การหาขนาดของเครื่องกำเนิดไฟฟ้าแบบกระจาชชนิดพลังงานแสงจาทิตย์ ในระบบจำหน่ายไไฟ้้า โดงพิารรณาสภาวะแสงอาทิตย์และความผิดเพี้ยนททงฮาร์มอนิก

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ จุพาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2554 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Electrical Engineering Department of Electrical Engineering

Faculty of Engineering
Chulalongkorn University
Academic year 2011
Copyright of Chulalongkorn University

Thesis Title	SIZING OF PHOTOVOLTAIC DISTRIBUTED
	GENERATORS IN A DISTRIBUTION SYSTEM WITH
	CONSIDERATION OF SOLAR RADIATION AND
By	HARMONIC DISTORTION
Field of Study	Mr. Vichakorn Hengsritawat
Thesis Advisor	Electrical Engineering
	Assistant Professor Thavatchai Tayjasanant, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Dean of the Faculty of Engineering
(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

วิชชากร เฮงศรีธวัช : การหาขนาดของเครื่องกำเนิดไฟฟ้าแบบกระจายชนิดพลังงาน แสงอาทิตย์ในระบบจำหน่ายไฟฟ้า โดยพิจารณาสภาวะแสงอาทิตย์และความผิดเพี้ยน ทางฮาร์มอนิก (SIZING OF PHOTOVOLTAIC DISTRIBUTED GENERATORS IN A DISTRIBUTION SYSTEM WITH CONSIDERATION OF SOLAR R ADIATION AND HAR MONIC DISTORTION) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: ผศ.ดร.ธวัชชัย เตชัสอนันต์, 162 หน้า.

วิทยานิพนธ์เล่มนี้นำเสนอวิธีทางความน่าจะเป็น เพื่อหาขนาดที่เหมาะสมของเครื่อง กำเนิดไฟฟ้าแบบกระจายชนิดพลังงานแสงอาทิตย์ในระบบจำหน่ายไฟฟ้า โดยพิจารณาถึง สภาวะการกระจายของแสงอาทิตย์และความผิดเพี้ยนทางฮาร์มอนิก ด้วยวิธีการดังกล่าว การ จำลองแบบมอนติคาร์โลจะถูกนำมาใช้ในการสุ่มค่าการกระจายแสงอาทิตย์, อุณหภูมิแวดล้อม รวมถึงแรงดันที่สถานีไฟฟ้าย่อย และความต้องการของโหลดในระบบจำหน่ายไฟฟ้า โดยมี วัตถุประสงค์ เพื่อทำให้กำลังไฟฟ้าสูญเสีย จริงเฉลี่ยของระบบมีค่าต่ำสุด ในขณะ ที่เงื่อนไข บังคับทางด้านคุณภาพไฟฟ้า ซึ่งได้แก่ แรงดันไฟฟ้าที่โหนด, กระแสฮาร์มอนิก, ค่าความ ผิดเพี้ยนแรงดันฮาร์มอนิกรวม และค่าความผิดเพี้ยนความต้องการฮาร์มอนิกรวม ยังคงอยู่ใน ขอบเขตที่กำหนดตามมาตรฐาน IEC และ IEEE ทั้งนี้ยังได้รวมผลของฮาร์มอนิกที่มีอยู่เดิม ในระบบเพื่อ ประเมิน หาขนาดที่เหมาะสมของเครื่องกำเนิดไฟฟ้าแบบกระจายชนิดพลังง าน แสงอาทิตย์ด้วย วิทยานิพนธ์เล่มนี้ยังได้นำเสนอวิธีการวิเคราะห์ด้วยดัชนีเสถียรภาพแรงดัน เพื่อเลือก ตำแหน่งที่เหมาะสมในการติดตั่งเครื่องกำเนิดไฟฟ้าแบบกระจายชนิดพลังงาน แสงอาทิตย์ นอกจากนี้ ยังได้มีการศึกษาผลกระทบที่มีต่อการหาขนาดที่เหมาะสมของเครื่อง กำเนิดไฟฟ้าแบบกระจายชนิดพลังงานแสงอาทิตย์ จากการใช้แบบจำลองของโหลดและการ ปรับค่าตัวปร ะกอบกำลัง ในการทำงาน ที่แตกต่างกัน รวมถึง ศึกษาผลกระทบของแบบจำลอง ของอินเวอร์เตอร์ และ การพิจารณาถึง เครื่องกำเนิดไฟฟ้าแบบกระจายอื่นที่มีอยู่เดิมในระบบ จำหน่ายไฟฟ้า วิธีการที่พัฒนาขึ้นสามารถประยุกต์ใช้ได้กับระบบจริง โดยได้ทำการทดสอบ กับระบบขนาด 33 บัส และระบบจำหน่ายไฟฟ้าแห่งหนึ่งของประเทศไทยขนาด 51 บัส

ภาควิชาวิศวกรรมไฟฟ้า ลายมือชื่อนิสิต สาขาวิชา ... วิศวกรรม ไฟฟ้า ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก ปีการศึกษา \qquad
\# \# 4971875421 : MAJOR ELECTRICAL ENGINEERING
KEYWORDS: PHOTOVOLTAIC GENERATION / MONTE CARLO SIMULATION / PROBABILISTIC APPROACH / SOLAR RADIATION / HARMONIC DISTORTION

VICHAKORN HENGSRITAWAT: SIZING OF PHOTOVOLTAIC DISTRIBUTED GENERATORS I N A DI STRIBUTION S YSTEM W ITH CONSIDERATION OF SOLAR RADIATION AND HARMONIC DISTORTION. ADVISOR: ASST. PROF. THAVATCHAI TAYJASANANT, Ph. D., 162 pp.

This dissertation presents a probabilistic a pproach to calculate an optimal size of photovoltaic distributed generators (PV-DGs) in a distribution system with consideration of solar radiation and harmonic distortion. Monte Carlo simulation is applied to predict solar radiations, ambient te mperatures, substation vol tages and load de mands. The formulated objective f unction is t o m inimize ave rage r eal power loss, while power qua lity constraints i.e., node vol tage, ha rmonic current, total ha rmonic distortion voltage and total demand di stortion are kept within the limits complied with IEC and IEEE standards. Existing background harmonics are included in an evaluation of the optimal size of PV-DG. In addition, static voltage stability ind ex a nalysis is proposed t o select a proper 1 ocation of P V-DG installation in a distribution system. Furthermore, impacts of s tatic load models and power factor control on optimal PV-DG sizing as well as effects of PV inverter modeling a nd existing D Gs in a di stribution system are taken into a ccount. The developed method can be applied to actual systems and was tested with a 33-Bus test system and an actual 51-Bus radial distribution system in Thailand.

Department : Electrical Engineering....... Student's Signature \qquad Field of Study : Electrical Engineering.

Advisor's Signature \qquad Academic Year: \qquad

ACKNOWLEDGEMENTS

First, I w ould like to give a s pecial thank to my a dvisor, Assistant Professor Dr. Thavatchai Tayjasanant, for his advice, suggestions, encouragement and support throughout the development of this dissertation as well as my study program.

Second, I would like to thank chairman and examination committee for their va luable s uggestions a nd us eful r ecommendations. I would 1 ike also t hank Sripatum University (SPU) to a ward me a scholarship for entire my study as well as Dr. Jakpetch Matharatch from the Provincial Electricity Authority of Thailand (PEA) for the measurement data at PV farm of Solar Power Company.

Finally, my special thanks to my family, my wife and my daughter for their 1 ove, pa tience, i nspiration, s upport a nd understanding in pa st years. T his research is dedicated to them.

Contents

PAGE
Abstract in Thai iv
Abstract in English. v
Acknowledgements vi
Contents vii
List of Tables X
List of Figures xi
Nomenclatures xvii
CHAPTER
I. Introduction. 1
1.1 Overview of World's PV Generation 1
1.2 Solar PV Technologies Overview 4
1.2.1 Solar Converting Directly Technology 4
1.2.1.1 Crystalline Silicon. 5
1.2.1.2 Thin Film 6
1.2.1.3 Concentrated Photovoltaic System (CPV) 8
1.2.2 Solar Converting Indirectly Technology 8
1.2.2.1 Trough Systems 9
1.2.2.2 Power Tower Systems 9
1.2.2.3 Dish Engine Systems 10
1.3 PV Generation System in Thailand 11
1.4 Motivation. 16
1.4.1 Harmonic Distortion 17
1.4.2 Power Fluctuations 19
1.4.3 Voltage Regulation 20
1.5 Literature Reviews 22
CHAPTER PAGE
1.5.1 Literature Reviews on Optimal DG Sizing and Location. 22
1.5.2 Literature Reviews on Optimal PV-DG Sizing. 25
1.6 Objectives and Scope of Works 27
1.7 Synopsis of Chapters 29
II. Modeling of System Components 30
2.1 Grid-Connected Photovoltaic Systems 30
2.2 Solar Radiation and Ambient Temperature Modeling 31
2.2.1 Statistical Model of Solar Radiation 32
2.2.2 Statistical Model of Ambient Temperature 33
2.3 Photovoltaic Modeling 35
2.3.1 PV Model Implementation in Matlab/Simulink 41
2.3.2 PV Model Validation. 44
2.3.3 Maximum Power Point Tracking (MPPT) 50
2.4 PV Inverter Modeling 51
2.5 Substation and Load Modeling 56
2.5.1 Probabilistic Load Models. 56
2.5.2 Probabilistic Substation Voltage Model 58
III. A Voltage Stability Index for Radial Distribution Networks 59
3.1 Introduction 59
3.2 Voltage Stability Index Methodology 59
3.3 Test Results of Voltage Stability Index Calculation. 65
IV. Radial Distribution System Power Flow and Harmonic Calculation 70
4.1 Introduction 70
4.2 The Modified Newton Method 70
4.2.1 Loss Equations From System Data 75
4.2.2 The Modified Newton Method Calculation Steps. 76
4.3 Test Results of Radial Distribution System Power Flow Calculation 79
4.4 Harmonic Modeling 80
4.4.1 Harmonic Load Modeling 80
4.4.2 Harmonic Capacitor Modeling 82
4.4.3 Harmonic Feeder Modeling 82
4.4.4 Background Harmonic Modeling 82
4.5 Harmonic Calculation in a Distribution System. 83
V. Algorithm of Optimal PV-DG Sizing Technique and Numerical Results 89
5.1 Introduction. 89
5.2 Problem Formulation. 89
5.3 The Algorithm of Optimal PV-DG Sizing Technique 90
5.4 Numerical Results and Discussion 92
5.4.1 Scenario-1: 92
5.4.2 Scenario-2: 105
5.4.3 Scenario-3: 113
VI. Conclusions and Future Works. 120
6.1 Conclusions. 120
6.2 Future Works 121
REFERENCES 122
APPENDICES 131
BIOGRAPHY 162

List of Tables

TABLE PAGE
1.1 DG's category according to generation technologies 1
1.2 Some of renewable potential and target plan of Thailand. 14
1.3 Adder rate for SPPs and VSPP using renewable energy of Thailand. 14
1.4 Summary of the methodologies for optimal DG sizing and location 25
2.1 The key specifications of the Sharp 80 Wp PV module at STC. 42
2.2 Summary of PV model parameters values 44
2.3 Solar radiation levels and the corresponded ambient temperatures. 45
2.4 Output comparison between the simulation results and the measurements on different solar radiation 46
2.5 Typical harmonic current in percent of fundamental corresponding to solar radiation. 55
3.1 Line data and load data of the 15 -bus radial distribution system. 65
3.2 Bus stability indices for different load models of 15 -bus test system. 66
3.3 C ritical bus stability i ndex va lue for di fferent t ypes of 1 oad a nd substation voltage 67
4.1 Power flow solution obtained for 15-bus radial distribution system 80
4.2 Characteristic AC line harmonic currents in multi-pulse systems. 84
4.3 Current distortion limits in IEC 61727 standard. 88
5.1 Critical bus stability index values of the test system 93
5.2 Summarize the optimal size of PV-DGs installation. 103
5.3 Summarize the total number of PV modules and inverter units for optimal PV-DGs sizes solutions. 104
5.4 Multiple optimal PV-DGs sizes for various PF operations with CP-model 112
5.5 Existing DGs locations, capacity and its operating conditions 117

List of Figures

FIGRURE

1.1 Annual installed and cumulative amount of large-scale grid-connected PV power plants in the period from 1995 to 2008 2
1.2 Amount of large-scale grid-connected PV power plants put into service annually in the period from 1995 to 2008 3
1.3 Large-scale PV power plants - annual and cumulative installed power output capacity worldwide in the period from 1995 to 2008 4
1.4 Monocrystalline silicon PV panel 5
1.5 Multicrystalline silicon PV panel 6
1.6 Cadmium Telluride PV panel 6
1.7 Amorphous Silicon PV panel 7
1.8 CIGS PV panel 7
1.9 Concentrated photovoltaic system. 8
1.10 Schematic diagram of parabolic trough system 9
1.11 Schematic diagram of power tower system 10
1.12 Schematic diagram of solar dish engine system 10
1.13 Proportion of domestic and import energy of Thailand in 2010 11
1.14 Energy source portion of power generation of Thailand in 2010 12
1.15 Yearly average solar radiation potential of the areas in Thailand 12
1.16 Percentage of area classified by average solar radiation levels of Thailand 13
1.17 PV installation capacity status since 1983-2010 of Thailand 15
1.18 Installation capacity status of solar application system since 1983-2010 of Thailand 15
1.19 Case of DG unit interfering with voltage regulation on a distribution feeder 20
2.1 Principal components in a single phase grid-connected PV systems.. 31
2.2 Simplified schematic diagram of grid-connected PV systems 31
2.3 Hourly variations of solar radiation in Chiang Mai during $6.00 \mathrm{am}-6.00 \mathrm{pm}$ on Jan-Dec 2007 32PAGE
2.4 Probability density of solar radiation corresponding to Figure 2.3. 33
2.5 Hourly variations of ambient temperature in Chiang Mai during $6.00 \mathrm{am}-6.00 \mathrm{pm}$ on Jan-Dec 2007 34
2.6 Cumulative probability of ambient temperature corresponding to Figure 2.5 35
2.7 Simplified equivalent circuit of the PV cell model 35
2.8 PV module consists of $N_{p m}$ parallel branches, each of $N_{s m}$ cells in series 39
2.9 PV array consists of M_{p} parallel branches, each with M_{s} modules in series 40
2.10 PV module model implementation in Simulink. 41
2.11 Current and power versus voltage characteristics of Sharp 80Wp PV module provided by manufacturer $\left(\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\right)$ 42
2.12 I-V characteristics of Sharp 80Wp PV module by simulation ($\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$) 43
2.13 P-V characteristics of Sharp 80Wp PV module by simulation $\left(\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\right)$ 43
2.14 PV module tester (I-V Checker/MP-140) 44
2.15 Data measured in time series of the solar radiation. 45
2.16 Data measured in time series of the ambient temperature 45
2.17 I-V characteristic curve from I-V checker at high solar radiation. 47
2.18 I-V characteristic curve from simulation at high solar radiation. 47
2.19 I-V characteristic curve from I-V checker at medium solar radiation 48
2.20 I-V characteristic curve from simulation at medium solar radiation. 48
2.21 I-V characteristic curve from I-V checker at low solar radiation 49
2.22 I-V characteristic curve from simulation at low solar radiation 49
2.23 Flow chart of classic P\&O technique 51
2.24 System schematic diagram of the PV farm 52
2.25 Maximum inverter output current and \%THDi at various solar radiations 52

FIGRURE

2.26 Harmonic current spectrum at PCC of the PV farm corresponding to $200 \mathrm{~W} / \mathrm{m}^{2}$ solar radiation. 53
2.27 Harmonic current spectrum at PCC of the PV farm corresponding to $600 \mathrm{~W} / \mathrm{m}^{2}$ solar radiation. 54
2.28 Harmonic current spectrum at PCC of the PV farm corresponding to $1000 \mathrm{~W} / \mathrm{m}^{2}$ solar radiation 54
2.29 Probability density function of a load point with a normal distribution 57
2.30 Probability density function of substation voltage with a normal distribution. 58
3.1 Simple two-node system 60
3.2 Flow chart of voltage stability index calculation 64
3.3 Single-line diagram of the 15 -bus radial distribution system 65
3.4 Variation of critical bus stability index value with system load for different static load models 68
3.5 Variation of critical minimum bus voltage with system load for different static load models 68
3.6 Variation of critical bus stability index value with system load for different substation voltages 69
3.7 Variation of critical minimum bus voltage with system load for different substation voltages 69
4.1 A simple radial distribution system with 10 -nodes and 9 -branches 73
4.2 Flow chart of radial distribution system power flow calculation 78
4.3 Single-line diagram of the 15 -bus radial distribution system with nodes to branches ordering 79
4.4 Harmonic load model of CIGRE and R//L 81
4.5 Equivalent circuit of harmonic feeder modeling 82
4.6 A simplified distribution system for fundamental frequency analysis 83
4.7 A simplified distribution system for harmonic frequency analysis 84
5.1 Flow chart of the optimal PV-DG sizing technique 91
FIGRURE PAGE
5.2 Single-line diagram of 51-bus test system 93
5.3 Average system losses as a function of average PV-DG power output in Case-1 94
5.4 Cumulative probability of voltage at PCC with and without PV-DG in Case-1 95
5.5 Cumulative probability of THDv at PCC with and without background harmonics in Case-1 95
5.6 Cumulative probability of TDD at PCC of inverter 96
5.7 Cumulative probability of I_{h} (even orders 2 to 8) at PCC of inverter. 97
5.8 Cumulative probability of I_{h} (odd orders 3 to 9) at PCC of inverter. 97
5.9 Cumulative probability of I_{h} (odd orders 11 to 15) at PCC of inverter 98
5.10 Cumulative probability of I_{h} (odd orders 17 to 21) at PCC of inverter 98
5.11 Cumulative probability of I_{h} (odd orders 23 to 33) at PCC of inverter 99
5.12 Average system losses as a function of PV-DGs size at buses 38 and 19 100
5.13 Cumulative probability of voltage at buses 38 and 19 with and without PV-DGs in Case-2A 100
5.14 Cumulative probability of THDv at PCC with and without background harmonics in Case-2A 101
5.15 Comparison of THDv at PCC between Case-2A and Case-2B with 35% of background harmonics 102
5.16 Average system losses as a function of average PV-DG power output with different load models. 106
5.17 Cumulative probability of voltage at bus-19 with different load models ($\mathrm{PF}=1.0$) 106
5.18 Cumulative probability of THDv at bus-19 with different load models ($\mathrm{PF}=1.0$) 107

FIGRURE

5.19 Average system losses as a function of average PV-DG power output with different leading power factor (CP-model)108
5.20 Average system losses as a function of average PV-DG power output with different lagging power factor (CP-model) 108
5.21 Cumulative probability of voltage at bus-19 with different PV-DG sizes corresponding to Figure 5.19 109
5.22 Cumulative probability of THDv at bus-19 with different PV-DG sizes corresponding to Figure 5.19. 109
5.23 Average system losses as a function of PV-DGs capacity at buses 10 and 19 with constant power load model $(\mathrm{PF}=1.0)$ 110
5.24 Average system losses as a function of PV-DGs capacity at buses 10 and 19 with constant current load model $(\mathrm{PF}=1.0)$ 110
5.25 Average system losses as a function of PV-DGs capacity at buses 10 and 19 with constant impedance load model ($\mathrm{PF}=1.0$) 111
5.26 Cumulative probability of voltage at buses 10 and 19 corresponding to the result in Figure 5.23 111
5.27 Cumulative probability of THDv at buses 10 and 19 corresponding to the result in Figure 5.23 112
5.28 Single-line diagram of 33-bus test system 114
5.29 Average system losses as a function of average PV-DG power output without consideration of existing DGs 115
5.30 Cumulative probability of voltage at bus-10 without consideration of existing DGs. 116
5.31 Cumulative probability of THDv at bus-10 using different inverter models without consideration of existing DGs 117
5.32 Average system losses as a function of average PV-DG power output with consideration of existing DGs 118
5.33 Cumulative probability of voltage at bus-10 with consideration of existing DGs 118
5.34 C umulative probability of THDv at bus-10 using different inverter models with consideration of existing DGs.119

Nomenclatures

BH	Background Harmonic
CdTe	Cadmium Tellluride
CIGS	Copper, Indium, Gallium and Selenide
CPV	Concentrated Photovoltaic System
CSP	Concentrating Solar Power
CV	Constant Voltage
CP	Constant Power Load
CI	Constant Current Load
CZ	Constant Impedance Load
DEDE	Department of Alternative Energy Development and Efficiency
DG	Distributed Generation
DLF	Deterministic Load Flow
DNO	Distribution Network Operator
FF	Fill Factor
GA	Genetic Algorithm
GFCI	Ground Fault Circuit Interrupter
IC	Incremental Conductance Method
IEA	International Energy Agency
LDC	Line Drop Compensator
LTC	Load-Tap-Changing
MPPT	Maximum Power Point Tracking
NOCT	Normal Operating Cell Temperature
PCU	Power Conditioning Unit
PCC	Point of Common Coupling
PDP	Power Development Plan
PEA	Provincial Electricity Authority
PF	Power Factor
PLF	Probabilistic Load Flow
PWM	Pulse Width Modulation
PV	Photovoltaic

CHAPTER I

INTRODUCTION

1.1 Overview of World's PV Generation

At thi s time, fossil fuel is the m ain e nergy s upplier of t he w orldwide economy. However, using in long time of it as being a major cause of environmental problems a nd it is ne cessary to look for al ternative resources in power generation. Besides, the i ncreasing demand for en ergy in a di stribution system can create problems such as voltage drop, poor reliability, low power quality, losses increasing and grid instability, etc. Distributed generations (DGs) are a one way to solve this problem and it has continuously be en introduced a nd pr omoted around t he w orld. Presently, the necessity of producing more energy combined with the interest in clean technologies using renewable energy such as solar, wind, biomass and biogas, etc.

According to the IEEE standard 1547-2003 [1], DG is by definition that which is of limited size roughly 10 M VA or less. Generally, DG produces electricity close to customer loads and can run on fossil fuels, renewable energy resources or waste he at. DG can be cat egorized into three t ypes ac cording t o their g eneration technologies as shown in Table1.1. These technologies are entering a period of rapid expansion a nd commercialization. In f act, s tudies ha ve pr edicted t hat $D G m$ ay account for up to 20% of all new generations going online by the year 2010 [2].

Among the renewable energy sources, hydropower and wind energy have the largest utilization. In countries with hydropower potential, s mall hydro turbines are used at the distribution level to sustain the utility network in dispersed or remote locations. The wind power potential in many countries around the world has led to a large interest and fast development of wind turbine technology [3].

Table 1.1 DG's category according to generation technologies

Type	Application	Operating Mode
Synchronous	Geothermal, Ocean, Internal combustion engine, Combined cycle, Combustion turbine	Capacitive PF
Induction	Wind turbine	Inductive PF
Inverter-based	Photovoltaic, Micro turbine, Fuel cells	Unity PF

Another renewable en ergy technology that gains accept ance as a w ay of maintaining and improving living standard without harming the environment is the photovoltaic (PV) technology. The number of PV installations is mainly depending on the government policy and utility companies that support programs on grid-connected PV system [4-5].

From the studied information in [6], the International E nergy Agency (IEA) says that there a re a mbitious pl ans for t he g lobal de velopment of f he s olar energy industry and the encouraging progress seen in 2009, over 90% of the world's 192 c ountries have yet to unde rtake large-scale deployment projects. However, just eight c ountries a ccounted f or 89% of t he w orld's t otal i nstalled PV g enerating capacity of 15 GW in 2008. The IEA has set 2020 t argets of 200 GW of g lobal installed capacity for PV and 148 GW for concentrated solar power (CSP), with both figures targeted to s oar by 2030. The IEA suggests one key to progress towards a strong pol icy r egime. However, it should be considering such r egimes consist of Feed-in T ariffs (FiT) alone or/s omething w ider-reaching. Furthermore, be yond government policy, the other key areas for action must be addressed.

From the annual review in 2008 [7], which presents basic statistical data about the majority of large-scale photovoltaic power plants ($>=200 \mathrm{kWp}$) worldwide currently in operation. It s hows t hat t he pa st y ear w as ch aracterized by s everal projects of M W-range P V power plants, a nd it was a lso the year with the hi ghest market gr owth r elated tolarge-scale P V s ystems e ver. N ot onl y in S pain, where progress is a bundantly clear, but in s ome ot her c ountries the c umulative installed power increased significantly. In the European Union progress was, a mong ot hers, observed in Italy, the Czech R epublic a nd France; the G erman market de creased slightly, but due to the market explosion in Spain the installed power from 2008 still reached the level of the previous year.

This report's da tabase i ncludes more than 1,90 01 arge-scale $\mathrm{P} V$ pow er plants (put into service in 2008 or earlier), each with peak power of 200 kWp or more as shown in F igure 1.1. The a mount of 1 arge-scale $\mathrm{P} V$ pl ants s orted by country is shown in Figure 1.2. M ore than 5001 arge-scale PV pl ants a re located in Germany, more than 370 are in USA and more than 750 are in Spain. The cumulative power of
all these PV power plants is more than 3.6 GWp and average plant power out put is slightly more than 1.8 MWp as shown in Figure1.3.

Figure 1.1 Annual installed and cumulative amount of large-scale grid-connected PV power plants in the period from 1995 to 2008

Figure 1.2 Amount of large-scale grid-connected PV power plants put into service annually in the period from 1995 to 2008 (sort by country)

Figure 1.3 Large-scale PV power plants - annual and cumulative installed power output capacity worldwide in the period from 1995 to 2008

In 2008, more than 1,000 large-scale PV plants were constructed and put into service worldwide. In Spain more than 590 large-scale PV plants were put into service, more than 120 for each Germany and the USA. Among other countries it is worth m entioning B elgium a nd C zech R epublic w here s everal 1 arge-scale r oofmounted (Belgium) a nd gr ound-mounted (Czech R epublic) P V p lants w ere constructed. R egarding large-scale PV power plants K orea took on a leading role in Asia. Several M W-range pow er pl ants w ere p ut into s ervice in Korea 1 ast year. Europe is by far the most advanced region with more than 800 large-scale PV plants put into service in 2008. In Europe more than 1500 large-scale PV power plants are currently operating, followed by the USA with about 400 PV plants.

1.2 Solar PV Technologies Overview

There are two major solar PV technologies convert from sunlight directly and indirectly into electricity energy.

1.2.1 Solar Converting Directly Technology [8]

This solar PV technology converts solar energy into useful energy forms by directly absorbing solar photons, particles of light that act as individual units of energy, and either converting part of the en ergy to electricity (as in a PV cell) or storing part of the energy in a chemical reaction.

In the world of this PV solar power technology, there are several types of semiconductor technologies currently in use for PV solar panels. However, two types based on t he thickness of the semiconductor have be come the most widely adopted namely crystalline silicon and thin film [9]. Conventional crystalline silicon solar cell is relatively speaking very thick of 200-500 $\mu \mathrm{m}$ where "thin" means something like 1 $10 \mu \mathrm{~m}$.

1.2.1.1 Crystalline Silicon

Crystalline silicon panels are constructed by first putting a single slice of silicon through a series of processing steps, creating one solar cell. These cel ls are then assembled together in multiples to make a solar panel. Crystalline silicon, also called wafer silicon, is the oldest and the most widely used material in commercial solar panels. There are two main types of crystalline silicon panels as follows:

- Monocrystalline Silicon

Monocrystalline (also called single crystal) panels use solar cells that are cut from a piece of silicon grown from a single, uniform crystal as shown in Figure 1.4. Monocrystalline panels are among the most efficient yet most ex pensive on the market. They require the highest purity silicon and the most involved manufacturing processes.

Figure 1.4 Monocrystalline silicon PV panel

- Multicrystalline Silicon

Multicrystalline (also called polycrystalline) panels use solar cells that are cut f rom mul tifaceted silicon crystals as s hown in Figure 1.5. They are 1 ess uniform in appearance than monocrystalline ce lls, resembling pi eces of s hattered glass. These are the most common solar panels on the market, be ing less expensive
than monocrystalline silicon. They are also less efficient, though the performance gap has begun to close in recent years.

Figure 1.5 Multicrystalline silicon PV panel

1.2.1.2 Thin Film

Thin film solar panels are made by placing thin layers of semiconductor material ont ov arious s urfaces, us ually on glass. The term thin film refers to the amount of semiconductor m aterial used. It is applied in a t hin film to a surface structure, such as a sheet of glass. Contrary to popular belief, most thin film panels are not flexible. Overall, thin film solar panels of fer the lowest manufacturing costs and are becoming more prevalent in the industry. There are three main types of thin film used.

- Cadmium Telluride (CdTe)

CdTe is a semiconductor compound formed from cadmium and tellurium. CdTe solar pa nels are manufactured on glass as shown in Figure 1.6. They are the most common type of thin film solar panel on the market and the most cost-effective to manufacture. CdTe panels perform significantly better in high temperatures and in low-light conditions.

Figure 1.6 Cadmium Telluride PV panel

- Amorphous Silicon

Amorphous silicon is the non-crystalline form of silicon and was the first thin film material to yield a commercial product, first used in consumer items such as calculators. It c an be de posited in thin layers on to a va riety of s urfaces and of fers lower costs than traditional crystalline silicon, though it is less efficient at converting sunlight into electricity. Amorphous silicon PV panel is shown in Figure 1.7.

Figure 1.7 Amorphous Silicon PV panel

- Copper, Indium, Gallium and Selenide (CIGS)

CIGS is a compound s emiconductor t hat can be de posited ont o m any different m aterials. CIGS ha s onl y recently be come ava ilable for s mall com mercial applications and is considered a developing PV technology. CIGS PV panel is shown in Figure 1.8.

Figure 1.8 CIGS PV panel
At present, CdTe solar panels technology are chose come first for solar application because of its s uperior ene rgy out put cha racteristic a cross r eal-world conditions, its low cost volume production be nefits a nd its superior e nvironmental
performance. CdTe has lower temperature-related loss than crystalline silicon due to a lower temperature coefficient. It also provides superior energy output in low, indirect and diffuse light conditions, producing more electricity on cloudy days.

1.2.1.3 Concentrated Photovoltaic System (CPV) [10]

Concentrated PV system is a technology to increase the efficiency of the cells by concentrate sunlight on solar cells. The PV cells in a CPV system are built into concentrating collectors that use a lens or mirrors to focus the sunlight onto the cells as shown in Figure 1.9. CPV systems must track the s un to ke ep the 1 ight focused on the PV cells. The primary advantages of CPV system are high efficiency, low system cost and low capital investment to facilitate rapid scale-up, it means that the systems can use less expensive semiconducting PV material to achieve a specified electrical out put. However, reliability is a n important te chnical c hallenge for thi s emerging technological approach. Because of the systems are generally require highly sophisticated tracking devices.

Figure 1.9 Concentrated photovoltaic system

1.2.2 Solar Converting Indirectly Technology [11]

This technology uses mirrors toconcentrate the sunlight e nergy and convert it into thermal energy to create steam to drive a turbine of the generator that generates el ectrical pow er. This technology is well know n a s C oncentrating S olar Power (CSP) technology.

Generally, CSP pl ants g enerate el ectric pow er b y us ing m irrors t o concentrate the sun's e nergy and convert it into high temperature heat. That he at is then channeled through a conventional generator. The plants consist of two parts, one
that col lects solar ene rgy and converts it to heat and then another that converts the heat e nergy to electricity. C SP te chnology ut ilizes thr ee a lternative te chnological approaches such as trough s ystems, pow er tower s ystems a nd di sh/engine s ystems. All C SP t echnological a pproaches require 1 arge areas for s olar r adiation collection when used to produce electricity at commercial area.

1.2.2.1 Trough Systems

Trough s ystems us el arge U -shaped (parabolic) r eflectors (focusing mirrors) t hat ha ve oil 1 illed pi pes r unning a long t heir center or f ocal point. The mirrored reflectors are tilted toward the sun and focus sunlight on the pipes to heat the oil inside to as much as $750^{\circ} \mathrm{F}$. The hot oil is then used to boil water, which makes steam to run conventional steam turbines and generators. The schematic diagram and parabolic trough system are shown in Figure 1.10.

Figure 1.10 Schematic diagram of parabolic trough system

1.2.2.2 Power Tower Systems

Power tower s ystems al so called central receivers, use many large, flat heliostats (mirrors) to track the sun and focus its rays onto a receiver. As shown in Figure 1.11, the receiver sits on t op of a tall tower in which concentrated s unlight heats a fluid as hot as $1,050^{\circ} \mathrm{F}$. The hot fluid can be used immediately to make steam for el ectricity generation or stored for 1 ater us e. That m eans el ectricity can be produced during periods of peak needed on cloudy days or even several hours after sunset.

Figure 1.11 Schematic diagram of power tower system

1.2.2.3 Dish Engine Systems

Dish engine systems use mirrored dishes to focus and concentrate sunlight onto a receiver. As shown in Figure 1.12, the receiver is mounted at the focal point of the dish. To capture the maximum amount of solar energy, the dish assembly tracks the s un across t he $s k y$. The receiver is integrated into a high efficiency external combustion engine. The engine has thin tubes containing hydrogen or helium gas that runs along t he out side of t he e ngine's f our piston c ylinders and op en into t he cylinders. As concentrated sunlight falls on the receiver, it heats the gas in the tubes to very high temperatures, which causes ho t g as to e xpand inside t he c ylinders. T he expanding gas d rives t he pistons. The pi stons t urn a crankshaft, w hich dr ives an electric generator. The receiver, engine and generator com prise a s ingle, integrated assembly mounted at the focus of the mirrored dish.

Figure 1.12 Schematic diagram of solar dish engine system

1.3 PV Generation System in Thailand

From Thailand's e nergy s ituation in 2010 r eport [12], its hows t hat Thailand imports variety forms of energy which worth many millions Baths as shown in Figure 1.13. Actually, Thailand's consumption of energy has been increasing every year in forms of gas, oil, coal and electricity. The energy crisis in the past few years has caused energy price rising up a nd affected economic de velopment countrywide. Therefore, in order to lower an import of some energy, the Ministry of Energy has come up with a policy to develop the renewable energy (RE) for a fifteen years period (2008-2022) by the Thailand Power Development P lan 2010 (PDP 2010) [13]. The objective of the plan is to increase the portfolio of renewable energy to 20.3% of the final energy consumption in 2022. At the e nd of the plan, the portion of renewable energy in pow er ge neration s hall be 2.4% or $5,608 \mathrm{M} \mathrm{W}$ from 1.4% at present as shown in Figure 1.14.

Figure 1.13 Proportion of domestic and import energy of Thailand in 2010

Figure 1.14 Energy source portion of power generation of Thailand in 2010
Furthermore, from the study of Silapakorn University and Department of Alternative Energy Development and Efficiency (DEDE) found that the average solar radiation potential of Thailand is about $18.2 \mathrm{MJ} / \mathrm{m}^{2}$-day or $5.06 \mathrm{kWh} / \mathrm{m}^{2}$-day, which is a very good potential. However, the solar radiation potential of the areas in Thailand (as shown in Figure 1.15) can be classified into three groups as follows [14]:

- The high potential area: ave rage s olar radiation a bout $19-20 \mathrm{M} \mathrm{J} / \mathrm{m}^{2}$-day or $5.28-5.56 \mathrm{kWh} / \mathrm{m}^{2}$-day which covers 14.3% of the total area
- The medium potential area: a verage solar radiation a bout $18-19 \mathrm{MJ} / \mathrm{m}^{2}$-day or $5-5.28 \mathrm{kWh} / \mathrm{m}^{2}$-day which covers 50.2% of the total area
- The low potential area: average s olar r adiation 1 ess t han $18 \mathrm{M} \mathrm{J} / \mathrm{m}^{2}$-day or $5 \mathrm{kWh} / \mathrm{m}^{2}$-day which covers 35.5% of the total area

Figure 1.15 Yearly average solar radiation potential of the areas in Thailand

From Figure 1.15, the highest average solar radiation zone is on the north eastern area and some a rea of the central of Thailand. The pe rcentage of the area which classified by average solar radiation levels is shown in Figure 1.16, while the yearly average solar radiation of the whole country is $18 \mathrm{MJ} / \mathrm{m}^{2}$-day.

Figure 1.16 Percentage of area classified by average solar radiation levels of Thailand Therefore, f rom thi s in formation, it s hows tha t the s olar pot ential in Thailand is very important. And it should not be overlooked because the solar energy resource in Thailand is enough for the future. Table 1.2 shows the renewable potential and target plan of Thailand. Note from Table 1.2 that the solar e nergy potential to produce electricity energy is $50,000 \mathrm{MW}$, which is the highest compared with other energy resources. However, the existing electricity power produced by solar energy is just only 32 MW. This is because the capital investment cost of PV technology is still expensive com pared with ot her t echnologies, although PV t echnology has be en continually reduced at the present.

However, in order to e ncourage to pr oduce more electricity po wer by solar ene rgy, the M inistry of E nergy of T hailand ha s pr omoted the ad der r ate of $8 \mathrm{Bth} / \mathrm{kWh}$ for small power producers (SPPs) or very small power producers (VSPPs). This rate is also using solar energy technology (called the concentrating solar power, CSP) to pr oduce t he t hermal ene rgy and then to produce t he el ectricity power as shown in Table 1.3.

Table1.2 Some of renewable potential and target plan of Thailand

Electricity Power Produced by	Potential (MW)	Existing (MW)	$\mathbf{2 0 0 8 - 2 0 1 1}$ (MW)	2012-2016 (MW)	2017-2022 (MW)
Solar	50,000	32	55	95	500
Wind Energy	1,600	1	115	375	800
Hydro Power	700	56	165	281	324
Biomass	4,400	1,610	2,800	3,220	3,700
Biogas	190	46	60	90	120
Municipal Solid Waste	400	5	78	130	160
Hydrogen	-	-	0	0	3.5
Total	$\mathbf{5 7 , 2 9 0}$	$\mathbf{1 , 7 5 0}$	$\mathbf{3 , 2 7 3}$	$\mathbf{4 , 1 9 1}$	$\mathbf{5 , 6 0 8}$

Table1.3 Adder rate for SPPs and VSPPs using renewable energy of Thailand

Type of power source of power plant	adder (Bth/kWh)	New adder (Bth/kWh)	Adder special plus (Bth/kWh)	Adder special plus for Yala, Pattani, Naratiwas (Bth/kWh)	Given adder duration (years)
1.Biomass					
$\begin{aligned} & \text {-Installed capacity <= } 1 \mathrm{MW} \\ & \text {-Installed capacity > } 1 \mathrm{MW} \end{aligned}$	$\begin{gathered} 0.30 \\ 0.30 \end{gathered}$	$\begin{aligned} & 0.50 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	7 7
2.Biogas					
-Installed capacity <= 1 MW	0.30	0.50	1.00	1.00	7
-Installed capacity > 1 MW	0.30	0.30	1.00	1.00	7
3.Waste					
-AD and Land fill	2.50	2.50	1.00	1.00	7
-Thermal process	2.50	3.50	1.00	1.00	7
4. Wind energy					
-Installed capacity $<=50 \mathrm{~kW}$	3.50	4.50	1.50	1.50	10
-Installed capacity > 50 kW	3.50	3.50	1.50	1.50	10
5.Micro water turbine					
-Installed capacity $50 \mathrm{~kW}-<200 \mathrm{~kW}$	0.40	0.80	1.00	1.00	7
-Installed capacity $<50 \mathrm{~kW}$	0.80	1.50	1.00	1.00	7
6.Solar energy (PV,CSP, etc.)	8.00	8.00	1.50	1.50	10

From the PV capacity installation report of Thailand [15], the DEDE has PV pr ojects a round t he c ountry with c apacity $3,510.5 \mathrm{~kW}$ s ince 1983 t o 2010.

However, the PV generation system that was installed in Thailand can be separated into a stand-alone system (off-grid) and grid-connected system. The total capacity of the PV generation system of Thailand in 2010 is 49.21 MW as shown in Figure 1.17, which are 29.65 MW of stand-alone and 19.56 MW of grid-connected system. This installed capacity c an classify b y the solar a pplication system as s hown in F igure 1.18. It s hows t hat t he s olar e nergy is t he m ost a pplied s ource t o p roduce t he electricity as 26.8 MW or 54.4% of total capacity.

Figure 1.17 PV installation capacity since 1983-2010 of Thailand

Solar application system
Figure 1.18 Installation capacity of solar application system since 1983-2010 of

> Thailand

1.4 Motivation

Generally, distribution systems are the radial type systems, which can be found inrural or suburban a reas, are normally de signed to ope rate w ithout a ny generation sources connected to the grid. The i nterconnection of any generation sources on the distribution system can be variously impact on the power flow, voltage regulations at customer load and utility equipments. These impacts may be caused the system ope ration in either pos itively or ne gatively de pending on t he di stribution system ope rating ch aracteristics and the DG/characteristics [2]. There ar e s ome positive impacts which are the system benefits as follows:

- Voltage support and improved power quality.
- Loss reduction in some cases [16].
- Peak shaving.
- Transmission and distribution capacity release.
- Deferment of new or upgraded T\&D infrastructure.
- Improved utility system reliability.

Achieving the above benefits is in practice much more difficult than often realized. DG s ources m ust be reliable, dispatchable of t he pr oper size, and at t he proper 1 ocations. Therefore, w ithout pr oper pl anning a nd a nalysis, D Gs c an ha ve negative impacts to the distribution system as follows:

- Large pe netration level of D Gm ay de teriorate s ystem ope ration, system security and system dynamic performance.
- Conventional distribution systems need adequate protection in order to accommodate exchange of power.
- Signaling for dispatch of resources becomes extremely complicated.
- Connection and revenue contracts are difficult to establish.
- Safety concerns with energy generated from multiple sources.

Since D Gs have a dvantages a nd di sadvantages as mentioned above also many DGs will not be utility owned or will be variable energy sources such as solar and wind. There is no guarantee that these conditions will be satisfied and that the full
system support benefits will be realized. Thus, DG interconnection policy should take into account how to maximize the desired benefits.

The PV generation is one type of inverter-based DGs that will be come more widespread at this time and the future due to anticipated cost reductions in PV technology and installation. PV systems are ex pected to play a p romising role as a clean power el ectricity source in meeting future el ectricity d emands. However, the integration of PV systems into power networks can cause both benefits and drawbacks depending on locations, operating modes and allowable sizes [17-19]. Since, the PV system is int erfaced to the di stribution s ystem t hrough a pul se width modulated (PWM) inverter, which is the main source of harmonic current. They may create the associated i njection of ha rmonic c urrents i nto t he di stribution s ystem 1 ead t o malfunction of harmonic-sensitive equipment if the injection of harmonic currents is allowed to reach excessive levels [20]. Therefore, with the g rowing pe netration of inverter-based DGs especially phot ovoltaic distributed generation (PV-DG). T here should be more concerns about technical constrains and existing regulation by t he Distribution Network Operators (DNO) in order to assess the impact of PV system on the electric power quality and limit their integration.

In system planning and design aspect, there are some of the issue concerns of utilities when PV-DGs are interconnected to the grid as follows:

- Harmonic distortion
- Power fluctuation
- Voltage regulation

1.4.1 Harmonic distortion [21]

From a ha rmonic m odeling standpoint, inverter-based D G units can be viewed as a nonlinear load injecting harmonic current into the distribution feeder [22]. This could result in an unacceptable level of total harmonic distortion (THD).

THD can be applying to both current and voltage which are defined as the ratio of the rms value of harmonics and the rms value of the fundamental. THD of currents (THDi) varies from a few pe rcent to m ore than 100%. THD of vol tage (THDv) is usually less than 5%. However, THDv below 5% is widely considered to
be acceptable, but values above 10% are un acceptable a nd will c ause problems for sensitive equipment and loads.

It is w idely r ecognized t hat t he pr esence of n onlinear c omponents of power systems m anifests in the appe arance of ha rmonics [23]. T he presence of harmonics in a power system is undesirable for a number of reasons, some of which are:

- Harmonics increase power losses in both utility and customer equipment.
- Sometimes ha rmonics m ay p rovoke m alfunctioning of sensitive load or control equipment.
- Harmonics ha ving s ignificant m agnitudes can caus e ar eduction of lifetime of m otors, t ransformers, capacitor banks a nd s ome ot her equipment.
- A harmonic resonance problem with shunt capacitor c an be o ccurred in some condition. And it produces large spikes of current and voltage on the system which cause the operation of protective devices or the failure of equipment.

Power electronic devices, as used for PV inverter, may cause a harmonic's problems. T he m agnitude a nd t he or der $o f h$ armonic c urrents $i n j e c t e d ~ b y d c h a c$ inverters de pend on t he technology of the inverter a nd mode of its op eration. For example, a forced-commutated inverter with pulse-width-modulation operated in the linear range, will introduce only harmonics in the range of high frequencies, i.e., at and/or around multiples of the carrier frequency [24].

Many p apers s tudied power qua lity pr oblems in ha rmonic a spect associated with a large num ber of distributed grid-connected PV s ystem on a distribution network [25-29]. The m ain obj ective of t hese pa pers is to analyze t he observed phenomena of harmonic interference of large populations of these inverters. From the results of these papers, it indicates that the increasing of grid-connected PV systems can cause the harmonic di stortion problem due to hi gh pe netration of PV system.

1.4.2 Power fluctuations

At a large s cale, the uncertainty characteristic of po wer output of PV systems can affect the power quality and reliability. Since, the power generated from PV s ystems will be fluctuating all the time depending on climate conditions a nd geographic location. In the future, if a large number of PV systems are connected to the grids, the fluctuation of PV power output may cause the problems such as voltage fluctuation and large frequency deviation in electric power system operation [30-35]. Therefore, for the high penetration of PV systems interconnection to the grids without reduction of the r eliability and pow er qu ality of ut ility pow er systems, suitable measures should be applied to the PV systems side.

Battery storage is the one device which c an be us ed to reduce the P V power out put fluctuation. There are s everal studies which investigations a imed at improving the performance of PV systems equipped with batteries [36-41]. However, using the energy storage device increases the capital cost, as it needs maintenance.

Therefore, in order to assess the power quality of a distribution system under nor mal op erating conditions with high penetration of PV-DGs and without batteries, electrical characteristics of the current injection into the distribution network are ne cessary to be un derstood thoroughly. Generally, the power s ystem analysis under normal ope ration is based on a deterministic load flow c alculation. However, the solar energy sources of PV-DG units are often uncontrollable and thus introduce uncertain factors into t he di stribution s ystem. As a result, t he PV ou tput power injection into the distribution system is fluctuating throughout the year [34].

As mentioned above, the combination of many uncertain factors may be make the difficulty and complicated to assess a distribution system performance under normal ope rating c onditions through a de terministic approach. Therefore, a probabilistic approach is necessary in order to assess the system power quality, which these uncertain factors are taking into account, e.g. power losses, voltage regulation, power fluctuation and harmonic distortion.

1.4.3 Voltage regulation

Generally, load-tap-changing (LTC) tr ansformers a ts ubstations, supplementary line regulators on feeders, and switched capacitors on feeders are used to regulate the voltage of a radial distribution system. Through the application of these devices, the voltages at a customer load point are kept within the acceptable limit. In practice, the voltage regulation is normally based on r adial pow er flows from the substation to the load points. Interconnection of DG introduces meshed power flows, which may be interfering with the system voltage regulation. The following regulation problems may occur [2]:

- Low voltage caused by DG just downstream of a regulator with line-drop compensation

If a DG i s connected to downstream of a vol tage r egulator or LTC transformer, which is using considerable line drop compensation as shown in Figure 1.19. Then the regulation controls will be unable to properly measure feeder demand. Fig.1.19 demonstrates that the improper voltage profiles may occur under with and without DG. In case of with DG, the voltage is reduced because the DG decreases the observed load at the line drop compensator (LDC) control. In this case, the regulator confuses into setting a voltage low er than is required to maintain adequate service levels at the end of the feeder.

Fig. 1.19 Case of DG unit interfering with voltage regulation on a distribution feeder

- High voltage due to $D G$

DG may also result in high voltage at some electric customers. It can be seen that high penetration of DGs may cause reverse power flow to the substation. For this case, the vol tage can increase al ong the f eeder. In s ome locations where the primary voltage is already high and the load is low, the rise in voltage can be enough to push the voltage over the acceptable limit [21].

Furthermore, the problem of high voltage may occur from the uncertainty of power fluctuation due to both PV-DG as mentioned above and load demand. If PVDG does not operate inc oordinate with the local 1 oad , t hey m ight increase t he variations be tween the maximum a nd minimum vol tage le vel. As the mini mum voltage level could remain in a high load with a low PV-DG power situation, but the maximum voltage level could increase in low load with full PV-DG production.

- Interaction with regulating equipment

Some D Gs us e f eedback to oc ontrol vol tage, b ut th is w ay int eracts negatively to the utility regulation equipment. There may be unde sirable cycling of regulation de vices a nd not iceable pow er qua lity i mpacts unde r such c onditions. In case of intermittent power output of PV-DG, this may change the system voltage or current flows e nough to c ause a regulator tap change or an ope ration of a s witched capacitor [21].

As mentioned all above, it can be seen that there is some interesting issues concern with P V-DG included harmonic distortion, power fluctuation and difficulty of voltage regulation. The installation of PV-DG into a distribution system can cause both benefits and drawbacks depending on locations, operating modes and allowable sizes.

Therefore, this dissertation proposes the sizing of photovoltaic distributed generators in a distribution system with consideration of solar radiation and harmonic distortion. The objective is to maximize the power produced by PV-DG installation and minimize s ystem lo sses, while the vol tage profile as well as harmonic cur rent, total ha rmonic vol tage distortion (THDv) a nd total de mand di stortion (TDD) at the point of common coupling (PCC) are kept at an acceptable limit.

The pr obabilistic a pproach is a pplied t o solve t he pr oblem because distribution utilities de liver electric energy to their customers within an appropriate range to maximize customer satisfaction and to reduce system losses. In the presence of PV-DG, it is difficult to regulate voltage since the PV system is a type of random generation. That is de pendent of t he environmental conditions na mely the vol tage variation of PV-DG at the PCC as a function of solar radiation level [42-43]. So, it is impossible to a chieve a realistic evaluation of w here a nd when an overvoltage can happen in a distribution system during an investigate a period of time by simply using a de terministic 1 oad f low (DLF) analysis, which is ba sed on t he m ean va lues or expected values of customer loads and generations as inputs to solve a problem. For this reason, a probabilistic load flow (PLF) a nalysis is e mployed to ensure that the solution will be effective for the acceptable voltage deviation.

1.5 Literature Reviews

1.5.1 Literature Review on Optimal DG Sizing and Location

Generally, DG is an electric pow er source connected directly to a distribution ne twork or customer site. Since D G can be installed close to anyplace, which is required the advantages of DG in terms of efficiency and losses, investment, reliability and pow er q uality. However, interconnection of D G can create some technical problems such as difficulty of voltage regulation, over a thermal limit a nd exceeded harmonic di stortion, etc. The severity of t his problem depends on s ize, location, number and operating mode of DG. Therefore, several papers studied how to determine optimal size and location of DG, which is based on the synchronous type, in a di stribution ne twork with consideration of t echnical constraints as m entioned above.

Authors in [44] and [45] proposed technique to minimize power losses in a distribution feeder by optimizing DG model in terms of size, location and operating point of D G. S ensitivity analysis for po wer 1 osses in terms of DG s ize a nd D G operating point was also performed in these papers. The proposed technique has been developed with c onsidering the load cha racteristic w ith constant i mpedance and constant c urrent models. Test results indi cated that real pow er loss can be reduced with a DG of optimal size, located at an optimal place in the feeder.

DGs in [46] ar e treated as mobile reactive com pensators, which can be connected as a kind of reactive compensation equipment to improve voltage stability. A qua ntitative index is proposed to e valuate the vol tage stability of load nodes to decide t he opt imal D G location. The opt imal p enetration level of D G at opt imal location is the n calculated by P rimal-Dual Interior P oint M ethod. T he opt imal calculation realizes the hi ghest vol tage e ligible ratio and minimum pow er los say adjusting the reactive power output of DG in a precondition of system security. The simulation results show t he b est l ocation and p enetration l evel of $D G$ for vol tage stability in the test system.

A multi-objective a pproach for optimal location and sizing to maximize the pe netration of DG in a distribution ne twork is proposed in [47]. The proposed optimization pr ocedure is a n e volutionary m ulti-objective a lgorithm ba sed on t he genetic algorithm (GA) with the ε-constrained t echnique. The goal of this methodology is to maximize the benefits of the presence of DGs and limit the network performance deterioration because DG is not connected at optimal locations.

Reference [48] pr oposed A nt C olony O ptimization (ACO) ba sed algorithm for DG sources allocation and sizing in distribution systems. The objective is de fined a s m inimization of DG i nvestment c ost a nd t otal ope ration c ost of t he system subject to a set of constraints such as capacity of feeder, voltage limit and total DG capacity limitation.

The optimal D G num ber a nd s izing f ormulated a s a NonLinear Programming (NLP) pr oblem ha s been proposed in [49]. The ma jor objective is improving the vol tage p rofiles of di stribution ne tworks us ing multiple DG s ources. The cons traints of this paper are the nodal com plex vol tage and DG po wer factors. Further, t he s tatic l oad m odels a sconstant po wer, c onstant current a nd c onstant impedance are investigated.

In [50], the optimization of DG units and shunt capacitors for economic operation of di stribution s ystems was proposed. T he m inimization of ove rall investment cost with the integration of DG units and shunt capacitors is assessed with the c onsideration of s upply qua lity, r eliability a nd e nergy 1 oss. A n ew pl anning methodology by using Particle S warm Optimization (PSO) is proposed to minimize the overall cost for optimal sizing and location of DG units and shunt capacitors.

The effect of the variation of loads with voltage and frequency for optimal allocation of DG in terms of location and size is addressed in [51]. The objective is to minimize the real power loss a nd to maintain the vol tage within specified limits at buses us ing genetic algorithms in a distribution network. However, an evaluation of frequency on analysis under certain assumptions regarding frequency has been made within the permissible range 0.98 pu to 1.02 pu .

The paper in [52] presents an approach by using the genetic algorithm for optimal a llocation of s ingle a nd multiple D Gs in terms of loc ation and size to minimize an average of locational charges for unit act ive pow er at buses. It means that the bus with maximum locational charge may be chosen as optimal location. The voltage at buses within specified limits is considered as the constraint. The static load models as constant power, constant current and constant impedance were considered.

The paper in [53] proposed the selection of optimal location and size of multiple DGs by using Kalman filter algorithm. The selection of optimal locations of multiple D Gs was considered from tot al pow er los sin as teady-state ope ration. Thereafter, the optimal sizes are determined by using the Kalman filter algorithm. The objective is to minimize the total power loss of system. The merit of this algorithm is that it took the only few samples from a large-scale power system with many data samples and therefore, it reduced the computational requirement dramatically during the optimization process.

The opt imal D G s izing pr oblem in [54] is t ackled b y t he S equential Quadratic Programming deterministic technique. The DG modeling is separated into two types, which a re treated as a P V bus a nd PQ bus. T he obj ective function is minimizing real po wer losses with consideration of the thermal network restrictions and the bus c omplex vo ltage c onstraints. F urthermore, the i mpact of bot $h t$ he $D G$ modeling a nd t he static load response to vol tage upon t he opt imal $D G$ s ize were studied.

A multi-objective placement and penetration level of DGs were examined in [55]. By concerning both technical and economical parameters of a power system using genetic a lgorithm combined with Multi-Attribute D ecision Making (MADM) method. The t echnical parameter including total losses, bus es vol tage profile, 1 ine capacity limits and total reactive power flow were considered. The approach consists
of GA for de termining the be st generation configurations of system by considering technical parameters that are included in the fitness function, and MADM techniques for ranking the selected plans regard to technical and economical attributes.

A combination of genetic algorithm and simulated annealing is presented in [56] f or opt imal D G a llocation in di stribution ne tworks. The obj ective isto minimize di stribution po wer losses for a fixed number of DGs and a s pecific total capacity of D Gs. The constraints a re bus es v oltage m agnitude and 1 ine c urrent capacity limits. Through this algorithm, a significant improvement in the optimization goal is achieved.

From [44-56], methods, objective function, parameter constraints and load models for opt imal sizing a nd location of DG ba sed on the synchronous type in a distribution system can be summarized as shown in Table 1.4. Among the methods for optimal DG sizing and location, the genetic algorithm is the most popular method.

Table 1.4 Summary of the methodologies for optimal DG sizing and location

Methodologies	Objective functions	Constraints	Load models
- Genetic algorithm (GA)			
- Nonlinear programming			
- Sequential quadratic programming			
- Particle swarm optimization	- min (real power loss)	- Bus voltages	- Constant power
- Ant colony optimization	$-\min$ (voltage variation)	- Thermal limits	- Constant current
- Combination of GA and Simulated	$-\min$ (investment and	- DG capacity	- Constant impedance
annealing - Combination of GA and MADM - Kalman filter algorithm	operating cost)		

1.5.2 Literature Review on Optimal PV-DG Sizing

The methodologies as shown in Table 1.4, how ever, are used for optimal synchronous-based DG sizing a nd location, which all are based on a deterministic approach. There a re m any t echniques presented in bot hs tand-alone a nd g ridconnected systems through de terministic a nd p robabilistic a pproaches. In o rder to determine a PV-DG size and assess a distribution system performance under normal operating conditions.

In order to determine PV-DG size based on a probabilistic approach, an analysis of a stand-alone PV system on output of PV systems and load demands were studied in [57]. Reliability indices in terms of 1 oss of 1 oad hou rs (LOLH), e nergy losses and total cost of investment are the main factors for e valuating the opt imal operation of stand-alone P V scheme. Solar radiation a nd load demand in [57] were modeled as s tochastic va riables us ing hi storical da ta a nd experimentation, respectively.

In [58], a uthors presented several techniques to design a stand-alone PV system. Three probabilistic methods (i.e., fixed days of battery backup and recharge, loss of 1 oad probability (LOLP) and Markov Chain modeling) were proposed. The LOLP t echnique ha $s b$ een suggested as the most r eliable be cause it pr ovided a detailed view of the system performance to design the PV system among all proposed techniques.

In [59], a uthors proposed the sizing procedure for stand-alone a nd gridconnected PV systems. It was based on an analytical method and sized not only PV arrays but a lso ba tteries a nd i nverters. T he analytical s izing m ethod could be categorized into three types, which are based on loads and irradiation, available areas and LOLP. The obj ective was not to minimize system cost m athematically, but to give an optimal design at the practical level on the basis of experimental knowledge.

In [60], a uthors pr oposed a pr obabilistic a pproach tod esign a gridconnected P V s ystem in low vol tage feeder. The pr oposed m ethod de termined the optimum PV rating with a voltage constraint at the specified connecting point.

At present, inverter-based DG can perform functions other than supplying real power. The innovation and improvements in electronic devices allow using DG to improve power quality in the grid [61]. For this reason, specific planning tools for optimal placement and sizing of DG should be adopted to consider the multiple and contrasting goals that the DNO strives to achieve [62].

Furthermore, in case of PV-DG, the uncontrollable of solar energy sources can introduce uncertain factors into a distribution system such as voltage fluctuation as mentioned in section 1.4. Therefore, it is necessary to obtain an effective method
for optimal PV-DG sizing and location. To cope with this, a probabilistic approach is an alternative for solving the problem.

However, most research works related to optimal PV-DG sizing normally do not consider the pow er qua lity constraints i.e., ha rmonic c urrents from PV-DG, total harmonic di stortion due to PV-DG as well as background harmonic condition. Furthermore, the PV model in relevant papers is mostly using an approximate model which ac power output of PV system is assumed to be linearly proportional to solar radiation. And they do not mention about optimal location of PV-DG installation.

1.6 Objectives and Scope of Works

Objectives of this dissertation can be described as follows:

- To obtain an optimal size of single and multiple PV-DGs in a distribution system with consideration of solar radiation and harmonic distortion.
- To propose the steady state voltage stability index method for determining the proper locations of PV-DG as utility planning and design aspect.
- To compare PV-DG sizing between consideration with and without system background harmonics.
- To assess power qua lity i mpacts on a distribution system unde r nor mal operating conditions with installation of PV-DG units.
- To study an impact of static load models and power factor control on the optimal sizing of PV-DG.
- To study an effect of PV inverter models and existing DGs in a distribution system on the optimal PV-DG sizing.

Scope of the research can be summarized as follows:

- The proposed technique is based on a probabilistic approach, i.e., Monte Carlo simulation.
- The PV model in this research is based on Sharp 80Wp, NE-80E2E solar module, which is pol ycrystalline s ilicon material t ype. T he ma ximum power (80 W) is defined at $1000 \mathrm{~W} / \mathrm{m}^{2}$ solar r adiation and $25^{\circ} \mathrm{C}$ cell temperature under standard test conditions (STC).
- The PV model is integrated with the simplified perturb and observe (P\&O) maximum power point tracking (MPPT) technique to automatically find the m aximum pow er out put unde r a g iven s olar r adiation a nd a mbient temperature, which are based on real statistical data.
- The substation vol tage a nd 1 oad de mand are assumed to be a random variable with a normal distribution function.
- The protection coordination is not considered in this research.
- The c oordination of vol tage regulation e quipments w ith P V-DGs is not considered.
- PV-DGs are considered without batteries storage.
- A distribution system is assumed to be balanced.
- The ba ckground ha rmonics a re t aking i nto a ccount to determine the optimal size of PV-DG.
- Other t ypes of D Gs, such as s ynchronous a nd induction g eneration, are allowed with various locations, ope rating modes and sizes to incorporate with the optimal PV-DG sizing.
- In order to evaluate the harmonic distortion levels in a distribution system, the PV-DG is modeled as a ha rmonic cur rent source based on statistical harmonic current spectra from measurements of a PV farm.
- The steady state voltage stability index (VSI) method is used to determine the proper locations for placing a PV-DG.
- The objective function of the proposed method is to:
- Minimize average system real power loss

Subjected to the technical constraints as follows:

- Node voltage limited as $1 \pm 0.05 p u$ or $0.95 \mathrm{pu} \leq V_{i} \leq 1.05 \mathrm{pu}$
- Harmonic currents at each order (up to $33^{\text {rd }}$) should not exceed the limits, which are based on IEC 61727 standard [63].
- Total ha rmonic vol tage di stortion ($\mathrm{THD}_{\mathrm{v}}$) at P CC should not exceed 5\%, which is based on IEEE 519-1992 standard [64].
- Total de mand di stortion (TDD) at P CC s hould not e xceed 5%, which is based on IEC 61727 standard.
- An actual PEA 51-bus radial distribution system in Thailand and a 33-bus system are used for test cases of the proposed method.

1.7 Synopsis of Chapters

The material in this dissertation is organized as follows:
Chapter 1 pr esents world's P V ge neration ove rview, s olar P V technologies and PV generation in Thailand. The literature reviews of related research are also addressed. The motivation, objective, scope of work and research a pproach are also mentioned.

Chapter 2 presents models of grid-connected PV system components. The statistical mode ls of s olar r adiation and ambient t emperature a re pr oposed. The probabilistic load model, PV model, MPPT and PV inverter model are also addressed.

Chapter 3 presents the s teady state vol tage stability inde x me thod to determine the proper PV-DG installation location.

Chapter 4 pr esents the modified Newton method to calculate power flow in a radial distribution system. The ha rmonic m odeling a nd calculation are al so presented.

Chapter 5 proposes the algorithm of PV-DG sizing technique and problem formulation. The numerical results of several study cases are also investigated.

Chapter 6 presents contributions of the dissertation, conclusion and future works.

CHAPTER II MODELING OF SYSTEM COMPONENTS

2.1 Grid-Connected Photovoltaic Systems

PV power s ystems have ma de a successful transition from s mall standalone sites to large grid-connected systems. The utility interconnection brings a new dimension to the renewable power economy by pooling the temporal excess or the shortfall in the renewable powerwith the conn ecting grid that g enerates ba se-load power using conventional fuels. Generally, the grid supplies power to the site loads when needed or absorbs the excess power from the site when available. A kilowatthour meter is used to measure the power delivered to the grid and another is used to measure the power drawn from the grid.

As shown in Figure 2.1 [9], the principal components in a single pha se grid-connected, PV system side consists of the array itself with two leads from each string sent to a combiner box that includes blocking diodes, individual fuses for each string and usually a lightning surge arrestor. Two wires from the combiner box deliver dc power to a fused array disconnected switch, which allows the PVs to be completely isolated from the system. The inverter sends ac power through a breaker to the utility service panel. Additional components not shown include the maximum power point tracker (MPPT), a ground-fault circuit interrupter (GFCI) that shuts the system down if any currents flow to ground and circuitry to disconnect the PV system from the grid if the utility loses power. The inverter, some of the fuses and s witches, the MPPT, GFCI and other power management devices are usually integrated into a single power conditioning unit (PCU). Figure 2.2 shows the simplified schematic diagram of the grid-connected PV systems included PV generator, PCU and step-up transformer.

Figure 2.1 Principal components in a single phase grid-connected PV systems

Figure 2.2 Simplified sehematic diagram of grid-connected PV systems

For large-scale grid-connected PV systems, a PV generator consists of a typical c onnection group of P V strings, of which t he t ype ofc onnection is not considered in this dissertation. The MPPT is integrated into the PCU which sends the maximum power through a step-up transformer to the grid. In power quality aspect, a large a mount of c onverted pow er from D C to A C side c an c ause t he ha rmonic problem. This de pends on t ypical i nverter t opologies a nd op erating po int, which depends on power produced by PV generator under a solar radiation condition.

2.2 Solar Radiation and Ambient Temperature Modeling

To analyze PV systems, we need to know how much sunlight is available. A fairly straightforward set of equations can be used to predict where the sun is in the
sky at a ny time of a day for an ylocation on earth a s well as solar intensity (or insolation which incident solar radiation) on a clear day. To determine average daily solar radiation under the combination of clear and cloudy conditions that exist at any site long-term measurements of sunlight hitting a horizontal surface is required.

2.2.1 Statistical Model of Solar Radiation

In this dissertation, hourly solar radiation is modeled as a statistical model based on data measured from a study area. Hourly variations of solar radiation were collected in one year. Figure 2.3 s hows the e xample of hour ly v ariations of s olar radiation in Chiang Mai during 6.00 am to 6.00 pm on January to December 2007 (see Appendix A for complete data). The S I unit for solar radiation is w att per s quare meter $\left(\mathrm{W} / \mathrm{m}^{2}\right)$.

Figure 2.3 Hourly variations of solar radiation in Chiang Mai during $6.00 \mathrm{am}-6.00 \mathrm{pm}$ on Jan-Dec 2007

From t he m easurements, int his c ase, t he pr obability de nsity of s olar radiation may not be able to accurately model as a conventional distribution function e.g., W eibull, Gamma, Exponential, e tc. Hence the s olar radiation is modeled as a stochastic variable from historical measurement data, as shown in Figure 2.4.

Figure 2.4 Probability density of solar radiation corresponding to Figure 2.3

2.2.2 Statistical Model of Ambient Temperature

Generally, the operating t emperature is not c onsidered in P V s ystem analyzing. Because the temperature has a few effect on the PV system output power. Thus, in PV model, the power output of PV system is approximately proportional to solar radiation. However, the power output of PV system can be changed around 10% (constant solar radiation) when the ambient temperature is varied from the minimum to m aximum va lues, ba sed on m easurement da ta, by simulation. Therefore, in t his dissertation, the temperature effect is included in the PV model.

Similarly to solar radiation, hourly variations of ambient temperature are modeled as a s tatistical model based on data measured from the same area and time (see Appendix A for complete da ta). Figure 2.5 s hows t he hou rly variations of ambient temperature (degree) in Chiang Mai during 6.00 am to 6.00 pm on January to December 2007.

Figure 2.5 Hourly variations of ambient temperature in Chiang Mai during - $6.00 \mathrm{am}-6.00 \mathrm{pm}$ on Jan-Dec 2007

From Figure 2.5, the a mbient temperature can be modeled as a W eibull distribution function, as shown in Figure 2.6. The probability de nsity function of a Weibull random variable x is [65]

$$
\begin{equation*}
f(x)=\frac{\beta}{\alpha^{\beta}} x^{\beta-1} \exp \left[-\left(\frac{x}{\alpha}\right)^{\beta}\right] \tag{2.1}
\end{equation*}
$$

where $0 \leq x<\infty, \beta>0$ is the shape parameter and $\alpha>0$ is the scale parameter of the distribution. The cumulative probability distribution function is

$$
\begin{equation*}
F(x)=1-\exp \left[-\left(\frac{x}{\alpha}\right)^{\beta}\right] \tag{2.2}
\end{equation*}
$$

By the inverse transform method
give

$$
\begin{equation*}
U=F(x)=1-\exp \left[-\left(\frac{x}{\alpha}\right)^{\beta}\right] \tag{2.3}
\end{equation*}
$$

so

$$
\begin{equation*}
X=\alpha[-\ln (1-U)]^{1 / \beta} \tag{2.4}
\end{equation*}
$$

where U is a uniformly distributed random variate between $[0,1]$. Since $1-U$ is also a uniformly distributed random variate between [0,1], Equation (2.4) becomes

$$
\begin{equation*}
X=\alpha(-\ln U)^{1 / \beta} \tag{2.5}
\end{equation*}
$$

where the values of α is 29.2763 and β is 6.5052 from the curve fitting.

Figure 2.6 Cumulative probability of ambient temperature corresponding to Figure 2.5

2.3 Photovoltaic Modeling

For this research work, a model of moderate complexity was us ed [66]. The PV model included temperature de pendence of the photo-current $\left(I_{p h}\right)$ and the saturation current of the diode $\left(I_{0}\right)$. A series resistance $\left(R_{s}\right)$ was included, but not a shunt resistance. A single shunt diode was used with the di ode qua lity factor set to achieve the best curve match. This model is a simplified version of the two di ode model presented by Gow and Manning [67]. The simplified equivalent circuit of a PV cell is shown in Figure 2.7.

Figure 2.7 Simplified equivalent circuit of the PV cell model

Furthermore, PV model in this dissertation is integrated with maximum power point tracker as will be described in next section. Accuracy and complexity can be introduced to the model by adding in turn

- Temperature dependence of the diode saturation current I_{0}
- Temperature dependence of the photo current $I_{p h}$
- Series r esistance R_{S}, which gives a m ore accu rate s hape be tween the maximum power point and the open circuit voltage
- Either al lowing the di ode quality factor to become a va riable parameter, instead of being fixed at either 1 or 2

From t he c orresponding s tatistical m odel, r andom s olar r adiation $\left(G_{a}\right)$ and ambient te mperature $\left(T_{a}\right)$ are generated by Monte C arlo simulation. These da ta are required to evaluate the I-V characteristic of PV model. The voltage output of the PV cellis represented by Equation (2.6), which is a function of t he p hotocurrent mainly determined by load current and depended on the solar irradiation level and cell temperature during the operation.

$$
\begin{equation*}
V_{p v}=\left(A k T_{c} / q\right) \ln \left(I_{p h}+I_{0}-I_{p v} / I_{0}\right)-I_{p v} R_{s} \tag{2.6}
\end{equation*}
$$

Equation (2.6) can be rewritten as

$$
\begin{equation*}
I_{p v}=I_{p h}-I_{0}\left(e^{\frac{q\left(V_{p \nu}+I_{p T} R_{s}\right)}{A k T_{y}}}-1\right) \tag{2.7}
\end{equation*}
$$

The equations which describe the I-V characteristic of PV model are as follows:

$$
\begin{align*}
& I_{p h}=I_{p h\left(T_{1}\right)}\left[1+K_{0}\left(T_{c}-T_{1}\right)\right] \tag{2.8}\\
& I_{p h\left(T_{1}\right)}=G_{a}\left(I_{s c(s t c)} / G_{a(s t c)}\right) \tag{2.9}\\
& K_{0}=\left(I_{s c\left(T_{2}\right)}-I_{s c\left(T_{1}\right)}\right) /\left(T_{2}-T_{1}\right) \tag{2.10}\\
& I_{0}=I_{0\left(T_{1}\right)}\left(\frac{T_{c}}{T_{1}}\right)^{3 / A} \times e^{-\frac{q V_{g}}{A k}\left(\frac{1}{T_{c}}-\frac{1}{T_{1}}\right)} \tag{2.11}\\
& I_{0\left(T_{1}\right)}=I_{s c\left(T_{1}\right)} /\left(e^{\frac{q V_{o c\left(T_{1}\right)}^{A k T_{1}}}{A l}}-1\right) \tag{2.12}
\end{align*}
$$

where $I_{p h}$ is temperature dependence of the photo-current (A)
I_{0} is temperature dependence of the diode saturation current (A)
$I_{p v}$ is cell output current (A)

```
    Vpv is cell output voltage (V)
    Voc is cell open circuit voltage (V)
    Vg is band gap voltage (V)
    R
    q is electron charge (coulomb)
    k is Boltzmann constant (J/K)
    A is diode quality factor
    T
    Ga}\mathrm{ is operating solar radiation (W/m}\mp@subsup{}{}{2}
    G
    T
    T
Isc(stc)}\mathrm{ is short circuit current per cell at STC (A)
Isc(\mp@subsup{T}{2}{})}\mathrm{ is short circuit current per cell at T2 (A)
```

The photo-current is directly proportional to solar radiation. When short circuit oc curs in the cell, negligible current can flows in the di ode. Hence, the proportionality c onstant in Equation (2.9) is set so the rated short circuit c urrent is delivered under rated solar radiation. The relationship between the photo-current and temperature is linear as shown in Equation (2.8) and is deduced by noting the change of photo-current with the change of temperature as follow by Equation (2.10).

When the c ell is not i lluminated, the r elationship between the c ell's terminal voltage and current is given by the Shockley equation. When the cell is open circuited and illuminated, the photo-current flows entirely in the diode. The I-V curve is offset from the origin by the photo generated current as follow by Equation (2.7). For the va lue of the saturation c urrent at $25^{\circ} \mathrm{C}$ is cal culated us ing the open-circuit voltage and short-circuit current at this temperature as follow by Equation (2.12). The relationship of di ode s aturation c urrent t ot emperature i s m ore c omplex, but fortunately it contains no variables requiring evaluation as follow by Equation (2.11).

The va lue of di ode qua lity factor is de pending on the m aterial type of photovoltaic cell, it takes a value be tween 1 and 2. Generally, the value of diode quality factor $A=2$ for crystalline silicon and $A<2$ for amorphous silicon PV cell.

Therefore, the value of 2 i s used astypical in nor mal ope ration of the m odel validation for the Sharp 80 Wp PV module, which is a crystalline silicon material.

For the series resistance $\left(R_{s}\right)$ of PV cell, it can be obtained using the only manufacturer supplied data for the PV modules at Standard Test C onditions (STC), such as open-circuit voltage, short-circuit current and maximum power. The equations which used to evaluate the value of the series resistance are given by the expression [68-69]:

$$
\begin{gather*}
R_{s}=\left[1-\frac{F F}{F F_{0}}\right] \times\left[\frac{V_{o c(s t c)}}{I_{s c(s t)}}\right] \tag{2.13}\\
F F_{0}=\left[V_{o c(n o m}-P_{\max }^{C} /\left[V_{o c(s t c)} \times I_{s c(s t c)}\right]\right. \tag{2.14}\\
\left.\left.V_{o c(n o m)}=V_{o c(n o m)}+0.72\right)\right] /\left[V_{o c(\text { nom })}+1\right] \tag{2.15}\\
V_{t}=A k T_{c} / q / V_{t} \tag{2.16}\\
P_{\max }^{C}=P_{\max (s t)}^{M} /\left(N_{s m} \times N_{p m}\right) \tag{2.17}\\
V_{o c(s t c)}=V_{o c(s t c)}^{M} / N_{s m} \tag{2.18}\\
I_{s c(s t c)}=I_{s c(s t)}^{M} / N_{p m} \tag{2.19}
\end{gather*}
$$

where $V_{o c(s t c)}$ is cell open circuit voltage at STC (V)

$$
V_{o c(s t c)}^{M} \text { is module open circuit voltage at STC (V) }
$$

V_{t} is cell thermal voltage (V)
$I_{s c(s t c)}^{M}$ is module short circuit current at STC (A)
$P_{\max }^{C} \quad$ is cell maximum power (W)
$P_{\max [(\mathrm{Fstc})}^{M} \quad$ is module maximum power at $\mathrm{STC}(\mathrm{W})$
$F F$ is fill factor
$N_{S m}$ is number of series cells in each cell parallel branches
$N_{p m}$ is number of cell parallel branches in module

Normally, cells are grouped in to "modules", which are encapsulated with various ma terials to protect the c ells a nd the e lectrical c onnectors from the environment. T he m anufacturers s upply P V c ells in m odules, c onsisting of $N_{p m}$ parallel branches, each with $N_{s m}$ solar cells in series, as shown in Figure 2.8 [69].

Figure 2.8 PV module consists of $N_{p m}$ parallel branches, each of $N_{s m}$ cells in series
In order to develop the model of PV module, the cell output voltage $\left(V_{p v}\right)$ is then multiplied by the number of the cells connected in series $N_{s m}$ to calculate the full module voltage $\left(V^{M}\right)$, they all have the same voltage in each parallel branches. In the s ame w ay, t he c ell out put c urrent $\left(I_{p v}\right)$ is then m ultiplied b y the num ber of branches connected in parallel $N_{p m}$ to obt ain the full module current $\left(I^{M}\right)$, they all carry the same current in series each branches.

The modules in a PV system are typically conn ected in "arrays". Figure 2.9 illustrates the case of an array with M_{p} parallel branches each with M_{s} modules in series [69]. The a pplied voltage at the a rray's te rminal is de noted by V^{A}, while the total c urrent of t he a rray is de noted b y E quation (2.21). If it is a ssumed that the modules are identical and the ambient solar radiation is the same on all the modules, then the array's current is Equation (2.22).

$$
\begin{align*}
I^{A} & =\sum_{i=1}^{M_{p}} I_{i} \tag{2.21}\\
I^{A} & =M_{p} \times I^{M} \tag{2.22}
\end{align*}
$$

Figure 2.9 PV array consists of M_{p} parallel branches, each with M_{s} modules in series

In t his di ssertation, the $\mathrm{P} V$ a rrays a re m odeled based on a connection group of Sharp 80 Wp PV modules to obtain the rated size of PV-DG. The rated power of PV-DG is de fined as peak power output, when solar radiation is $1000 \mathrm{~W} / \mathrm{m}^{2}$ and cell t emperature i s $25^{\circ} \mathrm{C}$. H owever, a t ype of c onnection of P V m odules is not considered in this work.

Since the working temperature of the P V cells $\left(T_{c}\right)$ depends exclusively on t he s olar r adiation $\left(G_{a}\right)$ and on t he ambient t emperature $\left(T_{a}\right)$. To he lp t he researcher ac count for changes in cell performance with temperature, manufacturers often provide an indicator called the NOCT, which stands for Normal Operating Cell Temperature. The NOCT is cell temperature in a module when ambient is $20^{\circ} \mathrm{C}$, solar radiation is $800 \mathrm{~W} / \mathrm{m}^{2}$ and wind speed is $1 \mathrm{~m} / \mathrm{s}$. T he value of NOCT for modules currently on the market varies from about 42 to $46{ }^{\circ} \mathrm{C}$. However, in this dissertation, the value of NOCT is $42^{\circ} \mathrm{C}$ from testing. To account for other ambient conditions, the following expression may be used [68]:

$$
\begin{equation*}
T_{c}=T_{a}+G_{a}\left[\frac{N O C T-20^{\circ} \mathrm{C}}{800 \mathrm{~W} / \mathrm{m}^{2}}\right] \tag{2.23}
\end{equation*}
$$

where $\quad T_{c}$ is cell temperature (${ }^{\circ} \mathrm{C}$)
T_{a} is ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
G_{a} is solar radiation $\left(\mathrm{W} / \mathrm{m}^{2}\right)$

2.3.1 PV Model Implementation in Matlab/Simulink

This section shows how the mathematical model of PV module described in section 2.3 works by implemented in Matlab/Simulink. The mathematical model of PV module can be represented in Simulink implementation as shown in Figure 2.10. The input of PV module is an operating solar radiation G_{a} and ambient temperature T_{a}. The ma jor pa rt of structure is M atlab function bl ocks, w hich e ach c ontains necessary e quations 1 isted in pr evious s ection, as follows from Equations (2.7) to (2.20), to calculate the cell current $I_{p v}$. Then I-V and P-V curve can be established by changing the terminal output cell voltage $V_{p v}$.

Figure 2.10 PV module model implementation in Simulink

A P Vm odule of S harp 80 W p i s us ed o examine on P Vm odel implementation. The electrical characteristics of Sharp 80 Wp under STC $\left(\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\right.$, $\mathrm{G}_{\mathrm{a}}=1000 \mathrm{~W} / \mathrm{m}^{2}$) as given in Table 2.1, which the specification sheet can be found in Appendix B. The c urrent a nd pow er v ersus v oltage of P V m odule p rovided b y manufacturer is shown in Figure 2.11.

Table 2.1 The key specifications of the Sharp 80 Wp PV module at STC ($1000 \mathrm{~W} / \mathrm{m}^{2}$ solar radiation, $25^{\circ} \mathrm{C}$ cell temperature)

Figure 2.11 Current and power versus voltage characteristics of Sharp 80Wp PV module provided by manufacturer $\left(\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\right)$

In or der to compare simulation results with the e lectrical characteristic provided b y m anufacturer. T he out put c urrent a nd pow er r elated to voltage are simulated for va rious solar radiation levels as 600,800 a nd $1000 \mathrm{~W} / \mathrm{m}^{2}$, while cell temperature is fixed at $25^{\circ} \mathrm{C}$. The s imulation r esults of c urrent a nd pow er ve rsus voltage characteristics are shown in Figures 2.12 and 2.13 respectively.

Figure 2.12 I-V characteristics of Sharp 80 Wp PV module by simulation $\left(\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\right)$

Figure 2.13 P-V characteristics of Sharp 80 Wp PV module by simulation $\left(\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\right)$

Note from Figures 2. 12 and 2.13 that t he r esults s how good correspondence to the model. Table 2.2 summarizes the values of various parameters used in PV model.

Table 2.2 Summary of PV model parameters values

Parameters	Values
Band gap voltage, V_{g}	1.12 V (for crystalline silicon)
Electron charge, q	$1.6 e^{-19}$ Coulomb
Boltzmann constant , k	$1.38 e^{-23} \mathrm{~J} / \mathrm{K}$
Diode quality factor, A	2 (for crystalline silicon)
Cell temperature at STC , T_{1}	$25^{\circ} \mathrm{C}$
Cell temperature at condition-2, T_{2}	$75^{\circ} \mathrm{C}$
Short circuit current at STC , $I_{s c(s t c)}$	$5.31 \mathrm{~A}\left(\mathrm{~T}_{1}\right)$
Short circuit current at $T_{2}, I_{s c}\left(T_{2}\right)$	$5.47 \mathrm{~A}\left(3 \%\right.$ increase of $\left.I_{s c(s t c)}\right)$
Series resistance , R_{S}	$\square 0.0132 \Omega / \mathrm{cell}$
Number of series cells, $N_{s m}$	36
Number of parallel branches , $N_{p m}$	1
NOCT	$42^{\circ} \mathrm{C}$

2.3.2 PV Model Validation

This s ection s hows the r esults of Sharp 80 Wp PV m odule m odel validation using r eal data from me asurement of s olar r adiation. Pyranometer was directly connected to the portable PV module tester (I-V checker/MP-140), as shown in Figure 2.14. Ambient te mperature was recorded by a thermocouple s ensor. The data measured of solar radiation and ambient temperature is shown in Figures 2.15 and 2.16 respectively. All of this is measured in one of a cloudy day on 21 October 2008.

Figure 2.14 PV module tester (I-V Checker/MP-140), EKO Instruments Co., Ltd.

Figure 2.15 Data measured in time series of the solar radiation

Figure 2.16 Data measured in time series of the ambient temperature

The m odel va lidation is done b yc omparing between results which obtained by I-V checker and simulation results obtained by Matlab/Simulink. In order to validate the model, three different levels of solar radiation are considered. Table 2.3 shows t he s pecified values of hi gh, m edium a nd 1 ow solar r adiation levels and ambient temperatures corresponding to a certain solar radiation.

Table 2.3 Solar radiation levels and corresponded ambient temperatures

Level	Solar radiation $\left(\right.$ W/m 2)	Ambient temperature ${ }^{\circ}{ }^{\circ} \mathrm{C}$)	Time (hr)
High	1025.3	36.04	11.50
Medium	600.6	30.91	09.20
Low	205.1	33.80	14.00

Various out puts such as $I_{s c}, V_{o c}, P_{m}$, etc., are compared between t he simulation results and the measurements on three levels of solar radiation, as shown in Table 2.4. A good agreement of the results can be seen although it has a small error. From Table 2.4, it indicates that the error of the fill factor (FF) is less than 5% for all solar radiation levels. F urthermore, it shows that the e rror of a ll pa rameters is less than 5% except at low solar radiation. The I-V curve which obtained by I-V checker and simulation on high, medium and low solar radiation are shown in Figures 2.17 to 2.22 respectively.
Table 2.4 Output comparison between the simulation results and the measurements on different

Level	High solar radiation			Medium solar radiation			Low solar radiation		
Output	Measured	Simulated	\% Error	Measured	Simulated	\% Error	Measured	Simulated	\% Error
$\mathrm{I}_{\text {cc }}$ (A)	5.619	5.572	0.83	3.149	3.232	2.64	1.101	1.099	0.23
$\mathrm{V}_{\text {oc }}$ (V)	19.18	18.51	3.49	19.51	18.66	4.36	17.50	7.	1.83
P_{m} (W)	69.66	67.38	3.27	- 42.55	40.52	4.77	13.50		6.81
I_{m} (A)	4.979	4.847	2.65	2.842	2.834	0.29	0.969	0.960	0.93
\mathbf{V}_{m} (A)	13.99	13.90	0.64	$=14.97$	14.30	4.48	13.93	13.10	5.96
FF	0.6465	0.6533	1.05	D 0.6925	0.6718	2.99	0.7011	0.666	4.96

Note. Fill factor (FF) is the ratio of the P_{m} and the product of $I_{s c}$ and $V_{o c}$ as given in Equation (2.14)

MP-140

Figure 2.17 I-V characteristic curve from I-V checker at high solar radiation

Figure 2.18 I-V characteristic curve from simulation at high solar radiation

MP-140

Figure 2.19 I-V characteristic curve from I-V checker at medium solar radiation

Figure 2.20 I-V characteristic curve from simulation at medium solar radiation

MP-140

Figure 2.21 I-V characteristic curve from I-V checker at low solar radiation

Figure 2.22 I-V characteristic curve from simulation at low solar radiation

2.3.3 Maximum Power Point Tracking (MPPT)

The maximum power point tracking of a PV array is usually an essential part of a PV system to draw peak power from the solar array in order to maximize the produced energy to DC-DC converter, as a part of PCU in Figure 2.2. Many MPPT methods have be en de veloped a nd i mplemented. The m ethods vary in complexity, sensors r equired, c onvergence s peed, c ost, r ange of effectiveness, i mplementation hardware, popularity, and in other respects. They range from the almost obvious (but not necessarily ineffective) to the most creative (not necessarily most effective).

In fact, so many methods have been developed like, Perturb and Observe Method ($\mathrm{P} \& \mathrm{O}$), Incremental C onductance M ethod (IC), S liding M ode C ontrol Method that are widely used for MPPT system in PV, and other method like, Constant Voltage (CV), S hort-current P ulse M ethod, O pen V oltage M ethod, Fuzzy Logic Control, Neutral Network, and other unpopular method is also used in different field of MPPT [70-72].

Therefore, it has become difficult to adequately determine which method, newly proposed or existing is most appropriate for a given PV system. However, the simplified P\&O MPPT technique is used in this dissertation.

The $\mathrm{P} \& \mathrm{O}$ algorithms operate by periodically perturbing (i.e. incrementing or decrementing) the array terminal voltage and comparing the PV output power with that of the previous perturbation cycle. If the PV array operating voltage changes and power increases $(d P / d V>0)$, the control system moves the PV array operating point in that direction; otherwise the operating point is moved in the opposite direction. In the next perturbation cycle the algorithm continues in the same way [70].

Generally, cl assic P \& O method is widely us ed, the perturbations of the PV ope rating poi nt ha ve a fixed m agnitude. In an analysis, t he m agnitude of perturbation is 0.37% of $V_{o c}$ of PV array. The algorithm of the classic $\mathrm{P} \& \mathrm{O}$ is shown in Figure 2.23.

Figure 2.23 Flow chart of classic $\mathrm{P} \& \mathrm{O}$ technique

2.4 PV Inverter Modeling

Since, PV systems are interfaced to a distribution system through a PWMbased inverter, which is one of the main harmonic sources. These harmonic sources may c reate pr oblemst o vi cinity equipment de pending on t heir ha rmonic or der, amplitudes a nd system characteristic. Unfortunately, there is no s tandard ha rmonic waveform of inverter-based DG since the harmonic injection from inverter-based DG depends on the design of individual manufacture.

Therefore, the P V-DG is m odeled as a ha rmonic c urrent s ource at the point of c ommon c oupling (PCC). T he ha rmonic c urrent spectra of P V-DG were collected from m easurements of a 6 MWp PV farm on M ay 2010 in N akhon Ratchasima pr ovince, north-eastern r egion of T hailand. The s ystem s chematic diagram of the PV farm is shown in Figure 2.24.

Figure 2.24 System schematic diagram of the PV farm

Harmonic current measurements are based on 540 units of 11 kW Sunny Mini C entral S MC-11000TL g rid-connected i nverter. Maximum i nverter out put current and total harmonic current distortion (THDi) at various solar radiation levels are shown in Figure 2.25.

Figure 2.25 Maximum inverter output current and $\% \mathrm{THDi}$ at various solar radiations

From Figure 2.25, it in dicates that the T HDi a nd output current of the inverter varied proportionallyt ot he s olar radiation. F urthermore, from t he relationship of \%THDi and solar radiation, nonlinearity of the inverter becomes large at low solar radiation. Under such conditions, the large amount of harmonics will be injected to a distribution system. Although, the magnitudes of harmonic currents are small at l ow s olar r adiation, but the $\% \mathrm{THDi}$ is la rge. This ma y de teriorate the electrical power quality of systems, if the large number of PV-DGs is interconnected to a di stribution system. In this di ssertation, onl y harmonic current magnitudes a re considered for worse-case study.

Figures 2.26 to 2.28 show some of harmonic spectrum up to $33^{\text {rd }}$ order at PCC of the PV farm corresponding to solar radiation at 200, 600 and $1000 \mathrm{~W} / \mathrm{m}^{2}$, respectively. The typical harmonic current in percent of fundamental $(50 \mathrm{~Hz})$ can be seen in Table 2.5.

Figure 2.26 Harmonic current spectrum at PCC of the PV farm corresponding to $200 \mathrm{~W} / \mathrm{m}^{2}$ solar radiation

Figure 2.27 Harmonic current spectrum at PCC of the PV farm corresponding to

Figure 2.28 Harmonic current spectrum at PCC of the PV farm corresponding to $1000 \mathrm{~W} / \mathrm{m}^{2}$ solar radiation

Table 2.5 Typical harmonic current in percent of fundamental corresponding to solar radiation

Harmonic order	Typical harmonic current in percent of fundamental (\%)		
	$200 \mathrm{~W} / \mathrm{m}^{2}$	$600 \mathrm{~W} / \mathrm{m}^{2}$	$1000 \mathrm{~W} / \mathrm{m}^{2}$
2	0.976	0.301	0.211
3	6.829	1.506	1.057
4	1.951	0.452	0.317
5	12.195	4.066	2.748
6	0.976	0.301	0.211
7	2.439	0.753	0.317
8	0.488	0.301	0.106
9	0.976	0.301	0.211
10	0.976	0.301	0.211
11	2.439	0.602	0.423
12	0.976	0.301	0.211
13	0.976	0.301	0.211
14	0.976	0.301	0.211
15	0.976	0.301	0.211
16	0.976	0.301	0.211
17	0.976	0.151	0.211
18	0.488	0.151	0.106
19	0.976	0.151	0.106
20	0.488	0.151	0.106
21	0.976	0.151	0.106
22	0.976	0.301	0.211
23	0.976	0.301	0.211
24	0.488	0.151	0.106
25	0.976	0.151	0.106
26	0.488	0.151	0.106
27	0.488	0.151	0.106
28	0.488	0.151	0.106
29	0.488	0.151	0.106
30	0.488	0.151	0.106
31	0.976	0.151	0.106
32	0.488	0.151	0.106
33	0.976	0.151	0.106

In practical, interconnections of small PV-DGs may not result in violation of the power quality standard. However, with the existent of background harmonics and the increase of pe netration level, PV-DGs may create harmonic cu rrents which bring to e xcessive le vels of tot al ha rmonic voltage di stortion (THDv) at P CC. Therefore, pr ior to i interconnect P V-DGs, ut ilities should c onsider s everal technical constraints to avoid the power quality impacts from PV-DGs. Background harmonics modeling will be mentioned in Chapter 4 on harmonic calculations section.

2.5 Substation and Load Modeling

Since, in or der to find the opt imal size of P V-DG without c onsidering uncertainties of 1 oad a nd s ubstation vol tage may be que stionable. Therefore, in probabilistic load flows process, load demand and substation voltage are assumed to be a random variable with a normal distribution.

2.5.1 Probabilistic Load Models

In t his w ork, all 1 oads a re c orrelated a nd follow the s ame probability density function of load demands $\left(L_{d}\right)$ as given by:

$$
\begin{equation*}
f\left(L_{d}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp -\frac{\left(L_{d}-\bar{L}_{d}\right)^{2}}{2 \sigma^{2}} \tag{2.24}
\end{equation*}
$$

where \bar{L}_{d} is the mean value of load demand
σ is the standard deviation, which set to 10% in this dissertation

Generally, the cl assical constant pow er load model is typically us ed in power flow studies of a distribution system. However, the actual load of a distribution system cannot just be modeled us ing constant pow er model. The us e of constant current, constant impedance or a composite of all these load models are required to accurately represent the load. Therefore, three static load models are investigated to study the impact of load model on optimal PV-DG sizing. Probability density function of all static load models follows normal distribution in Equation (2.24). These types of loads are typically categorized as follows [73]:

- Constant Power Load Model (CP) :

The active and reactive powers do not vary with voltage magnitude changes.

- Constant Current Load Model (CI) :

The a ctive and r eactive pow ers are di rectly pr oportional t ot he v oltage magnitude.

- Constant Impedance Load Model (CZ) :

The act ive and reactive pow ers a re pr oportional t ot he s quare of v oltage magnitude.

The active and reactive power characteristics of three static load models are given by:

$$
\begin{align*}
& P=P_{0}\left[a_{p}+b_{p}\left(\frac{|V|}{\left|V_{0}\right|}\right)+c_{p}\left(\frac{|V|}{\left|V_{0}\right|}\right)^{2}\right] \tag{2.25}\\
& Q=Q_{0}\left[a_{q}+b_{q}\left(\frac{|V|}{\left|V_{0}\right|}\right)+c_{q}\left(\frac{|V|}{\left|V_{0}\right|}\right)^{2}\right] \tag{2.26}
\end{align*}
$$

where P_{0} and Q_{0} are active and reactive powers consumed at a reference voltage V_{0}, respectively. C onstant coefficients de pend on t he t ype of 1 oad t hat is be ing represented, e.g.,

$$
\begin{aligned}
& \text { for } \mathrm{CP} \text { model } a_{p}=a_{q}=1, b_{p}=b_{q}=c_{p}=c_{q}=0 \\
& \text { for } \mathrm{CI} \text { model } b_{p}=b_{q}=1, a_{p}=a_{q}=c_{p}=c_{q}=0 \\
& \text { for } \mathrm{CZ} \text { model } c_{p}=c_{q}=1, a_{p}=a_{q}=b_{p}=b_{q}=0
\end{aligned}
$$

Figure 2.29 illustrates an example of act ive pow er probability d ensity function at a load point with a normal distribution, which \bar{L}_{d} is 145 kW , and σ is 10%.

Figure 2.29 Probability density function of a load point with a normal distribution

2.5.2 Probabilistic Substation Voltage Model

Similarly to load models, substation voltage $\left(V_{s}\right)$ is a ssumed to be a random va riable w ith nor mal di stribution. B ut the s tandard d eviation of substation voltage is set to 1.5% to cover in 0.95 pu to 1.05 pu range of mean value $\left(\bar{V}_{s}\right)$, which is a ssumed t o be 1.0 p u . T he pr obability density f unction of s ubstation vol tage illustrates in Figure 2.30 and it can be expressed mathematically as follow:

$$
\begin{equation*}
f\left(V_{s}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp -\frac{\left(V_{s}-\bar{V}_{s}\right)^{2}}{2 \sigma^{2}} \tag{2.27}
\end{equation*}
$$

where \bar{V}_{s} is the mean value of substation voltage
σ is the standard deviation, which set to 1.5% in this dissertation

Figure 2.30 Probability density function of substation voltage with a normal distribution

CHAPTER III

A VOLTAGE STABILITY INDEX FOR RADIAL DISTRIBUTION NETWORKS

3.1 Introduction

In practice, utilities cannot assign the PV -DGs in stallation location to be connected to the feeder because it mainly de pends on customers who own the PV systems. However, for planning aspect, this chapter presents a voltage stability index (VSI) for ide ntifying the mos ts ensitive bus to the vol tage collapse in a radial distribution network for selecting the proper PV-DG located.

With an increased 1 oading a nde xploitation of t he e xisting pow er structure, the probability of occurrence of voltage collapse is significantly greater than before and the identification of the nodes which are prone to the voltage fluctuations has attracted more attention for the transmission and as well a s the distribution systems. The main causes of voltage instability are as follows:

- The load on transmission line is too high
- The voltage sources are too far from the load centers
- The voltage sources are too low
- There is insufficient load reactive compensation

For operating a power system in a safe and secure manner, all insecure operating states must be identified well in advance to facilitate corrective measures to overcome the threat of possible voltage collapse [74].

3.2 Voltage Stability Index Methodology [75]

For deriving the voltage stability index of radial distribution networks, we need to consider a simple two-node system as shown in Figure 3.1.

Figure 3.1 Simple two-node system
From Figure 3.1, the following equations can be written:
and

$$
\begin{equation*}
I_{1}=\frac{\left|V_{n 1}\right| \angle \delta_{n 1}-\left|V_{n 2}\right| \angle \delta_{n 2}}{R_{l}+j X_{I}} \tag{3.1}
\end{equation*}
$$

where l is branch number
n_{1} is branch end node
n_{2} is receiving end node
I_{l} is current of branch l
$V_{n 1}$ is voltage of node n_{1}
$V_{n 2}$ is voltage of node n_{2}
$P_{n 2}$ is total active power load fed through node n_{2}
$Q_{n 2}$ is total reactive power load fed through node n_{2}
From Equations (3.1) and (3.2), we obtain:

$$
\begin{equation*}
\frac{\left|V_{n 1}\right| \angle \delta_{n 1}-\left|V_{n 2}\right| \angle \delta_{n 2}}{R_{l}+j X_{l}}=\frac{P_{n 2}-j Q_{n 2}}{V_{n 2}^{*}} \tag{3.3}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\left|V_{n 1}\right|\left|V_{n 2}\right| \angle\left(\delta_{n 1}-\delta_{n 2}\right)-\left|V_{n 2}\right|^{2}=\left(P_{n 2}-j Q_{n 2}\right)\left(R_{l}+j X_{l}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
&\left|V_{n 1}\right|\left|V_{n 2}\right| \cos \left(\delta_{n 1}-\delta_{n 2}\right)-\left|V_{n 2}\right|^{2}+j\left|V_{n 1}\right|\left|V_{n 2}\right| \sin \left(\delta_{n 1}-\delta_{n 2}\right) \\
&=\left(P_{n 2} R_{l}+Q_{n 2} X_{l}\right)+j\left(P_{n 2} X_{1}-Q_{n 2} R_{l}\right) \tag{3.5}
\end{align*}
$$

Separating real and imaginary parts of Equation (3.5), we obtain:

$$
\begin{equation*}
\left|V_{n 1}\right|\left|V_{n 2}\right| \cos \left(\delta_{n 1}-\delta_{n 2}\right)-\left|V_{n 2}\right|^{2}=P_{n 2} R_{l}+Q_{n 2} X_{l} \tag{3.6}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\left|V_{n 1}\right|\left|V_{n 2}\right| \cos \left(\delta_{n 1}-\delta_{n 2}\right)=\left|V_{n 2}\right|^{2}+P_{n 2} R_{l}+Q_{n 2} X_{l} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|V_{n 1}\right|\left|V_{n 2}\right| \sin \left(\delta_{n 1}-\delta_{n 2}\right)=P_{n 2} X_{1}-Q_{n 2} R_{l} \tag{3.8}
\end{equation*}
$$

Squaring and adding Equations (3.7) and (3.8), we obtain:

$$
\begin{equation*}
\left|V_{n 1}\right|^{2}\left|V_{n 2}\right|^{2}=\left(\left|V_{n 2}\right|^{2}+P_{n 2} R_{l}+Q_{n 2} X_{l}\right)^{2}+\left(P_{n 2} X_{l}-Q_{n 2} R_{l}\right)^{2} \tag{3.9}
\end{equation*}
$$

From algebraic formula:

$$
\begin{equation*}
(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+a c) \tag{3.10}
\end{equation*}
$$

We can rearrange Equation (3.9) to

$$
\begin{equation*}
\left|V_{n 2}\right|^{4}+2\left(P_{n 2} R_{l}+Q_{n 2} X_{1}-0.5\left|V_{n 1}\right|^{2}\right)\left|V_{n 2}\right|^{2}+\left(R_{l}^{2}+X_{l}^{2}\right)\left(P_{n 2}^{2}+Q_{n 2}^{2}\right)=0 \tag{3.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|V_{n 2}\right|^{4}-\left.\left(\left|V_{n 1}\right|^{2}-2 P_{n 2} R_{1}-2 Q_{n 2} X_{l}\right) V_{n 2}\right|^{2}+\left(P_{n 2}^{2}+Q_{n 2}^{2}\right)\left(R_{l}^{2}+X_{l}^{2}\right)=0 \tag{3.12}
\end{equation*}
$$

Equation (3.12) has a straightforward solution and does not depend on the phase angle, which simplifies the problem formulation. In a distribution system, the voltage angle is not so important be cause the v ariation of vol tage angle from the substation to the tail-end of a distribution feeder is only few degrees [76].

Let

$$
\begin{equation*}
b_{l}=\left(\left|V_{n 1}\right|^{2}-2 P_{n 2} R_{l}-2 Q_{n 2} X_{l}\right) \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{l}=\left(P_{n 2}^{2}+Q_{n 2}^{2}\right)\left(R_{l}^{2}+X_{l}^{2}\right) \tag{3.14}
\end{equation*}
$$

From Equations (3.12) to (3.14), we get

$$
\begin{equation*}
\left|V_{n 2}\right|^{4}-b_{l}\left|V_{n 2}\right|^{2}+c_{l}=0 \tag{3.15}
\end{equation*}
$$

From Equation (3.15), it is seen that the receiving end voltage $\left|V_{n 2}\right|$ has four solutions follow to a given formulation:

$$
\begin{equation*}
\left|V_{n 2}\right|= \pm \sqrt{\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}} \tag{3.16}
\end{equation*}
$$

and these solutions are:

1. $0.707 \sqrt{b_{l}-\sqrt{b_{l}^{2}-4 c_{l}}}$
2. $-0.707 \sqrt{b_{l}-\sqrt{b_{l}^{2}-4 c_{l}}}$
3. $-0.707 \sqrt{b_{l}+\sqrt{b_{l}^{2}-4 c_{l}}}$
4. $0.707 \sqrt{b_{l}+\sqrt{b_{l}^{2}-4 c_{l}}}$

Now, for realistic data, when P, Q, R, X and V are expressed in per unit, b_{l} is always positive because the term $2\left\{P_{n 2} R_{l}+Q_{n 2} X_{l}\right\}$ is very small as compared to $\left|V_{n 1}\right|^{2}$ and also the term $4 c_{l}$ is very small as compared to b_{l}^{2}. Therefore, $\sqrt{b_{l}^{2}-4 c_{l}}$ is nearly equal to b_{1} and hence the first two solutions of $\left|V_{n 2}\right|$ are nearly equal to zero and not feasible. The third solution is negative and so not feasible. The fourth solution of $\left|V_{n 2}\right|$ is positive and feasible. Therefore, the solution of Equation (3.15) is unique.

That is

$$
\begin{equation*}
\left|V_{n 2}\right|=0.707 \sqrt{b_{l}+\sqrt{b_{l}^{2}-4 c_{l}}} \tag{3.17}
\end{equation*}
$$

From Equation (3.17), it is seen that a feasible load flow solution of radial distribution networks will exist if:

$$
\begin{equation*}
b_{l}^{2}-4 c_{l} \geq 0 \tag{3.18}
\end{equation*}
$$

Thus, from Equations (3.13), (3.14) and (3.18), we get

$$
\begin{equation*}
\left(\left|V_{n 1}\right|^{2}-2 P_{n 2} R_{l}-2 Q_{n 2} X_{l}\right)^{2}-4\left(P_{n 2}^{2}+Q_{n 2}^{2}\right)\left(R_{l}^{2}+X_{l}^{2}\right) \geq 0 \tag{3.19}
\end{equation*}
$$

After simplification we get

$$
\begin{equation*}
\left|V_{n 1}\right|^{4}-4\left(P_{n 2} X_{l}-Q_{n 2} R_{l}\right)^{2}-\left.4\left(P_{n 2} R_{l}+Q_{n 2} X_{l}\right) V_{n 1}\right|^{2} \geq 0 \tag{3.20}
\end{equation*}
$$

Let

$$
\begin{equation*}
\operatorname{VSI}\left(n_{2}\right)=\left|V_{n 1}\right|^{4}-4\left(P_{n 2} X_{l}-Q_{n 2} R_{l}\right)^{2}-4\left(P_{n 2} R_{l}+Q_{n 2} X_{l}\right)\left|V_{n 1}\right|^{2} \tag{3.21}
\end{equation*}
$$

where $\operatorname{VSI}\left(n_{2}\right)$ is voltage stability index of node n_{2}, for stable operation of the radial distribution networks, $\operatorname{VSI}\left(n_{2}\right) \geq 0$ for $n_{2}=2,3, \ldots, N_{b}$

By using this voltage stability index, one can measure the level of stability of r adial di stribution ne tworks a nd t hereby a ppropriate a ction may be t aken if t he index indicates a poor level of stability.

Actually, $P_{n 2}$ and $Q_{n 2}$ are sum of the active and reactive power loads of all the nodes be yond no de n_{2} plus the active and reactive power load of node n_{2} itself plus the sum of the active and reactive power losses of all the branches beyond node n_{2}.

After load flow calculation, when the load was i ncreased gradually, the voltages of all nodes are known, the branch currents are known. Therefore, $P_{n 2}$ and $Q_{n 2}$ for $n_{2}=2,3, \ldots ., N_{b}$ can easily be calculated using Equation (3.2) and hence one can easily calculate the vol tage stability index of each node. The node at which the value of the stability index is minimum, is more sensitive to the voltage collapse and more candidate to install PV-DG.

In t his di ssertation, load flow a nalysis w as a chieved $b y$ us ing the 1 oad flow algorithm given in Chapter 4 in which each nodes power is multiplied by a load factor as [74]:

$$
\begin{equation*}
S=\lambda S_{b} \tag{3.22}
\end{equation*}
$$

where λ is load factor and S_{b} is base load

The c ritical bus id entified by e valuating bus v oltage m agnitudes jus t before the load flow diverges. Divergence is assumed when the iteration number of the 1 oad f low a lgorithm r eaches to 200 . T he a lgorithm of vol tage s tability index calculation can be summarized as seen the flow chart in Figure 3.2.

Figure 3.2 Flow chart of voltage stability index calculation

3.3 Test Results of Voltage Stability Index Calculation

To demonstrate the methodology of the voltage stability index (VSI), this section presents a 15 -bus radial distribution system from [77] for VSI calculation. The single-line diagram of the 15 -bus test system is shown in Figure 3.3. Line and load data of this system are given in Table 3.1.

Figure 3.3 Single-line diagram of the 15 -bus radial distribution system

Table 3.1 Line data and load data of the 15 -bus radial distribution system

Branch	Line impedance (ohm)		Load demand (kW/kVar)	
	\boldsymbol{R}	\boldsymbol{X}	$\boldsymbol{P}_{\boldsymbol{L}}$	$\boldsymbol{Q}_{\boldsymbol{L}}$
$1-2$	1.35309	1.32349	44.10	44.99
$2-3$	1.17024	1.14464	70.00	71.41
$3-4$	0.84111	0.82271	140.00	142.82
$4-5$	1.52348	1.02760	44.10	44.99
$4-6$	1.19702	0.80740	140.00	142.82
$4-7$	2.23081	1.50470	70.00	71.41
$3-8$	1.79553	1.21110	140.00	142.82
$8-9$	2.44845	1.65150	70.00	71.41
$9-10$	2.01317	1.35790	44.10	44.99
$2-11$	2.01317	1.35790	70.00	71.41
$11-12$	1.68671	1.13770	44.10	44.99
$2-13$	2.55727	1.72490	140.00	142.82
$13-14$	1.08820	0.73400	140.00	142.82
$13-15$	1.25143	0.84410	70.00	71.41

Total base load $=1.226$ MW, 1.251 MVar

For thi s s imulation, a di fferent m agnitude substation vol tages $\left(\left|V_{s}\right|\right)$ and different static load models of constant power (CP), constant current (CI) and constant impedance (CZ) a re c onsidered. T able 3.2 s hows bus stability indi ces and i ts minimum bus voltage for different load models and substation voltage 1.0 pu of the 15 -bus test system.

Table 3.2 Bus stability indices for different load models of the 15-bus test system

$$
\left(\left|V_{s}\right|=1.0 p u\right)
$$

Bus No.	CP model		CI model		CZ model	
	VSI	$\left\|\mathbf{V}_{\text {min }}\right\| \mathbf{p u}$	$\mathbf{V S I}$	$\left\|\mathbf{V}_{\text {min }}\right\| \mathbf{p u}$	VSI	$\left\|\mathbf{V}_{\text {min }}\right\| \mathbf{p u}$
2	0.2042	0.7259	0.3259	0.7854	0.4841	0.8479
3	0.0936	0.5737	0.1991	0.6768	0.3505	0.7731
4	0.0679	0.5140	0.1600	0.6339	0.3048	0.7436
5	0.0644	0.5038	0.1541	0.6266	0.2975	0.7385
6	0.0563	0.4879	0.1434	0.6156	0.2855	0.7311
7	0.0572	0.4897	0.1446	0.6169	0.2868	0.7319
8	0.0600	0.5004	0.1523	0.6268	0.2971	0.7391
9	0.0411	0.4528	0.1257	0.5963	0.2663	0.7187
10	0.0365	0.4374	0.1183	0.5866	0.2572	0.7122
11	0.2407	0.7009	0.3334	0.7603	0.4707	0.8285
12	0.2302	0.6927	0.3200	0.7522	0.4572	0.8223
13	0.1310	0.6126	0.2139	0.6873	0.3590	0.7774
14	0.1234	0.5930	0.2021	0.6707	0.3431	0.7655
15	0.1308	0.6015	0.2109	0.6778	0.3523	0.7705

From Table 3.2, when the load is increased gradually, it founds that the minimum value of voltage stability index is occurring at bus-10 for all types of load models. It is also observed that bus 10 has the minimum voltage.

Table 3.3 shows critical bus index value and its bus voltage of the 15 -bus test s ystem for di fferent s ubstation vol tage a nd different static loa d mode ls . The system loads are increased from zero to the critical loading point by multiplying each node act ive and reactive pow er b y al oad factor $1 \mathrm{ambda}(\lambda)$ as 0.01 t imes of its previous value in each step for all loads. Note from Table 3.3 that, for all loading conditions, minimum stability index value is observed of the bus 10 .

Table 3.3 Critical bus stability index value for different types of load and substation voltage

Load model	Substation voltage (pu)	Critical loading condition	
		$\mathrm{VSI}_{\min }=\mathrm{VSI}_{10}$	$\left\|\mathrm{~V}_{\min }\right\| \mathrm{pu}$
CP	0.95	0.0296	0.4152
	1.00	0.0365	0.4374
	1.05	0.0433	0.4566
CI	0.95	0.1151	0.5825
	1.00	0.1183	0.5866
	1.05	0.1730	0.6450
	0.95	0.2104	0.6773
	1.00	0.2582	0.7129
	1.05	0.3139	0.7485

Figures 3.4 and 3.5 show the variations of the critical bus index value at bus-10 and its bus voltages with the increase of the system loads for different load models, substation voltage 1.0 pu. Points A, B and C indicate the critical loading point beyond which a small increment of load causes the voltage collapse.

From Figures 3.4 and 3.5 , it is s een that the critical bus inde x va lue decrease with the increase of the system load, a nd it closes to zero when system's total power closes to the critical loading point. From the each loading conditions, it is observed that the critical bus indices are always at the minimum. Moreover, it is also observed that the different load models cause only different stability index value and bus voltage magnitudes, it does not affect the critical bus number of the test system.

Figure 3.4 Variation of critical bus stability index value with system load for different static load models

Figure 3.5 Variation of critical minimum bus voltage with system load for different static load models

Similarly, Figures 3.6 and 3.7 show the variations of the critical bus index value at bus-10 and its bus voltages with the increase of the system loads for different substation voltage, constant power load model. Points A, B and C indicate the critical loading point beyond which a small increment of load causes the voltage collapse.

Figure 3.6 Variation of critical bus stability index value with system load for different substation voltages

Figure 3.7 Variation of critical minimum bus voltage with system load for different substation voltages

From simulation results, in this case, it can summarize that the stability index a nd c onsequently, the vol tage a re m inimum f or c onstant pow er l oad a nd maximum for constant impedance load and hat for onstant c urrent l oad is in between these two, as seen in Table 3.3.

Finally, if we have a planning to install PV-DG in this system, the most candidate bus is bus-10 based on the voltage stability index.

CHAPTER IV

RADIAL DISTRIBUTION SYSTEM POWER FLOW AND HARMONIC CALCULATION

4.1 Introduction

In pr actical, configurations of a di stribution system ha ve been high r / x ratio (ill-condition) which deteriorates the diagonal dominance of the Jacobian matrix. Therefore, the conventional Newton's power flow method may be divergence in some case. Therefore, this chapter presents a modified Newton method from [78] to solve the pr oblem. Furthermore, ha rmonic m odeling a nd ha rmonic c alculation i na distribution system are mentioned.

A modified Newton method is utilized to solve the power flow for a radial distribution system without reducing the problem size, yet still capable of a chieving robust convergence and high efficiency. This method is derived a Newton formulation where the Jacobian matrix is in $U D U^{T}$ form, where U is a constant upper triangular matrix de pending s olely on s ystem topology and D is a bl ock di agonal m atrix resulting from the radial structure and special properties of the distribution system.

With this formulation, the conventional Newton algorithm of forming the Jacobian matrix, LU factorization and forward back substitution can be replaced by back/forward sweeps on radial feeders with equivalent impedances.

4.2 The Modified Newton Method

In conventional N ewton m ethod [79], the e quation to solve pow er flow problem for $\Delta \theta$ and ΔV is expressed in Equation (4.1).

$$
\left[\begin{array}{cc}
H & N \tag{4.1}\\
J & L
\end{array}\right]\left[\begin{array}{c}
\Delta \theta \\
\Delta V / V
\end{array}\right]=\left[\begin{array}{c}
\Delta P \\
\Delta Q
\end{array}\right]
$$

where

$$
\begin{align*}
& H_{i j}=-V_{i} V_{j}\left(G_{i j} \sin \theta_{i j}-B_{i j} \cos \theta_{i j}\right) \quad j \neq i \tag{4.2}\\
& H_{i i}=V_{i} \sum_{j \in i, j \neq i} V_{j}\left(G_{i j} \sin \theta_{i j}-B_{i j} \cos \theta_{i j}\right) \tag{4.3}
\end{align*}
$$

$$
\begin{align*}
& N_{i j}=-V_{i} V_{j}\left(G_{i j} \cos \theta_{i j}+B_{i j} \sin \theta_{i j}\right) \quad j \neq i \tag{4.4}\\
& N_{i i}=-V_{i} \sum_{j \in, j \neq i} V_{j}\left(G_{i j} \cos \theta_{i j}+B_{i j} \sin \theta_{i j}\right)-2 V_{i}^{2} G_{i i} \tag{4.5}\\
& J_{i j}=V_{i} V_{j}\left(G_{i j} \cos \theta_{i j}+B_{i j} \sin \theta_{i j}\right) \quad j \neq i \tag{4.6}\\
& J_{i i}=-V_{i} \sum_{j \in, j \neq i} V_{j}\left(G_{i j} \cos \theta_{i j}+B_{i j} \sin \theta_{i j}\right) \tag{4.7}\\
& L_{i j}=-V_{i} V_{j}\left(G_{i j} \sin \theta_{i j}-B_{i j} \cos \theta_{i j}\right) \quad j \neq i \tag{4.8}\\
& L_{i i}=-V_{i} \sum_{j \in, j \neq i} V_{j}\left(G_{i j} \sin \theta_{i j}-B_{i j} \cos \theta_{i j}\right)+2 V_{i}^{2} B_{i i} \tag{4.9}
\end{align*}
$$

Term $G_{i j}+j B_{i j}$ is the entry of nodal admittance matrix. Under assumption the voltage difference between two adjacent nodes is $\operatorname{small}\left(\sin \theta_{i j} \approx 0\right)$ as well as term $G_{i i}+j B_{i i}=-\sum_{j e, j \neq i}\left(G_{i j}+j B_{i j}\right)$. Thus the Jacobian matrix can be approximated as:

$$
\begin{align*}
& H_{i j} \approx V_{i} V_{j} B_{i j} \cos \theta_{i j} \quad j \neq i \tag{4.10}\\
& H_{i i} \approx-V_{i} \sum_{j \in i, j \neq i} V_{j} B_{i j} \cos \theta_{i j} \tag{4.11}\\
& N_{i j} \approx-V_{i} V_{j} G_{i j} \cos \theta_{i j} \quad j \neq i \tag{4.12}\\
& N_{i i} \approx V_{i} \sum_{j \in i, j \neq i} V_{j} G_{i j} \cos \theta_{i j} \vartheta \varepsilon า \text { al } \varepsilon \tag{4.13}\\
& J_{i j} \approx V_{i} V_{j} G_{i j} \cos \theta_{i j} \quad j \neq i \tag{4.14}\\
& J_{i i} \approx-V_{i} \sum_{j \in i, j \neq i} V_{j} G_{i j} \cos \theta_{i j} \tag{4.15}\\
& L_{i j} \approx V_{i} V_{j} B_{i j} \cos \theta_{i j} \quad j \neq i \tag{4.16}\\
& L_{i i} \approx-V_{i} \sum_{j \in, j \neq i} V_{j} B_{i j} \cos \theta_{i j} \tag{4.17}
\end{align*}
$$

Equations (4.10) to (4.17) show that matrices H, N, J and L all have the same properties (symmetry, sparsity pattern) as the Nodal Admittance Matrix, hence they can be formed as:

$$
\begin{align*}
& H=L=A_{n-1} D_{B} A_{n-1}^{T} \tag{4.18}\\
& J=-N=A_{n-1} D_{G} A_{n-1}^{T} \tag{4.19}
\end{align*}
$$

where D_{B} and D_{G} are diagonal matrices with diagonal entries to be:

$$
\begin{align*}
& D_{B}=V_{i} V_{j} B_{i j} \cos \theta_{i j} \tag{4.20}\\
& D_{G}=V_{i} V_{j} G_{i j} \cos \theta_{i j} \tag{4.21}
\end{align*}
$$

and A_{n-1} is node to branch incidence matrix, defined as:

$$
A_{i j}=\left\{\begin{array}{l}
1, \text { if brance } j \text { is directed away from node } i \\
-1, \text { if brance } j \text { is directed towards node } i \\
0, \text { if brance } j \text { is not incident to node } i
\end{array}\right.
$$

For a radial distribution system with n nodes and without shunt branches, the num ber of $b r$ anches is $n-1$. Also by know ing the noda 1 vol tage at one node, assuming it is the first node for convenience. Hence, there are remaining $\mathrm{n}-1$ unknown nodal voltages and we obtain matrix A_{n-1} is a square matrix, which its dimension is $(\mathrm{n}-1) \times(\mathrm{n}-1)$.

Furthermore, if nodes and branches are ordered appropriately, A_{n-1} is an upper triangular matrix with all diagonal entries to be 1 and all non-zero off-diagonal entries to be -1 . One way to achieve such an A_{n-1} is ordering branches by layers away from the r oot node (source node orr eference node) as s een in Figure 4.1. T he direction of each branch is towards the root node. The node or dering is proceeded simultaneously with the branch or dering. Note from Figure 4.1 that the branch from side node number is the same as the branch number. And the node to branch incident matrix of it is given in Equation (4.22).

Figure 4.1 A simple radial distribution system with 10 -nodes and 9 -branches

From Equations (4.18) and (4.19), thus Equation (4.1) can be rewritten as:

$$
\left[\begin{array}{cc}
A_{n-1} & \tag{4.23}\\
& A_{n-1}
\end{array}\right]\left[\begin{array}{cc}
D_{B} & -D_{G} \\
D_{G} & D_{B}
\end{array}\right]\left[\begin{array}{ll}
A_{n-1}^{T} & \\
& A_{n-1}^{T}
\end{array}\right]\left[\begin{array}{c}
\Delta \theta \\
\Delta V / V
\end{array}\right]=\left[\begin{array}{c}
\Delta P \\
\Delta Q
\end{array}\right]
$$

ΔP and ΔQ are ve ctor of real and reactive node po wer m ismatches respectively, which can be expressed as:

$$
\begin{align*}
\Delta P_{i} & =P_{i(\text { scheduled })}-P_{i(\text { cal })} \quad i \neq \text { reference node } \tag{4.24}\\
& =\left[P_{i(\text { gen })}-P_{i(\text { load })}\right]-P_{i(\text { cal })} \\
\Delta Q_{i} & =Q_{i(\text { scheduled })}-Q_{i(\text { cal })} \quad i \neq \text { reference node } \tag{4.25}\\
& =\left[Q_{i(\text { gen })}-Q_{i(\text { load })}\right]-Q_{i(\text { cal })}
\end{align*}
$$

where
ΔP_{i} and ΔQ_{i} are vector of real and reactive node power mismatches at node i $P_{i(\text { gen })}$ and $Q_{i(g e n)}$ are real and reactive node power generation at node i $P_{i(\text { load })}$ and $Q_{i(\text { load })}$ are real and reactive node power load at node i $P_{i(\text { cal })}$ and $Q_{i(\text { cal })}$ are net real and reactive node power load at node i

The expression for the net real and reactive node power, $P_{i(\text { cal })}$ and $Q_{i(\text { cal })}$ are

$$
\begin{align*}
& P_{i(\text { cal })}=V_{i} \sum_{j=1}^{n} V_{j}\left[G_{i j} \cos \theta_{i j}+B_{i j} \sin \theta_{i j}\right] \tag{4.26}\\
& Q_{i(\text { cal })}=V_{i} \sum_{j=1}^{n} V_{j}\left[G_{i j} \sin \theta_{i j}-B_{i j} \cos \theta_{i j}\right] \tag{4.27}
\end{align*}
$$

where

$$
\begin{aligned}
& V_{i}, V_{j} \text { are voltage magnitude at node } i \text { and } j \\
& \theta_{i}, \theta_{j} \text { are voltage phase angle at node } i \text { and } j \\
& G_{i j}, B_{i j} \text { are elements of bus admittance matrix }\left[Y_{b u s}\right] \\
& \theta_{i j}=\theta_{i}-\theta_{j} \\
& Y_{i j}=G_{i j}+j B_{i j}
\end{aligned}
$$

It has been shown that the Jacobian matrix can be formed as the product of three square matrices in Equations (4.23). Next will showing the Equation (4.23) can be solved by back/forward sweeps. Let's define:

$$
\begin{align*}
& E=\Delta \theta+j \Delta V / V \tag{4.28}\\
& S=\Delta P+j \Delta Q \tag{4.29}\\
& W=D_{B}+j D_{G} \tag{4.30}
\end{align*}
$$

then equation (4.23) can be written as
or

$$
\begin{align*}
& A_{n-1} W A_{n-1}^{T} E=S \tag{4.31}\\
& A_{n-1} S_{L}=S \tag{4.32}\\
& W A_{n-1}^{T} E=S_{L} \tag{4.33}
\end{align*}
$$

where Equation (4.32) is the back sweep and Equation (4.33) is the forward sweep.

To solve E in Equation (4.33) in forward sweep ($A_{n-1}^{T} E=W^{-1} S_{L}$), the diagonal matrix W can be inverted for each line. The diagonal in W^{-1} is denoted as the equivalent line impedance:

$$
\begin{equation*}
Z_{e q, i j}=R_{e q, i j}+j X_{e q, i j} \tag{4.34}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{e q, i j}=\frac{X_{i j}}{V_{i} V_{j} \cos \theta_{i j}} \tag{4.35}\\
& X_{e q, i j}=\frac{R_{i j}}{V_{i} V_{j} \cos \theta_{i j}} \tag{4.36}
\end{align*}
$$

$R_{i j}$ and $X_{i j}$ are resistance and reactance of line $i-j$ respectively. The Diagonal matrix W^{-1} is a square matrix, which its dimension is $(\mathrm{n}-1) \times(\mathrm{n}-1)$.

In order to find the po wer flow s olution, the power flow p rocess h as finished w hen power mismatch of bot hr eal a nd r eactive pow er should be corresponding to:

$$
\begin{equation*}
\max \left|\Delta P^{k}\right| \text { and } \max \left|\Delta Q^{k}\right| \leq \varepsilon \tag{4.37}
\end{equation*}
$$

where
$\max \left|\Delta P^{k}\right|$ is maximum real power mismatch for any iteration k $\max \left|\Delta Q^{k}\right|$ is maximum reactive power mismatch for any iteration k
ε is power mismatch tolerance which set to 10^{-5}

4.2.1 Loss Equations From System Data

Generally, the system real and reactive power loss can be derived into two sets of loss equations i.e., loss equations in terms of $Y_{b u s}$ and $I_{b u s}$, and loss equations in terms of $Z_{\text {bus }}$ and $V_{b u s}$. The following two sets of loss e quations a re de rived in exactly the same manner, which results in the identical forms for partial derivative equations.

In t his di ssertation, 1 oss e quations in term of $Z_{\text {bus }}$ and $V_{b u s}$ is us ed to obtain system real power loss in probabilistic power flow calculation. However, the derivation of two sets of loss equations can be found in [80]. The loss equations in term of $Z_{\text {bus }}$ and $V_{\text {bus }}$ can be expressed by:

$$
\begin{equation*}
P_{L}=\sum_{i=1}^{N_{b}} \sum_{k=1}^{N_{b}}\left[\left(P_{i} P_{k}+Q_{i} Q_{k}\right) \alpha_{i k}+\left(P_{i} Q_{k}-Q_{i} P_{k}\right) \beta_{i k}\right] \tag{4.38}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{L}=\sum_{i=1}^{N_{b}} \sum_{k=1}^{N_{b}}\left[\left(P_{i} P_{k}+Q_{i} Q_{k}\right) \tau_{i k}+\left(P_{i} Q_{k}-Q_{i} P_{k}\right) \theta_{i k}\right] \tag{4.39}
\end{equation*}
$$

where
P_{L}, Q_{L} are system real and reactive power losses
$P_{i}, Q_{i} \quad$ are real and reactive power load at bus i
$R_{i k}, X_{i k}$ are resistance and reactance of branch $i-k$
V_{i} is voltage magnitude at bus i
$\delta_{i k}$ is different in voltage phase angle of bus i, k and $\delta_{i k}=\delta_{i}-\delta_{k}$
N_{b} is total number of buses

4.2.2 The Modified Newton Method Calculation Steps

The flow c hart of radial di stribution s ystem p ower f low algorithm is shown in Figure 4.2. A nd the calculation step of modified Newton method based on backward and forward sweeps can be summarized as follows:
(1) Read the radial system data and form bus admittance matrix $\left[Y_{\text {bus }}\right]$.
(2) Order branches by layers aw ay from the reference node to construct the node to branch incidence matrix $\left[A_{n-1}\right]$.
(3) Initialize all node voltage and set iteration $k=0$
(4) Calculate net real and reactive nod e pow er load $P_{i(\text { cal })}$ and $Q_{i(\text { cal })}$ from Equations (4.26) and (4.27).
(5) Calculate power mismatch ΔP_{i} and ΔQ_{i} from Equations (4.24) and (4.25).
(6) Test for convergence from Equation (4.37). If po wer flow c onverge, the solution is obtained but if not go to step (7).
(7) Calculate S_{L} in backward sweep from Equation (4.32).
(8) Calculate equivalent line impedance $Z_{\text {eq }, i j}$ from Equation (4.34).
(9) Calculate E in forward sweep from Equation (4.33) to find out $\Delta \theta$ and ΔV
(10) Update the adopted node voltage to

$$
\begin{aligned}
& \theta_{i}^{(k+1)}=\theta_{i}^{(k)}+\operatorname{real}\left(E_{i}\right) \\
& V_{i}^{(k+1)}=V_{i}^{(k)}+\left[\operatorname{imag}\left(E_{i}\right) \times V_{i}^{(k)}\right]
\end{aligned}
$$

(11) Set ne w ite ration $k=k+1$ and r epeat to s tep (4) by u sing ne w node voltage.

Figure 4.2 Flow chart of radial distribution system power flow calculation

4.3 Test Results of Radial Distribution System Power Flow Calculation

To demonstrate the methodology of the radial distribution system power flow calculation. The 15 -bus radial distribution system from Chapter 3 is used again. Figure 4.3 shows the ordering of nodes and branches of the 15-bus radial distribution system, which node 1 is the reference node.

Figure 4.3 Single-line diagram of the 15 -bus radial distribution system with nodes to branches ordering

From Figure 4.3, the node to branch incident matrix A_{n-1} has a dimension of (14×14) and it is given as:

$$
A_{n-1}=\left[\begin{array}{ccccccccccccccc}
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
& 1 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & & & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & & & & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & & & & & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
& & & & & & & 1 & 0 & 0 & 0 & 0 & 0 \\
& & & & & & & & 1 & -1 & 0 & 0 & 0 \\
& & & & & & & & & 1 & 0 & 0 & 0 \\
& & & & & & & & & & 1 & -1 & -1 \\
& & & & & & & & & & & 1 & 0 \\
& & & & & & & & & & & 1
\end{array}\right]
$$

For t his t est, t he pow er f low r esults a re c ompared with t he s olution obtained b y a c onventional N ewton m ethod a s s hown in T able 4.1. T his t able indicates that the modified Newton method offers the same solution as that obtained by the conventional Newton method, which validates its solution accuracy.

Table 4.1 Power flow solution obtained for the 15-bus radial distribution system

Node no.	Modified Newton method	Conventional Newton method		
	$\|\mathrm{V}\|(\mathrm{pu})$	$\delta(\mathrm{deg})$	$\|\mathrm{V}\|(\mathrm{pu})$	$\delta(\mathrm{deg})$
1	1.00000	0.00000	1.00000	0.00000
2	0.97130	0.03194	0.97129	0.03193
3	0.95669	0.04929	0.95668	0.04928
4	0.95093	0.05645	0.95091	0.05644
5	0.94994	0.06862	0.94993	0.06861
6	0.94846	0.08685	0.94845	0.08685
7	0.94863	0.08477	0.94862	0.08477
8	0.94997	0.13142	0.94996	0.13144
9	0.94585	0.18229	0.94584	0.18233
10	0.94454	0.19855	0.94453	0.19859
11	0.96798	0.07191	0.96797	0.07191
12	0.96691	0.08492	0.96690	0.08492
13	0.95825	0.18928	0.95824	0.18931
14	0.95603	0.21649	0.95601	0.21653
15	0.95697	0.20491	0.95696	0.20495
$\boldsymbol{P}_{\text {loss }}, \boldsymbol{Q}_{\text {loss }}$	$61.74 \mathrm{~kW}, 57.25 \mathrm{kVar}$		$61.78 \mathrm{~kW}, 57.28 \mathrm{kVar}$	

4.4 Harmonic Modeling

For harmonic calculation, in this dissertation, the electrical equipments in a di stribution system are modeled based on C IGRE model [81], which is a balance system. Therefore, the impedance va lues of each model arer epresented in all per phase.

4.4.1 Harmonic Load Modeling

Generally, a ha rmonic load model is represented as a s imple m odel for harmonic study. This model includes a connection in series or parallel of resistance (R) a nd i nductance (L), which s ome ph ysical of 1 oad is ne glected. C onsequence, harmonic voltage and harmonic current calculations may be incorrect.

Therefore, an effective harmonic load model is used in this dissertation. This ha rmonic load model can be di vided into t wo types (CIGRE a nd $\mathrm{R} / / \mathrm{L}$) for a different harmonic order consideration, as seen in Figure 4.4.

Figure 4.4 Harmonic load model of CIGRE and R//L

From Figure 4.4, the CIGRE load model is us ed to study for ha rmonic frequency order $5^{\text {th }}$ to $20^{\text {th }}$. This model consists of a s eries reactance (X_{s}), a parallel reactance $\left(X_{p}\right)$ and a resistance (R). The other is $\mathrm{R} / / \mathrm{L}$ load model, which consists of a resistance (R) and a reactance (X) in parallel connection. The $\mathrm{R} / / \mathrm{L}$ lode model is used to s tudy for ha rmonic frequency in order m ore t han $20^{\text {th }}$. The parameters in each model can be expressed as follows:

$$
\begin{equation*}
R=\frac{U_{n, \text { net }}^{2}}{P_{1}} \tag{4.44}
\end{equation*}
$$

$$
\begin{equation*}
X_{s}=(0.0073) \times h \times R \tag{4.45}
\end{equation*}
$$

$$
\begin{gather*}
X_{p}=\frac{h \times R}{(6.7) \tan \theta_{1}-0.74} \tag{4.46}\\
X=h \times \frac{U_{n, \text { net }}^{2}}{Q_{1}} \tag{4.47}
\end{gather*}
$$

where $\quad U_{n, \text { net }}$ is normal system voltage
$P_{1} \quad$ is real power load at fundamental frequency under $U_{n, \text { net }}$
$Q_{1} \quad$ is reactive power load at fundamental frequency under $U_{n, \text { net }}$
$h \quad$ is harmonic order

$$
\tan \theta_{1}=Q_{1} / P_{1}
$$

4.4.2 Harmonic Capacitor Modeling

For harmonic calculation, the capacitor modeling c an be represented by capacitance which depends on harmonic frequency as:

$$
\begin{equation*}
X_{c}^{h}=-j \frac{1}{h 2 \pi f_{1} C} \tag{4.48}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{c}^{h}=-\frac{1}{X_{c}^{h}} \tag{4.49}
\end{equation*}
$$

where $\quad X_{c}^{h}$ is capacitive reactance at harmonic frequency order h
$y_{c}^{h} \quad$ is capacitive admittance at harmonic frequency order h
C is capacitance of capacitor
f_{1} is fundamental frequency

4.4.3 Harmonic Feeder Modeling

The equivalent circuit of feeder can be represented by a series connection of feeder resistance and reactance, which depends on harmonic frequency as shown in Figure 4.5. And its expression is given in Equation (4.50).

Figure 4.5 Equivalent circuit of harmonic feeder modeling

$$
\begin{equation*}
y_{\text {line }}^{\mathrm{h}}=\frac{1}{R_{\text {line }}+j h X_{\text {line }}} \tag{4.50}
\end{equation*}
$$

where $\quad R_{\text {line }}$ is line resistance
$X_{\text {line }}$ is line reactance at fundamental frequency
$y_{\text {line }}^{h}$ is line admittance at harmonic frequency order h

4.4.4 Background Harmonic Modeling

In t his di ssertation, e xisting ba ckground ha rmonic c onditions in a distribution s ystem ar e taken into a ccount f or opt imal PV-DG s izing. Actually, background harmonics may occur from several nonlinear equipments such as 6-pulse
and 12 -pulse rectifier, arc furnaces, adjustable s peed drives, etc. However, 6-pulse converters are the main harmonic sources which ge nerate background harmonics in this study. A nd the ba ckground ha rmonics a re treated as a pe rcentage of nonl inear loads at all load buses except PV-DG buses.

4.5 Harmonic Calculation in a Distribution System

This s ection pr esents ha rmonic vol tage a nd c urrent c alculations in a distribution system. Also total ha rmonic di stortion of voltage a nd current a re mentioned.

Figure 4.6 A simplified distribution system for fundamental frequency analysis

Figure 4. 6 shows as implified di stribution s ystem for fundamental frequency a nalysis. In this figure, 6 -pulse con verters are t reated as background harmonic sources of the system and it can be represented by harmonic current source with the typical harmonic current spectra $\left(I_{B H}\right)$ as shown in Table 4.2 [82]. For the PV-DGs are interconnected at an y bus, they are treated as harmonic cur rent sources with the typical harmonic current spectra based on measurements at a PV farm ($I_{P V}$) as m entioned in Chapter 2. The ot her pa rameter in Figure 4.6 can be defined as follows:
$y_{i j}^{1}$ is line admittance at fundamental frequency of branch $i-j$
$y_{c i}^{1}$ is capacitive admittance at fundamental frequency at bus i
$P_{l i}$ is real power load at bus i
$Q_{1 i}$ is reactive power load at bus i

Table 4.2 Characteristic AC line harmonic currents in multi-pulse systems

Harmonic	Rectifier system pulse number				Harmonic frequency	Harmonic current in percent of fundamental	
	6	12	18	24		Theoretical	Typical
5	X				300	20.00	19.20
7	X				420	14.20	13.20
11	X	X			660	9.09	7.30
13	X	X			780	7.69	5.70
17	X		X		1020	5.88	3.50
19	X		X		1140	5.26	2.70
23	X	X		X	1380	4.36	2.00
25	X	X		X	- 1500	4.00	1.60
29	X				1740	3.45	1.40
31	X				1860	3.23	1.20
35	X		X		2100	2.86	1.10
37	X		X		2220	2.70	1.00
NOTE-The theoretical values are given for a 6-pulse converter with ideal characteristics (i.e., square current waves with 120° conduction). The last column gives typical values based on a commutating impedance of 0.12 pu and a firing angle of 30° and infinite dc reactor (IEEE Std 519-1992, Table 13.1). These values are on the basis of one 6 -pulse converter or all converters, assuming that the harmonics are additive. Since some harmonics will be canceled, but not entirely, a small percentage value may be assumed, as explained earlier in this subclause. Note that if the dc reactor is not large, some of the harmonics can be greater than typical (or theoretical) and some smaller.							

The e quivalent circuit for harmonic frequency analysis corresponding to the simplified system in Figure 4.6 is shown in Figure 4.7. Note from this figure that the 6-pulse converters and the PV-DGs are modeled as harmonic cur rent sources to inject ha rmonic currents into the c onnected bus. The load de mand, s hunt c apacitor and feeder line are modeled as admittance of each components.

Figure 4.7 A simplified distribution system for harmonic frequency analysis
where the parameters in Figure 4.7 can be defined as follows:
$y_{i j}^{h} \quad$ is line admittance at harmonic frequency order h of branch $i-j$
$y_{c i}^{h}$ is capacitive admittance at harmonic frequency order h at bus i
$y_{l i}^{h}$ is load admittance at harmonic frequency order h at bus i
y_{s}^{h} is source admittance at harmonic frequency order h
V_{i}^{h} is voltage at harmonic frequency order h at bus i
I_{i}^{h} is current source at harmonic frequency order h at bus i

The s ource i mpedance (Z_{s}) c an be obt ained from the given s ource da ta such as transformer voltage ratio, R/X ratio and MVA short circuit. The example for source impedance calculation can be expressed by the given source data as:

- Transformer ratio $\left(\mathrm{V}_{\text {high }} / \mathrm{V}_{\text {low }}\right)=22 \mathrm{kV} / 416 \mathrm{~V}$
- R / X ratio $=10$
- MVA short circuit = 100

From source data, we can calculate the short circuit current $\left(I_{s c}\right)$ as:

$$
I_{\text {sc }}=\frac{M V A_{s c} \times 10^{6}}{\sqrt{3} \times V_{\text {low }}}=\frac{\left(100 \times 10^{6}\right)}{\sqrt{3} \times 416}=138.79 \mathrm{kA}
$$

And we can calculate the source impedance magnitude $\left(\left|Z_{s}\right|\right)$ as:

$$
\left|Z_{s}\right|=\frac{\left(V_{\text {low }} / \sqrt{3}\right)}{I_{\text {sc }}}=\frac{(416 / \sqrt{3})}{138.79 \mathrm{kA}}=0.00173 \Omega
$$

Thus, we get a source resistance $\left(R_{s}\right)$ and reactance $\left(X_{s}\right)$ as:

$$
\begin{aligned}
& R_{s}=\frac{\left|Z_{s}\right|}{\sqrt{(R / X \text { ratio })^{2}+1}}=\frac{(0.00173)}{\sqrt{10^{2}+1}}=0.000172 \Omega \\
& X_{s}=(R / X \text { ratio }) \times R_{s}=10 \times 0.000172=0.00172 \Omega
\end{aligned}
$$

Therefore, we can find the source impedance and source admittance as:

$$
\begin{aligned}
& Z_{s}=R_{s}+j X_{s}=0.000172+j 0.00172 \Omega \\
& y_{s}=\frac{1}{Z_{s}}=\frac{1}{0.000172+j 0.00172}=57.563-j 575.639 \mathrm{mho}
\end{aligned}
$$

From Figure 4. 7, we can form bus adm ittance matrix at ha rmonic frequency or der h directly from the admittance of each component in a distribution system as mentioned ab ove. The ha rmonic bus admittance matrix $\left[Y_{b u s}^{h}\right]$ of system with m nodes is a square matrix which its dimension is ($\mathrm{m} \times \mathrm{m}$) as given by:

$$
\begin{align*}
& \text { where } \tag{4.52}
\end{align*}
$$

By know ing the ha rmonic c urrent s ource at a ny bus $\left[I_{i}^{h}\right]$ and a lso the harmonic bus admittance $\left[Y_{b u s}^{h}\right]$, we can obtain the harmonic voltage at any bus $\left[V_{i}^{h}\right]$ from Equation (4.53).

$$
\begin{equation*}
\left[I_{i}^{h}\right]=\left[Y_{b u s}^{h}\right]\left[V_{i}^{h}\right] \tag{4.53}
\end{equation*}
$$

and we get

$$
\left[\begin{array}{c}
V_{1}^{h} \tag{4.54}\\
V_{2}^{h} \\
\cdot \\
\cdot \\
V_{m-1}^{h} \\
V_{m}^{h}
\end{array}\right]=\left[\begin{array}{cccccc}
Y_{11}^{h} & Y_{12}^{h} & 0 & & 0 \\
Y_{21}^{h} & Y_{22}^{h} & 0 & R N & & 0 \\
0 & \cdot & \cdot & & & \\
& & & \cdot & \cdot & 0 \\
& & & \cdot & Y_{m-1, m-1}^{h} & Y_{m-1, m}^{h} \\
0 & & & 0 & Y_{m, m-1}^{h} & Y_{m m}^{h}
\end{array}\right]^{-1}\left[\begin{array}{c}
I_{1}^{h} \\
I_{2}^{h} \\
\cdot \\
\cdot \\
I_{m-1}^{h} \\
I_{m}^{h}
\end{array}\right]
$$

In optimal P V-DGs s izing pr ocess, t he ha rmonic c onstraints i .e., total harmonic voltage distortion (THDv), and total demand distortion (TDD) at a point of common coupling (PCC) are taken into accounted. The THDv and TDD are defined with harmonic frequency from order $2^{\text {nd }}$ to $33^{\text {rd }}$ as given by:

$$
\begin{align*}
& T H D_{v, i}=\frac{\sqrt{\sum_{h=2}^{33}\left|V_{i}^{h}\right|^{2}}}{\left|V_{i}^{1}\right|} \times 100 \% \tag{4.55}\\
& T D D_{i}=\frac{\sqrt{\sum_{h=2}^{33}\left|I_{i}^{h}\right|^{2}}}{\left|I_{m, i}^{1}\right|} \times 100 \% \tag{4.56}
\end{align*}
$$

where $\quad V_{i}{ }^{1}$ is fundamental voltage at bus i
$V_{i}^{h} \quad$ is harmonic voltage order h at bus i
$T H D_{V, i}$ is total harmonic distortion voltage at bus i
I_{i}^{1} is fundamental current flow through bus i
I_{i}^{h} is harmonic current order h flow through bus i
$I_{m, i}^{1}$ is fundamental maximum load current flow through bus i
$T D D_{i}$ is total demand distortion at bus i

From IE C 61727 standard in P hotovoltaic s ystems-Characteristic of the utility interface, low levels of current and voltage harmonics at a connection point of PV-DG are desirable. Acceptable levels of harmonic voltage and current depend upon distribution system characteristic, type of s ervice, connected loads/apparatus and established utility pr actice. The P V-DG out put s hould ha ve 1 ow c urrent di stortion levels to ensure that no adverse effects are caused to other equipment connected to the utility system.

To comply with IEC 61727 standard, the total harmonic current distortion shall be less than 5% at rated inverter output. Hence, in order to calculate the TDD at the c onnection point of P V-DG, t he m aximum 1 oad c urrent in Equation (4.56) is replaced by rated current of PV inverter. And each individual harmonic current from PV inverter shall be limited to the percentages listed in Table 4.3.

Table 4.3 Current distortion limits in IEC 61727 standard

Odd harmonics	Distortion limit
$3^{\text {rd }}$ through $9^{\text {th }}$	$\leq 4.0 \%$
$11^{\text {th }}$ through $15^{\text {th }}$	$\leq 2.0 \%$
$17^{\text {th }}$ through $21^{\text {st }}$	$\leq 1.5 \%$
$23^{\text {rd }}$ through $33^{\text {rd }}$	$\leq 0.6 \%$
Even harmonics $^{2^{\text {nd }} \text { through } 8^{\text {th }}}$	Distortion limit
$10^{\text {th }}$ through $32^{\text {nd }}$	$\leq 1.0 \%$
Total harmonic current distortion at rated inverter output (TDD)	$\leq 0.5 \%$

In t he IEC 61727 s tandard, the T HDv constraint is not m entioned. However, according to the IEEE 519-1992 standard, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, the THDv at a PCC should not exceed 5\%.

CHAPTER V

ALGORITHM OF OPTIMAL PV-DG SIZING TECHNIQUE AND NUMERICAL RESULTS

5.1 Introduction

This chapter proposes the algorithm of optimal PV-DG sizing technique. Also pr oblem formulation a nd constraints de tail a re m entioned. Furthermore, t he numerical r esults of various study cases are investigated. An actual 51-bus radial distribution system of Provincial Electricity Authority (PEA) of Thailand and a heavy load 33-bus radial distribution system a re selected as test cases. Results from study cases indi cate tha t the opt imal P V-DG s ize s olution may be c hanged de pend on system operating conditions. Furthermore, it demonstrates that PV-DGs may improve voltage r egulation and de crease $/$ osses in di stribution systems, how ever, the THDv may al so increase. Impact of static load models and power factor control on optimal sizing of PV-DG are also addressed. Finally, effects of inverter modeling and existing DGs in a distribution system on optimal PV-DG sizing are presented.

5.2 Problem Formulation

The P V-DG installation in a distribution system has several a dvantages (e.g., vol tage improvement, losses reduction, etc.). In the proposed technique, the main objective is to minimize the "average" real power losses of a distribution system by va rying t he s ize of PV-DG ove $r N_{s}$ samples. The pr oblem can be ex pressed mathematically as follows:

$$
\begin{equation*}
\text { Minimize } \quad \frac{1}{N_{s}} \sum_{r=1}^{N_{s}} P_{L, r}\left(P V_{\text {size }}\right) \tag{5.1}
\end{equation*}
$$

subjected to the following constraints:

- $0.95 \mathrm{pu} \leq V_{i} \leq 1.05 \mathrm{pu}$, at PCC
- THDv and TDD $\leq 5 \%$, at PCC
- $\quad I_{h} \leq$ IEC limits, at PCC
where $P_{L, r}\left(P V_{\text {size }}\right)$ is the real power losses of a radial distribution system shown as a function of the size of PV-DG $\left(P V_{\text {size }}\right)$. Note that $P_{L, r}\left(P V_{\text {size }}\right)$ is calculated from the sample r and the real power losses equation can be written as

$$
\begin{equation*}
P_{L, r}\left(P V_{\text {size }}\right)=\sum_{i=1}^{N_{b}} \sum_{j=1}^{N_{b}}\left[\frac{R_{i j} \cos \delta_{i j}}{\left|V_{i}\right|\left|V_{j}\right|}\left(P_{i} P_{j}+Q_{i} Q_{j}\right)+\frac{R_{i j} \sin \delta_{i j}}{\left|V_{i}\right| V_{j} \mid}\left(Q_{i} P_{j}-P_{i} Q_{j}\right)\right] \tag{5.2}
\end{equation*}
$$

where $\quad R_{i j}$ is resistance of branch $i-j$
$\left|V_{i}\right|$ and δ_{i} are the voltage magnitude and phase angle at bus i
P_{i} and Q_{i} are the net real and reactive power at bus i
$\delta_{i j}$ is the voltage phase angle difference between buses i and j
N_{b} is the total number of buses in a distribution system

5.3 The Algorithm of Optimal PV-DG Sizing Technique

The algorithm for determining an optimal PV-DG size can be depicted in Figure 5.1. As mentioned in Chapter 2 on PV modeling section, the $P V_{\text {size }}$ in Figure 5.1 is the rated size of PV-DG which based on a connection group of Sharp 80Wp PV modules. Several random variables are generated with Monte Carlo simulations i.e., solar radiations $\left(G_{a}\right)$, ambient temperatures (T_{a}), load de mands ($L_{d, i}$) and substation voltages $\left(V_{S}\right)$. The maximum active power outputs of PV-DGs $\left(P_{m p, i}\right)$ are obtained at each location by PV model and MPPT block.

From t he r eport in [83], it s hows t hat the pow er f actor of $P V$ gridconnected inverter is us ually controlled to be 100%. However, some inverters have the capability to adjust the power factor for two main purposes. One is leading power factor operation to suppress the voltage rise in a distribution system due to the output power from PV-DGs during light-load hours in the daytime. The other is operated at the lagging power factor during heavy load to compensate for the voltage drop of the distribution 1 ines. Therefore, various pow er factor ope rations a nd a lso proper 1 oad models a re important in PV s ystem ins tallation planning. Then, the reactive power output of P V-DGs $\left(Q_{m p, i}\right)$ in P V m odel bl ock can flow in bot h di rections tot he network under lagging or leading power factor operations.

System losses and node voltages are evaluated by the distribution power flow calculation. B ased on the data measured from a PV farm (540 units of 11 kW grid-connected i nverters), harmonic di stortions at each bus ar eev aluated by the harmonic flow a nalysis. A s s hown in the flow chart in Figure 5.1, the process is calculated repeatedly from a s pecific range of PV-DG size at each incremental step. The optimal solution of Equation (5.1) is the rated size of PV-DG with minimum the average system loss and under the constraints from 5,000 samples $\left(N_{s}\right)$.

Figure 5.1 Flow chart of the optimal PV-DG sizing technique

5.4 Numerical Results and Discussion

For the purposes of this dissertation, there are three scenarios to determine the optimal PV-DGs size in the difference system operating conditions. However, the hourly solar radiation and ambient temperature based on measured from Chiang Mai province as given in Chapter 2 on section 2.2 are used for all scenarios.
5.4.1 Scenario-1: Optimal P V-DG s izing w itha nd w ithout consideration of background harmonic in distribution system

An actual 22 kV radial distribution system in Thailand is employed as a test case in this scenario. All system parameter are given in Appendix C, which can be found in [84]. The test system has 51 buses with a total load of 1.92 MW, 1.06 MVar and 1 unit of 900 kVar capacitor bank at bus-13 as shown in Figure 5.2. The results of base case deterministic load flow are given in Appendix D.

This s cenario s hows t he opt imal P V-DGs s izing w ith a nd w ithout consideration of existing background harmonic conditions in distribution system. The PV-DGs pl acements are obt ained based on the static vol tage stability i ndex (VSI) calculations. The system operating conditions in this scenario are given as:

- Substation voltage and load demand are assumed to be random variables with normal distribution, which standard deviations (σ) of substation voltage and load models are set to 1.5% and 10% respectively.
- Power factors of PV-DGs are assumed to be 1.0 constant.
- Load model is assumed to be constant power load.
- The 6 -pulse conv erters ar e m ain harmonic s ources which generate background harmonics (the typical harmonic current spectra are given in Table 4.2 on Chapter 4).
- Three 1 evels of ba ckground ha rmonics ($15 \%, 25 \%$ a nd 35%) a re considered.
- Other DGs are not considered in this test system.
- In this scenario, all c onstraints ($V_{i}, I_{h}, T H D v$ and TDD) are cons idered with 95% confidence interval.
- Range of $P V_{\text {size }}$ on this study is between 0.1 MWp to 2 MWp with a 0.1 MWp increment.

Figure 5.2 Single-line diagram of the 51-bus test system

Firstly, a vol tage stability inde x is c omputed as a ba sis to determine proper locations of P V-DG. Buses with descending mini mum V SI a re s elected as candidate locations to install PV-DG. A constant power load model is also assumed in VSI calculation. Table 5.1 shows three candidate locations (i.e., buses 38, 19 and 37) with various voltage levels of substation in the test system. The results in Table 5.1 also show the minimum voltage related to the critical bus with minimum VSI.

Table 5.1 Critical bus stability index values of the test system

Substation voltage $(\boldsymbol{p u})$	Candidate buses with VSI min	VSI min	Voltage min $(\boldsymbol{p u})$
0.95	38	0.0387	0.4436
	19	0.0392	0.4451
	37	0.0402	0.4478
1.00	38	0.0453	0.4613
	19	0.0457	0.4623
	37	0.0459	0.4630
1.05	38	0.0545	0.4831
	19	0.0554	0.4851
	37	0.0561	0.4868

After selecting proper locations of PV-DG, the proposed technique is then employed to solve the opt imal P V-DG size. Int his study, e xisting ba ckground harmonic c onditions in test system are a lso t aken i nto a ccount. The b ackground harmonics (BH) are treated as a p ercentage of nonlinear loads at all load bus except PV-DG bus. Three levels of background harmonics (i.e., $15 \%, 25 \%$ and 35% of load
demands) ar e t ested. Based on t he r esults of the vol tage s tability i ndex of t he candidate buses, three study cases are investigated to determine the optimal size of PV-DG.

Case-1: Single PV-DG

The PV-DG installation is assumed to be owned by a generation company and located at the bus with minimum VSI (bus-38). This case shows the selection of PV-DG s ize ba sed on t he t echnical constraints w ith a nd w ithout c onsideration of background harmonics.

Figure 5.3 presents the relationship between the average system loss and the average PV-DG active power output. As shown in Figure 5.3, the system losses vary with the size of PV-DG ins talled at bus -38 . The average system loss without installing PV-DG is 30.1 kW . Beside, the system losses decrease when installing PVDG less than 1.7 MWp . The minimum average system loss in this case is 23.3 kW , which is given by installing a PV-DG at 0.8 MWp . Also note that with the variation of solar radiation and operating temperature, from installing 0.8 MWp PV-DG (peak power output), the average active power output is 0.35 MW .

Figure 5.3 Average system losses as a function of average PV-DG power output in Case-1

The c umulative pr obability of vol tage a t bus -38 w ith a nd w ithout installation of 0.8 MWp PV-DG is shown in Figure 5.4. Similarly, an installation of PV-DG mostly improves the voltage regulation at the PCC. Note from the figure, it shows that the vol tage level at bus -38 stays within an acceptable range (i.e., 0.95 to 1.05 pu.) with 95% confidence interval.

Figure 5.4 Cumulative probability of voltage at PCC with and without PV-DG in Case-1

Figure 5.5 Cumulative probability of THDv at PCC with and without background harmonics in Case-1

Figure 5.5 shows the impact of background harmonics on T HDv at bus38. Results show that THDv values are less than 1% without considering background harmonics. This indicates that an individual PV-DG produces small voltage distortion waveform. Ont he c ontrary, t he T HDv r ises when t he pe rcentage of background harmonics on t he test system increases. The THDv reaches 3.5% when the level of background harmonics is 35%. In this case, the background harmonics produce more impact on T HDv at PCC than PV-DG. However, all THDv values do not reach the 5% limits in Case- 1

Based on SMC-11000TL g rid-connected i nverter, P WM t echnology is employed to control the output waveform. Therefore, the harmonic current (I_{h}) from the inverter is less than the limits. The cumulative probability of TDD and harmonic current from inverter simulated at PCC of C ase-1 are shown in Figures 5.6 to 5.11. The results show that all constraints are complied with IEC standard. T herefore, in Case-1, the opt imal P V-DG size at bus -38 is 0.8 M Wp for both with and without consideration of background harmonics.

Figure 5.6 Cumulative probability of TDD at PCC of inverter

Figure 5.7 Cumulative probability of I_{h} (even orders 2 to 8) at PCC of inverter

Figure 5.8 Cumulative probability of I_{h} (odd orders 3 to 9) at PCC of inverter

Figure 5.9 Cumulative probability of I_{h} (odd orders 11 to 15) at PCC of inverter

Figure 5.10 Cumulative probability of I_{h} (odd orders 17 to 21) at PCC of inverter

Figure 5.11 Cumulative probability of I_{h} (odd orders 23 to 33) at PCC of inverter

Case-2A: Multiple PV-DGs without consideration of background harmonics

In this case, by considering the same constraint as in Case-1, two PV-DGs are installed at buses 38 and 19. This case shows that the proposed technique can be applied to determine the optimal size for multiple locations. Note that, the background harmonics are not considered in this case.

The system losses after installing PV-DGs at buses 38 a nd 19 a re shown as $3-\mathrm{D}$ plot in Figure 5.12. Note from the figure that the mini mum a verage system loss occurs when installing a 0.7 MWp PV-DG at bus-38 and a 0.9 MWp at bus-19. With the variation of solar radiation and operating temperature, the total average PVDGs output is around 0.7 MW which results in 16.86 kW of average system loss. The results in Figure 5.12 also show that, with multiple PV-DGs installations, the average system losses of Case-2A are lower than Case-1 $(23.33 \mathrm{~kW})$. Hence, the installations of PV-DGs reduce 56.2% of system losses comparing the case without PV-DG (30.1 $\mathrm{kW})$.

Figure 5.12 Average system losses as a function of PV-DGs size at buses 38 and 19

From installing a 0.7 M Wp PV-DG at bus- 38 and a 0.9 MWp at bus-19, Figure 5.13 shows the c umulative probability of voltages at buses 38 a nd 19 (both with and without PV-DGs). The results show that voltages at PCC are increased when the P V-DGs a re p resented. H owever, t he vol tages a t bot h 1 ocations stay i n a n acceptable level with 95% confidence interval.

Figure 5.13 Cumulative probability of voltage at buses 38 and 19 with and without PV-DGs in Case-2A

Figure 5.14 shows the impact of background harmonics on THDv values. Note from the figure that the THDv at PCC increases and may exceed the limits when
higher percentage of background harmonics occurs. The THDv at both locations does not reach the limits for 15% and 25% of background harmonics. However, when the level of ba ckground h armonics is 35%, t he p robability at which T HDv at bus -19 violates the constraint (exceeds 5%) is 0.1 .

Figure 5.14 Cumulative probability of THDv at PCC with and without background harmonics in Case-2A

Although, the THDv constraint is violated in some levels of background harmonics. Fortunately, the process of optimal PV-DG sizing does not considered the background harmonics in this case.

Case-2B: Multiple PV-DGs with consideration of background harmonics

When the level of background harmonics is 35%, as the results in Case2 A , t he T HDv a t bus -19 vi olates t he c onstraint m ore t han 0.05 of pr obability of occurrences. Therefore, to comply with harmonic limits, Case-2A is considered again taking into a ccount the background h armonics. By a pplying the s ame algorithm as shown in Figure 5.1, the mini mum a verage s ystem los s in Case-2B oc curs when installing a 0.7 MWp PV-DG at bus-38 and a 0.5 MWp at bus-19 (see Fig.5.12). In this case, the average system loss is 18.39 kW and the total average PV-DGs output is around 0.52 MW .

Figure 5.15 shows the comparison of THDv at buses 38 a nd 19 be tween Cases-2A and 2B (with 35\% of background harmonics). Note that the solution from

Case-2B guarantees the THDv constraint with 95% confidence interval. T his case shows the effectiveness of the proposed technique when the ba ckground harmonics are presented in an actual distribution system.

Figure 5.15 Comparison of THDv at PCC between Case-2A and Case-2B with 35% of background harmonics

As the results in Case-2B, the optimal size of PV-DG at bus-19 is reduced to 0.5 M Wp from C ase- $2 \mathrm{~A}(0.9 \mathrm{M} \mathrm{Wp})$. This guarantees t he vol tage c onstraint at buses 38 and 19 with 95% confidence interval.

Also from Figures 5.6 to 5.11 , the c umulative pr obability of \% TDD and inverter harmonic current from the same inverter in each order at PCC of Cases-2A and 2B are s imilar to Case-1. Therefore, the ha rmonic current co nstraints ar e maintained at acceptable levels in both cases.

Table 5.2 summarizes the PV-DGs installation for all cases. With various background h armonic levels, a verage values of \%THDv at PCC are presented with the c orresponding opt imal s izes of P V-DGs. F or a 1 c c ases w ithout background harmonics, a verage va lues of $\% \mathrm{THDv}$ a re 1 ower t han 1%. On t he c ontrary, t he average va lues of $\%$ THDv va ry de pending ont he ba ckground ha rmonic 1 evels. Furthermore, with higher total installed capacity of PV-DGs, the THDv at PCC may increase. This can be observed from the average of $\% \mathrm{THDv}$ at bus- 38 of all cases.

Table 5.2 Summarize the optimal size of PV-DGs installation

$\begin{aligned} & \text { Location } \\ & \text { Bus } \end{aligned}$	Optimal PV-DG size (MWp)	Total PV-DG Capacity (MWp)	Total average PV-DG power output (MW)	Minimum average system losses (kW)	Average of \%THDv at PCC related to optimal PV-DG size with and without background harmonics (BH)			
					without BH	15\% BH	25\% BH	35\% BH
$\begin{gathered} 38 \\ \text { (Case-1) } \end{gathered}$	0.8	0.8	0.346	23.327	0.389	1.322	2.004	2.694
$\begin{gathered} 38 \\ 19 \\ \text { (Case-2A) } \end{gathered}$	$\begin{aligned} & 0.7 \\ & 0.9 \end{aligned}$	1.6	0.696	16.863	$\begin{aligned} & 0.415 \\ & 0.518 \end{aligned}$	$\begin{aligned} & 1.383 \\ & 2.203 \end{aligned}$	$\begin{aligned} & 2.058 \\ & 3.362 \end{aligned}$	$\begin{aligned} & 2.747 \\ & 4.537 \end{aligned}$
$\begin{gathered} 38 \\ 19 \\ \text { (Case-2B) } \end{gathered}$	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	1.2	0.5	8.3	$\begin{aligned} & 0.392 \\ & 0.344 \end{aligned}$	$\begin{aligned} & 1.337 \\ & 2.052 \end{aligned}$	$\begin{aligned} & 2.020 \\ & 3.229 \end{aligned}$	$\begin{aligned} & 2.710 \\ & 4.414 \end{aligned}$

Although, the THDy at bus -19 violates the harmonic constraint in Case2 A with 35% of background harmonics. While the average of $\% \mathrm{THDv}$ is less than 5% (4.537\%) as shown by bold number in Table 5.2.

Thus, by using the average of $\% \mathrm{THDv}$ as a criterion, the optimal sizes of PV-DGs s olution in C ase-2A may be a cceptable with considering up to 35% of background ha rmonic 1 evels. H owever, t he s olution in C ase-2B indi cates tha $t ~ t h e ~$ optimal size of PV-DG at bus- 19 should be reduced to maintain the THDv constraint. This indicates that when the av erage of $\%$ THDv is used as a criterion, the optimal sizes of PV-DGs may be overestimated.

A summary of the total number of PV modules and inverters for optimal sizes of P V-DGs s olution is g iven in T able 5.3. Note that the tot al nu mber of P V modules and inverters are based on a connection group of Sharp 80Wp PV module and SMC 11 kW grid-connected inverter.

Table 5.3 Summarize the total number of PV modules and inverter units for optimal PV-DGs sizes solutions

Location Bus	Optimal PV-DG size $(M W P)$	Total number of $\boldsymbol{P V}$ modules (module)	Total number of inverters (unit)
38	0.8	10,000	72
(Case-1)			
38	0.7	8,750	63
19	0.9	11,250	81
(Case-2A)			
38	0.7	8,750	63
19	0.5	6,250	45
(Case-2B)			

The results in Scenario-1 show that the proposed technique performs well to obt ain t he opt imal s izes of P V-DGs for m ultiple 1 ocations ba sed on t echnical constraints. In practice, some background harmonic distortion are normally present in the ne twork. B y applying t his t echnique, t he opt imal sizes of P V-DGs can be determined taking into account the background harmonics.

It has been demonstrated that the installation of PV-DGs may affect the power qua lity when s ome ba ckground ha rmonics a re pr esented in a distribution system. With high ba ckground ha rmonics, the THDv a t P CC m ay not s atisfy the standard. As shown in Case-2A, the optimal sizes of PV-DGs are not acceptable with a 35% of background harmonic level. This is due to THDv constraint violation at bus 19. Therefore, as shown in Case-2B, the optimal sizes of PV-DGs with consideration of background harmonics are required. However, in Case-1, the optimal size of PVDG is successfully obt ained in both w ith a nd w ithout consideration of ba ckground harmonics.

The r esults from s everal cases also indicate that P V-DGs ar e likely to improve the vol tage regulation and de crease system losses in a di stribution system. However, i nstalling with hi gh capacity of P V-DGs m ay i ncrease T HDv at P CC especially when the background harmonics are presented.
5.4.2 Scenario-2: Impact of 1 oad m odel a nd pow er factor c ontrol on optimal PV-DG sizing

The pur pose ofthis scenario is to study an impact on optimal PV-DG sizing in a distribution system using different static load models (i.e., constant power, constant current and constant impedance) and various power factor operations.

The 51-bus radial distribution system in Scenario-1 is employed as a test case again, but the capacitor bank at bus-13 is neglected in this scenario. The system operating conditions in this scenario are given as:

- Substation voltage is set to $1.0 \angle 0^{\circ}$ constant.
- Load demand is assumed to be random variables with normal distribution, which standard deviations (σ) is set to 10%.
- Various power factor operations of PV-DGs are considered.
- Three static load models are considered i.e., constant power (CP), constant current (CI) and constant impedance (CZ).
- Background harmonics are not considered in this test system.
- Other DGs are not considered in this test system.
- In this scenario, only voltage and THDv constraints are considered.
- Range of $P V_{\text {size }}$ on this study is between 50 kWp to 2.5 MWp with a 50 kWp increment.

For the purpose of this scenario, it is assumed that the PV-DG installation is located at bus es 10 and 19 . T wo cases are studied for determining the impact of load model and various power factor operations on optimal sizing of PV-DG.

Case-1: Single PV-DG

In this case, the PV-DG installation is assumed to locate at only bus-19. The i mpact of P V-DG connection on s ystem 1 osses with di fferent 1 oad m odels is presented in Figure 5.16, which power factor (PF) is set to 1.0 constant. It shows that PV-DG nor mally d ecreases s ystem 1 osses, except when its size 1 argely i ncreases. Furthermore, it demonstrates that using different static load models do not impact on optimal PV-DG size, which is 1.1 MWp . Besides, the voltage and THDv constraints are satisfied for P V-DG size with minimum the a verage s ystem los as shown in Figures 5.17 and 5.18, respectively.

Figure 5.16 Average system losses as a function of average PV-DG power output with different load models

Figure 5.17 Cumulative probability of voltage at bus-19 with different load models

$$
(\mathrm{PF}=1.0)
$$

Figure 5.18 Cumulative probability of THDv at bus-19 with different load models

$$
(\mathrm{PF}=1.0)
$$

Figure 5.17 shows that the vol tage values de pend on 1 oad models. T he lowest vol tage i s oc curred w hen us ing the CP m odel. H owever, t he vol tage constraints of all load models are within the limits. Figure 5.18 shows that different load models do not a ffect the THDv. In reality, the THDv strongly depends on P VDG size as shown in Figure 5.22. Further, it can be observed from Figure 5.18 that THDv is s mall a nd less than 1.25%. This shows that the low ha rmonic di stortion power can be generated based on SMC-11000TL inverter.

The impact of leading operation on system losses in Case-1 with CP load model is presented in Figure 5.19. It shows that the solution of optimal PV-DG size may be changed for w ide leading pow er factor r ange. Unlike the lagging ope ration which has a few impact on optimal size of PV-DG as shown in Figure 5.20. Further, Figure 5.19 indicates that the system losses are rapidly increasing when PV-DG size is larger. This can be seen by com paring the curve for a given PF values w ith the curve obt ained for lagging ope ration. This is due to the fact of P V-DG consumes reactive po wer at 1 eading ope ration. Therefore, 1 ow 1 eading PF c auses vol tage to reduce. As a result, the system losses are nonlinearly increasing.

Figure 5.19 Average system losses as a function of average PV-DG power output with different leading power factor (CP-model)

Figure 5.20 Average system losses as a function of average PV-DG power output with different lagging power factor (CP-model)

Figures 5.21 and 5.22 show cumulative probability of voltage and THDv at bus-19 corresponding to the results in Figure 5.19, with different optimal PV-DG sizes at each power factor. Figure 5.21 indicates that voltage is increasing when the size of PV-DG is larger, similar with THDv values as shown in Figure 5.22.

Figure 5.21 Cumulative probability of voltage at bus-19 with different PV-DG sizes corresponding to Figure 5.19

Figure 5.22 Cumulative probability of THDv at bus-19 with different PV-DG sizes corresponding to Figure 5.19

Case-2: Multiple PV-DG

In this case, two PV-DGs are installed at buses 10 and 19. The impact of PV-DGs c onnection on s ystem losses with different load models are shown as 3-D plot in Figures 5.23 to 5.25 , which PF is set to 1.0 constant. It shows that the average system losses decrease more than Case-1 with multiple PV-DGs. It demonstrates that using different static load models do not impact on optimal PV-DGs sizes, which is
1.5 MWp at bus 10 a nd 0.7 M Wp at bus-19. The vol tage and THDv constraints at each bus related to PV-DGs sizes of constant power load model are shown in Figures 5.26 and 5.27 , respectively. The results indicate that all constraints are kept within the limits.

Figure 5.23 Average system losses as a function of PV-DGs capacity at buses 10 and 19 with constant power load model $(\mathrm{PF}=1.0)$

Figure 5.24 Average system losses as a function of PV-DGs capacity at buses 10 and 19 with constant current load model $(\mathrm{PF}=1.0)$

Figure 5.25 Average system losses as a function of PV-DGs capacity at buses 10 and 19 with constant impedance load model $(\mathrm{PF}=1.0)$

Figure 5.26 Cumulative probability of voltage at buses 10 and 19 corresponding to the result in Figure 5.23

Figure 5.27 Cumulative probability of THDv at buses 10 and 19 corresponding to the result in Figure 5.23

From Figure 5.27, the THDv at bus-19 is higher than the THDv at bus-10 although the PV-DG size at bus-19 (0.7 MWp) is about 50% less compared with bus$10(1.5 \mathrm{MWp})$. This is due to the increasing system impedance (longer distance from the substation) and a so the influence from 1 arge P V-DG size at bus -10 . Therefore, higher THDv can be observed at the end of the feeder. This finding is critical for PVDG ins tallation considering in rural a reas where di stribution systems are w idely spread over large distances.

The impact of various power factor operations with constant power load model on multiple optimal PV-DGs sizes is presented in Table 5.4. Similarly in Case1, the optimal sizes solution may be changed for wide leading power factor range and it has a few impact on optimal sizes in lagging power factor operation.

Table 5.4 Multiple optimal PV-DGs sizes for various PF operations with CP-model

	Lagging type		System losses	Leading type		System losses
P.F.	Bus-10 (MWp)	Bus-19 (MWp)		Bus-10 (MWp)	Bus-19 (MWp)	
$\mathbf{0 . 9}$	1.7	0.8	18.56	0.95	0.4	29.33
$\mathbf{0 . 9 2 5}$	1.7	0.65	18.57	0.95	0.45	28.35
$\mathbf{0 . 9 5}$	1.7	0.65	19.21	1.0	0.6	27.29
$\mathbf{0 . 9 7 5}$	1.7	0.8	19.71	1.3	0.65	25.69
$\mathbf{1 . 0}$	1.5	0.7	22.53	1.5	0.7	22.53

From the results in Scenario-2, it can be summarized that different static load m odels do not i mpact on opt imal sizes of P V-DGs. It d emonstrates that the voltage has a significant change with both 1 oad m odels a nd P V-DG size (see Figs. 5.17 and 5.21). W hile t he T HDv va lues de pend on P V-DG s izes m ore t han 1 oad models (see Figs. 5.18 and 5.22). Furthermore, an impact of power factor control on optimal sizes of PV-DGs indicates that leading operation changes the optimal size of PV-DG at each power factor operation. This differs from lagging operation which has low impact on optimal PV-DG size.

In addition, fast growing technologies like PV-DGs is emerging as part of a di stribution system. Therefore, it is ne cessary to evaluate and analyze the pow er quality issue due to various non-linear current. In practice, utilities cannot assign the PV-DGs installation location to be connected to the feeder because it mainly depends on customers who own the P Y systems. Thus, for planning a spect, the proper load models and operating mode of inverter are required to accurately find the PV-DG size solution. H owever, t he s imulation r esult f rom C ase- $2 s$ hows t hat t he ha rmonic distortion voltage can be high depending on the distance away from a substation (see Fig. 5.27). Therefore, it may require the harmonic filter if the PV-DGs are located at the end of feeder, especially the large size of PV-DG.
5.4.3 Scenario-3: Effect of inverter m odeling and e xisting D Gs in a distribution system on optimal PV-DG sizing

The pur pose of t his scenario is $t o s$ tudy a n effect on optimal PV-DG sizing in a distribution system using different PV inverter models (i.e., 6-pulse, 12pulse and PWM) and existing DGs with various operating conditions.

A heavy load 23 kV radial distribution system is employed as a test case in this scenario. All system parameter are given in Appendix C, which can be found in [85]. The test system has 33 buses with a total load of $9.29 \mathrm{MW}, 5.75 \mathrm{MVar}$ as shown in Figure 5.28. The results of base case deterministic load flow are given in Appendix D. And the system operating conditions in this scenario are given as:

- Substation voltage is set to $1.0 \angle 0^{\circ}$ constant.
- Load demand is assumed to be random variables with normal distribution, which standard deviations (σ) is set to 10%.
- Power factor of PV-DG is assumed to be 1.0 constant.
- Load model is assumed to be constant power load.
- Background harmonics are not considered in this test system.
- Various ope rating c onditions of e xisting DGs in test s ystem are considered.
- Only voltage and THDv constraints are considered in this scenario.
- Range of $P V_{\text {size }}$ on this study is between 0.2 MWp to 13 MWp with a 0.2 MWp increment.

Figure 5.28 Single-line diagram of the 33 -bus test system

For t he pur pose o ft his s tudy, it is a ssumed that the single PV-DG installation is located at bus-10. Two cases are studied for investigating the effect of inverter models and existing DGs on optimal PV-DG sizing.

Case-1: Optimal PV-DG sizing without consideration of existing DGs

This cas e s hows t he s election of optimal PV-DG s ize ba sed on t he technical cons traints without consideration of e xisting DGs us ing di fferent inverter models, which the typical harmonic current spectra are given by:

- Using data in Table 4.2 from chapter 4 for 6-pulse and 12 pul se inverter models.
- Using d ata b ased on m easurements of grid-connected inverter (SMC11000TL) from a PV farm for PWM inverter model.

Figure 5.29 Average system losses as a function of average PV-DG power output without consideration of existing DGs

Figure 5.29 presents the relationship between the average system loss and the a verage P V-DG active pow er out put. From this figure, the s ystem losses vary with the size of PV-DG installed at bus-10. The average system loss without installing PV-DG is 375.1 kW . Besides, the system losses decrease when installing PV-DG less than 12.2 MWp. The minimum average system loss in this case is 271.3 kW , which is given by installing a PV-DG at 5.8 MWp . While the a verage active power output of PV-DG is around 2.5 MW.

The c umulative pr obability of vol tage a t bus -10 with a nd w ithout installation of 5.8 MWp PV-DG is shown in Figure 5.30. Similarly to scenarios 1 and 2, an installation of PV-DG mostly improves the voltage regulation at the PCC. Note from the figure, it s hows that the hi ghest vol tage level at bus -10 stays w ithin an acceptable limits (i.e., 1.05 pu). Since, however, the test system in this case has heavy load and there is no any compensator elements to regulate the voltage rise up. Hence, voltage at some node before installing PV-DG is lower the limits (i.e., 0.95 pu), this can be found in base case deterministic load flow solution as given in Appendix D. By
this reason, the minimum voltage at bus-10 may lower than the limits after installing PV-DG. However, the probability at which voltage at bus -10 lower than 0.95 pu is 0.1 , and it can be acceptable for this system.

Figure 5.30 Cumulative probability of voltage at bus-10 without consideration of existing DGs

Figure 5.31 shows t he c omparison of T HDv va lues a t bus -10 us ing different PV inverter models. Since, it need to be installed high c apacity of PV-DG $(5.8 \mathrm{MWp})$ to minimize s ystem loss in this case. Therefore, t he THDv va lues can exceed the limits for 6 -pulse a nd 12 -pulse inverter m odels, especially the 6 -pulse inverter. This differs from PWM inverter that the THDv value is less than 2%. This indicates that a PWM technology can produce small voltage distortion waveform. In present, m ostly P V i nverter t echnologies a re b ased on P WM [83]. H owever, t he purpose of t his c ase n eeds t o s how t he distinction of $\mathrm{T} H D v$ va lues f rom us ing different PV inverter models in our study.

Furthermore, t o c omply w ith IEEE s tandard, PV-DG s ize s hould be reduced to 3.0 MWp for 6 -pulse inverter. The average system loss is around 295 kW for this installation size, see Figure 5.29.

Figure 5.31 Cumulative probability of THDv at bus-10 using different inverter models without consideration of existing DGs

Case-2: Optimal PV-DG sizing with consideration of existing DGs

This case shows the effect of optimal PV-DG sizing with consideration of existing D Gs in distribution system. Using different inve rter models a re also presented to compare THDv values with Case-1. For the purpose of study case, the locations of existing DGs as well as its operating conditions and capacity are given in Table 5.5.

Table 5.5 Existing DGs locations, capacity and its operating conditions

Location Bus	DGs capacity (MW)	DG type	Operating mode
13	1.5	Synchronous	PF. 1.0
25	1.0	Induction	PF. 0.85 leading
33	1.0	Synchronous	PF. 0.95 lagging

As shown in Figure 5.32, it needs to install 2.6 MWp PV-DG to minimize average system loss, which approximately reduced 50% compared with Case-1 (5.8 MWp). This is due to highly generation power of the existing DGs (3.5 MW). So, the average s ystem 1 oss be fore ins talling P V-DG is m ore de creased than Case-1 (178 $\mathrm{kW})$. From the figure, the mini mum a verage system loss is 163.6 kW in this case, while the average active power output of PV-DG is around 1.12 MW.

Figure 5.32 Average system losses as a function of average PV-DG power output with consideration of existing DGs

Figure 5.33 s hows c omparison of the voltage c umulative probability at bus-10 before and after installation of 2.6 MWp PV-DG. The voltage level at bus-10 stays within an acceptable range in this case. Note from the figure, it shows that the minimum voltage at bus- 10 is higher than Case- 1 and kept within the limits, when the existing DGs are presented.

Figure 5.33 Cumulative probability of voltage at bus-10 with consideration of existing DGs

Since the reducing more of PV-DG capacity in Case-2, consequence the THDv values are within the limits for all PV inverter model as shown in Figure 5.34. Similarly to Case-1, however, it indicates that the PWM technology can produce very small voltage distortion waveform, which less than 1% in this case.

Figure 5.34 Cumulative probability of THDv at bus-10 using different inverter models with consideration of existing DGs

From the results in Scenario-3, it c an be summarized that different PV inverter models have effect to optimal size of PV-DG. It demonstrates that the 6-pulse inverter modeling may produce high THDv values at PCC, while the PWM inverter modeling can produce very small THDv values. The THDv values produced from the 12-pulse inverter are in between these two, as seen in Figures 5.31 and 5.34. From these f igures, it indi cates tha t int erconnection of s mall P V-DG ma y notr esult in violation of the power quality standard. However, the THDv values are comply with standard for P WM inverter in all case. While PV-DG size may reduced for 6-pulse and 12 -pulse i nverters, as s hown in C ase-1. Furthermore, a ddition ot her D Gs in distribution system can effect is to decrease PV-DG size to minimize system losses.

CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

This dissertation presents a probabilistic approach to calculate an optimal size of PV-DG in a distribution system. The stochastic variables of both ge neration and l oad ha ve been considered. The p roposed technique is ba sed on actual hour ly solar radiation, ambient temperature and typical harmonic currents of grid-connected inverter in Thailand. The results from all scenarios show that the proposed technique is effectively to obtain optimal sizes of PV-DGs for both single and multiple locations based on technical constraints.

From s everal s ystem o perating c onditions, it can be s ummarized the optimal PV-DGs sizing based on this approach as follows:

- It need to be collected the data of hourly variations of solar radiation and ambient temperature for a site of interest.
- In practical, a validation of PV model is necessary to accurate the power output of PV-DG corresponding to solar radiation and temperature.
- In pl anning as pect, a m easurement of h armonic cur rent s pectra of $\mathrm{P} V$ inverter is necessary to assess the power quality.
- By applying this technique, optimal sizes of PV-DGs can be determined taking into account background harmonics. A nd W ith high background harmonics or w ith hi gh c apacity of P V-DGs, \%THDv at P CC m ay increase and not satisfy the standard.
- Different static load models do not impact on optimal PV-DGs sizes. And THDv values depend on PV-DG sizes more than load models.
- Leading power factor operation changes optimal PV-DG size but lagging operation has low impact on optimal PV-DG size.
- High distortion voltage waveform may be produced by 6-pulse and 12 pulse inverter modeling causes THDv values exceed the limits. While the PWM i nverter modeling c an pr oduce ve ry s mall di stortion ha rmonic voltage and satisfied the standard.
- Additional DGs in a distribution system may lead to decrease optimal PVDG size to minimize system losses.
- The PV-DGs are likely to improve voltage regulation and decrease system losses in a distribution system, but increase THDv values at PCC.

6.2 Future Works

In order to determine the optimal PV-DGs sizes in a distribution system for future studies. Some further issue described below may be of interest.

- It is possible for applying the proposed method to determine optimal size and location of PV-DG at the same time while satisfying the number of constraints described in this works. The Genetic Algorithm (GA) may be used for this issue.
- Other technical constraints such as distribution line current limits can also be added into the proposed algorithm.
- The impact of PV-DG on protection coordination should be studied.
- The coordination of voltage regulation equipments in distribution system may be incorporate with optimal PV-DGs sizing.

จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

[1] IEEE S tandard 1 547-2003, IEEE S tandard f or Interconnecting Distributed Resources with Electric Power Systems.
[2] Philip, P. Barder, and R obert, W. de M ello. Determining the impa ct of Distributed G eneration on P ower S ystems: Part1-Radial D istribution Systems. in Power Engineering Society Summer Meeting 3 (July 2000): 1645-1656.
[3] Frede B laabjerg, Remus T eodorescu, Marco Liserre, and Adrian, V. Timbus. Overview of C ontrol a nd G rid S ynchronization f or D istributed P ower Generation Systems. IEEE Tr ans. Industrial E lectronics 53, 5 (October 2006): 1398-1409.
[4] International E nergy A gency (IEA-PVPS). Cumulative Installed PV P ower [Online]. 2010. Available from: http://www.iea-pvps.org [2011, June]
[5] M., Shahidehpour, and F., Schwartz. Don't let the sun go down on P V. IEEE Power Energy Magazine 2 (May/June 2004): 40-48.
[6] SEARCA Knowledge Center on Climate Change. Thailand's Solar Lessons for the W orld [Online]. 2011. Available from: http://www.beta.searca.org [2011, June]
[7] Denis L enardic. Large-Scale P hotovoltaic P ower P lants Annual R eview 2008 [Online]. 2009. Available from: http://www.pvresources.com [2011, June]
[8] First S olar. PV T echnology C omparison [Online]. 2011. Available from: http://www.firstsolar.com [2011, June]
[9] Gilbert, M. Masters. Renewable and Efficient Electric Power Systems. A John Wiley \& Sons Inc., 2004.
[10] Solar Energy Development Programmatic EIS. Solar Photovoltaic Technologies [Online]. 2011. Available from : http://www.solareis.anl.gov/guide/solar/ pv/index.cfm [2011, June]
[11] Solar Energy Development P rogrammatic E IS. Concentrating S olar P ower Technology [Online]. 2011. Available from: http://www.solareis.anl.gov [2011, June]
[12] Department of A lternative Energy D evelopment a nd E fficiency (DEDE). Ministry of Energy in Thailand. Thailand Energy Situation 2010 [Online]. 2010. Available from: http://www.dede.go.th [2011, July]
[13] System P lanning Division. Electricity Generating A uthority of T hailand. Summary of Thailand P ower D evelopment P lan 2010-2030 Report no. 912000-5305, April 2010.
[14] Department of A lternative E nergy D evelopment a nd E fficiency (DEDE). Ministry of Energy in Thailand. Solar Map of Thailand [Online]. 1999. Available from: http://www.dede.go.th [2011, August]
[15] Department of A lternative E nergy D evelopment a nd E fficiency (DEDE). Ministry of E nergy in T hailand. PV S ystems Installation Status in Thailand since 1983-2010 [Online]. 2011. Available from: http://www. dede.go.th [2011, August]
[16] Victor, H. Mendez Q uezada, Juan Rivier Abbad, and T omas G omez S an Roman. Assessment of f nergy Distribution Losses f or Increasing Penetration of Distributed Generation. IEEE Trans. Power S ystem 21, 2 (May 2006): 533-540.
[17] Daniel, S. S hugar. Photovoltaic in the Utility Distribution System: T he Evaluation of S ystem a nd D istributed B enefits. in Proc. C onference Record of the 21st IEEE Photovoltaic Specialists Conference, Kissimmee 2 (1990): 836-843.
[18] T., lchikawa. Recent R esearch a nd D evelopment on P ower S ystems w ith a Large Number of Distributed Generating Facilities. in Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES 2 (October 2002): 1367-1369.
[19] Jung Hun So, Young Seok Jung, Byung Gyu Yu, Hye Mi Hwang, and Gwon Jong Yu. Performance Results and Analysis of Large S cale PV S ystem. in Photovoltaic Energy Conversion Conference Record of the 2006 IEEE 4th World Conference 2 (May 2006): 2375-2378.
[20] Alejandro, R. Oliva, and Juan Carlos B alda. A P V D ispersed Generator: A Power Q uality Analysis W ithin the IEEE 51 9. IEEE Tr ans. Power Delivery 18, 2 (April 2003): 525-530.
[21] K., Tran, and M., Vaziri. Effects of Dispersed Generation (DG) on Distribution Systems. in Power Engineering Society General Meeting 3 (June 2005): 2173-2178.
[22] A., Bhowmik, A., Maitra, A. M., Halpin, and J. E., Schatz. Determination of Allowable Penetration Levels of Distributed Generation Resources Based on Harmonic Limit C onsideration. IEEE Tr ans. Power D elivery 18, 2 (April 2003): 619-624.
[23] R., Dugan, M ., McGranaghan, and H. W ., Beaty. Electrical P ower S ystems Quality. McGraw-Hill, 1996.
[24] N., Mohan, T ., Undeland, and W ., Robbins. Power E lectronics: C onverters Applications and Design. John Wiley \& Sons, 1995.
[25] Johan, H.R. Enslin, and Peter, J.M. Heskes. Harmonic I nteraction Between a Large N umber of D istributed P ower Inverters a nd t he D istribution Network. IEEE Trans. Power Electronics 19, 6 (November 2004): 15861593.
[26] M.C., Benhabib, J.M.A., Myrzik, and J.L., Duarte. Harmonic effects caused by large s cale P V ins tallations in LV ne twork. in Electrical Power Quality and Utilisation 2007, 9th International Conference (October 2007): 1-6.
[27] Florentin Batrinu, Gianfranco Chicco, Jurgen Schlabbach, and Filippo Spertino. Impacts of grid-connected photovoltaic plant ope ration on t he ha rmonic distortion. in IEEE MELECON (May 2006): 861-864.
[28] Andrew K otsopoulos, Peter, J.M. Heskes, and Mark, J. Jansen. Zero-Crossing Distortion in Grid-Connected P V Inverters. IEEE Tr ans. Industrial Electronics 52, 2 (April 2005): 558-565.
[29] A.R., Oliva, J.C., Balda, D.W., McNabb, and R.D., Richardson. Power-Quality Monitoring of a P V G enerator. IEEE T rans. E nergy C onversion 13, 2 (June 1998): 188-193.
[30] S., Yanagawa, T., Kato, K., Wu, A., Tabata, and Y., Suzuoki. Evaluation of LFC capacity for out put fluctuation of photovoltaic ge neration systems based on m ulti-point observation of i nsolation. in Proc. IEEE P ower Engineering Society Summer Meeting (2001): 1652-1657.
[31] Walid, A. Omran, and M., Kazerani. Investigation of Methods for Reduction of Power Fluctuations Generated From Large Grid-Connected Photovoltaics Systems. IEEE Trans. Energy Conversion 26, 1 (March 2011): 318-327.
[32] Y.T., Tan, D.S., Kirschen, and N., Jenkins. A model of PV generation suitable for stability analysis. IEEE Trans. Energy Conversion 19, 4 (Dec 2004): 748-755.
[33] Achim W oyte, V u V an T hong, R onnie B elmans, and J ohan Nijs. Voltage Fluctuations on D istribution Level Introduced b y P hotovoltaic Systems. IEEE Trans. Energy Conversion 21, 1 (March 2006): 202-209.
[34] P., Chen, Z., Chen, B., Bak-Jensen, R., Villafafila, and S., Sorensen. Study of Power Fluctuation from Dispersed Generations and loads and its impact on a Distribution Network through a probabilistic approach. in Electrical Power Q uality and Utilisation 2007, 9th International C onference (October 2007): 1-5.
[35] Benoit BLETTERIE, and Tomaz PFAJFAR. Impact of Photovoltaic Generation on V oltage V ariations-How S tochastic is $P \mathrm{~V}$. in 19th I nternational Conference on Electricity Distribution (CIRED), Vienna 513 (May 2007): 1-4.
[36] T., Kinjo, T., Senjyu, N., Urasaki, and H., Fujita. Output levelling of renewable energy by el ectric dou ble 1 ayer capacitor applied for ene rgy s torage system. IEEE Trans. Energy Conversion 21, 1 (March 2006): 221-227.
[37] Md., H. Rahman, and S ., Yamashiro. Novel di stributed power g enerating system of PV-ECaSS using solar en ergy estimation. IEEE Trans. Energy Conversion 22, 2 (June 2007): 358-367.
[38] J. P ., Barton, and D. G., Infield. A pr obabilistic m ethod for calculating the usefulness of a store with finite energy capacity for smoothing electricity generation from w ind a nd solar pow er. Journal of P ower S ources 162 (2006): 943-948.
[39] R., Wanger. Large 1 ead/acid batteries for frequency regulation, 1 oad levelling and solar power applications. Journal of Power Sources 67 (1997): 163172.
[40] H., Sugihara, S., Nishikawa, and Y., Kimura. Observation of the hybrid system using photovoltaic and sodium-sulphur battery. in Proc. JSES/JWEA Joint Conference (2001): 13-16.
[41] H., Miyauchi, K ., Eguchi, a nd H ., Hayashi. SEMS t o power quality improvement. in Proc. IEEJ C onference of P ower a nd E nergy S ociety (2002): 110-115.
[42] J., Thongpron, U., Sangpanich, C., Limsakul, D., Chenvidya, K., Kirtikara, and C., Jivacate. Study of a P V-Grid C onnected S ystem on its O utput Harmonics and Voltage Variation. Asian J. Energy Environ 5, 1 (2004): 59-73.
[43] D., Chenvidya, J., Thongpron, U., Sangpanich, N., Wongyao, K., Kirtikara, and C., Jivacate. A T hai National D emonstration Project on P V G ridInteractive Systems: Power Quality Observation. in $\underline{3}^{\text {rd }}$ World Conference on P hotovoltaic E nergy C onversion, O saka J apan (May 2003): 2152 2154.
[44] M.A., Kashem, An, D.T. Le, M., Negnevitsky, and G., Ledwich. Distributed Generation for Minimization of P ower Losses in D istribution S ystems. in Conference on Power E ngineering S ociety G eneral M eeting (June 2006): 1-8.
[45] L., Ramesh, S.P., Chowdhury, S., Chowdhury, Y.H., Song, and A.A., Natarajan. Voltage Stability Analysis and Real Power Loss Reduction in Distributed Distribution System. in Transmission and Distribution C onference a nd Exposition (IEEE/PES) (April 2008): 1-6.
[46] Yue Yu an, K ejun Q ian, and C hengke Zhou. The O ptimal Location and Penetration Level of Distributed Generation. in $42^{\text {nd }}$ International Universities P ower Engineering C onference (UPEC), Brighton University, UK (September 2007): 917-923.
[47] G., Celli, E., Ghiani, S., Mocci, and F., Pilo. A Multi-Objective A pproach to Maximize the P enetration of D istributed Generation in Distribution Networks. in $\underline{9}^{\text {th }}$ International C onference on P robabilistic M ethods Applied to Power Systems, Stockholm, Sweden (June 2006): 1-6.
[48] Hamid Falaghi, and M ahmood-Reza H aghifam. ACO B ased Algorithm f or Distributed G eneration Sources A llocation a nd S izing in D istribution Systems. in Power T ech'07 C onference, Lausanne, S witzerland (July 2007): 555-560.
[49] M.F., AlHajri, and M .E., El-Hawary. Improving t he vol tage pr ofiles of Distribution Networks using mul tiple D istribution Generation Sources. in Conference on P ower E ngineering, Large E ngineering S ystems (October 2007): 295-299.
[50] Kai Z ou, A .P., Agalgaonkar, K.M., Muttaqi, and S., Perera. Optimisation of Distributed G eneration U nits a nd Shunt C apacitors f or E conomic Operation of D istribution Systems. in Australasian Universities P ower Engineering Conference (AUPEC), Australia (2008): P-137/1-P-137/7.
[51] Raj K umar S ingh, Nalin, B. D ev C houdhury, and S .K., Goswami. Optimal Allocation of Distributed Generation in Distribution Network with Voltage and F requency D ependent L oads. in IEEE R egion 10 Colloquium and the Third ICIIS, Kharagpur, India (December 2008): 1-5.
[52] R.K., Singh, and S.K., Goswami. Optimal S iting a nd Sizing of D istributed Generations in R adial and N etworked S ystems C onsidering D ifferent Voltage D ependent S tatic Load Models. in $\underline{2}^{\text {nd }}$ IEEE I nternational Conference on P ower a nd E nergy (PECon), J ohor B ahary, M alaysia (December 2008): 1535-1540.
[53] Soo-Hyoung Lee, and Jung-Wook Park. Selection of Optimal Location and Size of M ultiple D istributed Generations b y Using K alman Filter Algorithm. IEEE Trans. Power Systems 24, 3 (August 2009): 1393-1400.
[54] M.F., AlHajri, and M .E., El-Hawary. The E ffect of D istributed G eneration Modeling and S tatic Load R epresentation on the O ptimal Integrated Sizing a nd N etwork Losses. in Canadian Conference on Electrical a nd Computer Engineering (CCECE) (May 2008): 1543-1548.
[55] S., Kamalinia, S., Afsharnia, M .E., Khodayar, A ., Rahimikian, and M .A. Sharbafi. A Combination of MADM and Genetic Algorithm for Optimal DG Allocation in Power Systems. in $4 \underline{2}^{\text {nd }}$ International Universities Power Engineering C onference (UPEC), B righton U niversity, UK (September 2007): 1031-1035.
[56] M., Gandomkar, M ., Vakilian, and M., Ehsan. A C ombination of G enetic Algorithm a nd Simulated Annealing f or O ptimal D G A llocation in Distribution N etworks. in $18^{\text {th }}$ Canadian C onference on Electrical an d Computer Engineering, Saskatoon, S askatchewan C anada (May 2005) : 645-648.
[57] G.B., Shrestha, and L., Goel. A S tudy on Optimal S izing of S tand-Alone Photovoltaic S tations. IEEE Trans. Energy Conversion 13, 4 (December 1998): 373-378.
[58] H.A.M., Maghraby, M .H., Shwehdi, and G.K., Al-Bassam. Probabilistic Assessment of Photovoltaic (PV) Generation Systems. IEEE Trans. Power System 17, 1 (February 2002): 205-208.
[59] Eiichi Endo and Kosuke Kurokawa. Sizing Procedure for Photovoltaic Systems. in First WCPEC, Hawaii (December 1994): 1196-1199.
[60] Ferry, A. Viawan, Ferruccio V uinovich, and Ambra S annino. Probabilistic Approach to the Design of Photovoltaic Distributed Generation in Low Voltage Feeder. in $\underline{q}^{\text {th }}$ International Conference on Probabilistic Methods Applied to Power Systems. KTH, Stockholm, Sweden (June 2006): 1-7.
[61] Christoph M ayr, R oland B rundlinger, and Benoit B letterie. Photovoltaicinverters as Active Filters to improve Power Quality in the Grid. What can State-of-the-art E quipment A chieve. in $\underline{9}^{\text {th }}$ International C onference on Electrical Power Quality and Utilisation.Barcelona (October 2007): 1-5.
[62] G., Carpinelli, G., Celli, S., Mocci, F., Pilo, D ., Proto, and A ., Russo. Multiobjective Programming for the Optimal Sizing and Siting of PowerElectronic Interfaced D ispersed Generators. in Power T ech'07 Conference, Lausanne, Switzerland (July 2007): 443-448.
[63] International E lectrotechnical C ommission, IEC 61727 P hotovoltaic (PV) systems - Characteristics of the Utility Interface, June 1995.
[64] IEEE Standard 519-1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, 1992.
[65] Roy B illiton, and Wenyuan Li. Reliability A ssessment of E lectric P ower Systems Using Monte Carlo Methods. Plenum Press, New York, 1994.
[66] Geoff W alker, Evaluating M PPT C onverter T opologies U sing A M atlab P V Model. Journal of Electrical \& Electronics Engineering, Australia, vol. 21, 2001, pp. 49-55.
[67] J.A., Gow, and C. D., Manning. Development of a photovoltaic array model for use in power electronics simulation studies. IEEE Proceedings on Electric Power Applications 146, 2 (March 1999): 193-200.
[68] Eduardo L orenzo. Solar E lectricity Engineering o f P hotovoltaic Systems. Progensa, Spain, 1994.
[69] Anca, D. Hansen, Poul Sorensen, Lars, H. Hansen, and Henrik Bindner. Models for a S tand-Alone P V s ystem. A s tand-alone P V s ystem mode ling a nd simulation report. Riso N ational Laboratory, R oskilde, Denmark (December 2000): 1-78.
[70] R., Faranda, S ., Leva, and V ., Maugeri. MPPT t echniques for P V S ystem: energetic and cost comparison. in Power and Energy S ociety G eneral Meeting - Conversion and D elivery of E lectrical E nergy int he $21{ }^{\text {st }}$ Century (July 2008): 1-6.
[71] Trishan Esram, and Patrick, L. Comparison of Photovoltaic A rray Maximum Power P oint T racking T echniques. IEEE T ransactions on E nergy Conversion 22, 2 (June 2007): 439-449.
[72] Hanifi Guldemir. Sliding Mode Control of Dc-Dc B oost Converter. Journal of Applied Sciences 5, 3 (2005): 588-592.
[73] N., Mithulananthan, and C. A., Canizares. Effect of Static Load Models on Hopf Bifurcation P oint a nd Critical M odes of P ower S ystems. Thammasat International Journal Science and Technology 9, 4 (October 2004): 69-76.
[74] U., Eminoglu, and M. H., Hocaoglu. A Voltage S tability Index for R adial Distribution N etworks. in International U niversities P ower E ngineering Conference (UPEC) (2007): 408-413.
[75] M., Charkravorty, and D ., Das. Voltage S tability A nalysis of Radial Distribution N etworks. International Journal of E lectrical P ower \& Energy Systems, Elsevier 23, 2 (2001): 129-135.
[76] D., Das, D. P., Kothari, and A., Kalam. Simple and e fficient method for load flow s olution of r adial di stribution ne tworks. International J ournal of Electrical Power \& Energy Systems, Elsevier 17, 5 (1995): 335-346.
[77] Ashokkumar, R., and A ravindhababu, P. An Improved Power flow Technique for D istribution Systems. Journal of C omputer S cience, Informatics \& Electrical Engineering 3, 1 (2009): 1-8.
[78] Fan Zhang, and C arol, S. C heng. A M odified N ewton M ethod for Radial Distribution System Power Flow Analysis. IEEE Trans. Power System 12, 1 (February 1997): 389-397.
[79] W.F., Tinney, and C.E., Hart. Power Flow Solution by Newton's Method. IEEE Trans. Power App. System PAS-86 (November 1967): 1449-1460.
[80] Behic, R. G ungor, Power S ystems. Harcourt Brace J ovanovich, P ublishers, Florida, 1988.
[81] Robert, A., Deflandre, T., and Working Group CC02, ELECTRA No. 16: Guide for Assessing the Network Harmonic Impedance, 1996.
[82] Nick J enkins, R on A llan, P eter C rossley, David Kirschen, and G oran Strbac. Embedded G eneration. The Institution of E lectrical E ngineers, 2000.
[83] IEA. Grid-connected PV pow er s ystems: S urvey of i nverter a nd related protection equipments. Task V report IEA-PVPS (December 2002).
[84] Pradit F uangfoo. The Impact of D istributed G eneration on T he T hailand's Electric P ower S ystem. Doctoral dissertation, Faculty oft he Graduate School of The University of Texas at Arlington, 2006.
[85] Vichakorn Hengsritawat. Optimal Shunt Capacitor Sizing and Location on the Radial D istribution System. Master's Thesis, Department of Electrical Engineering, Chulalongkorn University, 1998.
[86] Department of A lternative E nergy D evelopment a nd E fficiency (DEDE), Ministry of Energy in Thailand.
[87] Thai Meteorological Department, Ministry of Information and Communication Technology of Thailand.

Chulalongkorn University

Appendix A

Hourly Variations of Solar Radiation and Ambient Temperature of

Chiang Mai Province

(During 6.00 to 18.00 on Jan-Dec 2007)

A1. Hourly and daily solar radiation ($\mathrm{MJ} / \mathrm{m}^{2}$) [86]

January

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1							-		?				
2									\%				
3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	$\bigcirc 0.000$	0.000	0.842	0.265	1.108
4	0.000	0.090	0.540	1.482	2,168	2.561	2.735	2.673	2.265	1.658	0.966	0.251	17.388
5	0.000	0.086	0.527	1.445	2.076	2.475	2.679	2.622	2.232	1.661	0.960	0.231	16.995
6	0.000	0.142	0.632	1.030	2.023	2.389	2.500	2.581	2.203	1.689	1.002	0.264	16.454
7	0.000	0.100	0.527	0.938	2.059	2.602	2.781	2.733	2.153	1.561	0.428	0.155	16.038
8	0.000	0.080	0.551	0.755	1.428	2.390	2.792	2.671	2.394	1.788	1.056	0.326	16.232
9	0.000	0.088	0.584	1.529	2.160	2.586	2.759	2.679	2.317	1.773	1.093	0.315	17.883
10	0.000	0.092	0.573	1.436	1.994	2.502	2.669	2.591	2.265	1.681	0.969	0.264	17.036
11	0.000	0.088	0.573	1.459	2.070	2.479	2.685	2.576	2.181	1.655	0.957	0.242	16.966
12	0.000	0.096	0.532	1.368	1.978	2.391	2.679	2.555	2.198	1.798	1.028	0.256	16.879
13	0.000	0.088	0.528	1.402	2.007	2.443	2.674	2.474	2.171	1.552	0.953	0.277	16.571
14	0.000	0.110	0.517	1.384	1.928	2.437	2.594	2.583	2.211	1.682	1.053	0.335	16.832
15	0.000	0.091	0.533	1.526	2.147	2.581	2.796	2.714	2.343	1.789	1.082	0.366	17.968
16	0.000	0.076	0.526	1.570	2.189	2.587	2.810	2.732	2.391	1.883	1.155	0.374	18.294
17	0.000	0.089	0.497	1.464	2.056	2.469	2.692	2.611	2.297	1.751	1.065	0.331	17.322
18	0.000	0.082	0.476	1.515	2.185	2.639	2.853	2.796	2.449	1.858	1.184	0.398	18.434
19	0.000	0.085	0.482	1.458	2.088	2.529	2.740	2.679	2.348	1.784	1.116	0.387	17.698
20	0.000	0.080	0.506	1.631	2.232	2.685	2.878	2.817	2.465	1.889	1.165	0.385	18.735
21	0.000	0.083	0.511	1.588	2.216	2.656	2.864	2.803	2.528	1.936	1.205	0.411	18.803
22	0.000	0.089	0.510	1.535	2.160	2.595	2.844	2.819	2.480	1.942	1.218	0.432	18.631
23	0.000	0.082	0.486	1.470	2.057	2.458	2.653	2.545	2.244	1.720	1.081	0.346	17.145
24	0.000	0.110	0.430	0.863	1.024	1.784	2.315	2.439	2.090	1.538	0.986	0.303	13.886
25	0.000	0.111	0.498	1.105	1.016	2.183	2.354	2.396	2.191	1.704	0.997	0.315	14.876
26	0.000	0.101	0.482	1.364	2.015	2.460	2.637	2.567	2.275	1.703	1.053	0.380	17.042
27	0.000	0.086	0.473	1.286	1.911	2.306	2.556	2.421	2.247	1.530	0.683	0.299	15.804
28	0.000	0.045	0.346	0.717	1.104	1.224	1.194	1.069	0.414	0.284	0.364	0.080	6.841
29	0.000	0.115	0.529	1.364	2.020	2.486	2.662	2.671	2.349	1.795	1.067	0.344	17.414
30	0.000	0.086	0.472	1.165	1.645	2.140	2.491	2.444	2.045	1.665	0.988	0.342	15.493
31	0.000	0.094	0.461	0.843	1.687	1.984	1.905	1.880	1.317	1.206	0.845	0.375	12.612
Average	0.000	0.088	0.493	1.265	1.850	2.311	2.510	2.453	2.106	1.603	0.985	0.312	15.979

February

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.000	0.090	0.489	1.229	1.863	2.329	2.561	2.475	2.189	1.660	0.958	0.295	16.156
2	0.000	0.108	0.604	0.989	1.697	1.969	2.006	2.143	1.826	1.440	0.826	0.340	13.964
3	0.000	0.120	0.408	1.097	1.650	2.124	2.306	2.141	2.017	1.593	0.944	0.299	14.710
4	0.000	0.105	0.450	1.003	1.540	1.968	2.178	2.136	1.938	1.424	0.796	0.265	13.810
5	0.000	0.085	0.453	1.017	1.627	2.115	2.394	2.443	2.109	1.581	0.918	0.314	15.063
6	0.000	0.092	0.514	1.137	1.709	2.132	2.389	2.396	2.097	1.533	0.919	0.313	15.243
7	0.000	0.095	0.488	1.048	1.606	2.003	2.211	1.789	1.806	1.544	0.846	0.291	13.738
8	0.000	0.091	0.439	0.910	1.296	1.726	1.888	2.326	2.000	1.542	0.935	0.318	13.480
9	0.000	0.088	0.559	1.224	1.858	2.304	2.559	2.495	2.192	1.745	1.083	0.369	16.487
10	0.000	0.092	0.646	1.387	2.037	2.488	2.725	2.669	2.344	1.767	1.083	0.404	17.662
11	0.000	0.140	0.562	1.143	1.787	2.245	2.478	2.530	2.244	1.704	1.021	0.355	16.227
12	0.000	0.097	0.600	1.325	1.979	2.430	2.658	2.612	2.293	1.738	0.825	0.368	16.944
13	0.000	0.100	0.663	1.468	2.136	2.567	2.754	2.704	2.382	1.739	1.065	0.494	18.100
14	0.000	0.088	0.634	1.488	2,163	2.629	2.889	2.848	2.494	1.772	1.219	0.443	18.685
15	0.000	0.124	0.506	1.617	1.787	2.825	1.563	1.826	1.390	0.818	0.565	0.679	13.745
16	0.000	0.091	0.694	1.620	2.266	2.744	2.915	2.713	2.389	1.555	0.874	0.258	18.152
17	0.000	0.099	0.692	1.555	2.205	2.680	2.917	2.861	2.570	2.017	1.261	0.517	19.408
18	0.000	0.096	0.643	1.537	2.232	2.695	2.884	2.847	2.592	1.992	1.290	0.493	19.339
19	0.000	0.099	0.598	1.401	2.028	2.473	2.858	2.732	2.460	1.917	1.235	0.526	18.357
20	0.000	0.090	0.585	1.408	2.069	2.547	2.720	2.686	2.410	1.866	1.170	0.501	18.082
21	0.000	0.095	0.615	1.490	2.159	2.601	2.748	2.710	2.514	1.891	1.218	0.506	18.591
22	0.000	0.097	0.652	1.516	2.199	2.792	3.028	2.853	2.383	1.852	1.157	0.473	19.034
23	0.000	0.110	0.584	1.414	2.051	2.570	2.742	2.596	2.236	1.740	1.110	0.437	17.624
24	0.000	0.106	0.555	1.313	1.942	2.391	2.596	2.501	2.175	1.599	0.983	0.380	16.582
25	0.000	0.107	0.635	1.493	2.165	2.597	2.848	2.684	2.311	1.655	1.055	0.532	18.133
26	0.001	0.108	0.654	1.625	2.213	2.697	2.898	2.765	1.762	1.867	1.296	0.650	18.606
27	0.001	0.151	0.672	1.613	2.210	2.708	2.867	2.819	2.217	1.244	1.072	0.421	18.040
28	0.000	0.112	0.610	1.476	2.082	2.631	2.793	2.656	2.305	1.759	1.058	0.414	17.927
Average	0.000	0.103	0.579	1.341	1.948	2.428	2.585	2.534	2.202	1.663	1.028	0.416	16.853

March

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.000	0.103	0.551	1.338	1.947	2.385	2.531	2.479	2.219	1.614	0.968	0.358	16.519
2	0.000	0.108	0.514	1.261	1.884	2.518	2.670	2.780	2.312	1.676	1.081	0.469	17.314
3	0.001	0.124	0.605	1.480	2.075	2.499	2.677	2.402	2.114	1.544	0.963	0.375	16.890
4	0.001	0.111	0.529	1.216	1.791	2.266	2.202	2.197	1.958	1.533	0.910	0.277	15.013
5	0.000	0.094	0.501	1.170	1.669	2.054	1.767	1.636	1.154	1.404	0.711	0.191	12.386
6	0.000	0.073	0.599	1.174	1.530	1.846	2.216	2.283	2.298	1.671	1.017	0.409	15.155
7	0.001	0.146	0.988	1.755	2.199	2.695	3.044	2.995	2.622	2.018	1.223	0.492	20.226
8	0.004	0.145	0.837	1.570	2.294	2.740	2.843	2.922	2.530	1.933	1.267	0.460	19.583
9	0.002	0.166	1.015	1.776	2.413	3.063	3.222	3.056	2.556	2.046	1.364	0.562	21.291
10	0.002	0.148	0.667	1.219	1.774	2.227	2.410	2.507	2.214	1.563	0.959	0.354	16.078
11	0.002	0.125	0.641	1.217	1.711	2.185	2.413	2.389	2.164	1.408	0.955	0.343	15.582
12	0.002	0.125	0.553	1.084	1.554	2.017	2.216	2.181	1.961	1.385	0.794	0.305	14.208
13	0.002	0.125	0.517	0.983	1.426	1.796	1.832	1.734	1.437	1.020	0.572	0.217	11.688
14	0.004	0.142	0.596	1.160	1.717	2.217	2.399	2.182	1.833	1.344	0.879	0.301	14.802
15	0.005	0.174	0.753	1.462	2.036	2.563	2.736	2.624	2.267	1.690	1.000	0.428	17.779
16	0.005	0.176	0.723	1.339	1.818	2.394	2.584	2.131	2.065	1.677	0.952	0.310	16.222
17	0.006	0.197	0.539	1.356	1.860	1.487	1.468	1.631	1.523	0.849	0.615	0.432	12.022
18	0.007	0.200	0.727	1.341	1.838	2.191	2.423	2.387	2.052	1.585	0.985	0.421	16.194
19	0.006	0.192	0.579	1.261	1.941	2.435	2.545	2.574	2.308	1.871	1.232	0.535	17.512
20	0.007	0.211	0.690	1.258	1.863	2.328	2.517	2.575	2.318	1.834	1.146	0.455	17.259
21	0.013	0.297	0.996	1.754	2.422	2.822	3.022	2.990	2.665	2.053	1.252	0.387	20.737
22	0.013	0.284	0.958	1.634	2.323	2.833	3.032	2.972	2.626	1.981	0.983	0.497	20.191
23	0.013	0.307	1.114	1.912	2.686	3.253	3.414	3.262	2.892	2.234	1.451	0.630	23.232
24	0.011	0.252	0.840	1.546	2.247	2.718	3.045	2.951	2.484	1.807	1.033	0.417	19.394
25	0.010	0.252	0.837	1.551	2.247	2.804	3.066	2.921	2.485	1.778	1.064	0.469	19.535
26	0.013	0.281	0.919	1.619	2.284	2.836	3.033	3.023	2.518	1.967	1.256	0.548	20.349
27	0.017	0.292	0.919	1.625	2.280	2.787	3.069	3.120	2.772	2.318	1.467	0.624	21.363
28	0.016	0.307	0.980	1.723	2.435	2.963	3.201	3.232	2.910	2.104	1.339	0.512	21.787
29	0.017	0.314	0.953	1.675	2.328	2.788	3.004	2.990	2.642	2.049	1.311	0.518	20.646
30	0.013	0.215	0.778	1.577	2.254	2.793	3.038	2.034	0.382	1.333	0.500	0.325	15.400
31	0.021	0.357	1.126	1.935	2.623	3.082	3.259	2.960	1.436	1.722	1.149	0.587	20.316
Average	0.007	0.195	0.759	1.451	2.047	2.503	2.674	2.585	2.184	1.710	1.045	0.426	17.635

April

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.024	0.389	1.184	2.032	2.770	3.192	3.352	3.214	2.950	2.359	1.243	0.563	23.351
2	0.026	0.475	1.363	2.170	2.888	3.343	3.504	3.461	3.096	2.467	1.617	0.711	25.200
3	0.023	0.324	0.909	1.597	2.267	2.794	3.082	3.068	2.800	2.166	1.221	0.459	20.800
4	0.029	0.411	1.133	1.907	2.613	3.127	3.241	3.248	2.794	2.192	1.330	0.543	22.637
5	0.030	0.364	1.019	1.723	2.371	2.752	2.904	2.959	2.547	2.052	1.330	0.598	20.726
6	0.026	0.330	0.908	1.604	2.036	2.564	2.659	2.400	1.992	1.564	0.936	0.406	17.467
7	0.033	0.354	0.952	1.661	2.144	2.669	2.834	2.861	2.070	1.516	0.718	0.297	18.161
8	0.030	0.337	0.912	1.613	2.241	2.652	2.822	2.561	2.444	1.872	1.106	0.437	19.070
9	0.035	0.415	1.103	1.847	2.465	2.864	3.047	2.994	2.660	2.002	1.244	0.476	21.235
10	0.034	0.397	1.067	1.816	2.446	2.856	2.933	2.853	2.604	1.463	0.798	0.595	19.939
11	0.040	0.388	0.991	1.677	2.370	2.828	3.047	2.935	1.252	1.615	1.342	0.590	19.163
12	0.058	0.424	1.239	2.065	2.817	3.224	3.376	1.244	1.873	2.301	0.999	0.208	19.908
13	0.065	0.413	1.409	2.091	2.844	2.842	2.556	1.839	2.029	1.075	1.050	0.357	18.628
14	0.046	0.275	0.887	1.222	1.376	1.156	2.138	2.198	1.996	0.434	0.480	0.385	12.633
15	0.034	0.248	0.881	1.525	2.496	2.983	3.038	2.461	1.812	0.736	0.270	0.111	16.620
16	0.054	0.430	1.112	1.732	1.975	3.151	3.623	2.562	1.229	0.993	0.476	0.204	17.583
17	0.058	0.458	0.899	2.183	2.592	2.491	2.508	3.189	1.608	1.154	1.374	0.318	18.933
18	0.074	0.637	1.443	2.214	2.705	3.335	3.207	0.570	1.664	2.628	1.302	0.172	19.975
19	0.056	0.377	0.411	0.675	1.793	3.312	3.201	3.434	3.061	2.418	1.620	0.806	21.287
20	0.083	0.700	1.571	2.381	3.041	3.489	3.658	3.532	3.124	2.401	1.718	0.839	26.669
21	0.086	0.731	1.583	2.404	3.089	3.495	3.619	3.469	2.974	2.473	1.467	0.853	26.382
22	0.094	0.755	1.587	2.387	3.024	3.437	3.551	3.462	3.174	2.561	1.757	0.747	26.675
23	0.092	0.725	1.587	2.419	3.088	3.533	3.624	3.534	3.089	2.430	1.150	0.695	26.153
24	0.097	0.719	1.541	2.322	2.967	3.410	3.542	3.421	3.016	2.370	1.559	0.755	25.791
25	0.097	0.691	1.484	2.228	2.859	3.304	3.495	3.313	2.247	2.231	1.366	0.654	24.110
26	0.024	0.178	0.537	1.544	1.442	2.154	3.557	3.279	2.950	2.271	0.849	0.372	19.380
27	0.047	0.714	1.628	2.449	3.100	3.489	3.661	2.926	2.434	1.665	1.833	0.307	24.371
28	0.051	0.167	0.459	1.776	2.780	3.655	3.845	3.533	2.953	1.643	1.798	0.791	23.562
29	0.073	0.396	1.555	2.391	3.055	3.549	2.119	0.774	2.006	1.024	0.848	0.985	18.867
30	0.094	0.784	1.621	2.450	2.970	3.577	3.837	2.413	1.877	0.813	1.570	0.935	23.070
Average	0.054	0.467	1.166	1.937	2.554	3.041	3.186	2.790	2.411	1.830	1.212	0.539	21.278

May

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.133	0.579	1.424	2.311	2.617	3.052	3.406	3.545	3.101	2.594	1.761	0.960	25.720
2	0.090	0.733	0.938	1.807	2.275	3.074	2.912	1.656	2.321	1.486	1.084	0.537	18.969
3	0.046	0.161	0.251	0.534	0.742	1.512	1.944	1.906	1.520	1.749	0.683	0.263	11.379
4	0.029	0.147	0.333	0.741	0.764	0.926	0.420	0.780	0.745	0.679	0.385	0.207	6.200
5	0.028	0.067	0.146	0.336	0.666	1.342	1.892	1.311	1.031	1.064	0.492	0.130	8.534
6	0.052	0.258	0.340	0.378	0.955	0.910	1.296	1.541	2.017	1.961	1.162	0.581	11.562
7	0.091	0.476	0.673	1.538	2.043	1.832	1.486	2.198	2.272	2.637	0.898	0.417	16.620
8	0.024	0.181	0.503	1.211	2.555	2.994	2.748	3.359	3.072	2.500	0.628	0.427	20.271
9	0.130	0.641	1.353	1.733	2.685	2.491	2.216	3.593	2.917	2.630	1.761	0.643	22.852
10	0.113	0.167	0.668	1.036	2.903	3.537	3.297	2.429	2.914	2.612	1.863	0.942	22.504
11	0.043	0.241	0.665	0.965	1.196	1.972	2.861	3.209	2.159	1.600	0.689	0.415	16.139
12	0.054	0.460	1.226	2.142	1.805	1.979	1.394	0.325	0.252	0.047	0.117	0.333	10.285
13	0.050	0.181	0.287	0.963	0.554	1.101	1.785	1.570	0.989	0.791	1.185	0.609	10.178
14	0.065	0.224	0.577	1.490	0.484	2.158	1.111	1.930	2.606	2.205	1.383	0.342	14.595
15	0.074	0.511	1.578	1.861	1.398	1.363	2.893	3.420	2.540	0.252	0.974	0.853	17.772
16	0.119	0.511	1.734	2.546	3.247	3.129	3.727	3.486	3.268	2.604	1.327	0.770	26.584
17	0.085	0.355	1.369	2.076	2.559	3.099	3.624	2.270	2.940	2.119	1.447	1.168	23.209
18	0.118	0.408	1.185	2.514	1.188	3.007	2.518	2.446	1.329	0.823	2.131	0.912	18.739
19	0.178	0.371	0.820	1.880	2.460	2.995	1.837	1.643	0.712	1.059	1.639	0.807	16.591
20	0.023	0.128	0.353	0.685	1.631	2.374	2.488	1.464	1.394	0.968	0.856	0.432	12.860
21	0.153	0.668	0.622	1.330	1.303	1.641	1.948	1.575	1.159	1.317	0.787	0.380	12.975
22	0.107	0.577	1.142	0.581	1.497	1.890	2.343	2.091	2.000	1.572	0.946	0.346	15.179
23	0.150	0.658	0.907	1.759	2.009	2.205	2.686	2.675	2.996	1.924	1.492	0.908	20.551
24	0.119	0.874	1.716	2.519	2.697	3.340	3.520	3.305	3.189	2.219	1.828	0.954	26.512
25	0.099	0.822	1.720	2.368	3.041	3.421	3.527	3.443	2.960	0.181	0.180	0.381	22.278
26	0.103	0.858	1.709	2.506	3.117	3.499	3.655	3.459	0.860	0.314	0.946	0.918	22.114
27	0.129	0.708	1.633	2.449	3.080	3.473	3.627	3.527	3.198	2.591	1.867	0.919	27.490
28	0.189	0.908	1.641	2.410	2.839	3.235	2.978	2.342	2.440	1.606	2.013	0.388	23.110
29	0.155	0.736	1.671	2.383	2.993	3.213	2.978	2.804	3.030	1.735	0.712	0.459	22.950
30	0.119	0.635	0.949	1.425	1.731	2.955	3.408	3.590	2.388	2.149	1.307	0.504	21.228
31	0.112	0.495	0.885	1.919	2.516	3.174	3.714	3.420	3.627	1.215	0.275	0.041	21.414
Average	0.096	0.476	1.001	1.626	1.986	2.480	2.588	2.462	2.192	1.587	1.123	0.579	18.302

June

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.106	0.484	0.570	1.456	2.137	2.653	2.636	3.292	2.523	1.514	0.996	0.338	18.843
2	0.105	0.775	1.585	2.458	3.000	2.799	3.096	3.500	3.191	1.987	0.572	0.563	23.777
3	0.148	0.769	1.790	2.518	3.131	3.525	3.583	3.236	1.979	1.750	0.394	0.335	23.294
4	0.108	0.504	1.273	2.250	2.748	3.343	3.783	0.954	1.795	2.876	1.906	1.146	22.894
5	0.131	0.417	0.977	2.338	2.849	3.299	3.197	1.841	2.457	2.635	1.776	0.258	22.313
6	0.062	0.382	1.234	1.681	2.172	2.705	2.216	3.259	3.135	2.014	0.839	0.116	19.877
7	0.128	0.786	1.692	2.264	3.112	3.599	3.198	2.143	1.817	1.765	1.173	0.952	22.789
8	0.127	0.613	1.779	2.281	2.713	2.869	3.560	2.993	2.814	2.707	1.966	1.188	25.805
9	0.147	0.523	0.656	1.638	2.220	3.071	3.208	3.281	3.249	1.947	1.210	1.056	22.353
10	0.134	0.852	1.737	2.531	3.195	3.342	2.976	2.990	1.211	2.786	2.096	1.171	25.250
11	0.146	0.804	1.294	1.816	2.462	2.772	1.654	0.969	2.988	2.497	1.028	0.178	18.787
12	0.176	0.848	1.538	1.557	2.527	1.798	1.749	3.427	1.819	0.703	1.518	0.340	18.040
13	0.082	0.291	0.786	0.936	1.750	2.298	2.065	2.243	1.984	1.200	0.933	0.333	15.058
14	0.130	0.431	0.936	1.956	2.871	3.466	3.265	1.020	0.413	0.385	0.937	0.901	17.034
15	0.141	0.504	0.845	1.675	2.406	3.672	3.549	1.970	2.642	1.559	1.852	1.308	22.541
16	0.069	0.338	1.229	2.405	2.556	2.002	1.948	2.828	1.897	2.202	1.652	0.890	20.205
17	0.122	0.521	1.300	1.874	1.547	2.092	1.605	2.623	2.478	2.646	1.829	0.527	19.249
18	0.153	0.654	1.092	1.139	1.653	2.758	2.552	3.085	1.790	0.730	0.335	0.409	16.591
19	0.131	0.646	0.840	2.036	1.986	2.681	1.826	2.953	1.888	1.811	0.823	0.167	17.869
20	0.112	0.650	0.841	1.414	1.587	1.930	2.513	2.668	3.214	2.527	2.110	1.299	21.262
21	0.135	0.706	1.010	2.294	3.260	3.419	3.792	3.287	2.759	1.841	0.951	0.589	24.190
22	0.097	0.762	1.647	2.488	3.110	3.453	3.609	3.527	3.225	2.781	1.997	1.182	28.228
23	0.106	0.758	1.698	2.500	3.140	3.484	3.722	3.801	3.208	2.752	2.028	1.168	28.705
24	0.101	0.756	2.031	2.221	3.057	3.505	3.649	3.747	2.733	1.062	1.171	1.275	25.552
25	0.140	0.613	1.376	1.582	1.596	3.046	3.304	2.573	2.400	1.585	0.756	0.459	19.593
26	0.069	0.414	0.792	1.288	2.149	2.623	3.092	3.660	2.910	0.993	0.370	0.063	18.439
27	0.105	0.546	0.747	1.684	1.737	2.109	1.213	0.270	0.176	0.454	0.652	0.360	10.142
28	0.040	0.247	1.368	2.125	1.482	2.287	2.203	1.532	1.004	0.612	0.780	0.534	14.365
29	0.168	0.466	0.672	0.718	2.140	1.981	1.840	1.765	1.615	1.521	0.628	0.198	13.905
30	0.082	0.623	1.205	2.018	1.529	2.186	2.870	1.615	1.507	2.370	1.468	1.162	18.856
Average	0.117	0.590	1.218	1.905	2.394	2.826	2.782	2.568	2.227	1.807	1.225	0.682	20.527

July

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.102	0.408	0.789	2.280	2.759	3.129	2.437	1.891	3.127	1.542	0.505	0.460	19.617
2	0.077	0.424	0.834	1.527	0.915	2.625	1.047	3.662	3.342	1.819	1.850	0.775	19.154
3	0.131	0.490	1.740	1.706	1.900	1.790	1.459	1.428	1.751	2.875	1.292	0.619	17.255
4	0.095	0.560	1.677	1.588	0.824	2.230	1.695	2.292	1.795	2.243	1.358	0.527	17.064
5	0.056	0.386	0.807	1.794	1.361	1.568	1.552	2.399	3.021	1.277	0.921	0.522	15.822
6	0.046	0.298	0.422	0.808	0.540	1.166	1.094	1.016	0.752	0.617	0.692	0.309	7.855
7	0.094	0.517	1.246	1.695	1.906	3.139	3.447	2.731	2.517	2.316	1.280	0.330	21.393
8	0.086	0.665	1.507	2.130	2.703	3.455	3.546	3.617	2.781	1.218	0.880	0.472	23.210
9	0.063	0.682	1.662	2.428	3.074	3.369	3.828	3.355	2.552	2.284	2.073	0.778	26.328
10	0.099	0.448	1.228	2.777	2.914	2.760	2.562	2.486	2.144	2.149	1.908	0.813	22.645
11	0.074	0.459	1.425	2.322	3.097	2.861	2.234	0.712	0.924	1.886	1.104	0.649	17.931
12	0.107	0.717	1.039	1.062	2.097	2.004	2.390	1.716	1.882	1.300	1.330	0.792	16.851
13	0.080	0.490	1.543	1.841	1.397	2.253	2.747	2.301	0.734	0.246	0.600	0.387	14.843
14	0.113	0.668	1.212	1.903	2.884	1.503	1.237	1.403	1.280	1.819	0.744	0.422	15.330
15	0.107	0.389	0.920	1.383	1.788	1.327	1.945	1.983	1.897	2.081	1.491	0.924	16.389
16	0.041	0.386	0.937	1.291	0.854	1.112	1.369	2.101	2.659	2.558	0.542	1.247	15.498
17	0.100	0.682	1.316	1.443	2.247	2.903	2.194	1.771	1.700	1.389	1.235	0.571	17.820
18	0.050	0.316	0.968	1.843	2.003	2.271	3.155	3.230	1.845	1.425	0.859	0.567	18.628
19	0.078	0.453	0.843	1.378	2.040	1.925	1.793	1.135	1.952	1.344	0.359	0.061	13.392
20	0.062	0.354	0.919	1.182	1.273	1.050	0.998	1.160	1.199	0.823	0.498	0.253	9.848
21	0.043	0.192	0.427	0.476	0.747	0.735	0.735	0.584	0.770	0.938	1.056	0.509	7.386
22	0.082	0.386	0.798	1.370	2.444	3.174	2.548	2.182	2.270	1.862	1.083	0.366	18.686
23	0.058	0.405	1.260	2.329	2.579	3.727	3.707	2.154	2.569	0.458	0.416	0.938	20.775
24	0.022	0.168	0.358	0.808	1.174	1.275	1.117	0.772	0.935	0.755	0.489	0.240	8.191
25	0.019	0.360	0.525	1.442	1.874	1.680	2.226	2.446	2.338	1.966	2.158	1.024	18.329
26	0.078	0.769	1.768	2.465	2.668	2.631	2.926	2.744	0.727	1.058	1.318	0.930	20.161
27	0.038	0.304	0.665	1.244	1.563	1.983	2.535	2.452	1.882	1.252	0.999	0.751	15.801
28	0.083	0.610	1.611	2.428	3.089	3.529	3.753	2.608	1.439	2.973	1.366	0.836	24.466
29	0.029	0.183	0.566	1.774	2.410	3.181	2.042	2.054	1.819	2.091	1.745	0.559	18.549
30	0.050	0.411	0.842	0.992	2.670	2.191	3.534	2.292	1.575	1.675	1.237	0.372	17.899
31	0.058	0.352	0.520	0.700	1.325	3.228	2.238	1.582	2.118	2.068	2.041	1.381	17.800
Average	0.072	0.449	1.044	1.626	1.972	2.315	2.261	2.073	1.880	1.623	1.143	0.625	17.255

August

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.044	0.319	0.774	1.219	1.282	1.622	1.467	1.844	1.672	1.636	1.163	0.531	13.699
2	0.024	0.372	0.251	1.171	2.194	1.475	1.468	1.984	1.902	1.589	1.015	0.371	13.878
3	0.022	0.254	0.863	2.028	1.617	2.354	2.855	1.706	1.480	1.341	0.764	0.598	16.160
4	0.055	0.347	0.969	1.709	3.270	3.471	2.698	2.482	3.021	2.143	1.135	0.784	22.134
5	0.091	0.450	1.022	1.835	2.183	2.519	2.465	3.220	3.288	2.305	1.929	1.170	22.617
6	0.083	0.520	1.307	2.269	2.938	3.195	3.746	2.682	3.105	2.752	1.963	0.767	25.447
7	0.055	0.649	1.531	2.169	2.814	3.005	2.618	3.442	2.898	2.483	1.531	0.796	24.235
8	0.022	0.157	0.531	1.011	1.549	2.816	2.322	1.849	1.849	1.856	0.127	0.123	14.245
9	0.027	0.129	0.539	0.972	1.581	1.451	0.615	0.550	0.875	1.286	0.835	0.498	9.515
10	0.041	0.422	1.215	1.625	2.002	3.148	2.757	1.305	1.418	1.571	1.049	0.267	16.951
11	0.057	0.336	0.795	0.781	1.247	1.015	2.310	2.591	1.492	1.880	0.641	0.327	13.498
12	0.022	0.158	0.303	0.994	1.617	2.129	1.703	2.035	1.355	0.612	0.618	0.455	12.100
13	0.058	0.378	0.943	2.447	2.489	3.492	2.288	2.232	2.737	1.862	1.833	0.623	21.666
14	0.005	0.285	0.796	0.677	1.849	3.419	2.782	3.263	3.030	1.454	0.913	0.277	18.931
15	0.026	0.156	0.415	0.931	1.407	1.409	2.477	3.084	2.715	2.248	1.330	0.443	16.777
16	0.007	0.044	0.134	0.269	0.326	1.370	2.909	2.578	3.078	0.751	0.079	0.035	11.592
17	0.037	0.398	1.106	1.880	1.538	2.928	2.948	3.112	3.001	2.597	1.622	0.701	22.071
18	0.056	0.545	1.328	2.517	2.505	3.173	3.856	3.675	2.892	1.714	2.046	0.668	25.235
19	0.044	0.594	1.580	2.412	3.084	3.544	3.392	3.252	3.344	2.968	1.658	0.571	26.562
20	0.075	0.722	1.574	2.238	2.776	3.377	3.727	3.348	0.561	0.588	1.508	0.786	21.470
21	0.044	0.331	1.144	1.916	2.333	3.465	3.736	2.517	2.163	0.759	0.329	0.533	19.420
22	0.022	0.241	0.532	1.593	1.946	2.513	3.563	3.562	2.396	1.535	1.059	0.381	19.374
23	0.038	0.347	1.106	1.487	2.082	2.099	1.436	2.309	2.551	2.713	1.593	0.083	17.864
24	0.041	0.226	0.360	0.628	0.615	1.061	1.568	1.945	2.424	1.379	0.728	0.346	11.394
25	0.009	0.123	0.509	0.918	0.957	1.228	1.509	1.391	1.603	1.742	1.154	0.561	11.803
26	0.044	0.348	1.240	2.245	2.085	3.351	3.265	2.949	1.362	2.003	1.212	0.445	20.631
27	0.044	0.506	1.619	1.652	3.111	2.848	3.527	3.685	3.058	2.524	1.732	1.054	25.552
28	0.039	0.414	0.908	2.317	2.859	2.534	1.485	0.487	0.490	1.000	0.590	0.528	13.721
29	0.044	0.302	0.845	1.658	2.580	3.351	3.083	2.871	2.813	1.750	1.052	0.951	21.464
30	0.041	0.273	0.867	0.981	1.447	2.276	2.658	3.480	3.413	2.073	0.711	0.156	18.439
31	0.019	0.276	0.824	1.812	2.710	2.656	3.408	2.904	3.251	2.146	1.571	0.587	22.221
Average	0.040	0.343	0.901	1.560	2.032	2.526	2.601	2.527	2.298	1.783	1.145	0.529	18.409

September

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.065	0.338	0.881	1.883	2.489	3.489	3.360	3.565	2.862	1.951	1.204	0.495	22.650
2	0.045	0.386	1.125	1.217	1.843	2.407	3.355	3.398	3.192	2.120	1.530	0.690	21.371
3	0.052	0.559	1.471	2.592	2.566	2.051	2.720	3.893	2.337	0.538	0.241	0.277	19.340
4	0.050	0.307	0.628	1.031	1.649	3.122	2.479	2.758	1.436	1.574	0.857	0.375	16.333
5	0.015	0.129	0.476	1.110	1.087	1.846	2.587	3.353	2.429	1.727	0.323	0.181	15.327
6	0.022	0.329	0.831	1.386	1.632	2.126	3.105	2.990	1.773	1.611	0.213	0.179	16.257
7	0.033	0.235	0.921	1.143	1.303	1.738	3.265	2.675	2.433	1.963	1.521	0.470	17.748
8	0.029	0.455	1.235	2.359	2.940	3.288	3.441	3.539	3.084	2.757	1.841	0.756	25.900
9	0.044	0.559	1.514	2.387	2.484	3.179	3.308	3.018	2.191	2.794	1.045	0.635	23.261
10	0.029	0.269	0.582	1.801	2.287	2.426	2.131	2.932	2.503	1.659	1.207	0.689	18.621
11	0.001	0.029	0.142	0.324	0.851	1.300	1.873	2.108	2.152	1.637	1.189	0.475	12.170
12	0.015	0.241	0.895	1.897	2.937	3.133	2.410	2.271	3.372	2.598	1.957	0.699	22.490
13	0.041	0.304	0.555	2.497	2.893	3.239	3.583	2.679	2.780	2.486	0.887	0.189	22.165
14	0.024	0.425	0.572	2.725	2.676	3.481	2.280	2.237	2.713	0.895	0.688	0.430	19.195
15	0.049	0.416	0.662	0.846	1.671	2.496	2.803	1.708	3.016	2.395	1.378	0.420	17.928
16	0.017	0.408	0.933	1.805	2.492	2.981	2.309	2.957	2.998	2.398	1.606	0.817	21.807
17	0.035	0.380	1.473	2.127	2.288	2.144	3.370	3.088	3.054	2.382	1.559	0.840	22.804
18	0.044	0.557	0.985	1.512	1.828	1.916	1.502	1.624	1.217	1.581	0.441	0.344	13.622
19	0.038	0.559	1.002	1.009	2.782	2.680	3.406	1.519	2.368	0.383	1.077	0.224	17.062
20	0.009	0.061	0.511	0.759	1.053	0.824	1.560	1.642	1.131	1.873	1.598	0.504	11.548
21	0.071	0.443	0.835	1.883	1.896	2.682	3.187	3.402	2.895	2.163	0.800	0.376	20.673
22	0.022	0.602	1.482	2.137	2.323	2.766	2.542	2.922	1.986	1.415	0.684	0.308	19.223
23	0.052	0.493	1.313	2.202	2.901	3.249	3.400	3.284	2.953	2.131	1.160	0.201	23.359
24	0.030	0.344	1.266	2.170	2.800	3.320	3.123	3.136	2.859	2.310	1.069	0.189	22.631
25	0.023	0.424	1.202	1.880	1.790	2.553	2.321	2.590	2.444	2.091	1.261	0.448	19.048
26	0.026	0.230	0.626	1.149	1.557	2.185	1.750	2.003	2.220	2.060	0.862	0.305	14.994
27	0.019	0.144	0.269	0.772	1.720	1.324	1.760	1.950	1.352	1.448	1.251	0.318	12.337
28	0.028	0.447	1.284	1.424	1.983	2.867	3.490	0.975	1.033	0.947	0.484	0.286	15.279
29	0.037	0.351	1.011	1.502	1.890	2.101	2.011	2.654	2.597	2.456	1.361	0.303	18.288
30	0.028	0.130	0.702	1.998	2.673	2.917	3.596	2.827	3.011	2.445	1.535	0.606	22.490
Average	0.033	0.352	0.913	1.651	2.109	2.528	2.734	2.657	2.413	1.893	1.094	0.434	18.864

October

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.032	0.326	0.918	2.047	2.517	3.610	2.699	2.746	2.749	1.962	0.972	0.378	20.983
2	0.029	0.394	1.246	2.039	2.777	3.245	3.327	2.095	2.518	1.708	0.647	0.274	20.334
3	0.023	0.338	0.756	1.097	1.873	2.183	1.700	1.621	1.782	1.813	0.834	0.347	14.378
4	0.037	0.348	0.736	1.502	1.380	1.445	1.352	2.328	1.286	1.324	0.811	0.285	12.853
5	0.011	0.196	0.755	1.038	1.495	1.083	1.234	1.235	0.758	0.136	0.044	0.032	8.018
6	0.012	0.263	0.680	0.722	0.972	1.424	1.423	1.978	1.861	1.796	0.234	0.133	11.501
7	0.024	0.296	0.815	0.960	0.808	1.044	0.753	1.045	1.153	0.723	0.477	0.159	8.271
8	0.018	0.288	0.691	1.787	2.506	3.303	3.054	3.349	2.091	2.248	1.172	0.480	20.995
9	0.019	0.329	0.692	0.787	1.785	1.447	3.092	1.291	0.357	0.369	0.198	0.062	10.435
10	0.012	0.208	0.940	1.959	2.463	1.845	1.261	2.695	2.830	2.547	0.487	0.111	17.365
11	0.022	0.225	0.700	1.765	1.845	2.698	3.425	1.653	1.032	1.659	1.112	0.454	16.594
12	0.017	0.247	0.852	1.673	2.170	2.359	1.985	1.178	1.383	2.170	1.317	0.456	15.817
13	0.015	0.138	0.843	1.149	1.653	1.923	1.092	1.069	1.467	0.865	0.559	0.239	11.023
14	0.027	0.376	0.618	1.992	2.518	2.830	2.776	2.595	2.373	0.506	0.486	0.128	17.228
15	0.016	0.142	0.290	0.482	0.789	2.469	2.959	2.559	0.703	0.431	0.712	0.326	11.899
16	0.017	0.217	0.357	1.020	1.430	2.387	2.231	2.275	2.013	1.290	0.271	0.203	13.715
17	0.010	0.275	1.137	1.485	2.070	2.370	2.981	1.548	0.705	0.813	0.415	0.271	14.085
18	0.013	0.176	0.643	2.227	2.837	3.016	3.388	3.039	2.581	2.191	1.137	0.335	21.585
19	0.019	0.295	0.981	1.903	2.730	2.665	3.016	2.994	2.622	1.660	1.058	0.376	20.320
20	0.027	0.262	1.153	1.942	2.656	3.082	3.169	1.609	1.055	0.748	0.296	0.092	16.090
21	0.016	0.202	0.555	1.647	2.540	2.973	3.148	2.965	2.510	1.553	1.006	0.285	19.404
22	0.018	0.290	1.020	1.828	2.557	2.929	3.404	2.738	2.282	1.760	1.002	0.198	20.029
23	0.011	0.252	0.869	1.807	2.176	2.979	3.150	3.051	2.602	1.875	1.120	0.305	20.199
24	0.019	0.242	0.840	1.822	2.629	2.972	2.232	1.896	2.615	1.798	0.818	0.153	18.040
25	0.023	0.268	1.065	1.910	2.660	3.069	2.624	2.417	2.053	1.840	1.114	0.263	19.308
26	0.011	0.243	0.849	1.585	2.343	2.981	3.241	3.049	2.534	1.537	0.832	0.179	19.385
27	0.016	0.355	1.084	1.676	2.325	2.906	2.815	2.811	2.534	1.683	0.781	0.214	19.201
28	0.016	0.260	0.612	1.727	2.517	2.956	3.122	2.954	2.551	1.877	1.053	0.260	19.905
29	0.016	0.253	1.021	1.824	2.520	2.922	3.118	2.880	2.568	1.665	1.054	0.230	20.071
30	0.005	0.080	0.683	1.227	2.208	2.146	1.252	2.182	1.959	1.748	1.148	0.279	14.916
31	0.023	0.173	0.559	1.559	2.093	2.000	1.569	2.311	1.385	0.688	0.374	0.051	12.785
Average	0.019	0.257	0.805	1.554	2.124	2.492	2.471	2.263	1.900	1.451	0.759	0.244	16.346

November

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.007	0.086	0.349	0.489	1.037	1.972	1.589	2.153	1.799	0.808	0.430	0.256	10.975
2	0.005	0.164	0.455	0.661	1.252	2.097	2.040	1.172	0.972	0.685	0.263	0.082	9.848
3	0.001	0.045	0.079	0.196	0.259	0.417	0.568	0.417	0.399	0.284	0.120	0.051	2.838
4	0.002	0.075	0.125	0.275	0.583	1.032	0.858	0.484	0.498	0.644	0.282	0.129	4.991
5	0.002	0.089	0.352	0.842	1.519	2.236	1.940	1.362	1.404	0.941	0.466	0.246	11.399
6	0.005	0.130	0.458	1.234	2.641	3.032	2.899	1.817	1.353	0.960	0.565	0.150	15.243
7	0.010	0.168	0.924	1.927	2.576	2.985	3.141	3.051	2.662	1.089	1.111	0.127	19.771
8	0.012	0.248	0.940	1.934	2.563	2.959	3.075	2.901	2.477	1.844	1.056	0.258	20.267
9	0.007	0.156	0.920	1.924	2.548	2.932	3.056	2.931	2.520	1.880	1.067	0.259	20.202
10	0.006	0.156	0.909	1.877	2.512	2.910	3.018	2.858	2.421	1.737	0.966	0.237	19.606
11	0.007	0.191	0.933	1.699	2.409	2.691	2.768	2.602	2.492	1.852	1.054	0.200	18.898
12	0.005	0.168	0.577	1.734	1.589	2.084	1.818	1.508	1.291	1.773	0.646	0.090	13.284
13	0.005	0.119	0.419	0.800	1.288	2.025	1.599	1.570	1.929	1.899	0.902	0.184	12.738
14	0.002	0.071	0.256	0.750	1.056	1.538	1.424	1.137	1.244	0.806	0.380	0.099	8.761
15	0.004	0.090	0.385	0.755	1.294	1.255	0.898	1.536	1.953	2.028	1.086	0.192	11.474
16	0.005	0.187	0.824	1.381	2.451	1.464	2.394	2.614	2.485	1.817	0.637	0.229	16.488
17	0.006	0.230	0.891	1.888	2.517	2.922	3.045	2.893	2.491	1.841	1.026	0.224	19.974
18	0.004	0.124	0.773	1.863	2.474	2.876	3.009	2.960	2.455	1.817	0.994	0.096	19.445
19	0.001	0.118	0.576	1.163	1.992	2.095	3.022	2.116	1.020	0.680	0.417	0.082	13.283
20	0.002	0.117	0.974	1.396	2.382	1.916	1.177	1.110	0.957	1.456	0.912	0.080	12.477
21	0.001	0.032	0.144	0.532	0.697	1.058	1.301	1.852	1.065	0.246	0.068	0.022	7.017
22	0.001	0.153	0.668	1.469	1.383	2.322	1.938	1.187	1.627	1.038	0.769	0.152	12.707
23	0.001	0.190	0.562	1.692	2.211	2.676	1.995	1.366	1.431	0.891	0.585	0.130	13.731
24	0.004	0.103	0.321	1.065	1.794	1.916	2.196	2.178	1.480	0.745	0.482	0.082	12.365
25	0.001	0.156	0.599	1.484	2.123	2.563	2.721	2.578	2.219	1.602	0.835	0.175	17.054
26	0.001	0.153	0.606	1.574	2.209	2.619	2.757	2.622	2.211	1.588	0.837	0.185	17.362
27	0.001	0.150	0.598	1.498	2.119	2.558	2.704	2.602	2.248	1.632	0.863	0.181	17.154
28	0.001	0.148	0.604	1.423	2.052	2.472	2.636	2.540	2.149	1.501	0.854	0.189	16.569
29	0.001	0.152	0.600	1.441	2.063	2.474	2.630	2.514	2.029	1.348	0.770	0.164	16.188
30	0.001	0.145	0.602	1.611	2.277	2.654	2.520	2.651	2.286	1.613	0.791	0.179	17.331
Average	0.004	0.137	0.581	1.286	1.862	2.225	2.225	2.043	1.786	1.301	0.708	0.158	14.315

December

Date/Time	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	Total
1	0.000	0.134	0.542	1.467	2.131	2.538	2.695	2.586	2.233	1.516	0.761	0.153	16.755
2	0.000	0.127	0.518	1.467	2.170	2.598	2.768	2.648	2.284	1.642	0.769	0.164	17.155
3	0.001	0.147	0.466	1.398	2.196	2.619	2.785	2.729	2.349	1.712	0.916	0.167	17.485
4	0.000	0.123	0.508	0.937	1.549	2.462	2.789	2.721	2.305	1.673	0.712	0.068	15.848
5	0.000	0.127	0.493	1.154	1.939	2.556	2.659	2.882	2.424	1.418	0.604	0.230	16.485
6	0.000	0.131	0.503	1.487	2.160	2.623	2.755	2.461	2.332	1.763	0.993	0.185	17.394
7	0.000	0.131	0.465	1.302	2.154	2.372	2.685	2.641	2.305	1.687	0.944	0.151	16.838
8	0.000	0.120	0.459	1.244	2.079	2.510	2.732	2.659	1.918	1.559	0.891	0.153	16.324
9	0.000	0.140	0.445	1.246	2.079	2.501	2.658	2.611	2.248	1.638	0.912	0.151	16.628
10	0.000	0.101	0.414	0.978	1.609	2.231	2.680	2.660	2.249	1.669	0.663	0.100	15.354
11	0.000	0.100	0.400	1.218	2.076	2.548	2.738	2.657	2.304	1.682	0.671	0.136	16.531
12	0.000	0.212	0.549	0.918	1.754	2.092	2.822	2.757	2.474	1.766	0.556	0.146	16.045
13	0.000	0.101	0.376	1.262	2.226	2.642	2.843	2.804	2.430	1.796	0.662	0.100	17.243
14	0.000	0.102	0.391	1.230	2.222	2.673	2.826	2.732	2.475	1.873	0.706	0.101	17.332
15	0.000	0.086	0.347	1.174	2.127	2.542	2.721	2.606	2.093	1.689	0.662	0.130	16.179
16	0.000	0.067	0.381	0.877	1.785	2.433	2.542	2.583	2.225	1.669	0.635	0.148	15.346
17	0.000	0.080	0.392	1.251	1.974	2.433	2.647	2.640	2.272	1.665	0.667	0.114	16.135
18	0.000	0.096	0.371	1.083	2.053	2.310	2.637	2.614	2.261	1.726	0.699	0.110	15.960
19	0.000	0.089	0.366	1.055	2.003	2.398	2.589	2.567	2.241	1.683	0.699	0.117	15.806
20	0.000	0.101	0.374	1.047	2.002	2.426	2.603	2.528	2.197	1.653	0.669	0.139	15.738
21	0.000	0.095	0.352	1.066	2.124	2.516	2.709	2.662	2.301	1.755	0.712	0.106	16.397
22	0.000	0.110	0.372	1.092	2.152	2.595	2.758	2.692	2.356	1.839	0.738	0.090	16.793
23	0.000	0.086	0.348	1.075	2.191	2.628	2.766	2.703	2.343	1.802	0.757	0.116	16.814
24	0.000	0.083	0.354	1.049	2.136	2.592	2.759	2.708	2.390	1.837	0.769	0.123	16.800
25	0.000	0.080	0.358	1.027	2.081	2.505	2.696	2.657	2.357	1.818	0.790	0.120	16.490
26	0.000	0.086	0.432	1.016	1.983	2.440	2.651	2.555	2.276	1.725	0.766	0.144	16.073
27	0.000	0.072	0.361	1.005	1.981	2.402	2.619	2.573	2.287	1.715	0.768	0.140	15.926
28	0.000	0.073	0.370	0.873	1.854	2.488	2.578	2.494	2.095	1.605	0.730	0.173	15.332
29	0.000	0.069	0.382	0.986	1.952	2.446	2.677	2.603	2.277	1.727	0.794	0.215	16.134
30	0.000	0.077	0.380	0.895	1.914	2.391	2.624	2.591	2.264	1.744	0.795	0.159	15.836
31	0.000	0.072	0.377	0.947	1.908	2.359	2.581	2.508	2.267	1.753	1.003	0.203	15.981
Average	0.000	0.104	0.414	1.123	2.018	2.480	2.697	2.640	2.285	1.703	0.755	0.140	16.360

A2. Hourly and daily ambient temperature (celsius) [87]

January

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	13.3	13.2	15	17.4	19.8	23.7	24.1	26.2	27.6	27.8	27.4	27.4	23.7
2	13.9	13.5	14.5	17.1	20.2	22.4	24.1	26.1	27.3	26.7	27.8	26.6	23.6
3	13.6	12.9	14.8	16.7	19.5	22.1	23.6	25.6	26.4	27.9	27.6	27.4	23.1
4	13.9	12.3	14.5	17	19.7	21.8	24.4	26.2	27.3	28.3	28.6	28.3	24.8
5	14.5	13.8	15.7	18.2	21.7	25	26.9	27.5	29.1	29.5	29.3	28.8	24.7
6	15.8	15.4	16.3	19	22.8	25.5	28.9	28.6	30.4	29	31.3	29.5	25.6
7	15.5	14.9	16.7	18.1	21.2	25.4	26.5	27.8	27.7	27.9	28.2	27.4	25.2
8	17.6	17.1	17.8	19.7	21.7	24.8	25.9	26.8	26.8	28.7	28.7	27.4	24.8
9	14	13.5	15.7	19.2	22.3	24.7	25.8	26.8	26.9	27.8	27.5	27.2	24
10	14.7	14.3	15.4	18.3	21.5	25.3	26.3	27.3	27.3	28.5	28.3	27.6	24.5
11	15	14.6	15.3	18.4	22.4	23.6	26.3	27.1	29	29	28.9	28.4	25.1
12	14.7	15	-16.2	19.5	22.2	24.4	26.4	27.5	28.5	29.5	29.2	28.9	24.9
13	14.4	14.6	15.8	19,6	21.3	24.7	26.6	28.4	28.7	29.2	29.6	29.5	25.8
14	15.6	15.3	16.7	19.3	21.1	24.3	26.9	28.8	29.2	30.5	30.3	30.8	26.4
15	15	14.6	16.8	19.2	21.7	24.5	27	28.4	29.5	29.9	31.3	31	26.6
16	14.1	13.8	16.7	21	22.4	24.5	26	28.5	29.4	30.4	31.1	30.7	26.1
17	13.7	13.7	15	18.4	21.1	23.7	25.8	28.7	29.7	30.7	31.7	30.7	26.6
18	13.9	13.4	16.4	19.6	21.8	24.1	26.7	29.3	30	31.4	32	30.9	25.5
19	12.1	12.2	14	17.7	20.4	25.1	25.8	27.8	29.1	30.5	31.5	30.9	26.6
20	13.1	12.8	14.1	18.6	21.9	25.2	27	28.8	30.5	30.1	30.8	30.9	25.6
21	13	11.8	13.8	17.5	21.1	23.7	26.3	28.6	29.6	29.8	31	30	28.5
22	12	12	14.2	16.6	19.1	23.4	26.3	27.7	29.3	29.9	30.2	31.3	25.2
23	12.1	12.3	13.8	17.2	20.6	24.1	26.9	27.5	29.3	29.9	30.3	29.8	26.6
24	17.6	17.7	18.1	20.2	22.3	26.9	27.4	29	30.6	30	31	30.1	29.1
25	20.3	20.6	21.3	23.8	24.1	26.1	27.6	28.9	30	30.2	30.2	30.6	27.8
26	18.7	17.9	19	20.9	23.8	27	28	29.1	30.6	30.5	31.4	31.2	28.5
27	19.3	19.6	20.4	22.4	25.2	26.9	28.1	28.9	29.7	30.5	29.7	29.3	28.3
28	20.5	18.5	19.7	21.6	22.5	23.9	24.5	23.7	24.6	24.1	23.8	22.7	21.6
29	17.6	17.2	17.9	19.5	22	23.8	24.4	24	25.6	25.3	26.2	25.4	24
30	13.8	13	14.3	16.6	19.6	23.4	25.6	25.6	28	28.4	28.3	27.5	24.5
31	13.1	13.7	14.1	16.6	19.2	22.8	24.1	25.4	27.5	27	27.3	25.8	23.6

February

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	12.7	12.7	13.5	16	18.8	22.5	24.9	25.5	26.4	26.9	27.1	26.6	23.9
2	14.9	15.3	16.1	19	20.6	23.9	24.1	24.6	27.3	25.4	25.6	24.8	22.5
3	13.4	13.3	13.6	15.7	19	22.7	23.7	23.2	24.5	25.4	25.4	24.7	22.4
4	12	12.9	13.1	15.1	17.7	21.4	22.8	23.8	25.7	26.5	27.2	26.8	23.2
5	13.4	12.6	13.8	16.7	19.1	22.4	23.9	25.8	27.7	28.4	29.1	27.6	24.5
6	13.5	12.4	13.5	16.9	19.6	22.8	25.1	26.2	27.9	29.1	28.8	28.7	25.4
7	14	13.7	14.7	17.2	19.5	22.2	25.9	27.1	28	29.4	29.4	28.7	25.7
8	14.4	14.3	14.8	18.7	19.6	23	25.6	27.7	29.2	29.8	29.5	29.4	25.6
9	17.1	16.1	16.6	19.4	22.4	24.7	27.3	29.6	31.3	32.7	32.8	30.4	28.2
10	15.1	15.5	16.7	19.5	23.1	26.8	30.8	31.6	32.4	32.3	33.2	31.3	28.9
11	16.2	16	17.2	21.8	24.8	26.7	28.6	29.4	31.3	32	32.1	31.7	29
12	16.2	16	17.8	21	23.9	26.6	28.4	30.8	32	33.1	32.8	32.7	29.4
13	16.8	16.9	20	22.6	25.4	28.6	29.8	30.7	32.1	32.7	33.3	32.8	30.9
14	16.6	15.1	17.5	21.7	24.4	26.7	29.2	30.4	31.9	33.3	33.6	34	30.4
15	18.2	17.9	20.4	25	26.4	28.7	30.1	32.5	32.6	32.3	32.1	31.2	30.8
16	17.9	17.2	20	25.2	26.3	27.8	29	30.2	31.5	30.6	30.9	32.6	30.8
17	18.3	18.1	20.5	24.5	27.2	28.2	31.6	32.4	32.1	31.9	32.4	31.9	27.5
18	17.2	16.1	18.6	21.8	25.6	29.1	30.4	29.9	32.5	32.1	32.2	31.8	30.5
19	16.2	16.1	18	22.9	25.6	28.9	31	31.5	33	32.8	33.3	32.4	30.2
20	14.3	14.6	17.3	19.8	23.3	26.3	29.6	31.3	32	32.8	32.9	32.8	29.7
21	16	14.2	17.1	20,7	24.8	28.5	30.7	31.4	33.4	34.2	34.5	33.8	31.1
22	16.4	14.8	17.6	23.4	26.9	29.6	32.2	32.4	33	33.5	33.9	33.3	29.9
23	15.9	15	18.4	22.1	25.1	28.1	32	32.8	34.3	34.1	34.3	34.6	30.6
24	18.6	17.4	20.4	23.5	26.7	30.8	32.5	33.8	34.3	34.8	36.1	35.1	33.3
25	19.2	18.8	20.6	24.4	27.1	30.4	32.2	33.7	35.1	35.2	36.5	35.7	33.4
26	21.2	19.7	23.3	27.1	29.4	31.3	33	34.4	35.2	34.7	36	36.3	34.1
27	20.8	20.1	24.8	27.9	29.3	31.1	32.3	34	35.2	34.2	35.6	36	33.6
28	20.3	18.5	21.1	24.6	28.7	31.4	33.1	33.4	33.7	33.7	33.4	33.3	30.6

March

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	17.3	16.8	18.3	21.2	26.3	29.8	31.6	33.3	34.5	34.2	34.1	34	29.9
2	16.6	15.8	18.1	21.1	26	27.9	30.5	32.5	33.9	34.7	35.6	35.1	31.5
3	16.2	16.1	18.3	21.3	26	28.2	31.2	32.7	33.3	34.1	34.6	34	30.8
4	16.5	17.4	17.8	20.3	24.3	28.1	30.4	33.7	33.4	33.8	33.9	33.9	30
5	17.1	16.8	18.1	21.4	23.9	27.2	29.3	30.8	32.6	34.2	34.8	34.1	30.5
6	17.9	16.8	17.4	21.1	23.5	26	28.1	31	32.8	33.9	34.1	33.7	30.7
7	17	15	19	23.8	25.5	28.6	30.8	32.5	34.3	35.1	35	35.2	32.1
8	15.8	15.5	19.1	23.3	26.5	30	30.6	31.7	33.3	34.7	34.9	34.3	32.5
9	16.1	15.2	18.9	23.4	26.3	29.4	31.5	32.4	33.2	34.2	34.5	34.2	32.3
10	16.2	15.7	17.7	20.5	22.8	26.5	28.6	31.8	32.9	33.5	33.6	33.3	30.5
11	15.2	14.7	16.2	20.1	23.5	26.6	28.8	31.4	32.8	33.6	34.5	34.4	30.6
12	15.7	15.8	17.4	20.6	23.2	26.7	29.6	31.9	34	35	35.3	35.1	30.1
13	17.9	17	18.3	21.3	4.3	28.3	30.7	32.4	33.5	33.8	33.4	32	30.5
14	17.7	17.3	19.3	22	25.1	29	31.8	33.5	35.2	35.8	36	35.7	31.2
15	19.3	19.4	20.6	25.7	28.3	31	33.3	34.8	36.7	36.9	37	36.3	33.3
16	19.1	18.7	21.1	25.7	27.4	30.8	32.3	34	34.8	35.8	36	35.8	32.9
17	21.8	20.8	23.6	26.2	28.4	29.8	31.5	33.3	33.8	33.8	33.4	33.2	31.8
18	19.4	18.7	21.5	23.6	27	29.1	32	34.8	35.5	36.1	35.6	34.8	31.5
19	19	19.5	21.1	23.4	27.1	30.5	31.8	33	33.7	35.1	35.8	34.8	33.4
20	22.7	23.1	24.9	28.9	29.5	31.2	33.1	34.1	34.6	36.1	35	34.6	33.5
21	20.5	20.1	22.4	25.1	26.2	28.3	29.8	30.7	32	32.4	33.5	32.5	31.6
22	21.5	20.7	23.8	26.3	28.8	29.5	32.1	32.4	34.1	35	33.2	33.2	32.4
23	20.7	20.4	23.6	27.4	28.9	30.7	32.9	- 33.9	35.1	35.4	35.3	34.9	34
24	20.4	19.8	22.3	24.5	26.9	29.7	31.7	33	34.4	35.4	35.4	35.1	33.3
25	20	20.6	23.1	26.5	27.9	29.9	32.3	33.9	36.1	37.6	36.5	36.6	34.5
26	21.7	22.1	25.1	27.2	29.2	31.7	33.8	34.7	36.7	36.5	37.3	36.9	35.9
27	22.1	21.4	24.7	28.6	30.5	32.3	35.9	36.3	37.5	38.5	38.3	37.7	36.4
28	21.5	22.8	24.9	27.5	29.8	32.3	34.6	36.2	37.6	37.5	38	37.2	35.7
29	22.9	21.5	24.4	27	30.2	33.2	35.5	37.2	37.2	38.2	38.5	37.5	36.7
30	26.3	25.7	28	30.4	31.5	33.9	36.2	35.3	37.7	32.6	31.4	34.3	33.1
31	22.9	23	25.9	28.2	30.4	32.2	34.4	36.3	37.7	37.8	37.6	37	36.2

April

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	24	24.7	29.1	31.3	33.2	34.7	35.8	36.8	38.1	39.1	39.8	38.4	37
2	23.5	23.6	27.7	30.6	31.7	34	35.9	37	38.1	38.9	39	37.8	35.4
3	21.6	21.1	23.9	28.2	30.3	32.3	34	35.5	37.7	37	37.5	37.1	34.7
4	20.1	21.2	23.4	28.5	31.5	33.5	34.2	36	36.1	36.9	36.6	36.2	34.9
5	23.9	23.2	26.3	30	31	32.6	33.5	34.6	35.7	36.5	36.9	36.6	35
6	23.6	23.6	26.5	28.8	31	32	32.9	34	34.5	35.5	35.9	35.5	34.2
7	24.4	24.1	26.5	28.2	30.9	31.6	33	34.6	35.4	36.3	36.6	36	33.3
8	23.9	23.8	26.6	28.5	30.6	31.6	33.2	34.2	34.9	35.8	36.4	36.5	35.1
9	24.3	23.6	28	29	30.4	31.9	33.6	34.5	35.6	36.3	36.6	36.3	34.9
10	23.4	24.9	27.6	29.7	30.3	31.7	33.4	34.7	35.4	36.1	36.3	36.5	35.2
11	22.2	23	26.9	29.1	30.9	31.1	32.1	32.1	33.4	29.4	32.3	32.7	29.9
12	24.2	24.2	26.8	28.1	30	30.7	32.7	32.9	31.8	34.1	35.8	30.7	27.5
13	23.5	23.5	26.1	28	28.8	30.8	32.1	33.7	35	35	31.7	33.1	31.9
14	24.5	24.2	25.5	28.2	30.1	30.2	30.7	32.5	32.2	31.3	31.7	30.8	28.6
15	24.4	24.5	25.8	28.1	29.1	32.7	33.3	34.4	34.6	34.1	33.4	29.6	27.8
16	23.8	24.2	26.1	27.4	29.3	31.2	31.4	33.9	33.3	33.8	33.1	33	31.5
17	24.7	24.9	27.1	29.8	31.8	33.1	34.4	35.2	34.3	34.5	36.3	34	34.1
18	23.5	24.8	28.4	29.9	31.4	33.8	35.3	36.1	38.6	37.1	37.1	24.3	25.6
19	24.9	25.6	26.4	27.4	28	30.9	31.6	32.8	33.6	34.3	34.6	35	34.3
20	23.3	24	27.1	30.2	31.2	32.4	34.8	35.5	35.6	36.4	35.8	37.5	36.6
21	24.3	25	28.8	31.3	33.3	34.6	35.6	37	37.4	38.3	38.4	39.5	38.6
22	25.7	26.6	30.8	32.4	33.1	34.4	36	37.7	38.3	39.1	38.4	38.9	38.5
23	25.8	26.2	30.1	32.3	34.6	34.6	36.2	36.7	37.5	38.2	38.5	38.6	37.3
24	24.4	26.6	29.4	31.4	33.8	36.4	36.6	37.2	38.2	38.5	38.9	38.2	37.8
25	24.4	26.4	28.8	31.3	33.7	35.2	37.2	38	40.3	39.3	38.9	38.7	37.9
26	23.7	22.2	22.5	23.4	26.1	26.8	30.3	32.1	33.5	34.3	32.6	31.9	31.2
27	21.1	21.6	24.5	26.5	29.1	30.5	30.9	33.6	33.9	35.3	35.4	33.6	33
28	21.6	21.5	21.6	22.9	24.8	28.2	28.7	30.6	29.7	30.3	30.1	30.7	29.9
29	24.8	25.5	27.3	29.4	30.7	32.5	32.4	32.9	35.9	32.7	30.6	32.4	31.5
30	23.2	23.9	27	29.1	31	32.3	33.3	34.4	36.2	32.2	31.3	32.3	32.3

May

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	23.5	24.2	25.8	27.8	30.8	33.1	33	34.3	34.7	36.3	35.9	36.3	35.3
2	25.6	26.4	27	28.1	29.5	29.8	31.1	29.9	30.8	30.9	30.4	28.8	27.9
3	24.2	24.3	23.9	24	24.4	25.6	26.5	31.5	29.4	31	26.5	24.7	24.8
4	23.5	23.3	23.5	24.3	24.3	25.3	24.4	24.6	24.8	24.4	24.5	24.1	24.2
5	22.3	22.3	22.4	22.4	22.7	23.2	24.5	24.7	26.7	26.2	23.7	24	23.7
6	22.6	22.3	22.5	22.3	22.8	23	22.9	23.2	23	23.3	24.4	25.2	24.9
7	23.2	23.5	24.1	24.5	24.7	26.2	26.7	25.9	26.9	28.9	29.2	28.4	27.8
8	22.5	22.6	22.9	23.4	25.2	25.7	27.8	29.5	28.5	30.1	29.8	30	27.4
9	23.7	23.8	25	25.8	27.2	28.6	29.2	29.6	30.3	31.5	32	31.7	31.2
10	24.8	24.5	25	26.1	27.9	28.3	30.5	28.8	31.7	32.1	32.2	32.2	31.5
11	21.4	23.5	23.1	24.3	25.5	26.5	28.4	29.5	30.7	29.3	26.7	27.7	27.2
12	23.5	23.6	24.8	26.3	27.9	27.9	28.7	30	27.2	25.1	23.5	24.5	24.7
13	23.8	23.8	24.2	24.2	24	24.4	26.3	27.1	26.6	26.1	26.2	27.6	27.5
14	23	23.1	23.6	25.6	5.4	26.8	27.7	27.8	29.9	29.2	29.2	29	24.2
15	23.6	23.7	25.6	26.3	26.8	27.7	28.7	29.9	31.2	23.7	24.9	27.4	26.1
16	22.6	23	25.7	27.1	27.4	28.3	29.4	30.4	31.5	31.7	32.2	31.7	31.2
17	23.5	23.9	24.9	26.6	28	29.2	30.6	30.4	30.2	31.3	30.6	30.9	30.8
18	24	24.4	24.9	26.9	26.9	28.7	30	31.1	31.1	29.4	30.2	29.2	29.2
19	24.4	24.4	25.3	27	27.6	28.9	29.1	29.5	29.8	31.2	31.6	31.7	30.4
20	24.1	23.1	23	23.4	24.3	25.4	26.4	27.3	28.1	27.8	28.3	27.8	27.2
21	24	24.1	26	26	26.7	27.1	27.9	29.3	28.7	29.3	28.3	28.6	27.5
22	24.2	24.3	25.9	26.7	28.1	28.8	29.2	29.8	30.3	30.2	31.1	30.6	29.4
23	22.9	24	25.9	26.5	28	29.9	31	32.6	31.5	32.5	32.2	31.4	31.1
24	22.9	24.4	26.3	27.8	29.5	30.6	31.6	32.8	33.3	33.8	34.6	34.3	33.8
25	24.2	25.2	27.7	29.7	30.3	32.8	32.4	33.2	34.2	34.2	31.2	30.8	30.5
26	23.9	25.3	27.9	29.3	29.5	30.9	32.1	33.3	34	33.8	28.4	28.4	28.5
27	24	24.8	27.4	28.3	30	32.4	33.4	33.5	36	34.9	35.5	34.2	31.9
28	24.5	26.2	29	29.7	30.9	33.6	34.2	33.7	33.3	30.9	30.8	32.8	29.6
29	24.2	25	27.4	29	30.5	30.6	32.1	33.4	33.8	34.6	30.8	29.6	27.5
30	23.5	23.8	24.9	26.1	26.5	28.1	30.4	30.5	32.2	32.4	33.5	29.6	28.9
31	24.3	24.5	25.4	25.7	27.5	29.6	30.2	31.5	32.9	33.8	32.9	27.6	22.9

June

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	23.7	23.7	24.3	25.3	26.2	27.2	28.2	29.2	30.2	30.9	31.4	30.7	29.5
2	24.4	25.3	27.5	27.5	29	29.9	31.3	29.4	31.2	32.2	32.8	31.1	30.4
3	23.4	24.6	26.9	27.6	29.1	31.1	31.8	32.6	32	31.2	30.7	29.5	28.6
4	24	24	25.6	27.4	28.5	29.8	31.3	32.5	31	31	31.4	30.1	29.5
5	23.6	23.5	24.4	26.9	27.1	28.3	29.8	30.8	29.4	32.4	32.6	29.1	27.3
6	23.9	24.3	25.6	26.8	27	28.2	29.5	30.6	31.5	31.8	32.3	28.8	27.3
7	24.3	25.1	26.5	27.3	28.1	30.1	31.2	31.7	31.2	31.6	32.4	32.4	30.7
8	24.5	25.9	26.4	28.3	29.5	30.9	31.8	32.1	31.8	33.1	33.5	32.4	31
9	24.7	25.3	26.4	27.5	29.7	31.6	32.3	31.7	32.3	32.9	33.1	33.9	32.1
10	25.1	26.1	28.4	29.3	30.5	32.1	32.4	32	32.7	33.4	34.3	33.4	33
11	25	26.3	28	29.2	30.4	32.1	31.5	29.8	32.2	33.1	32.4	31.3	29.2
12	25.2	25.4	27.5	28	29.1	31	29.6	29.8	31.7	31	32.6	31.2	24.7
13	24.3	24.5	25.7	26.9	27.6	28.1	29.9	29.5	30.2	31.1	31.5	30.6	29.6
14	24.7	25.1	26.2	27.7	29.8	30.3	31.6	32.2	33.3	32.2	28.3	27.9	27.4
15	24.6	25.3	26.7	27.7	28.8	30.1	30.9	31.9	32.6	33	32.6	33.1	32
16	26.4	25.7	26.5	27.9	29.5	30.5	31.4	32.6	29.2	26.1	28.3	30	30.3
17	24.7	25.2	26.9	27.8	28.2	29	30.2	31.1	31.4	31.7	32.2	32.4	32.1
18	25.3	26.7	27.9	28.9	29.3	31.6	30.8	32.1	32.3	31.9	31.9	31	30.9
19	24.8	24.9	25.9	27.3	28.3	28.8	30.5	31.3	31.7	32.3	30.8	29.3	29
20	24.6	24.4	25.5	27.8	27.7	29.1	30.3	31	31.6	32.9	32.5	32.5	32.2
21	23.9	24.6	26	27	30.6	30.4	32.3	33.2	33.5	33.5	33.9	30.5	30.2
22	25.3	25.9	28.8	30	31.2	33.9	34.7	34.1	35.1	35.3	35.3	35.1	34.1
23	25.2	25.6	27.3	28.9	31.1	33.4	33.8	35	35.9	36	36.7	36.7	35.6
24	26.2	27.1	28.1	29.6	31	32.3	33.8	35.6	35.3	31.2	31.1	31.4	30.8
25	26.4	25.9	26.7	28.7	29.6	29.9	31.5	32.3	33.7	33.9	27.5	28.9	27.2
26	25.5	25.5	25.9	27	27.5	28.7	30.9	31.9	33	31.8	31.3	25.3	26
27	24.6	24.9	25.4	26.2	27.4	28.5	29.5	27.4	25	25.2	26.7	25.8	25.8
28	24	22.5	23.2	24.5	25.8	26.5	27.7	27.8	28.8	26.6	27.5	27.5	27.6
29	24.2	24.9	25.6	26.6	26.7	27.8	28.3	28.6	29.1	29.8	29.3	26.8	26.9
30	23.9	24	26.2	26.8	28	29.7	31.2	32.2	32.6	32.5	31	31.4	31.3

July

Dat/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	24.8	25.4	26.6	27.7	29.3	29.8	31.2	31.1	28.6	27.4	29.6	28.3	28.9
2	24.7	25.5	26.7	28.2	28.7	29.3	29.1	29.6	31.4	32	32.8	32.7	31.8
3	24.9	26.1	27.4	28	28.5	29.4	29.7	29.7	28.8	30.8	30	30.3	26
4	24.3	25	26.2	26.8	27.9	28.7	29.9	30.3	30.6	31.5	30.9	30.9	29.7
5	25.4	25.3	25.7	27	27.4	28.3	29.3	29.9	31.4	31.4	31.1	29.8	29.3
6	25.1	25.5	25.9	26.6	23.8	24.3	24.4	24.7	25	25.1	24.9	24.9	25.3
7	24.1	24.3	26.2	26.6	26.9	28.6	29.5	30.6	31.3	32	29.1	26.9	27.4
8	22.9	23.4	24.7	26.2	28.8	29.9	30.7	31.7	31.9	32.2	25.7	25.5	26.2
9	23.2	23.9	25.6	27	28.1	30.6	31.1	32.7	32.6	32.8	33	32.6	32.1
10	24.9	25.4	26.5	27.5	28.8	29.8	30.3	30.8	32	32.6	32.9	32.6	33.7
11	25.1	25.3	26.4	27.8	29	30.5	31	31.2	31.7	32.4	31.9	30.7	30.7
12	25.3	25.5	26.7	27.3	27.8	29	29.6	30.4	32.3	31.5	31.3	30.9	29.9
13	24.9	25.7	26.5	27.7	29.2	29.2	30.9	31.7	31.6	29.3	29	29.7	29.2
14	24.6	25.7	26.4	27.4	28.6	29.8	30.2	30.4	29.6	31.3	30.8	30.5	29.6
15	26.3	26.3	26.9	27.4	28.2	28.7	29.1	29.6	29.4	30.1	30.3	30.9	30
16	25.7	25.8	27.4	27.8	28.1	28.4	28.2	30.6	31	32.4	32	30.2	26.9
17	25.1	25.4	26.6	27.7	28.9	31.2	31.6	32.7	31.9	32.7	33.4	33.1	31
18	25.3	25.9	26.8	28.1	30.1	30.5	31	31	32.1	33.1	32.3	32.6	30.9
19	24.3	24.6	26.3	27.3	28.4	29.7	29.9	30	32.3	27.1	30	25.9	25
20	23.9	24.2	25.3	26.1	26.6	26.9	26.9	26.8	27	26.7	26.6	25.9	25.6
21	23.3	23.5	23.7	24	24.3	24.5	24.6	24.1	24.2	23.6	24	24.6	24.7
22	22.7	22.8	23.7	24.7	25.8	27.8	27.7	29	29.3	29.9	29.1	29.4	28.8
23	23.2	23.7	24.9	27.1	28.2	29.9	31	32.1	32.3	32.1	30.3	28.8	28.1
24	23.2	23.2	23.5	23.6	23.9	24.9	26	26.4	26.1	26	25.7	24.9	24.5
25	21.3	21.4	21.9	22.7	24	24.9	26.3	27.5	28.7	29.3	29.8	30.2	29.7
26	23.3	24.3	26.2	26.7	28.5	29.4	30.3	31.4	30.8	24.6	28	30.5	29.3
27	24.1	24	25.5	26.7	27.5	28	28.4	29.2	30.2	30.4	30.6	30.3	29.5
28	23.2	24.6	26.4	27.9	28.8	29.9	30.9	32.9	32.3	33	33.2	33.5	31.4
29	24	24.3	24.6	25.6	26.8	29.7	30.6	32.6	32.4	32.3	29.7	29.4	27.8
30	24.3	24.5	25.5	25.9	27.4	30.2	30.1	33.1	31.3	32.6	33.3	32.6	31
31	24.3	25.4	25.7	26.9	28.1	31.7	31.6	30.1	27.5	25.5	27.2	29.9	29.8

August

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	24.4	24.6	25.7	28	28.5	29.5	30.5	31	29.5	29.8	29.7	29.5	29.3
2	24.5	24.5	25	24	24.4	25.4	26.7	27.6	28.9	28.8	29.7	30	28.8
3	23.8	23.9	24.4	25.8	26.5	28.2	28.6	28.6	29.6	29	29	29	28.3
4	24.2	24.7	26.2	27.4	27.7	29.4	29.7	30.6	31.1	31.9	32.9	29.5	27.3
5	23.7	23.9	25.1	26.1	27.7	28.6	29.4	30.6	31.3	31.7	31.3	32.3	31.6
6	24.3	24.9	25.8	27.3	27.7	29.8	30.8	30.7	32.1	32.6	32.7	31.4	30.1
7	24	24.3	26.5	27.6	29.6	31.3	32.8	32.4	31.1	32.2	31.5	31.4	31.6
8	24.9	25	25.5	26.7	27.6	29	30.3	31.4	31.5	31.6	32	26.1	24.6
9	24.5	24.6	24.7	26	27.2	29.3	29.5	25.6	26	27.9	28.5	27.2	26.4
10	24.1	24.6	25.6	26.5	27.4	28.7	28.7	29.4	28	27.8	27.4	27.9	27.3
11	24.9	25.1	25.1	26.4	26.8	26.8	27.8	28.3	29.8	29.7	30	29.1	28.4
12	24.2	24.7	25.1	25.6	26.5	28	29	28.8	30	30.3	29.3	29.2	28.6
13	24.6	24.8	26.2	26.9	28.4	29.5	31.1	30.9	31.8	32.5	33.1	32.8	31.8
14	25.2	25.3	26.3	27.8	28	29.8	30.4	31.9	32.1	32.8	31.7	32.6	31.1
15	25.1	24.9	26	26.7	28.1	28.4	29.3	30.3	31	31.9	31.6	31.6	31.2
16	25.6	25.4	25.7	25.3	25.6	26.3	29.7	29.1	27.1	28.7	27.8	24.8	24.4
17	23.6	23.7	24.6	25.2	26	26.9	28	29.5	30.5	31.3	31.3	31.1	29.9
18	23.1	23.2	25.4	26.7	27.1	28.6	29.5	29.8	30.9	31.9	32.1	32.1	32
19	23.4	24.1	25.7	27.5	28.5	29.8	30.1	30.8	29.8	29.4	31	31.9	30.4
20	23.3	23.8	25.9	27.1	28.7	29.9	31.3	32.5	32.3	32.3	30.7	30.9	30.1
21	25.2	24.8	25.6	28	28.8	29.7	31.2	32.4	33.1	31.3	25.2	28.2	27.4
22	24.6	24.8	25.7	26.8	27.8	30.1	30.4	31.4	30.7	31	30.7	30.8	26.5
23	24.1	24.3	25.1	25.9	27.2	28.5	30.2	28.6	30	31.6	30.8	27.3	24.3
24	24	24.1	24.7	25.4	25.9	26.4	26.4	27.2	28.1	28.9	28.7	28.1	26.7
25	23.5	23.8	24.2	25.3	25.9	26.2	26.8	27.6	28.3	29.3	28.9	26.6	25.3
26	23.7	23.5	24.1	26.1	26.9	29.6	29.8	30.4	31.4	32	31.9	30.2	29.7
27	24.1	24.5	25.6	26.7	28.1	30.5	31.8	31.3	32.5	33	33.2	32.9	32.6
28	25.1	24.7	26	27.8	29.4	30.4	31.5	31.1	30.2	28.1	27.5	27.2	27.8
29	24	23.9	24.9	27	29.2	30.8	31.8	31	32.4	31.9	28.2	28.9	30
30	23.7	24.2	24.5	25.6	26.1	26.9	28	30	30.5	31.8	27.4	24.9	25.9
31	23.2	23.6	24.2	25.9	26.5	28.2	29.3	30.2	30.7	30.9	30	29.3	28.1

September

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	24.2	24.2	24.8	26.6	27.1	28.8	29.8	30.7	31.7	32.1	31.8	31.4	28.6
2	25.2	25	25.8	28.4	27.9	28.6	29.8	31.2	32	32.2	32	32.3	31
3	24.1	24.4	26.1	26.9	28	29	29.7	30.1	31.7	31.2	31	27.1	27.3
4	24.9	24.8	26	26.5	27.4	29	29.8	31	31.5	31.6	30.6	30.8	28.9
5	23.7	23.6	24.4	25.5	26.8	27.5	29.2	31.6	32	31.1	28.7	27.8	27.4
6	24.1	24.1	24.7	25.9	26.4	27.1	28.2	29.9	30.7	29.8	28.8	27.9	27.3
7	24.2	24.5	25	26.4	26.6	27.1	28.2	30.1	29.5	30.9	30.4	30.4	29
8	24.4	24.6	25.6	26.8	28	30.5	32.6	32.3	32.9	34	28.1	28.7	27.2
9	24.5	24.4	27	28.6	29.3	30.4	31.1	32.2	31.7	25.1	25.8	28.4	28
10	24.5	24.3	25.4	27	28.5	30.3	30.4	30.7	31.2	31.9	31.8	31.7	31
11	25.2	25.2	24.6	24.9	25.8	26	27.8	28.1	28	28.5	29	28.2	28
12	24.3	24.5	24.8	26.8	27.8	29.4	30.4	30.6	32.3	33	32.8	32.7	26.4
13	24.6	24.7	25.9	27.4	8.5	30	30.9	31.8	32.6	32.3	32.1	27	27.4
14	24.3	24.6	25.8	27.4	9.1	29.5	31	31.9	31.5	32.3	29.3	27.2	27.5
15	24.3	24.4	24.7	25.6	26.9	28.8	29.9	30.8	30.5	30.3	32.2	30.1	28.9
16	24.8	25.4	25.2	28	30	31.2	25.2	28.6	30	30.8	31.4	31.5	30.9
17	24.9	24.6	26.6	27.6	28	29.7	31.8	31.4	32.7	33.5	33.5	31.9	30.8
18	25.2	25.5	27.4	28.2	30.4	29.5	32	31.3	25.8	27.2	27.8	27.6	27.4
19	23.9	24.2	25	26.9	28.8	30.1	30.4	31	30.2	28.7	27	30.4	26.5
20	23.3	23.9	24.6	26.8	24.3	24.4	25.5	26.3	27.3	27.8	28.5	28.1	27
21	22.3	22.7	23.3	24.5	25.4	26.8	28.1	28.2	29.4	29.3	29.8	29	27
22	22.3	22.2	24.5	26.3	28.5	28.7	29.6	29.9	30.3	30.4	30.2	29.2	28.3
23	22.5	23.1	24.7	26.1	27.6	29.6	31.1	31.4	31.5	31.3	31.4	30.5	29.9
24	22.7	23.4	24.6	27.1	29.2	29.1	30.9	33.4	32.6	32.8	33.8	29.5	29
25	22.7	23	25.2	27.3	28.3	29.3	30.7	31.3	32	32.4	32	31.6	30.4
26	22.8	23.2	22.9	24	25.6	26.9	27.5	28.1	28.7	29.7	29.9	30.4	29.1
27	23.8	24.3	23.9	25.1	26.4	27.3	27.9	28.7	29.8	29.9	30.9	30.3	28.8
28	24.3	24.3	24.4	26.2	27.8	28.9	29.6	29.4	29.9	29.8	29.8	28.7	27.9
29	23	23.6	24.7	27.1	26.6	28.6	28.8	29.6	30.9	29.9	29.9	29.3	28.8
30	23.6	23.6	24.6	25.9	28.1	29.2	30.4	31	30.7	31.6	30.4	31	29.3

October

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	22.9	23.1	24.5	26.4	27.7	29.6	30.7	30.9	30.8	31.7	32.1	30	29.2
2	23	23.3	24.1	26.1	28.9	30.8	32.9	33.8	33.2	29.5	31.1	31.4	29.7
3	24.4	24.7	25.8	26.2	27.3	30.2	31	31.8	33.5	34	34.1	32	29.9
4	24.1	24.4	25.6	26.3	29.3	29.8	30.9	29.9	32.9	32.6	32.8	32	31.2
5	24.8	24.6	24.9	25.9	27.8	30.1	30	30.9	28.8	24.8	24.3	24.3	24.2
6	23.9	24	24.6	25.1	24.5	25.7	26.9	27.2	28	28.4	25.8	26.2	24.6
7	23.7	23.8	24.6	24.1	24.2	25.2	25.3	24.7	25.4	24.9	25	25	24.8
8	22.6	22.7	23.5	24.7	26.2	27.9	28.6	29.8	30.1	30.4	31.1	30.4	28.3
9	24.4	24.4	25	25.8	27.4	29.5	30	30.9	27.2	25.6	25.9	26.2	24.7
10	22.7	22.8	23.4	25.7	27.4	28.8	30.3	28.6	30.2	30	30.4	28.6	27.7
11	23.6	23.4	23.9	26.8	27.8	29.1	29.2	30.3	29.3	28	29	28.2	27.4
12	22.7	22.8	23.7	26.9	28.2	29.1	28.3	28.9	29.6	28.1	30	29.5	27
13	23.4	23.5	23.8	25.9	26.6	27.3	26.7	24.9	24.6	25.2	25.3	25.6	25.1
14	22.2	22.4	22.9	24.1	8.1	28.6	29.1	29.6	28	29.3	25.9	27.6	26.1
15	23	23.2	23.7	24.2	26	26.6	27.3	27	29.8	28.6	26	25	24.2
16	22.4	22.2	23.1	25.5	26.4	27.9	28.5	28.3	28.3	28.6	28.2	27.3	26.8
17	23.3	23.4	24.4	25.5	27.7	28.9	28.7	28.5	28.5	28.7	28.9	27.6	26.2
18	22.4	22.5	24.4	26.2	27.2	28.7	29.7	30.7	30.3	30.2	31.6	30.2	28.6
19	22.3	22.5	24.8	26.4	28.9	29.9	30.3	31.8	32.3	31.6	31.8	30.6	28.1
20	21.8	21.5	23.2	25.4	26.8	28.2	29.4	29.9	29	29.2	28.3	28	27
21	20.9	21.1	22.8	24.9	27.5	28.7	29.1	28.6	29.5	29.5	29.9	29	26.6
22	20.9	21	22.2	24.4	25.8	27.7	30.3	29.3	30.3	30.8	30.3	29.7	28
23	20.9	21	21.5	24.8	26.9	28.4	29.8	30.7	30.7	31.6	31.4	31	27.9
24	21.3	21.5	22.3	24.4	27.9	30.3	30.4	31.6	31.4	32	32.3	31.2	28.3
25	21.2	21.6	22.9	26	28.1	29.2	30	29.5	30.8	30.8	31	30	27.4
26	20.5	20.2	21.4	23.8	26.2	27.7	29.9	30.6	31.1	31	30.6	28.6	26.4
27	20.4	20.8	21.8	24.7	26.7	28.6	29.9	30.7	31.1	30.9	30.9	29.3	26.2
28	19.9	20.1	22.3	24.5	26.5	28.4	30.2	31	31.6	31.5	31.2	30.6	27.9
29	21.3	21.5	24.2	25.4	28.1	29.7	30.8	31.3	31.7	31.7	32.4	31.5	30
30	22.4	22.4	22.7	24.3	28	30.3	30.6	30.7	31.5	32	32	30.8	27.9
31	20.3	19.7	20.3	22.1	23.6	25.8	28.4	30.4	30.2	29.9	29.4	24.6	22.9

November

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	21.1	21.8	22	22.7	23	23.9	25.1	26	26.5	27.1	26.9	25.9	25.2
2	22.3	22.2	23	23.8	24.7	27.1	27.5	28.8	29.8	29.2	28.6	28.2	27.1
3	22.5	22.3	22.2	21.6	21.8	21.8	21.7	21.4	21.1	21.2	20.8	20.4	20.9
4	19.8	19.5	19.7	20.4	20.5	21.3	22.7	22.8	22.7	23.4	23.2	23.1	22.3
5	21.6	21.8	21.8	21.9	22.5	24.6	26.2	26.5	25.9	25.2	25	24.2	23.4
6	20.8	20.8	21.5	23.9	25.5	26.9	28	28.7	28.1	27.7	27.5	27.1	25.1
7	19.1	19.3	19.5	22.3	26	27.8	28.5	28.3	30.2	30.7	30	28.4	26.7
8	19.1	19.8	21	22.9	26.3	28.1	28.8	29.7	30	30.1	30.2	28.8	25.3
9	16.2	16.2	18.7	20	22.8	27.4	28.6	29.6	29.2	29.6	29.3	26.7	24.5
10	17.4	16.7	18.5	21.8	22.5	26.8	28.5	29.5	30.2	30	29.9	28.3	24.3
11	18.3	20.6	20	22.9	23.3	26.8	26.9	28.9	30	29.9	30.6	29.1	26.3
12	20.4	20.5	22.8	24.3	26	28.3	29.5	30.5	30	29.7	30.3	28.7	27.7
13	21.2	21.4	22.8	23.7	5.1	27.2	28.5	28.9	30.4	30.4	30.2	28.3	26.2
14	22.4	22.6	23.1	24.1	25.7	27.9	27.5	28.3	28.3	28.5	25.5	25.7	25
15	22.6	22.9	23.6	24.9	26.9	26.4	26.4	26.8	27.5	28.4	28.5	27.4	25.8
16	20.8	22.7	21.9	23.7	25.2	27.9	30.6	29.2	29.9	31	30.4	30.1	27
17	20.5	20.3	21.4	24.5	26.2	27.9	29.1	31	31.8	31.8	31.9	30.4	27
18	19.1	19.1	19.6	22.4	24.8	28.1	29.7	31.1	31.7	32	31.6	30.6	28.2
19	23.5	23.2	23.8	24.6	28.2	29.1	30.6	29.2	29.8	29.3	28.8	27.3	26.2
20	23.1	23.1	23.8	26.3	27.2	28	29.8	29.9	29.9	27.1	25.7	26	24.3
21	21.4	21.5	22	22.4	22.9	24.1	24.6	25.9	27	26.2	24.7	21.8	20.9
22	20.3	20	21	22.4	23.4	24.2	27	26.9	28.4	28.2	28.8	27.1	24.8
23	19.7	19.3	19.5	21.4	25.1	26.1	26.7	26.6	26.8	26.7	27.9	25.4	24.8
24	18.6	18.9	19.4	20.2	24.5	25.7	26.4	27.4	26.9	25.9	25.6	24.9	24.1
25	17.1	16.5	18.1	19.5	23.1	25.4	26.7	27.5	27.9	28.1	27.9	26.2	23.2
26	15.7	15.5	16.3	18.4	20.3	23	26.2	27.9	28.4	28.4	28.3	26.5	24.1
27	15.6	15.5	16.4	18.2	20.6	24.3	26.6	27.5	27.5	27.9	27.7	26	22
28	15.2	14.7	15.6	17.5	20.2	22.6	24	24.5	26.5	25.9	26.1	25.2	21.3
29	14.5	14.4	15.8	18.3	19.3	21.9	23.2	24.8	25.7	26.6	25.9	25.1	21.9
30	14.7	14.2	15.5	17.4	20.6	23.5	23.5	23.3	23.8	24.4	24.7	23.6	20.2

December

Date/Time	6.00	7.00	8.00	09.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00
1	13.1	12.9	13.8	16	18	21.7	22.6	24	24.5	24.7	25	24.3	20.2
2	12.6	12.6	14	15.6	18.3	21.4	22.5	24.2	26.2	27.1	26	25.4	21.7
3	14.3	14.5	15.4	17.3	20.4	22.4	24.3	26.6	26.8	27.6	27.1	26.4	24.5
4	15.7	15.6	16.4	18	21.2	23.5	25.6	26.1	26.6	27.1	26	25.4	23.1
5	17	17.3	17.7	19.3	21.3	24.8	27	27.7	27.4	28.6	28.2	26	23.3
6	16	15.6	16.8	18.7	21.5	25.1	26.9	28.1	28.6	29.3	28.8	27.4	23.9
7	16.1	16.5	17.8	19.7	22	24.7	26.7	27.7	28.8	28.7	28.6	28.4	24.4
8	17.3	17.1	18.5	20.4	22	24.4	26.5	27.9	28.5	29.4	28.9	28.1	24.3
9	17.1	17.7	19	21.4	22.2	24.5	26.5	27.8	28.8	29	29.2	28.3	24.5
10	17.8	17.4	18.2	20.1	22.7	25.1	27	28.1	28.3	28.8	29.2	28.7	24
11	16.9	16.4	18.4	21.1	23.8	26.2	29.8	29.4	30.1	30.3	30	29.3	24.8
12	16.3	16.4	19.1	20.2	20.8	22.5	26.2	28.6	28.5	28.9	28.3	26.2	22.3
13	14.9	15.2	16.5	19.7	22.7	24.8	26	26.8	28.7	29.2	29.6	29.1	23.8
14	14.4	14	16.4	19.8	21.3	24.6	26.8	27.8	29.1	30.3	30.6	28.6	23.3
15	14.7	14.4	16.5	18.7	22.2	24.6	26.7	27.7	28.9	29.5	29.6	28.8	24.5
16	17.2	17.3	18.9	19.9	21.9	25.6	27.4	27.6	28.8	29.4	29.6	29.1	26.1
17	19.6	19.3	20.7	24	25.7	27.4	28.6	30.1	30.3	30.6	31.1	30.6	26.9
18	19.9	19.4	21.2	24.2	24.7	26.8	29	30.2	30.8	31.1	31.6	31.2	27.5
19	20.1	20.1	20.7	22.2	24.6	27.3	29.2	30	31	31.5	31.8	31.1	27.7
20	20.5	20.1	21.4	24.1	25.4	27.7	29.2	30.1	31.3	31.7	31.9	31.4	28.6
21	20.1	19.7	21.6	23.8	25.4	27.1	29.7	30.4	31.5	31.8	32.5	32.5	28.3
22	18.2	17.6	20.3	22.9	24.6	26.1	28.5	29	30.8	31.7	32.2	31.6	26.4
23	16.4	15.5	17.2	19.8	24	25.4	27.4	28.3	28.9	28.6	29.4	28.3	23.9
24	14.2	13.9	16	17.8	20	22.5	24.6	26.2	27.7	28.7	28.8	28.7	23.3
25	14.3	13.8	15.7	17.3	19.8	22.8	24.5	25.8	27.5	28.6	28.9	28.6	24.5
26	15.4	15.3	15.8	18.5	21	24.6	27.2	27.9	28.9	28.8	29.1	28.5	24.9
27	17	16.8	17.3	19.9	22.1	26.3	27.9	28.2	28.5	29.2	29.3	28.8	25.5
28	16	15.8	16	18.1	20.3	23.4	26.6	26.8	28	28.4	28.5	27.4	24.3
29	16	15.9	16.8	18.9	21.8	24.3	26.4	28.4	28.6	29	29.2	28.9	25.7
30	16.3	16.2	16.7	19.4	22.8	25.2	26.6	28.2	28.7	28.8	29.3	28.7	25.7
31	17.2	17	18.1	20.1	22.3	25.3	26.2	27.4	28	28.9	29.6	28.8	25.6

Appendix B

Specification Sheets of Sharp 80 Wp NE-80E2E Photovoltaic Module

NE-80E2E - multr-purpose module

Encapsulated Solar Cell Efficiency (nd)	140\%
Module Efficiency ($n \mathrm{~m}$)	1260\%
Maximum System Voltage	DC540V
Series Fuse Rating	109
Type of Output Terminal	Leadwirewith oonnector
Specifications are subject to change without notice ${ }^{1}$ (STQ Standard Test Conditions: $25^{\circ} \mathrm{C}$, $\mathrm{Kv} / \mathrm{m}^{2}$, AMM 1.5	

AB 5 OLUTE MAXI MUMI RATINGS		
Parameters	Rating	Unit
OperatingTemperature	-40 to +90	${ }^{\circ} \mathrm{C}$
StorgeTemperature	-40 to +90	${ }^{\circ} \mathrm{C}$
Dielectric Voltage Withstood	$2200 v D C$ max.	V-DC

In the absence of confirmation by device specifications sheets, Sharp takes no responsibility for any defects that may occur in equipment using any Sharp devices shown in catalogues, data books, etc. Contact Sharp in order to obtain the latest device specification sheets before using any Sharp device.

Appendix C

Radial Distribution Test System Parameters

C1. Data for 51-Bus Base Case Radial Distribution Test System

Branch$i-j$	Line impedance (ohm)		Load demand at bus-j	
	\boldsymbol{R}	\boldsymbol{X}	$P_{L}(k W)$	$Q_{L}(k V a r)$
1-2	0.4214	0.7334	0	0
2-3	0.4214	0.7334	14.58	8.07
3-4	0.2107	0.3667	0	0
4-5	0.4214	0.7334	0	0
5-6	0.2107	0.3667	0	0
6-7	0.2107	0.3667	14.58	8.07
7-8	0.4214	0.7334	0	0
8-9	0.4214	0.7334	0	0
9-10	0.3996	0.67215	58.33	32.27
10-11	-0.5328	0.8962	0	0
11-12	0.2664	0.4481	0	0
12-13	0.7992	1.3443	20	15
13-14	0.5328	0.8962	0	0
14-15	1.66675	1.102	0	0
15-16	2.0001	1.3224	0	0
16-17	0.6667	0.4408	29.17	16.14
17-18	1.3334	0.8816	72.92	40.34
18-19	0.6667	0.4408	20	15
3-20	5.3336	3.5264	145.67	80.69
4-21	1.3334	0.8816	62.88	33.33
5-22	3.3335	2.204	14.58	8.07
22-23	2.6668	1.7632	94.79	52.45
23-24	0.6667	0.4408	14.58	8.07
24-25	6.667	4.408	0	0
25-26	1.3334	0.8816	14.58	8.07
26-27	2.0001	1.3224	35	19.36
23-28	5.3336	3.5264	29.17	16.14
24-29	- 1.3334	0.8816	29.17	16.14
7-30	5.00025	3.306	91.88	50.83
30-31	0.6667	0.4408	85.9	36.83
31-32	1.3334	0.8816	29.17	16.14
32-33	-1.3334	0.8816	14.58	8.07
33-34	1.00005	0.6612	43.75	24.21
34-35	1.3334	0.8816	43.75	24.21
35-36	2.33345	1.5428	0	0
36-37	1.3334	0.8816	145.83	80.69
37-38	1.00005	0.6612	91.88	50.83
30-39	2.0001	1.3224	29.17	16.14
35-40	1.3334	0.8816	58.33	32.27
8-41	1.00005	0.6612	14.58	8.07
9-42	1.3334	0.8816	29.17	16.14
10-43	4.0002	2.6448	29.17	16.14
11-44	1.3334	0.8816	29.17	16.14
12-45	4.6669	3.0856	148.75	82.3
14-46	0.6667	0.4408	29.17	16.14
46-47	2.0001	1.3224	0	0
47-48	2.0001	1.3224	29.17	16.14
46-49	0.13334	0.08816	58.33	32.27
15-50	4.6669	3.0856	43.75	24.21
17-51	2.6668	1.7632	116.67	64.55

Note. 900 kVar shunt capacitor bank installed at bus-13

C2. Data for 33-Bus Base Case Radial Distribution Test System

Appendix D

Deterministic Load Flow Solutions of Test Systems

D1. Load Flow Results for 51-Bus Base Case System

Bus no.	$\|V\|(p u)$	$\delta(\mathrm{deg})$
1	1.00000	0.00000
2	0.99800	-0.15996
3	0.99603	-0.31970
4	0.99510	-0.39788
5	0.99328	-0.55380
6	$\square 0.99263$	-0.62263
7	$0.99201 \square$	-0.69112
8	- 0.99171	-0.79377
9	0.99146	-0.89472
10	0.99135	-0.98312
11	0.99128	-1.09890
12	0.99140	-1.15139
13	0.99194	-1.30381
14	0.99062	-1.34773
15	0.98834	-1.35728
16	0.98627	-1.36573
17	0.98563	-1.36830
18	0.98499	-1.37055
19	0.98471	-1.37182
20	0.99509	-0.32495
21	0.99505	-0.39813
22	0.99033	-0.56718
23	0.98870	-0.57464
24	0.98838	-0.57613
25	C 0.98687	-0.58300
26	0.98663	-0.58413
27	0.98646	-0.58489
28	0.98826	-0.57668
29	0.98803	-0.57773
30	0.98405	-0.73403
31	0.98326	-0.73766
32	0.98178	-0.74443
(33		-0.75095
- 34	0.97942	-0.75528
35	0.97834	-0.76028
$1-36$	W -0.97654	-0.76861
- 37	- 0.97607	-0.77077
38	0.97599	-0.77116
39	0.98372	-0.73557
40	0.97828	-0.76054
41	0.99162	-0.79415
42	0.99135	-0.89522
43	0.99102	-0.98464
44	0.99071	-1.10148
45	0.99101	-1.15316
46	0.99037	-1.34887
47	0.98987	-1.35115
48	0.98954	-1.35267
49	0.99035	-1.34895
50	0.98678	-1.36441
51	0.98493	-1.37153

Note. $P_{\text {loss }}=29.83 \mathrm{~kW}$ and $Q_{\text {loss }}=39.93 \mathrm{kVar}$

D2. Load Flow Results for 33-Bus Base Case System

Note. $P_{\text {loss }}=369.76 \mathrm{~kW}$ and $Q_{\text {loss }}=246.41 \mathrm{kVar}$

BIOGRAPHY

Vichakorn Hengsritawat received the B.E. degree in electrical engineering from University of the Thai Chamber of Commerce, Bangkok, Thailand, in 1995. And he received the M.E. degree in electrical engineering from Chulalongkorn University, Bangkok, Thailand, in 1998. He has joined with the Sripatum University in 1998 as the instructor in the department of electrical engineering to pr esent. His research interests i nclude di stributed ge neration, pow er qua lity, renewable energy, e nergy saving and power system simulation.

