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CHAPTER 1

INTRODUCTION

An edge-magic total labeling is motivated by the idea of magic squares in
number theory. In 1970 A. Kotzig and A. Rosa [6] defined an edge-magic total
labeling of a graph G as a bijection from V(G) | E(G) to the set of integers from
1 to |V(G)|+ |E(G)| such that the sum of labels on an edge and its two endpoints
is the same for all edges and G is called edge-magic (graph). They proved that
complete bipartite graphs I, ,, are edge-magic for all n and m, cycles C), are
edge-magic for all n > 3 and the disjoint union of n copies of P, is edge-magic
where n is odd. In 1996 G. Ringel and A. S. Llado [8] proved: graphs with p
vertices and ¢ edges are not edge-magic if ¢ is even and p + ¢ = 2(mod 4) and
each vertex has odd degree and they also showed that wheels W, are not edge-
magic when n = 3(mod 4). In 1998 R. D. Godbold and P. J. Slater [5] found
the maximum and minimum values of magic sums for cycles C},. In 1999 W. D.
Wallis, E. T. Baskoro, M. Miller-and M. Slamin [10} enumerated every edge-magic
total labeling of complete graphs K, and proved that n-suns and (n, 1)-kites are
edge-magic. R. Ichishima, R: M. Figueroa-Centeno and F. A. Muntaner-Batle [1]
proved that fans f,, for all n, ladders L,, when n is odd and books B,, for all n are
edge-magic. In 2000 J. Wijaya and E. T. Baskoro [11] showed that the disjoint
union of m copies of €}, when m and n are odd and the disjoint union of m copies
of P, where m is odd are edge-magic. This thesis surveys, collects many classes of
graphs that can admit an edge-magic total labeling and considers such a labeling

applied to some classes of disconnected graphs. Also proofs of some theorems are



rewritten for better understanding.

There are four chapters in this thesis. In Chapter I, we introduce some authors
who have studied edge-magic total labelings on many classes of graphs.

In Chapter II, we give definitions of varieties of graphs, a lemma and proposi-
tions that will be used in this thesis. Also examples are provided.

In Chapter III, edge-magic total labelings on many classes of connected graphs
are discussed and edge-magic total labelings on connected graphs: an (n, 1)-kite
and an (n, m)-pineapple, are shown.

In Chapter IV, edge-magic total labelings on some classes of disconnected
graphs are discussed and we also show edge-magic total labelings on the following
disconnected graphs: the graph m(n, 1)-kites, the disjoint union of m copies of
(n, 1)-kite, when m and n are odd and the graph mP, | Jm K7, the graph consists
of the disjoint union of m copies of P, and the disjoint union of m copies of K,

when m is odd and n is even.



CHAPTER I1

DEFINITIONS AND EXAMPLES

We first introduce the definitions, follow by examples, a lemma and propositions

that are needed in the next chapters.

Definition 2.1. A graph G consists of a finite nonempty set V(G) of elements,
called vertices, and a set E(G) of 2-element subsets of V(G), called edges.

We call V(G) as the vertez-set of G and F(G) as the edge-set of G.

If {z,y} is an edge in a graph G, then an edge {x,y} joins = and y, or z and y

are adjacent, or an edge {x,y} is incident to x (or y). We usually write {z,y} as
xy.
Definition 2.2. A graph H is a subgraph of a graph G if V(H) C V(G) and

E(H) C E(G).

Definition 2.3. A graph G is connected if for any given pair of vertices a and b
there is a finite sequence of distinct vertices and-edges of the form v;y, €;,, vy, ...,

€i,, Vi, where v;;.= a and v;,; = b and e;; = U,V , €1y = VigViy, - - -, €, = Uiy 1 Vi,

n

and disconnected otherwise.

Definition 2.4. A component of a graph G is a connected subgraph of G that is

not contained in any larger connected subgraph of G.

Definition 2.5. The degree of a vertex v in graph G, denoted by deg v, is the

number of edges incident to v.

Definition 2.6. Let Gy and Gy be graphs with disjoint vertex-sets V(G1) and

V(G3) and edge-sets E(G1) and E(G3) respectively. The join of Gy and G,



denoted by G1+Gs, is a graph with the vertex-set V(G1)|JV(G2) and the edge-

set F(Gh)J E(G3) and all edges joining vertices in V(G;) and V(Gs).

Definition 2.7. A cycle C,,, n > 3, is a graph which the vertex-set is

{v1,v9,...,v,} and the edge-set is {€1 = v1v2, €3 = VoU3, ..., €p_1 = Up_1Up, €, = VyU1 }.
Definition 2.8. A path P, is a cycle with an edge deleted.

Definition 2.9. A complete graph K, is a graph of n vertices which every two

distinct vertices are adjacent.
Definition 2.10. The wheel W,,, n > 4, is the graph K; 4+ C,.
Definition 2.11. The fan F, is the graph P, + K.

Definition 2.12. An n-sun is a cycle C,, with an edge terminating in a vertex of

degree 1 attached to each vertex.

Definition 2.13. An (n, t)-kite is a graph which consists of a cycle C,, and a

path graph P,,; (the tail) attached to one vertex.

Definition 2.14. A complete bipartite graph K, ,, is a graph whose the vertex-set
can be partitioned into two subsets V; and V; where |Vi| = n and |V3| = m and

two vertices ‘are adjacent if they lie in different sets.
Definition 2.15. A star is a complete bipartite graph K ,,.

Definition 2.16. Let G; and G; be graphs with disjoint vertex-sets V(G;) and
V(G3) and edge-sets E(G;) and E(G2) respectively. The product of Gy and G,
denoted by G X Gy, is a graph with the vertex-set V(G1) x V(G3) and specified by
putting (uq,us2) adjacent to (v, vy) if either uy = vy and ugve € E(Gg) or us = vg

and ujv; € E(Gy).

Definition 2.17. The ladder L, is the graph P, x P,.



Definition 2.18. The book B, is the graph K, x K.

Definition 2.19. An (n, m)-pineapple is a graph which consists of a cycle C,

and m copies of P, attached to one vertex.
Definition 2.20. A tree is a connected graph with n vertices and n — 1 edges.

Definition 2.21. Let G4,Gs,...,G,, be graphs with disjoint vertex-sets
V(G1),V(G3),...,V(Gpm) and edge-sets E(Gy), BE(Gs),. .., E(G,,) respectively.
The disjoint union of G1,Gs,...,G,,, denoted by Gy JG2U...UGm, is
a graph with the vertex-set V(G)JV(G2)J.. .UV (G,,) and the edge-set
EG)UEG)U...UEGH).

If Gi=Gy=...=Gp =G then G1[JG2J...UG,, is denoted by mG and

is called the disjoint union of m copies of G.

Definition 2.22. A caterpillar CP,, ,, is the graph K ,, J...|J K1, in which

,,,,,

each K ,, shares exactly one edge with K ,,,,, and t—1 is the length of the skeleton

path.

Figure 2.1 and figure 2.2 show diagrams which represent Cs, Wy, Ky, Ps, F5,

8-sun, (4,2)-kite, Ks4, K15, Ly, By, (5,4)-pincapple and C'Pj 46.4.



®

G W=K+ G
E @ & ® L @
Ky R
=Rt K, 8-sun
(4,2)-kite Ky

Figure 2.1: Diagrams which represent Cs, Wy, Ky, Ps, F5, 8-sun, (4, 2)-kite and

K274.



Kis Ls=RB xB

B =Ky 41X K (5, 4)- pineapple

CP 464

Figure 2.2: Diagrams which represent K 5, Ls, By, (5,4)-pineapple and C' Py 46.4.



Definition 2.23. An edge-magic total labeling on a graph G is a one-to-one
function from V(G)|J E(G) onto the set {1,2,...,p + q} where p = |V(G)| and

q = |E(G)| with the property that, for any edge xy

f@) + fley) + fly) =k
for some constant k which is called a magic sum.

Definition 2.24. A graph G is called edge-magic if it admits an edge-magic total

labeling.

Example 2.25. A tree T with vertex-set V(T) = {vy,vq,v3,v4,v5,06} and
edge-set E(T) = {v1vq, Vo3, 0405, U50g, 205 } is edge-magic with & = 18, that

18

Define f: V(T)JE(T) — {1,2,...,11} by f(v1) =3, f(v2) = 11, f(v3) = 2,
flua) = 8, f(vs) = 1, flvs) = T, flui) = 4, f(vov3) = 5, f(vavs) = 9,

=3+4+11=18.

+ f(v1g) + f(v2)

+ f(vavs) + f(vs) =11 +5+2 = 18.
+ fvgvs) + f(vs) =8+ 9+1=18.
+ f(osve) + f(vg) = 1+ 10+ 7 = 18,
+ f(v2vs) + f(vs)

=11+6+1=18.



3 8
4 9
6
11 1
5 10
2 7

Figure 2.3: An edge-magic total labeling of a tree T'.

Example 2.26. The graph in figure 2.4 is a famous graph which is disscussed by
Julius Petersen and is named Petersen graph after him in a paper of 1898 [12].

Petersen graph is edge-magic with & = 29.

16 ' ‘ 20
7 8
13

9

14 6

Figure 2.4: An-edge-magic total labeling of Petersen graph.

Example 2.27. 3C5, the disjoint union of 3 copies of (3, is edge-magic with

k= 24.
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Figure 2.5: An edge-magic total labeling of 3C}.

From now on we assume the following:

1. G is a graph with vertex-set V(G) = {vy,v2,...,v,} and edge-set E(G) =
{e1,e2,...,¢,} that'is |V(G)|=p and |E(G)| =g,

2. the degree of v; is d;,

3. if G is edge-magic, then k is a magic sum, f is an edge-magic total labeling
and the label of v; is x;,i.e. f(v;) = 2,

4. M=p+qg+1,

5. S ={z; : 1 <i<p}, and
P

6. S:in.
i=1

Lemma 2.28. [10] If G is edge-magic, then
P
(a) kg= (%) + Z (d; — 1)x;, and
i=1

() (%) <8 <pa+ (73)-

Proof. (a) Since (G is edge-magic, the sum of all edge sums, the sum of labels of an
edge and its two endpoints, is kg which contains each label once and each vertex
label z; an additional d; — 1 times. So we obtain (a).

(b) The sum s is between the sum of 1 to p and the sum of 1 + ¢ to p + ¢ or

p+q p+1 p+q
Zz<s< Zz SmceZz-( )and Zz- l+9)+2+q) +...+

i=1 i=1+q i=1+¢

(p+4q) =pg+ <p;1), (P1) < s < pq+ (*1). 0
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Proposition 2.29. [8] If q is even, p + q¢ = 2(mod 4) and each vertexr has odd

degree, then G is not edge-magic.

Proof. Suppose that G is edge-magic. By lemma 2.28(a)

= () S0,

_(p+q +21)(p+ q) + (dy — e+ (do — Dxo+ ... + (dy — 1)z,

Since p+ q = 2(mod 4), p + g = 4t + 2 for some t € Z. So

py = D2

(dy =Dy + (da — Do+ ...+ (dp — Dz,

= (4t +3)(2t+ 1)+ (dy — V)zy + (de — V)zo + ... + (dp — 1)p.
Since ¢ is even, 2 can divide kg. We consider only 4¢ + 3 |, because 2t + 1 is odd
and 2 can divide (d; — 1)x; for all 7, since d; is odd. Since 4t is even, 4t + 3 is odd.

So 2 can not divide kg, a contradiction. Hence G is not edge-magic. (]

Definition 2.30. Let G be edge-magic. The duality f' of f (or dual labeling) is
defined by f'(v;) = M — f(v;) for any vertex v; and f'(e;) = M — f(e;) for any

edge e; .

Proposition 2.31. [10]. If G is edge-magic, then the duality f' of f is an edge-

magic total labeling with magic sum k' = 3M — k and the sum s' = pM — s.

Proof. Assume G is edge-magic.. Let f be an edge-magic total labeling, so f’ is
one-to-one and onto. Let v;v; be an edge in G. Then k = f(v;) + f(viv;) + f(v;).
So

k=M — f'(vi) + M — f'(viv;) + M — f'(vy).

Then

E = f/(UZ') + f’(Uin) + f/(’Uj) =3M — k.
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And

0J

Example 2.32. The graph G in figure 2.6 with the vertex-set V(G) =
{v1,v9,v3,v4} and the edge-set E(G) = {v1vs, vav3, U304, v4v1, 103} is edge-magic
with £ = 12.

Define f: V(G)JE(G) — {1,2,...,9} by f(v1) =1, f(v2) = 2, f(v3) = 4,
fvg) =3, f(riva) =9, f(wavs) =6, f(vsvy) =5, f(vgvy) =8, f(vivz) = 7. Then

s = 10.

k=12 © s=10 k'=18 < s=30

Figure 2.6: An edge-magic total labeling and its duality.

Then the duality f’ is defined by f'(v1) =9, f'(va) = 8, f'(v3) =6, f'(v4) =T,
f'(vive) =1, f(vavs) = 4, f'(vsvs) = 5, f'(vgv1) = 2, f'(v1v3) = 3 with &' = 18

and s’ = 30.



CHAPTER III
EDGE-MAGIC TOTAL LABELINGS ON CONNECTED

GRAPHS

In this chapter, we discuss some connected graphs which are or are not

edge-magic and give some examples of small cases.
Theorem 3.1. [10] The wheel W,, when n = 3(mod 4) is not edge-magic.

Proof. Since n = 3(mod 4), there exists t € Z" such that n = 4¢ + 3. Since the

number ¢ of edges of W, is 2n which is even,

p+qg= (n+1)+2n
S
= 3(4t+3)+1
= 12t + 10
= 4(3t+2)+ 2.
Thus p+q = 2(mod 4). Clearly every vertex of W, has odd degree. By proposition

2.29, W, is not edge-magic. O

Theorem 3.2. [8] The complete graph K, when n = 4 or 6(mod 8) is not

edge-magic .

Proof. Case 1: n = 4(mod 8). There exists t € Z* such that n = 8¢ + 4. Since
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the number ¢ of edges of K, is (Z) which is always even,

+ +(0
=N
prgq 9

n®—n
2
_n(n+1)
i A2
(8¢ +4)(8t + 5)
2

= (4t + 2)(8t +5)

:n+

= 32> + 36t + 10

= 4(8% + 9t + 2) + 2.
Thus p + ¢ = 2(mod 4). Since the degree of each vertex of K,, is n — 1 which is
odd and ¢ is even, by proposition 2.29, K, is not edge-magic.

Case 2: n = 6(mod 8). The proof is similar to the previous case. O

Definition 3.3. [7] A well-spread sequence of length n is a sequence
A = (a1, as,...,a,) of positive integers with the following properties:
lL.O0O<ai<a<... <a,
2. a; + a; # ap + a; whenever ¢ # j and k # [ (except, of course, when
{ai,a;} = {ar, ar}).
And we define p(A) = a, + ay—1 —az = a1 + 1 and p*(n) = minp(A) where the

minimum is taked over all well-spread sequences A of length n.

Remarks 3.1. The values of p*(n) are discussed in [6] and show that

3. p*(n) > n® —5n + 14 when n > 8.

Theorem 3.4. [10] If G is edge-magic which contains a complete subgraph with

n vertices, then the number of vertices and edges in G is at least p*(n).
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Proof. Assume that G is edge-magic with a magic sum k£ and contains a complete
subgraph H with n vertices by, bs, ..., b,. Let f be an edge-magic total labeling
of G and f(b;) = a; for all 7. So we can assume that a; < ay < ...< a,. Then
A = (ay,a9,...,a,) is well-spread sequence. So f(b,b,_1) = k — a, — a,_1 and
f(boby) = k—ay—ay. Then k —a,, —a,-1 > 1 and k —as —a; < p+q. Therefore

p+q2an+an,1—a2—a1+1:p*(n). O
Theorem 3.5. [10] No complete graph with more than 6 vertices is edge-magic.

Proof. Suppose a complete graph K,, where n > 6 is edge-magic.By theorem 3.4

"+ (Z) > p*(n). (3.1)

For n = 7, by remarks 3.1 and the equation (3.1)

7
28 =7+ (2) > p*(7) = 30,

a contradiction.

For n = 8, by remarks 3.1 and the equation (3.1)

8
36 =8+ (2) > p*(8) = 43,

a contradiction.

For n > 8, by remarks 3.1 and the equation (3.1)

n + (Z) > p*(n) > n® —5n + 14.
So
1

11
2
—n — — 14 < 0.
Qn 2n+ <

If 1n2—%n+14:0,then n = LEVITTSEY) ”112_8(48):40r7.

2 2
If %nQ—%n+14<0,then 4<n<T.

All cases are contradicted. Therefore K, is not edge-magic when n > 6. 0



n s k
odd sn(n+1) s(5n + 3)
sn(n + 3) s(5n +5)
sn(n+2i—1) | 3(5n+2i+1)
sn(3n+1) 1(Tn +3)
even n?+n 2n+2
%nQ + 2n gn +3
1 : 5 ,
50’ +in 2n+i+1
%n2 %n +1

16

Table 3.1: The possible values s with corresponding magic sums k of cycles C,.

Next we will consider some graphs which are edge-magic. A. Kotzig and A.

Rosa [6] proved that all cycles are edge-magic and R. D. Godbold and P. J. Slater

[5] can find the minimum and maximum values of magic sums k; later, W. D.

Wallis and others [10] can find many possible values of magic sums k. So we start

with the way to find magic sums k.

Proposition 3.6. [10] If cycle C, is edge-magic, then possible values s with

corresponding magic sums k are in table 3.1.

Proof. Assume C,, is edge-magic. Since the degree of the cycle C), is 2, by lemma

2.28(a)

2 1
kn:(n; )—l—s.
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So
2n(2 1
kn = M (3_2)
2
The equation (3.2) is possible if n divides s. So s = n(k —2n — 1).
By lemma 2.28(b),
n(n+ 1) §8§n2+n(n+1).
2 2
So
2
n(n+ 1) =y 2n +(n—|—1)n'
2 A 3
Therefore
@ <s< w (3.3)

By the equations (3.2) and (3.3) we can know all possible values s, and also can

get magic sums k which are corresponded to s. O

We are going to show that C, is edge-magic by giving the notations for C,, as
follows: V(C,) = {wi,vs,...,v,} and E(C,) = {ei,es,...,e,} where e; = vjvs,

€y = VU3, ...,En_1 = Up_1Up, €, = VU1, that is
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Theorem 3.7. [10] Every odd cycle C,, is edge-magic with k = 5(5n + 3).

Proof. Let n =2t + 1 for some t € Z" and define a labeling f as follows:

1 fori=1,3,...,2t +1,
f(vi):
t+ 52 fori=2,4,...,2t
and
4t +2—14 fori=1,2,...,2t,
flei) =

4t + 2 for i = 2t + 1.

The labeling f is shown in figure 3.1.

Figure 3.1: An edge-magic total labeling of Cy1 with k = 5¢ + 4 for some t € Z*.

The numbers 1,2, 3, ..., t+ 1 are labels of vy, vs, vs, +., v9y1. The numbers
t+2, t+3, t+4, ..., 2t+ 1 are labels of vy, vy, vg, ..., V9. The numbers
2t +2,2t + 3,...,4t + 1 are labels of eq, €91, ...,e1 and the number 4¢ + 2 is
a label of eg1 1. So all numbers 1 through 2n = 4t + 2 are used exactly once.
Observe that

fore;1=1,3,...,2t — 1,

foi) + fles) + f(vira) = (51) + (4t +2 — i) + (t + H52) =5t + 4 = 3(5n + 3),
for e;; 1 =2,4,...,2t,

Fi) + fle) + floigr) = 4+ S2) + (4t +2 — i) + () =5t + 4 = L (5n + 3),
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and f(v1) + f(ears1) + fvaes) = L+ (46 +2) + (t+1) = 5t + 4 = 5(5n + 3).

Therefore f is an edge-magic total labeling with & = 5(5n + 3) (this case is for

L
2

the smallest magic sum k in proposition 3.6). O
By duality, we have the following corollary.

Corollary 3.2. [10] Ewvery odd cycle C,, is edge-magic with k = %(771 + 3). O

Theorem 3.8. [10] Every odd cycle C,, is edge-magic with k = 3n + 1.

Proof. Let n = 2t + 1 for some t € Z" and define a labeling f as follows:

i fori=1,3,...,2t + 1,
fo) =
2t+i+1 fori=24,... 2t
and
At —2i+2 fori=1,2,... 2t
flei) =

4t + 2 for i =2t + 1.
The proof is similar to the previous theorem. Therefore f is an edge-magic total

labeling with &k = 3n + 1. O
By duality, we have the following corollary.

Corollary 3.3. [10] Every odd cycle C, is edge-magic with'k = 3n+2. d

Theorem 3.9. [10] Every even cycle Cy, is edge-magic with k = %(571 +4).

Proof. Assume n = 2t for some t € Z™.
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Case 1: t is even. Let t = 2t' for some t' € Z* and define a labeling f as

follows: )
ol fori=1,3,...,2t' +1,
6t for i = 2,
flo) = 44 fori=4.6,...,2¢,
= for i =2t" +2,2t' +4, ... 4¢,
b=l for § = 2t' + 3,2t/ +5,...,4t' — 1;
\
and

4 +1 for i =1,

4t for i = 2,

fle) =19 8¢ —i+1 fori=3,4,....2¢ andi=2t'+2,2t' +3,... 4t — 1,
8t —1 for i =2t' + 1,

8t for ¢ = 4t'.

\

From the given labeling f, the numbers 1,2,...,t + 1 are labels of vy, vs, ...,

Ugpry1. The numbers ¢ + 2, + 3,...,2t' + 1 are labels of voy o, Voyria, ..., Vay.
The numbers 2t' + 2,2t' + 3,...,3t" are labels of vy, vg, ..., vo. The numbers
3t' + 1,3t +2,. .., 4t"— 1 are labels of voy 13, Uapys, + ..y Uap—1. And the numbers

4t" and 4¢' + 1 are labels of e and e;. The numbers 4t + 2, 4’ +3, ..., 6t' — 1 are
labels of ey 1, €49, ..., €ap12. The number 6¢' is a label of vy. The numbers
6t'+1,6t'+2, ..., 8t —2 are labels of eay, €gp_1, ..., e3. And the numbers 8’ —1
and 8t" are labels of ey 1 and eg. So all numbers 1 through 2n = 4t = 8t' are
used exactly once. Observe that

for) + fle) + flva) =1+ (4 + 1) + 6t/ = 10t' + 2 = L (5n + 1),

f(va) + flea) + flvs) = 6’ + (4t') + 2 = 10t + 2 = 5(5n + 4),

for e;; i =3,5,...,2t' — 1,
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Fi) + fle) + floign) = 5+ (8 + 1 — i) + 255 — 10 + 2 = 3 (5n + 4),
for e;; i =4,6,...,2t,
Fui) + fle) + fven) = 5 4+ (8 + 1 — ) + HLE = 10t + 2 = L(5n + 4),
fvaria) + flearin) + f(vargo) =8 + 1+ (8 = 1)+ +2 = 10t' + 2 = 5(5n + 4),
2

for e;; 1 =2t + 2,2t +4,...,2t' — 2,
Fi) + fles) + fvigr) = 52+ (8 — i + 1) + 2= = 10¢' + 2 = 1(5n + 4),
for e;; i =2t/ + 3,2t/ +5,...,2t' — 1,
Fi) + fles) + fugn) = 2= 4 (8¢ — i+ 1) + B52 = 10¢' + 2 = 1(5n + 4),
and f(var) + f(ea) + floy) =2t' + 1+ (8') + 1 = 10t + 2 = 3(5n + 4).

Case 2: t is odd. Let t = 2t' + 1 for some t' € Z" and define a labeling f as

follows:

=
—

2d' for 4% 1,3% . 21"% 1,

6t' + 3 for i =2,

Wiitd {50 j =4.6,...2,

flvd =4q 244 for s —2¢ + 2

Caxt fori =2t'+3,2t' +5,...4t' + 1,

LD for = of 4 4,2 +6,... 4F)

2t +3 for i = 4t + 2;
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and

4t + 3 for i =1,

4t + 2 for i = 2,

8t/ —i+4 fori=3,4,....2 andi=2t'+3,2 +4,... 4t
fle)) =19 8t/ +4 for i = 2t/ + 1,

8t' + 2 for i = 2t' + 2,

6t' + 2 for ¢ =4t + 1,

8t' +3 for ¢4 = 4t" + 2.

\

We can verify similarly to the case 1. Therefore f is an edge-magic total labeling

with k& = $(5n + 4). O
By duality, we have the following corollary.

Corollary 3.4. [10] Every cycle C,, when 4 divides n is edge-magic with

k=3(Tn+2). O
Theorem 3.10. [10] Every cycle C,, when 4 divides n is edge-magic with k = 3n.

Proof. For n = 4 we use the same labeling from theorem 3.9. So assume n > 8

and n = 4t for some t € Z". Define a labeling f as follows:

(

7 forv=1,3,...2t — 1,

At +i+1 fori=24,...,2t—2,

1+ 1 fori=2t,2t+2,...,4t -2,
flvi) =

At + i fori=2t+1,2t4+3,...4t — 3,

2 for i =4t — 1,

2n — 2 for ¢ = 4t;
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and
)
8 —2i—2 fori=1,2...,2t—2andi=2t2t+1,... 4 —3,
8t fori =2t —1,
fle) =9 8t—1 for i = 4t — 2,
4t for ¢ = 4t — 1,
4t + 1 for i = 4t.

\

We can verify similarly to the previous theorem. Therefore f is an edge-magic

total labeling with & = 3n. 0
By duality, we have the following corollary.

Corollary 3.5. [10] Ewery cycle C,, when 4 divides n is edge-magic with

k= 3n+3. 0
Table 3.2 shows all possible edge-magic total labelings for ', when n < 6.
Theorem 3.11. [10] Ewvery path graph P, is edge-magic.

Proof. Let f be an edge-magic total labeling from theorem 3.7, 3.8, 3.9 and 3.10
where the number 2n is a label of an edge. If we delete the edge which label 2n,

then a path graph P, is edge-magic. O



cycle k S label z1,29,...,2,
Cs 9 6 1,2,3
10 9 1,3,5
11 12 2,4,6
o) 15 4,5,6
Cy 12 12 1,3,2,6
13 16 1,4,6,5
1,5,2,8
Cs 14 15 1,4,2,5,3
16 25 1,5,9,3,7
1,7,3,4,10
Cs . 24 1,5,2,3,6,7
1,6,7,2,3,5
1,5,4,3,2,9
18 30 1,8,4,2,5,10
19 36 1,6,11,3,7,8
1,7,3,12,5,8
1,8,7,3,5,12
1,8,9,4,3,11
2,7,11,3,4,9
3,4,5,6,11,7

Table 3.2: All possible edge-magic total labelings for C,, when n < 6.
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Theorem 3.12. [8] A caterpillar CP,,, n,, .. n, 15 edge-magic.

Proof. Define f by mapping consecutively (we start at the number 1) the non-
center vertices of the stars K ,,,, K1 ng, K1 s, - .. and then the non-center vertices
of the stars K ,,, Kin,, King, -... And we map the edges of the stars Ki,,,
Kin, 1, Kin 5, ...by starting at the edge which is incident to the vertex with

the highest label. Then all vertices and edges are labeled.

K
Linig

CER 03

Kl,ni

Figure 3.2: A labeling of caterpillar in the star A, ,,, and the star K, ., .

From the given labeling f, we consider the star K7, and the star K ,,,,, in figure
3.2. Ifa,a+1,...,a+n; —1 are labels of the non-center vertices of the star K ,,
and b,b+1,...,b+n;1; —1 are labels of the non-center vertices of the star K .,
and c,c+1,...,¢c+n;p1 +n; — 2 are labels of all edges of the star K ,, and the
star K p,,,, then the sum of labels of each edge and its two vertices which are

adjacent is a + b+ ¢ + n;.1 + n; — 2 that is the same for all edges. O

Conjecture [8] FEvery tree is edge-magic.
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. 3 6 7
31 |30 5 23 /oo

29 4 4 9

21
0 28 25 13 20 7
7 26 9 hg
14 16
11 12 15

k=42

Figure 3.3: An edge-magic total labeling of C'P; ¢4 with a magic sum k = 42.

We are going to show that an n-sun is edge-magic by giving the notations for
an n-sun as follows: V (n-sun) = {vy,va,...,v2,} and F(n-sun) = {e1,ea, ..., €2,}
where e; = v1Uy, €0 = Vo3, ..., €41 = Up_1Upn, € = VU1 and e,y; = vpav; for

1=1,2,...,n, that is

Theorem 3.13. {10]- Every n-sunis edge-magic with k = +(11n+3) when n is odd.

Proof. Let n = 2t + 1 for some ¢t € Z" and define a labeling f as follows:
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y

HAGS for i =1,3,...2t + 1,

HA 43t fori=2,4,...,2t,

flo) = q &2 for i =2t +2,2t+4,... 4,

L for =2t 43,20+ 5,... 4t + 1,

1 for ¢+ =4¢* 2;
\
and
.
6t =143 forv=1,2,...,2t,
6t + 3 fori =2t +1,
fles) =
10t—e¢+5 fori=2t+2,2t4+3,...,4t+1,
8t +4 for .= 4t + 2.
\
From the given labeling f, the numbers 1, 2, ..., t+1 are labels of vy 0, Vo3,
Vogas, - -+, Ugrr1. Lhe numbers ¢+ 2, £t + 3, ..., 2t + 1 are labels of vg19, vos14,
.., Ugy. The numbers 2t + 2, 2t + 3, ..., 3t + 2 are labels of vy, vs, ..., vVori1.

The numbers 3t +3, 3t + 4, ..., 4t + 2 are labels of vs, vy, ..., v9;. The numbers
4t + 3, 4t + 4, ..., 6t + 2 are labels of ey, €91, ..., €;. The numbers 6t + 3 is a
label of eg;1 1. The numbers 6t 44, 6t + 5, ...; 8t 4+ 3 are labels of ey 1, €4y, - ..,
egtro. The number 8t 44 is a label of eg 5. So all numbers 1 through 4n = 8t +4
are used-exactly once. Observe that

fore;1=1,3,...,2t — 1,

F0)+ f(e) + fvigr) = B 4 (6t — i 4 3) + L 43t = 11t + 7 = 1(11n+3),

for e;; 1 =2,4,...,2t,

F0) + f(&) + f(vipr) = B2+ 3t + (6t — i+ 3) + FEE = 11t + 7 = 1(11n+ 3),
for eg41,
f(vag1) + fleayr) + f(vr) = W + (6t +3) + % =11t+7= %(11n+3),
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fore;; i =2t + 2,2t +4,...,4t,
flui) + fle) + f(vimern)) = %2 + (10t — i 4 5) S
— 11t +7=(11n+3),
fore;1=2t+3,2t+5,...,4t + 1,
=11t + 7 = S(@1n 3),
and f(vars1) + flearsn) + f0sp0) =8t +24 (8t +4)+1 =11t +7 = 3(11ln+3).

Therefore f is an edge-magic total labeling with & = 1(11n+3) when nisodd. O

Theorem 3.14. [10] Bvery n-sun is edge-magic with k = 5(11n + 4) when n is

even.

Proof. Let n = 2t for some ¢ € Z*.

Case 1: t is even. Let t = 2t' for some ' € Z* and define a labeling f as

follows:
(% fori=1,3,...,2t +1,
10t/ for i =2,
wlar fori=4,6,...,2t
L2 for i = 2t' 42,2t/ +4, ..., 4t
Ll for i= 2t/ +3,2t' + 5, .. 4t — 1
flo) =4 &L for i =4t + 1,4t +3,...,6t/ +1,
1 for i = 4t' + 2,

L_9t+1 fori=4t'+4,4¢ +6,...,6t,
i2 for i =6t +2,6t' +4,...,8 — 2,
2 for i = 8t/,

Lot fori=6t'+3,6t +5,...,8' —1;
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and
8"+ 1 fori =1,
8t/ for i = 2,
12/ —i+1 fori=3,4,...,2

and i = 2t' +2,2t' +3,...,4t' — 1,
12t for i =2t" + 1,
12t for i = 4¢/,
W0 —i 41 fori=dt' + 1,4t +3,... 6t +1,
12t/ + 1 for i = 4t' + 2,
20t — i+ 1 fori— At +4,4¢ +6,... 6
20t — 1 fori = 6t' +2,6t' +4,...,8t — 2,

20t —i+2 fori=6t+3,6t+5,... 8 —1,

16" — 1 for i = 8t'.

\

From the given labeling f, the numbers 1 and 2 are labels of vy 5 and vgy. The
numbers 3, 4, ..., t'+ 1 are labels of vy 4, V416, --., Vgr. The numbers ¢’ + 2,
t'+3, ..., 2t" are labels of vgy 35 Vspts, - .., Ugge1. The numbers 2t' + 1, 2t' + 2,
..., 3t'+ 1 are labels of vy 11, Vairy3, +. ., Veyi1. The numbers 3t +2, 3t' +3, ...,
4t" are labels of vey 12, Vgt iay - oy Ugp—2. The numbers 4¢' +1, 4’ +2, ..., 5t +1
are labels of vy, v, ..., vopy1. The numbers 5t' +2, 5t/ +3, ..., 6t"+ 1 are labels
of voyyo, Uopia, ..., Vgp. The numbers 6t' + 2, 6t' + 3, ..., 7t" are labels of vy, vg,
..., Ugpr. The numbers 7¢' + 1, 7t' +2, ..., 8" — 1 are labels of vy 3, voyys, ...,
vgp—1. The numbers 8¢ and 8t + 1 are labels of e; and e;. The numbers 8’ + 2,

8’ + 3, ..., 10t' — 1 are labels of eq_1, €49, ..., €a12. The number 10t is a

label of vy. The numbers 10" + 1, 10¢' + 2, ..., 12t' — 2 are labels of ey, egp_1,
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..., e3. The numbers 12¢' — 1, 12¢' and 12t' 4+ 1 are labels of g1, €4y and egyyo.
The numbers 12¢' + 2, 12¢' + 3, 12t/ + 4, 12t' +5, ..., 14t — 2, 14’ — 1 are labels
of egy_o9, egyr_1, €814, €813, - .., €112, €erre3. LThe numbers 14¢', 14t + 1, ...,
16t" — 2 are labels of egyi1, €, .., €a13. The numbers 16t — 1 and 16t" are
labels of egy and eg (1. So all numbers 1 through 4n = 8t = 16t¢" are used exactly
once. Observe that
for ey,
o)+ fer) + flog) =4 +14 (8 + 1)+ 10t/ = 22t' + 2 = 11t + 2 = 1(11n+4),
for es,
f(va) + flea) + flvs) =108 + (8t') + 4t/ +2 =22 +2 =11t + 2 = (11n +4),
for e;; i =3,5,...,2t' +1,
) + flea) + floin) = 8L 4+ (128 4 1 — ) 4 S0

=22t' +2 =11t +2 = 3(11n + 4),
for e;; i = 4,6,...,2t,
Fvs) + fles) + flupen) = T2 F (126 + 1 — i) gLl

=22t +2=11t + 2 = 3(11n + 4),
for e;; i =2t +2,2t + 4,...,4t,
Fvi) + fles) + flvipn) = S22 4 (120 4 1 — ) o B2

=22t/ 4+ 2 =11t + 2 = 3 (11n+ 4),
for e;; i =2t +3,2t' +5,..., 4t —1,
fvi) + fle) + Floipr) = BRI (L2041 —q) 4 B2

=22t' +2 =11t + 2 = 3(11n + 4),
for es 41,
f(v1) + fleapsr) + fogpyn) = 48 + 14 (16¢") + 2" + 1

=22t' +2 =11t + 2 = 3(11n + 4),
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for es 42,
F(v2)+ f(earso)+ fvapio) = 108+ (12t +1)+1 = 228’ +2 = 11t 42 = $(11n+4),
for e;; i = 4t' + 3,4’ +5,...,6t' + 1,
Fuicar) + f(e) + flo) = SHEBEEL (204 — 5 + 1) + (5
=22t +2 =11t + 2 = (11n + 4),
for e;; 1 = 4t' + 4,4t +6, ..., 61,
fUicar) + f(e) + flv)) = SHH2E 4 (20 =4+ 1) + & — 2t/ + 1
=2t'4 2 =11t + 2 = 1(11n + 4),
for e;; i = 6t' + 2,61 +4,...,8t' — 2,
Fvimar) + fles) + flug) = FHEHE2 4208 — i+ =52
=22t + 2 =11t +2 = L(11n + 4),
for e;; i =6t'+3,6t"+5,...,8' — 1,
Fviaw) + fle) + f(vy) = =L L 904 — 4+ 24 HL —9p
=22'+2=11t+2 = (11n + 4),
for egy,
flvaw)+ flesy) + flosy) = 68 + 14 (16t' —1)+2 = 22¢' +-2 = 11t +1 = (11n+4).
Case 2: t is odd. Let t = 2t" + 1 for some t' € Z " and define a labeling f as

follows:



i+8t'+5
2

10t' +5

i+12t'48
2

5t + 4

i+8H4T
2

i+12t'+6
2

6t' 45
i+l

2

1

I

3t'+3

32

fori=1,3,...,2t' + 1,

for 1 = 2,

for i =4,6,...,2t,

for i = 2t' + 2,

for i =2t"+3,2t' +5,...,4t' +1,
for i = 21’ T 4,2 +6,... 4t
for i = 4t' + 2,

for i — 4 43,44 + 5,....6t + 3,
for ¢ = 4t' + 4,

fori =4t + 6,4t +8,...,6t' + 2,
for i = 6¢' + 4,
fori=6t'+5,6t'+7,...,8 +1,
for i = 8t' + 3,

for i = 6t' +6,6t' +8,...,8t' +2,

for i =3t +4;



and

8t' +5
8t' + 4

12t/ —i+6

12t' + 6
12t/ +4
10t" +4
12¢' +5

fled) =19 206/ =i + 11

12t + 7
14t' +6

20t =i+ 9

16t 4+ 7

16t +5

\
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fori =1,
for i = 2,
for i =3,4,...,2t,

and for i = 2t' + 3,2t' + 4,...,4t,

fori=2t' + 1,
for i = 2t' + 2,
fori =4t' + 1,
for i = 4t' + 2,
for i = 4t' + 3,

and for i = 4t' + 5,4t +7,...,6t' + 3,
and for ¢ = 6t' + 6,6t' +8,...,8t' + 2,
for § = 4 + 4,

for i = 6t' + 4,

for i =4t + 6,4t +8,...,6t' + 2,
and for i = 6t"+5,6t'+7,...,8 + 1,
for i = 8t' 43,

for 1 = 8t + 4.

We can verify similarly to the previous case. Therefore f is an edge-magic total

labeling with k& = 1(11n + 4) when n is even. O
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k=29 k=35

Figure 3.4: Edge-magic total labelings of 5-sun and 6-sun with magic sums k& = 29

and k = 35 respectively.

We are going to show that an (n,1)-kite is edge-magic by giving the
notations as follows: V((n,1)-kite) = {vy,vq,..., 0,011} and E((n,1)-kite) =
{e1,€9,...,€n,enr1} wWhere e; = w041 for i = 1,2,... ,n—1 and e, = v,v; and

€ntl = UpUpt1, that is

Theorem 3.15. An (n, 1)-kite is edge-magic with k = 5(7Tn +9) when n is odd.

L
2

Proof. Let n = 2t + 1 for some t € Z" and define a labeling f as follows:

(

4t+ 54 fori=1,3,...,2t+1,

flo) =9 3t 4+ 51 fori=2,4,...,2,

4t + 4 for i = 2t + 2;
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and

.

1+2 fori=1,2,...,2t,
flei) =14 2 for i = 2t + 1,

| 1 for i = 2t + 2.
The numbers 1 and 2 are labels of es; 9 and €9 1. The numbers 3, 4, ..., 2t+2
are labels of ey, es, ..., e5;. The numbers 2t + 3, 2t + 4, ..., 3t + 2 are labels
of voy, voy 9, ..., vo. The numbers 3t + 3, 3t +4, ..., 4t + 3 are labels of vy,
Voi_1, - .., v1. And the number 4¢ + 4 is a label of vy, 5. So all numbers 1 through

2n = 4t 4+ 4 are used exactly once. Observe that

fore; i =1,3,...,2t =1,

fvi) + fle) + flvip) =4t + 52+ (i+2) + 3¢ el Z“ =Tt+8=31(Tn+9),
for e;; 1 =2,4,...,2t,

Foi) + fled) + flvipn) =8t £ 4 (i 4 2) + 4t 4+ ) — 7t 1 8 = L(7n +9),
for egt1,

f(v2t+]_) + f(€2t+l) i f(Ul) =4t + % I (2) +4t+3=Tt+8 = %(771 + 9),
for es o,

fvaso) 4+ fleaa) =+ fvaerr) =4t + 44 (1) + 3t +3 =Tt +8 = 3(Tn +9).

Therefore f is an edge-magic total labeling with k& = %(771—1— 9) when n is odd. O
By duality, we have the following corollary.

Corollary 3.16. [10] An (n,1)-kite is edge-magic with -k = 5(5n +9) when n is

odd. O
Theorem 3.17. An (n,1)-kite is edge-magic with k = 3n 4+ 4 when n is odd.

Proof. Let n =2t + 1 for some t € Z" and define a labeling f as follows:
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;

1+ 1 fori=1,3,...,2t+1,

fi) =< 2% 4+i+2 fori=24,. .. 2,

4t 4+ 4 for i = 2t + 2;
\

and
4

4t —2i+3 fori=1,2,...,2t,

fle) =< 4t +3 for i =2t + 1,

1 L0, —wa- 2.

\

It is easy to verify that f is an edge-magic total labeling with & = 3n 4+ 4 when n

is odd. O
By duality, we have the following corollary.

Corollary 3.18. An (n,1)-kite is edge-magic with k = 3n+5 when n is odd. [

k=20

Figure 3.5: Edge-magic total labelings of (5, 1)-kites with magic sums k = 22,

k=19 and k = 20..
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Theorem 3.19. [10] An (n, 1)-kite is edge-magic with k = 5(5n + 10) when n is

1
2

even.

Proof. Let n = 2t for some t € Z™.

Case 1: t is even. Let t = 2t' for some t' € Z* and define a labeling f as

follows: )
3 fori=1,3,...,2t +1,
6t' +1 fori =2,
A2 for g = 4,6,...,2¢,
f(vi) =
Ha for i =2t' + 2,2t +4,... 4t
ULEL for =2t +3,2t/ +5,...,4t' — 1,
8t +2 fori=4t +1;
\
and
(
4t + 2 forig 22451/
4¢ +1 for 1 =2
8' —i+2 fori=3,4,...2t' and i =2t' +2,2t' +3,... 4t — 1,
flei) = 3

8t for i =2t + 1,

8t +1 for i = 4t/,

kl for i =4t + 1.

It is easy to verify that f is an edge-magic total labeling with k& = %(571 + 10)
when n = 2t where t is even.
Case 2: t 1s odd. Let vy, vy, ..., v,41 be the vertices and for: =1,2,...,n — 1,

e; = vivr1 and e, = v,v; and e,y = V,_1Up11, that is
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e
Yn-1 "2 Vo

Let t = 2t' + 1 for some A\ \\\

fo 'zé-ﬁ-l,

d define a labeling f as follows:

AONUUINYUINNS )
RN ITNINENAY
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and

4t + 4 fori=1,

4 + 3 for 1 = 2,

8t' —i+5 fori=3,4,...,2t,

and for i = 2t' + 3,2t/ +4,...,4¢,

fle)) =4 8¢’ +5 for i = 2¢" 4 1,

8t'+ 3 for i = 2t + 2,

6t 43 for i = 4t' + 1,

8t' + 4 for i = 4t' + 2,

1 for 4 = 4t' + 3.

\

It is easy to verify that f is an edge-magic total labeling with k = 1(5n + 10)

when n = 2t where ¢ is odd. O
By duality, we have the following corollary.

Corollary 3.20. An (n,1)-kite is edge-magic with k = 3(7n + 8) when n is

odd. O

Theorem 3.21: [3] The fan F, is edge-magic-with k =-3n + 3 for all positive

teger n.

Proof. Let v; be the vertex of F,, for:=10,1,...,nande; =vgv; fori =1,...,n

and e, ; = vv;q fori=1,... n—1, that is
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Define a labeling f as follows:

1 forv
flwi) =

1-5(—1)"+6i

3 fore=1,...,n;

and

12n+745(—1)"—6i

3 fori=1,...,n,

fle) =
6n — 31+ 1 fori=n+1,...,2n — 1.

Case 1: n is even. Let n-= 2t for some t € Z*. From the given labeling f,
the number 1 is a label of vg. The numbers 2, 5, 8, ..., 3t — 1 are labels of vy,
Uy, Vg, ..., Ug. Lhe numbers 3, 6, 9, ..., 3t are labels of vy, vs, vs, ..., V_1.
The numbers 4, 7, 10, ..., 3t + 1, 3t + 4, ..., 6t — 2 are labels of ey_1, €442,
ey €3t49, €3111, - -, €ar1e And the numbers 3t 4 2 and 3t + 3 are labels of ey 4
and eg;. The numbers 3t + 5 and 3t + 6 are labels of ey 23 and ey_5. Until the
numbers 6t — 4 and 6t — 3 are labels of e3 and e4. And the numbers 6t — 1 and
6t are labels of e; and e;.” Observe that

fore;; 1 =1,2,...,2t,

Flvo) + fled) + flv) =1+ (24t+7+51§71)i*6i) n 175(*41)1461' —6l+3=3n+3,

fore;; i=2t+1,2t+2,...,4t —1,

f(vifzt) +f<€l> +f<v7j+172t> _ 1—5(—1)’i:12t+6(i—2t) + (12t . 32_|_ 1) + 1—5(_1)i+17:t+6(i+1—2t)

=6t4+3=3n+3.
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Case 2: n is odd. The proof is similar to the previous case.

Therefore f is an edge-magic total labeling of F, . O
By duality, we have the following corollary.

Corollary 3.22. The F,, is edge-magic with k = 6n — 3. U

Figure 3.6: Edge-magic total labelings of F3, F; and F; with magic sums k& = 12,

k = 15 and k = 18 respectively.

Theorem 3.23. [10] The complete bipartite graph K, ., is edge-magic for any n

and m with k = (m +2)(n +1).

Proof. Let vy, vo, ..., v, be the vertices in the set Vi and v,1, Vpni2, -+ Unim
the vertices in the set V5. And e, ; = v;v; fori =1,2,... ,nand j =n + 1, n+2,

..., n+m are edges of K, ,,, that is
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Vnt1l Vh+2 Vntm1 Vntm

Define a labeling f as follows:

i fori=1,2,...,n,
fvi) =
(t—n)n+1) fori=n+1,n+2,..., n+m;

and fort=1,2,...;nand j=n+1,n+2,...,n+m,

fleig) =(m+n—j+2)(n+1)—u
From the given labeling f, the numbers 1, 2, ..., n are labels of vy, vq, ..., v,.
The numbers (n+ 1), 2(n+ 1), ..., m(n + 1) are labels of v,11, Vnta, -\ Untm-
The numbers n 42, n + 3, ..., 2n + 1 are labels of €, n4m; €n—1n+ms - -+ €1ntm-
The numbers 2n + 3, 2n +4, ..., 3n + 2 are labels of e, ntm—1, €n—1ntm-1, - - -,
€1ntm—1. Until the numbers m(n+ 1)+ 1, m(n+1)+2, ..., m(n+ 1) +n are
labels of €541, €n—1mt1s - -+ €1ms1. S0 all numbers 1 through m(n + 1) + n are
used exactly once. Observe that
fore;j;i=12,...,nand j=n+1Ln+2,...,n+m,
F0) + Flerg) + Flo) = i+ (m+m— j+2)(n 1) — i+ ( — ) + 1)

= (m+2)(n+1).

Therefore f is an edge-magic total labeling with k& = (m 4 2)(n + 1). O
By duality, we have the following corollary.

Corollary 3.24. The complete bipartite graph K, ,, s edge-magic with

E=@2m+1)(n+1). O
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W.D. Wallis and the others [10] enumerated every edge-magic total labeling
for Ky 3 in the case 14 < k < 22 and K3 3 for the case 18 < k < 30 and £ must be

even which are shown in table 3.3.

Kpn k labeling for V; labeling for V5

K3 14 no solutions
15 1,2 3,6,9
16 1,2 5,8,11
17 5,6 1,4,9
18 1,5 9,10,11
19 6,7 3,8,11
20 10,11 1,4,7
21 TS 3,6,9
22 no solutions

K3 18 no solutions
20 1528 4,812
22 1,2,3 7,11,15
24 no solutions
26 1,59 13,14,15
28 4.8,12 13,14,15
30 no solutions

Table 3.3: Edge-magic total labelings of K53 in the case 14 < k < 22 and K33

for the case 18 < k < 30 and k& must be even.

Lemma 3.6. [10] If a star Ky, is edge-magic, then the center receives label 1,

n+1or2n-+1.
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Proof. Assume that the center receives label z. Then by lemma 2.28(a)

kn = <2n2+ 2) + (n—1)z. (3.4)
Then
(n—1)z=kn—(n+1)2n+1).
So

1
G — =l — 2B .
n n

Then = = 1(mod n). Since all labels of star are 1,2,...,2n+ 1, z can be 1,n+ 1

or 2n + 1. O

Theorem 3.25. [10] There are 3-2" edge-magic total labelings of star K, up to

equivalence.

Proof. Let f be the edge-magic total labeling of star K, and c the label of the
center vy and z; the label of the edge e; = vyv; where v; is the peripheral vertex
for i = 1,2,...,n. By lemma 3.6 and the equation (3.4), we have k = 2n + 4,
3n+3and 4n+2if cis 1, n+ 1 and 2n + 1 respectively. Since f is an edge-magic
total labeling, x; +14; = k — ¢ = T where y; = f(e;) and ¢; is an edge which is

incident to z;. So T = 2n'+ 3,2n + 2 or 2n +1. Then there is exactly one way

to partition the 2n + 1 integers 1, 2, . .., 2n.+ 1 into n +1 set. i.e.{c}, {as, b1},
{ag, b2}y {a, b, } where a; +b; = T. For convenience, we choose the labels so
that a; < b; for every ¢ and a1 < as < ... < a,. Then up to isomorphism, one

can assume that {z;, y;}={a;, b;}. Each of these n equations provides two choices,
according as x;=a; or b;. So each of the three values of ¢ gives 2" edge-magic total

labelings of star K ,,. O

Theorem 3.26. [3] The book B, is edge-magic with k = Tn + 6 for all positive

mteger n.
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Proof. Let u; and v; be the vertices of B, for ¢ = 0,1,...,n and e; = u;v; for
1=0,1,...,nand e,.; = vou; for i = 1,... ,n and eg,1; = ugu; for i = 1,... n,
that is

Define a labeling f as follows:

1 for ©: = 0,
flw) =
2n+i1+2 fori=1,...,n;
and
5n+ 3 for 1 = 0,
f(vi) =
2n—2i+2 fore=1,...,n;
and .
2n +2 for ¢ =0,
3n'+4 + 2 “ford =1,... ,n,
fle) =

204+1—2n fori=n+1,...,2n,

™m—i+3 fort=2n+1,...,3n.

\

From the given labeling f, the number 1 is a label of ug. The numbers 2, 4, ...,
2n — 2,2n are labels of v, v,_1,...,vs,v;. The numbers 3, 5, ..., 2n-1, 2n+1 are
labels of e,,11, €,49, ..., €2,. The number 2n+2 is a label of eg. The numbers 2n+-3,
2n+4,...,3n+2 are labels of uq, us, ..., u,. The numbers 3n+3,3n+4,...,4n+2

are labels of ey, eq,...,¢,. The numbers 4n+3,4n+4,...,5n+1,5n+2 are labels
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of e3n,€3n_1,-..,€,19,€0,11. And the number 5n + 3 is a label of vy. Then all
numbers 1 through 5n + 3 are used exactly once. Observe that, fori =1,2,...,n
fuo) + fleanss) + fu)) =1+ (Tn—2n+14)+3)+2n+i+2="Tn+6,

fvo) + flenss) + f(vi) =bn+3+ (2(n+i)+1—2n)+2n—2i+2="Tn+6,
fluw) + flea) + fvi)) =2n4+i4+2+ Bn+i+2)+2n—2i +2="Tn+6,

and f(uo) + f(eo) + f(vg) = 1+ (20 42) #5n + 3 = Tn +6.

Therefore f is an edge-magic total labeling with k£ = 7n + 6. O

By duality, we have the following corollary.

Corollary 3.27. The book B, is edge-magic with k = 8n. U

9 17 1. 15 11

16 ~®10
12 8 14

13
7

6 3 18 s =

4

Figure 3.7: Edge-magic total labelings of B3 and B, with magic sums k£ = 27 and

k = 34 respectively.

Theorem 3.28. [3] The ladder L, is edge-magic with k = $(11n + 1) when n is

odd.

Proof. Let vy, vs,...,v9, be the vertices of L, and e; = v1v9, €9 = 903, .. .,

€n—1 = Un—1Un, €n = UnV2n, €nt+1 = Un4+1Un+42, €n4+2 = Up42Un43, ..., €2n—1 = U2n—1V2n,
€2n = Up—1V2n—1, €241 = V1Unt1, €2n42 = U2Upy2, - .-, €3p—2 = Up_2Uzp_o edges of

L, that is
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Let n = 2t + 1 for some t € Z" and define a labeling f as follows:

4

= fori=1,3,...,2t+1,
W foria=42,4,\ ., 2t,
fvy) =
2 for 4 =2t + 2,2t +4,...,4t + 2,
L for i =264 3,2t +5,..., 4t + 1;
\
and
§
10t —i+4 fori=1,2,..., 2t
6t + 3 fort=2t+1,
fle) =9 8t —i+4 fori=2t+2,2t+3,... 4t +1,
6t + 4 for i =4t +2,
L1215—2'4—6 for i =4t 3,4t 44, 76t + 1.
From the given labeling f, the numbers 1, 2, ..., t + 1 are labels of vy, v3, ...,

vgir1- The numbers t42, t43, ..., 2t+1 are labels of vy, vy, ..., v9;. The numbers
2t+2, 2t + 3, ..., 3t + 1 are labels of vg; 3, Voris, ..., Ugys1.- The numbers 3t + 2,
3t+3, ..., 4t + 2 are labels of vos19, Vopry, ..., Vgpro. The numbers 4¢ + 3, 4t 4 4,
..., 6t 4+ 2 are labels of egy1, €44, ..., €40. The numbers 6t 4+ 3 and 6t + 4 are

labels of eg; 1 and ey 9. The numbers 6t +5, 6t +6, ..., 8 + 3 are labels of eg 1,
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€6ty - - -, €4er3. Lhe numbers 8t 44, 8+ 5, ..., 10t 4+ 3 are labels of ey, €91, ...,
e1. So all numbers 1 through 5n — 2 = 10t + 3 are used exactly once. Observe
that

fore;1=1,3,...,2t — 1,

Fo) + fle) + fvigr) = S+ (108 — i + 4) + HEZEEL = 2602 — 117y 4 1),

for ejpap40;0=1,3,...,2t — 1,

f0i) + fleiparso) + f(Vigarir) = % + (12t 46 — (1 + 4t +2)) + w
= 2082 — 1(11p 1+ 1),

for e;; 1 =2,4,...,2t,

fi) + fle) + flvipa) = 2t+2—1+2 + (10t —i +4) + —”é“ = —2%;12 = %(1171 +1),

for €it+4t+2; 1= 2, 4, . o ,2t,

F0i) + feirarra) + [ (Vi) = 52+ (126 +6 — (i + 4t + 2)) + %ﬂ?t“)
=22 =2 (1In+1),

for e,, f(vn) + flen) + flvan) =t + 14+ (66 +3) +4t +2 =11t +6 = L(11n + 1),

for e;; 1 =2t + 2,2t +4, ..., 4L,

Fv) + fles) + AUign) = ZEETT(EE — 4 4§ 2ttt — 26012 — 1(17p 4 1),

fore;; i =2t + 3,2t +5,...,4t + 1,

Fui) + fes) + i) = ZEEL 4 (8¢ — i + 4) 4 MEZEEEL = 220012 — 1(77p 4 1),

Therefore f is an edge-magic total labeling with k = %(11n—l—1) when n is odd. [
By duality, we have the following corollary.

Corollary 3.29. The ladder L, is edge-magic with k = 5(19n — 13) when n is

N =

odd. U
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2 6 20 15 11
3@ ®
k=17 k=28

Figure 3.8: Edge-magic total labelings of L3 and L; with magic sums k = 17 and

k = 28 respectively.

Theorem 3.30. An (n, m)-pineapple is edge-magic with k = 3m + 3n + 1 when

n s odd.
Proof. Let vy, vs, ..., Un., be the vertices and e; = v;v,,41 fori =1,2,...,m and
e, =viv foro=m+1m+2,... m+n—1and e,y = Unintms1, that is

Let n = 2t + 1 for some t € Z" and define a labeling f as follows:

.
1 fori=1,2,...,m,

floi) =19 2t4+i fori=m+1,m+3,m~+5,...,m+2+1,

i1—1 fori=m+4+2m+4,m+6,...,m+ 2t

\
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and
2m+4t—1+3 fori=1,2,...,m,
fle) =
Im+4t—2i+4 fori=m+1,m+2,.... m+2t+ 1
From the given labeling f, the numbers 1, 2, ..., m are labels of vy, vg, ..., V.
The numbers m + 1, m+ 3, ..., m + 2t — 1 are labels of v,, 19, Upmia, -+, Umoiot.

The numbers m +2, m+4, ..., m+2t, m+2t+2, ..., m+ 4t + 2 are labels of

Ema2t41y Cmaoty - - -y Condtd2s Cotitls - - - Emi1- Lhe numbers m+2t+1, m—+2t+3,

..., m+4t + 1 are labels of v, 11, Uis, - .., Umroprr. The numbers m + 4t + 3,

m—+4t+4, ..., 2m+ 4t + 2 are labels of e,,, €,,-1, ..., e;. Observe that

fore;1=1,2,...,m,

fu)+fe)+f(vmar) = i+@2m—+4t—i+3)+m+2t+1 = 3m+6t+4 = 3m+3n+1,

foreg;i=m+1m+3,...,m+2t—1,

fo)+ flei) + flvip) =2t +i4+ Bm+4t —-2i4+4)+i+1-1
=3m+6t+4=3m+3n+1,

fore;i=m+2m+4,...,m+2t,

fui)+ fle)) + flin) =i—=1+ Bm+4t —2i+4) +2t+i+1
=3m+6t+4=3m+3n+1,

for e;i0011,

f(Wmyarr1) + femrarer) + f(Ump) =m+ 4t + 1+ (m+2) +m + 2t + 1
=3m+6t+4=3m+3n+1,

Therefore f is an edge-magic total labeling with & = 3m + 3n + 1 when n is

odd. O
By duality, we have the following corollary.

Corollary 3.31. An (n,m)-pineapple is edge-magic with k = 3m + 3n + 2 when

n 1s odd. O
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14 13

11 3

Figure 3.9: Edge-magic total labelings of (5, 2)-pineapple and (5, 3)-pineapple

with magic sums k£ = 22 and k = 25 respectively.



CHAPTER IV
EDGE-MAGIC TOTAL LABELINGS ON

DISCONNECTED GRAPHS

In this chapter, we discuss the disconnected graph which are or are not

edge-magic. Moreover, some examples are shown.
Theorem 4.1. The graph mI, is not edge-magic when m is odd and n = 4(mod 8).

Proof. Since n = 4(mod 8), there exists ¢ € Z* such that n = 8t + 4. Let

m = 2t' + 1 for some t' € Z". Then

n
p+q:mn+m<2)

= (20 +1)(8t+4+ (8t +4)* — (8t +4)

g )

= (2t + 1)(32t* + 36t + 10)
=4(2t' + 1)(8* + 9t +2) + 2.

Thus p + ¢ = 2(moed4). Since each vertex of mkK,, hasn —1 degree which is odd

and ¢ is even, by proposition 2.29, K, is not edge-magic. O
Theorem 4.2. The graph mW,, is not edge-magic when-m is odd and n = 3(mod 4).
Proof. The proof is similar to the previous theorem. O

We are going to show that the graph mC, is edge-magic by giving the
notations as follows: V(mC,) = ViJ...UV,, where V; = {v},vi, ... v.} and

E(mC,) = E1J...UE, where E; = {e}, e}, ... e} and e} = vivs, e} = vivi,

A S S R :
., e =0 _qul, en = v ], that is

n’ n
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Theorem 4.3. [11] The graph mC,, is edge-magic with k = (5nm + 3) when m

(> 1) and n are odd.

Proof. Let m (> 1) and n be odd.

For i = 17 ) mTila define a labehng f as follows:
(
i for j =1,
F(v) =
Hn42tym+1+2i] forj=2tt=1,.., 2L
ln+m+1—2  forj=mn;

and

(20— 1)m +1— 2 for j =1,

(2n—2t —1)ym+1—2i forj=2t+1;t=12... 23

fE) =19 @2n—2t)m+1—2i for j =2t t = 1,2, ..., 252

2

nm -+t for j =n—1,

s[(4n — 1)m + 1 + 2i for j = n.
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Fori:mT“,...,m, define a labeling f as follows:
(
{ for j =1,
, tm +1 forj:2t+1;t:1,m7n7—3’
f(wj)
%[(n+2t—2)m+1+22’] forjzzt;t:17.__,anl’
n+3)m+1—2i for j = n;
\
and
.
2nm + 1 — 21 for j =1,
(2n—2t)m+1—2i for j=2t+1;¢t=1,2,...,%2,
2. = n—2t+1)m+1—-2¢ forj=2t;t=1,2,...,5%5=,
f(e5) M —9t 4+ 1 1-2 f 9 1,2,..., 158
nm + 1 for y =n—1,
s[(4n =3)m+1+2i]  for j=n.

\

Let n = 22 + 1 and m = 22/ + 1 for some 2,2z’ € Z*. The numbers 1, 2, ...

22/ 4+ 1, 22/ + 2, ..oy 222"+ 2 ave labels of vf; v, <., v vl Wi 0P L
vl o ..., v™,. The numbers 222’ + z + 1, ..., 222/ + 2 + 22’ + 1 are labels of
vl for i =m, 2t m —1, 2= — 1, ™ The numbers 222" + 2+ 22/ +2, ..,
, o m+1 m—+3 m—+1 m+3
2 2 m 2 2 m m
422"+ 22422 +1 arelabels of v, > Jv,* .. w50, vy L v o U0

The numbers 422" + 22 + 22" + 2, ..., 422’ + 22+ 42’ + 2 are labels of ¢!, €2,

.., e . The numbers 4z2'+ 2z +4z' +3, ..., 822 +4z + 22" +1 are labels of
m—1 1 m—+1 m—1 1 m—+1 m+1
m 2 m— 2 m 2 m— 2 2
e gy €0 0, Cogy iy €l e g e e e e o e %s, ..., e; 7 . The numbers
m—+1 m+3
8z + 4z 422 + 2, ..., 822 + 4z + 32 + 2 are labels of e,? |, e, , ..., el

The numbers 822" +4z +32' +3, ..., 822’ + 42+ 42’ + 2 are labels of €}, €2, ..

*

m—1

en? . So all numbers 1 through 2nm = 822’ + 4z + 42’ + 2 are used exactly once.

Observe that, for i =1,.. ., mTilv
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i
for e},

F00) + f(ed) + fuh) =i+ ((2n — V)m + 1 — 2i) 4 @I L5, 4 3),

.5 _ n—3
for e}; j =2t where t =1,2,..., %32,

fh+ fleh)+ fvi,) = w+(2n—2t)m+l—2i+tm+i = 1(5nm+3),

P og _ n—3
for €j; j =2t + 1 where t =1,2,...,75°,

F) + f(el) + f(viy) = tm+i+ (2n = 2t = 1)m + 1 — 2j 4 E2Hme 12
= 4o +3),
for e!_4,
Fi_ )+ feh_y) + flul) = Crmili2 g gy 14 BHED™ 1 95 = L(5nm + 3),
for €,
Fi) + flel) + flui) = Cdlm | g g 4 Un=Dmald%i 4 5 1500 4 3),
/1 2 2
m+41

For i = "=, ..., m, we can verify similarly. Therefore f is an edge-magic total

labeling with k = (5nm + 3) when m and n are odd. O
By duality, we have the following corollary.

Corollary 4.1. [11} The graph mC,, is edge-magic with k = 5(7Tnm + 3) when m

(> 1) and n are odd. O
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1 2 3
ANVARVA
5 105 6 1 7 4 2 3
k=24
1 2 3 4 5
49 44 50 42 46 45 47 43 48 41
14 19 12 20 15 16 13 17 11 18
26 39 20 37 28 40 29 38 30 36
24 3 6 25 32 7, 21 35 8 22 33 9 23 31 10
k=64

Figure 4.1: Edge-magic total labelings of 3C3 and 5C5 with magic sums k£ = 24

and k = 64 respectively.

We are going to show that the graph mpP, is edge-magic by giving the
notations as follows: V(mP,) = VilJ...lUV,, where V; = {v} vi, ... v\ } and
E(mP,) = FE {J...\UE, where E; = {e},€5,...,e\ } and ¢! = vivi, e} = vivi,

el =0l vh that is

2

1 1 2

V2 Vn V2 Vn

‘i‘ l\

1 1 2 5 2
€ ‘.‘ &1 8 N SRS
1 b 2 N\ m

1 2

v WV % v

Theorem 4.4. [11] The graph mP, is edge-magic with k = 5(5nm + 3) when m

(> 1) and n are odd.

Proof. By the edge-magic total labeling f in theorem 4.3, the m highest labels
appear as edge labels with one in each component. We delete those edges and their

labels. Then we have a graph mP,, which is edge-magic with k£ = %(Snm—I— 3). O
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By duality, we have the following corollary.

Corollary 4.2. [11] The graph mP, is edge-magic with k = 3[(Tn—6)m+ 3] when

m (> 1) and n are odd. O

Theorem 4.5. [11] The graph mP, is edge-magic with k = 3[(5n—2)m+ 3] when

m (> 1) and n are odd.

Proof. Let m > 1 and n be odd.

Forizl,...,mT_l,deﬁnealabelingfas follows:
(
s(nm + 1+ 2) for j =1,
f(v;-): %[(n—}-Qt)m—i—l—!—?i] fOTj'ZQt—i-l;t:l,,,,,”T_l,
| (= Dm+ forj=2t;t=1,..., %54
and
4
(2n—1)m +1=2i for j =1,
f(€§)= (2n =2t —1)m +1—2¢ forj:2t+1;t:1’2’.”,n7—3’
1 e 4 — n—1
\(2n—2t)m+1—2z for j=2t;t=1,2,... 5.
For i = £ .. m, define a labeling f as follows:
(
T[(n =2)m+14 2] for'j =1,
f(v§)=< %[(n+2t—2)m+1+2@‘] forj:2t+1;t:1’“_’n7—1’
| (t=1)m +i for j=2t=1,..., 52
and
.
2nm +1— 21 for j =1,
fle5) = (2n —2t)m +1—2i forj=2t+1;t=1,2,...,%2,
\(2n+1—2t)m—|—1—2i for j=2t;t=1,2,..., 25
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It is easy to verify that all numbers 1 through m(2n — 1) are used exactly once.

Observe that, fort=1,2,..., mT_l,

for e},

)+ fed) + f(vy) = 2mEH2 4 (2 — Dym + 1 — 2i 4+ i = 2(5nm — 2m + 3),

for ei; j = 2t where t = 1,2,..., %5,

FWi) + fel) + f(viy) = (= Dm+ i+ (2n= 2t)m + 1 — 2j 4 BH20mLE2
= L(6nm — 2m +3),

for ef; j =2t 4+ 1 where t =1,2,... 252,

F0) + feb) + flvl,) = CE2EER 4 (9 — 2t — 1)m+ 1 — 20+ (t+1— 1)m+i
= 1(5nm — 2m + 3).

me ..., m, we can verify similarly. Therefore f is an edge-magic total

labeling with k& = 1[(5n — 2)m + 3] when m and n are odd. O
By duality, we have the following corollary.

Corollary 4.3. [11] The graph mP, is edge-magic with k = L[(Tn—4)m+ 3] when

m (> 1) and n are odd. O



1 2
11 14 12 15

9 6 7 4
k=21

1 4 2 5

17 18
20 14 21 15
9 12 7 10

k=30

29

3
10 13
8 5
3 6
16
19 13
8 11

Figure 4.2: Edge-magic total labelings of 3FP; and 3P, with magic sums k = 21

and k = 30 respectively.

Theorem 4.6. [11] The graph mP, is edge-magic with k = 3[(5n— 1)m+ 3] when

m (> 1) is odd and n is even.

Proof. Let m > 1 be odd and n even.

Forizl,...,mT‘l,deﬁnealabelingfas follows:
H(n+ 1)m+ 1+ 2i] for j =1,
FO) =9 Ln+2t+ Dm+1+2] forj=2t+1t=1,2,.., 22
(t = Dm+i for j=2t; t =1,2,..., %
and
)
2n—1)m+1—2i for j =1,
fle) =9 @n—2t—1)ym+1-2i forj=2t+1;t=12, . 2

(2n — 2t)ym + 1 — 2

\

forj:2t;t:1,2,...,”T’2.
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For 1 = mT“,...,m, define a labeling f as follows:
(
Sl(n—1)m+ 1+ 24 for j =1,
fv;) = Hn+2t—1)ym+ 142 forj=2t+1t=12, ..., %52,
| =1)m+i for j=2t;t=1,2,...,%
and
.
2nm +1 — 21 fory=1,
f(eé): (2n"=2t)m+1 — 2i for j =2t+1;t=1,2,...,%52
y . A n—2
\(2n—2t+1)m+1——2z for j =2t;t=1,2,..., %=

It is easy to verify that f is an edge-magic total labeling with k = %[(571— 1)m+3|

when m is odd and n is even. O

By duality, we have the following corollary.

Corollary 4.4. [11] The graph mP, is edge-magic with k = 3[(Tn—5)m+ 3] when

m (> 1) is odd and n is even. O

Theorem 4.7. The graph mP,|JmK;, the graph consists of the disjoint union
of m copies of P, and the disjoint union of m copies of Ky, is edge-magic with

k= 1[(5n — 2)m + 3] when m >1 and m is odd_and n is even.

Proof. By the edge-magic total labeling f in theorem 4.5, the m highest labels
appear as edge labels with-one-in each component. -We delete -those edges and
their labels. Then we have the graph mP, | JmK; which is edge-magic with the

same magic sum. [

We are going to show that the graph m(n, 1)-kite is edge-magic by giving the
notations as follows: V(m(n,1)-kite) = Vi ... V;, where V;={v},v5, ... 05, vl }
and E(m(n,1)-kite) = E1J...|J E,, where E;={el, ¢}, ... e, el } and e} = vjv},

i S SR S SR D SN SN B :
€5 = VyUs, ..., €, | = U, Uy, €, = VU], €, 1 = UV, ., that is
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Theorem 4.8. The graph m(n, 1)-kite is magic with k = 1[m(5n + 6) + 3] when

m (> 1) and n are odd.

Proof. Let m (> 1) and n be odd.

For components 1 = 1,...,mT'1, define a labeling f as follows:
(
Z+m fOI'j:l7
(t+1)m+i for j=2t+1;¢t=1,2,...,2%
f(v;-): %[(n+2t+2)m+1+2i] forjzzt;tzl,g’m,nT—lv
s(n+3)m+1—2i for j =mn,
Hén+3)m+ 1]+ for j =n+1;
\
and
(
2mn +1 — 21 for j =1,
(2n =2t)m+1=2 for j=2t+1;¢=1,2,..., %2,
A (2n=2t+1)m+ 1'—2i forj:2t;t:1,2,...,"7*3,
(€)= 3
(n+1)m+i for j=n-—1,

s(An+1)m+1+4+2i]  for j=n,

7 for j =n+1.




For components ¢ = mTH, ...,m, define a labeling f as follows:
(
1 +m for j =1,
(t+1)m+1 forj=2t+1;t=1, ..

and

\

s[(n+2t)m + 1 + 24

(n+5)m+1—2

N[

N |—=

[(4n+ 1)m + 1) + i

(2n +1)m/+ 1 — 2i
(2n —2t 4+ L)m +1 —2i
(2n—2t+2)m+1—2i
(n+1)m+i

$[(4n — Dm+ 1+ 2i]

7

n—3

2

A

for j=2t;¢t=1,..., %52
for j = n,

for j=n+1;

for j =1,

for yj=2t+1;t=1,2,

fory=2t;t=1,2,...,

for j =n—1,
for j = n,
for j=n+1.

ce ey

n—3
2

Y

It is easy to verify that f is an edge-magic total labeling with k£ =

6) + 3] when m and n are-odd.

By duality, we have the following corollary.
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[m(5n +

O

Corollary 4.5. The graph m(n,1)-kite is edge-magic with k' = §[m(Tn + 6) + 3]

whenm (> 1) and n are odd.

g
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8 9 10
47 41 48 9 49 37
2 26 18 27 16 28
7 29 5 30 5 31
54 55 56
11 12 13 14
43 42 44 40 45 38 46 36
2 22 19 28 it 24 15 25
32 33 34 35
4 s 7
50 51 52 53
k=75

Figure 4.3: An edge-magic labeling of 7(3, 1)-kite with a magic sum k = 75.
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