary 2.1.7 can be considered respectively as corollaries
of Theorem 3.1.1, Theorem 3.1.5 and Theorem 3.1.6.

3.2. Groups of Linear Transformations

First, we characterize the group $G(V)$ when it belongs to the class $\boldsymbol{G S S F}$.

Theorem 3.2.1. $G(V) \in G S S F$ if and only if $\operatorname{dim} V \leq 1$.

Proof. Assume that $\operatorname{dim} V \geq 2$. Let B be a basis of V. Fix $u, w \in B$ with $u \neq w$. Then $(u, w)_{B}^{2}=1_{V}$ and $(u, w)_{B} \neq 1_{V}$. Since $u, u+w$ are linearly independent, there exists a basis B^{\prime} of V containing u and $u+w$. We now have $(u, u+w)_{B^{\prime}}^{2}=1_{V}$ and $(u, u+w)_{B^{\prime}} \neq 1_{V}$. Since $u \neq w,(u, w)_{B} \neq(u, u+w)_{B^{\prime}}$. By Proposition 1.3, $G(V) \notin \boldsymbol{G S S F}$.

Conversely, assume that dimV ≤ 1. Then $G(V)=\left\{1_{V}\right\}$ or $G(V) \cong$ $(R \backslash\{0\}, \cdot)$. Thus $G(V) \in \boldsymbol{G S S F}$.

Next, recall the two subgroups $G A I(V)$ and $G_{B}(V)$ where B is a basis of V as follows.

that is,

and $G_{B}(V)$ is the subgroup of $G(V)$ generated by the subset

$$
\left\{\left(v_{1}, v_{2}, \ldots, v_{n}\right)_{B} \mid n \in \mathbb{N}, v_{1}, v_{2}, \ldots, v_{n} \text { are distinct in } B\right\}
$$

of $G(V)$.

Theorem 3.2.2. $G A I(V) \in \boldsymbol{G S S F}$ if and only if $\operatorname{dim} V \leq 1$.

Proof. Assume that $\operatorname{dim} V \geq 2$. Let B be a basis of V. Fix $u, w \in B$ with $u \neq w$. Then $F\left((u, w)_{B}\right)=<B \backslash\{u, w\}>$, and so $\operatorname{dim}\left(V / F\left((u, w)_{B}\right)\right)$ $=\operatorname{dim}(V /<B \backslash\{u, w\}>)=2$. Since $u, u+w$ are linearly independent, there is a basis B^{\prime} of V such that $u, u+w \in B^{\prime}$. Thus

$$
F\left((u, u+w)_{B^{\prime}}\right)=<B^{\prime} \backslash\{u, u+w\}>,
$$

and so $\operatorname{dim}\left(V / F\left((u, u+w)_{B^{\prime}}\right)\right)=2$. Hence $(u, w)_{B},(u, u+w)_{B^{\prime}} \in G A I(V)$, and

By Proposition 1.3, $\operatorname{GAI}(V) \notin \boldsymbol{G S S F} \cdot \mathrm{e} \| 9$
Conversely, if $\operatorname{dim} V \leq 1$, then $G A I(V)=G(V)$ which belongs to $\boldsymbol{G S S F}$

Finally, we show that for a fixed basis B of V, the group $G_{B}(V)$ belongs to the class $\boldsymbol{G S S F}$ if and only if $|B| \leq 2$.

Theorem 3.2.3. For a fixed basis B of $V, G_{B}(V) \in \boldsymbol{G S S F}$ if and only if $|B| \leq 2$.

Proof. Assume that $|B|>2$. Let $u, v, w \in B$ be distinct. Then

where \cdot is the usual multiplication. Hence $G_{B}(V) \in \boldsymbol{G S S F}$.

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวัทยาล่ย }
\end{gathered}
$$

REFERENCES

[1]. Adkins, W. A., and Weintraub, S. H. Algebra. New York: Springer-Verlag, 1992.
[2]. Chaopraknoi, S. Generalizations of some theorems in group and ring theory to skew-rings. Master's Thesis, Department of Mathematics, Graduate School, Chulalongkorn University, 1998.
[3]. Chu, D. D., and Shyr, H. J. Monoids of languages admitting ring structure. Semigroup Forum 19 (1980): 127-132.
[4]. Clifford, A. H., and Preston, G. B. The Algebraic Theory of Semigroups. Vol. 1, Mathematical Surveys, American Mathematical Society, Providence, R. I., 1961.
[5]. Higgins, P. M. Techniques of Semigroup Theory. New York: Oxford University Press, 1992.
[6]. Hoffmann, K., and Kunze, R. Linear Algebra. $2^{\text {nd }}$ ed., Prentice-Hall, New Jersey, 1971.
[7]. Howie, J. M. An Introduction to Semigroup Theory. London: Academic Press, 1976.
[8]. Hungerford, T. M. Algebra. New York: Springer-Verlag, 1974.
[9]. Isbell, J6R. On the multiplicative semigroup of a commutative ring. Proceedings of the American Mathematical Society 10(1959): 908-909.
[10]. Kemprasit, Y. Hyperring structures on some subsemigroups of linear transformations. Italian Journal of Pure and Applied Mathematics 12 (to appear).
[11]. Kemprasit, Y., and Triphop, N. Some matrix groups admitting skewsemifield structure. East-west Journal of Mathematics 3(2001): 11-22.
[12]. Lawson, L. J. M. The multiplicative semigroup of a ring, Doctoral dissertation, University of Tennessee, 1969.
[13]. Light, S. On the class of semigroups admitting ring structure. Semigroup Forum 13(1976): 37-46.
[14]. Mitchell, S. S., and Sinutok, P. The theory of semifields, Kyungpook Mathematical Journal 22(1981): 325-347.
[15]. Peinado, R. E. On semigroups admitting ring structure. Semigroup Forum 1(1970): 189-208.
[16]. Satyanarayana, M. On semigroups admitting ring structure. Semigroup
Forum 3(1971): 43-50.
[17]. Satyanarayana, M. On semigroups admitting ring structure II. Semigroup Forum 6(1973): 189-197.
[18]. Satyanarayana, M. On 0-simple semigroups admitting ring structure.
Semigroup Forum 19(1980): 307-312.

จุฬาลงกรณ์มหาวิทยาลัย

VITA

Mr. Manoj Siripitukdet was born on July 21, 1960 in Phitsanulok. He got a Bachelor of Science in 1982 from Srinakharinwirot University in Phitsanulok. In 1988, he got a Master of Science at Chulalongkorn University. He started working as an instructor at the Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok in 1994. For his Ph.D. program in mathematics, he got a UDC scholarship to study at Chulalongkorn University in 1997. He was sponsored by this scholarship for three years. He got married in 1991 and now he has two daughters.

