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CHAPTER I

INTRODUCTION

C Vor

([6], pp. 13). Later, Reinert(, ’ﬁ"'{?}." ique to simplify equation (1.1), by

-

letting

and (1.1) become,

AugiA &) ‘Ewﬂ’m w
QRARSATR YA N Fboer

1 it w<z,
L(w) =
0 if w>z,
for a fixed z > 0, then (1.2) becomes
g (w) —wg(w) = L(w*) = xi(z), w=>0 (1.3)



In Chapter I1I, we find a solution of a Stein’s equation (1.3) and its properties
by using the idea of Chen and Shao ([2]).

In the final chapter, we will give bounds on chi-square approximation. Let
X1, Xo, ..., X, be independent random variables with zero mean and finite variance
and W,, = Z X;. Assume that VarW, = 1. It is well-known that the distribution

=1
of W,, can be approxunated b

ormal distribution ®, where

d(2) ample).

vl

Note that ®? < X w tion with degree of freedom

1.

Reinert ([9]) use aylor expansion to find a uniform

on.(H rem 1.1.
aé de

dent random variables with zero mean,

5

\ 1
Jefine S, Y;.
"
e first 3 derivatives of h are bounded

bound in chi-square

Theorem 1.1. Let Y7, Ys, ..

: 8
variance one and E Y|

Let h : R — R be ?bsolutelq_‘%@g 10
and fr, : R — R a sol

imation is of the form

J
MR )m
aummmm 112 1>
d”“”“%mmm URIANYINY

In Theorem 1.1, Reinert derived an error estimation for the approximation of

the distribution of S2 by a chi-square distribution with degree of freedom 1, which
is of the form

|ER(S}) — xihl.
In order to bound

[P(Wy < 2) = xi(2)],

n



we have to choose the function h = I,. But I, is not continuous. Hence we can
not apply Theorem 1.1 to bound |P(W? < 2) — x3(2)|.

In this part, we give uniform and non-uniform bounds on chi-square approxi-
mation to the distribution of W2 under the existence of the second and the third

moments. To do this, we use a relation between the chi-square random variable

\
with degree of freedom 1 and W rmal random variable. This is our
results. / .

Theorem 1.2. (uniform_bet / / W, X be independent random vari-
ables such that EX; : A ‘ = 1,2,...,n. Assume that
n e ¥

E:EXi2 = 1. Then v dﬂ 3

i=1 s v

sup | P@W <. ) H83 E|Xi|3.
Theorem 1.3. (non-unifor _i:g‘e:f'.;n.a

_ZZTHIN I

the assumption of Theorem 1.2 and

z > 0, we have

B e  e—————— e ——— N

[PV =T 32 b

_— 1
Theorem 1.4. (umﬂrm bound) Let X1, Xo,..., X, ';ﬂ independent random vari-

asles such t/ﬂ ﬁé/‘j wﬂﬂ%drw Ecjm ﬂ izn Assume that

Z EX;? =1.%Then

i=1 ¢ =1 s
AWIANNIPNNINEIAE
sup [P, < 2) = x}(2)| <824 3 BXZI(X0| 2 1)+ Y BIXL(X < 1)} .

i=1 =1



Theorem 1.5. (non-uniform bound) Under the assumption of Theorem 1.4. For

z > 0, there exists an absolute constant C

" (EXZI(|X| > 1 EIXBIX <1
rP(W,%Sz>—X§<z>|soz{E PI(X] 21+ VE) | BIXPI(X) < +\/2)}’
i=1

1+z 1422

where

We organize our thesis we give some basic concepts

OTL—9

in probability theory. A sol f Tand | operties of the Stein’s equation for

chi-square distribution cgree of fre in C pter III. Finally, we give

‘d ation in Chapter IV.

J {
AU INENTNEINS
ARIANTAUNININGIAE
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CHAPTER I1

PRELIMINARIES

In this chapter, we probability which will be used

in our work.

2.1 Probablllt d Random Variables

Let Q be a none v d Fbeja g-¢ of subsets of €2 .
Then (Q, F, P) is called a
probability space and P. | 1 bilit) ‘ casure. The set  is the sample

space and the elements of F are called events. For any event A, the value P(A)

is called the probabili

Let (Q,F,P) hea babi y 1% O — R is said to be a

PR, )
AU B WA

. W‘“T“@S Ayt 070N i)

P(a < X <)), respectively.

random variable iﬁ)r every Borel se

Let X be a random variable. A function F : R — [0, 1] which is defined by
F(z) = P(X <ux)

is called the distribution function of X.



Let X be a random variable with the distribution function F. X is said to be
a discrete random variable if the image of X is countable and X is called a

continuous random variable if F' can be written in the form

for some nonnegative integra ”y n R. In this case, we say that f is
the probability densit é

A sequence of eve

aid to be a easmg sequence if

where as it is said t

Theorem 2.1. Let (E,),>1 :g-‘?’ events. Then

1. If (E,) is incre

2. If (E,) is decrﬂmg, then 1117117j E ) P(rﬂ”)'

o R R EIRAG o x

normal random variable with parameter p a,lﬂa written ag X ~ N(p, 0?), if

o ol bk bbbl d VI 2T E

fa) = ﬂ%exp (= 5otz —n7).

Moreover, if X ~ N(0,1) then X is said to be the standard normal random

variable.



A random variable X is said to have a gamma distribution with param-
eters a and # (denoted by X ~ Gam(a,3)),a > 0 and > 0, if its density

function is given by

<0
if >0
where : '
In special case, i Foml(5 . N then a random variable
X is said to be a chi-squafefrandom v ric ith degree of freedom n,

denoted by X ~ x2.

Let X1, Xa, ..., X, befindependert random variables and X; ~ N(0,1) for

1=1,2,...,n. It is well-know tha
e

2.2 Independe Vi
(7% )
Let (Q,F, P) beE probability s md 7, be sub o-algebras of F for all

a € A. We say that {Fga € A} is independent if and only if for any subset

- {.71,]2,.ﬂ}1JEL’JM£¥YIMEJ’1ﬂ‘§
QWWMT]‘WJ@WWWIEI’]G 8

A set of random variables {X,| o € A} is independent if {c(X,)| a € A} is

independent, where 0(X) = o({X!(B) | B is a Borel subset of R}).



We say that X7, Xs, ..., X,, are independent if {X;, X5, ..., X,,} is indepen-

dent.

Theorem 2.2. Random variables X1, X, ..., X,, are independent if and only if

for any Borel sets By, Bs, ..., B, we have

Proposition 2.3. Let X be candom 1 b d E|X| < 0.

1. If X s a discrete randc 7
r xeImX

2. If X isaco 1‘

U |

AU INENINGINS

Let X be a Fandom variable with E(X]%) < 0o. Then £ (|X ¥} is called the k-

Sy NIV H I T L AGE - o

of X about the mean.

function f, then

We call the second moment of X about the mean, the variance of X and

denoted by Var(X). Then

Var(X) = E[X — E(X))%.



Note that
1. Var(X) = E(X?) — E*(X).
2. If X ~N(p,0?), then E(X) = p and Var(X) = o2.

3. If X ~ 2, then E(X) =n and Var(X) = 2n.

Proposition 2.4. If X, S pdependent and E|X;| < oo fori=1,2,...,n,

then :
I E(X1Xs--- X /; A%

2. Var(a; X1+as X 2Var(Xy)+ - -+a2Var(X,)

for any real numbers

AULINENINYINg
PRIANTUUMINYAE



CHAPTER III
STEIN’S EQUATION FOR CHI-SQUARE

DISTRIBUTION WITH DEGREE OF FREEDOM 1

In this chapter, we tion of muation for chi-square distri-

bution with degree of

In 1972, Stein ([1 approximate the distribu-

-.

tion of the sum of de ) o Ve 5 les the standard normal distribution

®, where

His method, which is called “Stein’s ni *was free from Fourier transform and
relied instead on the ele ifferentiz ion ~~Stein’s method has been
widely applied in thé T : 'II" he method is as follows:

Let Z be the standaﬂ normal distributed random vmable and let Cyy be the set
of continuous ﬁ wﬁ ﬁ yaoctlons on R to itself
with E|f'(Z ﬂ‘ (;ﬁrr al ﬁ?:l any real valued function h
Y ﬁ’\]ﬂﬁﬁﬂﬂﬂ%ﬂ?ﬂﬂ TR Y

f'(w) —wf(w) = h(w) = En(Z).

If h =1,, where z € R and [, is an indicator defined by

1 it w<z,
I(w) =

0 if w>z
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then the Stein’s equation becomes

fw) =wf(w) = L(w) — (2). (3.1)
Hence for any random variable W,

E(f/(W) =W fW)) = P(W < 2) — (2).

However, Stein’s method o other distributions. For example,

Chen ([1]), gave a Stein’ ribution with parameter A,

A (w+ 9, weZtu{o}

where Poty is a Poisso

Other examples are bi
ometric distribution (]
\

An important question is ' e Stein’s equation is unique or not.

Chatterjee ([3]) et a ion for exponential distri-

ﬂf
& ﬂUHﬂﬂﬂﬂ§W8Wﬂi

w) fAw) = L( Ea:p( ), wéO

We seahmla fﬁlﬁ ﬁimuﬁ f]u’rllm E:I :.llxa ﬂseful equation

is the one that its solution and the derivative of its solution are bounded. For

bution, Fxp(z) =

the chi-square distribution with degree of freedom 1, Luk ([6]) gave the Stein’s
equation,

wf"(w) + 51— w)f'(w) = h(w) ~ 3k, w >0, (32)
where Y1h = \/% / h t_%e_%h(t)dt and h is absolutely bounded and the first 3

derivatives of h are bounded.
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The solution of (3.2) for h is

o —t oo 1\q
e 1-eT e 5) /1_ (i+L)u, i
w) = — n R du
fulw) 0 V2(1—e?) ZZ:; il +1) Jo
1 (o]
- — s 2e 2h(s)ds|dt,
V2w s o)
([6], pp. 13). Later, Reinert([9]) gave astgchnique to simplify equation (3.2), by

letting

and showed that (3.
> 0. (3.3)

In this work, we use e test function A = I, where

z > 0. Then we have
w,z > 0. (3.4)

Next, we will find , solution -rg ies by using the ideas of

Chen and Shao ([2]) :I ) L'J
Propomtmnﬂuél%}fé wzﬁl %OW ﬁf}ﬂ ?uatzon (5.4) is of the
form

ammnﬁmwnﬂmaﬂ

(1= xi(2)e = \i(w?) if w< /2,

g.(w) = 27T (3.5)

YRR (13 w?) i w> VE
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Proof. Observe that (3.4) is a linear first order differential equation of the form

g ) +p(t)g(t) = q(t), t 2 0, (3.6)

where p(t) = —t and q(t) = L (t*) — x3(z). We use integrating factor

to find a solution. Multipl hen we get
d, _
E[e *9 —xi(2)]
So
(2)]dt,
and then

and we have

We claim that g, : 'i o)
W

ﬁﬂm/ﬁa iR 1oa L

is a solution of the Stein’s equation (3.4).

Notetﬂtﬂ']ﬂﬂﬂimlliﬂﬂﬂmaﬂ

i (w?) = — t_ie_%dt e du. (3.7)

7 il



If w < /z, then (3.7) implies

e

— T
——

FlRUENERINEANE -

QRN saliirTHhENe

14



Note that

V2T e we (1— () -

V2r w? gy 2 ..
g;(w){ 5 (1= Xi(2))[we™> xF(w )+m] if w<yz,

Ver

and ¢, is not differentiable at w = /2. To satisfy (3.4), we define

9-(Vz)
1T @PETNC) + 1 — xi(2)
2
N
This imply
Jif w <z,
g.(w) =

—w{—(l - Xi(2))e? “Cd)

ﬂus}%mwmm e
ammnimﬂﬁ“ﬁﬂ%aﬂ

=L.(w?) = xi(),

2 ] if w>/z,

15
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and for w > /z,

Therefore, g, is a so

For the rest of this

Proposition 3.2. For eg et | R be defined by

Then h, is mcreas' q.

Proof. By the defir V

2 .I:lj
1 —xi ))we?xl( )it w< V2,

i L{%@a@mwmnw
‘1 ‘W mmmwm B

IS +wte )1 - ) - %} it w>

Since h, is continuous at w = /z, to prove h, is increasing, it suffice to show that

an

R, >0 on (0,1/z) and (y/z,00). It is obvious that 2. > 0 on (0,+/z). Hence, to
show A/, > 0 on (y/z,00) we have to prove that

W2, w2 Y o 2w
(ez +w’ez)(1—xj(w*) — —= >0 for w> /2,

V2r
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i.e.,

2w

>0 for w> /2. (3.9)
V 27T(ew72 + wQesz)

Let k : [0,00) — R be defined by

1—x;(w?) —

k(w) =1 = xi(w?)

By the fact that

a2 - = E -, ’(1)2 2
2e 2 P e (we we'z + w?’eT)]

K (w) = —

o
7

4e
2

CHUTTheniwenns
~ e WORASRNAR TN §

k(w) > lim k(w') =0

w!—00

for all w € [0, 00). Hence we have (3.9). O



Proposition 3.3. The function g, has the following properties:

18

1
1 O<gz(w)§% for w>0andz >0,
2. 0<g.(w) <1 Jor w,z >0,
3. g.(w)| <1 for
Proof. 1. By the definition of g. V. eflsy Lo see that g.(w) > 0. To prove

()<1 te that™
W) < —, we note that
g9 NE

ﬂummﬁ%wmm
amaﬁnfmwﬂﬁﬂmaﬂ

Xl( )

IN

&IH%I

(3.10)



Suppose that w > /z. By (3.10), we have

2
2T w2 2 w?
< T2V 2(2eT e 2
< — ) 5
1
= —xi(z)

Hence, 0 < g.(w) <
2. By (3.8), it is obviot

to show that

Note that g, is con
] )
If 0 < z <1, then, -'f."- f

Waky/7) = \/ﬂ (13 (2) 62
quﬂqwﬂkiwsﬂni
amaﬁnimﬂﬁmwmaﬂ

< 0.53.

For z > 1, by Proposition 3.3 (1), we have

92(\/2) <

<1

Sl

If z =0, by the definition of g,

0 < go(w) < go(0) = 0.

“value at w = /z.

19
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Hence, 0 < g,(w) <1 for z > 0.
3. Case 1. w < /2.

We will show that 0 < ¢’ (w) < 1 by using (3.8) and (3.10).

If 2 > 0, then
V2T 2 2
0< ; w 4+
g(w) |
w?) + (1= xi(2))
+1-x3(2)
For z = 0,

We conclude that | Ol

7
(3.11)

Case 2. w >

i ﬁ,uﬂ AUHBINAINT,
W“Wwaﬁn;;uumwmaﬂ

:—X1 z)we'z (1= x3(w?) — xi(2)

—xi(2)

> 1
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and

Proposition 3.4. Let

L. |gi(w) - g.(v !
2. g.( w+8ﬂ uﬂg |
ARIANN

o ifwt+s<z and w+t>/z,

HEL )3
M InEat

-1 if w+s>yzandw+t</z,

3. gi(wts)=g(w+t) = § —(Jw| + 1)(|s| + [t]) if s <t,

0 otherwise.



22

Proof.
1. Let z > 0. From (3.11) and (3.12), we have |¢.(w) — g.(v)| < 1 for w,v < /2
or w,v > /z. Suppose that w < \/z and v > /z. By (3.4), we have

wg, (w —xX3z) if w</z,
S — g:(w) +1 = xi(2) <z (313

if w> /2

have

—d

0 < g (w / . or w<yz (3.14)

and

or v > /2. (3.15)

By (3.11), (3.12), (3.

i ? A'

|92 (w) — g2 (v)] < max{EVzg:(v/7) £ 12) — (Vz9:(V2) = xi(2))} = 1.

2. From (3.4), we have

7 |
AT 7  RERNT

‘o | LY,
WY ANHNINEIDT
o A W
= FRIRIMIUUNRINYIGY
go(w+s)—gl(w+t) = (wts)g(w+s) — (w+t)g. (w+t)+ L((w+5)*) = L((w+1)?)

(

(w4 8)g.(w+8) — (w+t)g.(w+1t)+1if w+s<yzand w+t>/z,
(w4 8)g(w+8) — (w+t)g.(w—+1t)—1if w+s>zand w+t</z,
(w+8)g.(w+ ) — (w+t)g.(w+1) if w+s<yzand w+t <4z

or w+s>+/zand w+t>/z
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(

1 if w+s<yzandw+t>/z,
S Y wlga(w +5) = g-(w + )] + 5. (w + 5) — tg.(w+1) if s>t

0 otherwise.

\

From Proposition 3.3( (i) and (ii)) and by mean-valued theorem, there exists

i)
r € R such that

wlgs(w + 5) — ga(w + 1)) sy

= (Jw]+1)([s[ + [¢]). (O

Hence, A7 7 .-‘H‘ '

..I
it

Fit
|

;

i¥
1 ifw+s<yzand wHt > /z,
v
|t

s +3) - sﬂﬁdtﬁiﬁ(lﬂﬁm B\ i)
RIASU NN TTEA Y

The proof of 3 is similar to 2. O




CHAPTER IV

BOUNDS ON CHI-SQUARE APPROXIMATION

For each n € N, let X dent and not necessarily identi-

cally distributed rando/’
Let F,, be the dis ! ! : oy v, \~ e standard normal distri-

\

=1

Define

bability theory and statistics

where ®(z) = g S —

Many researchers try to find the rategof this convergence having two types of

bound,; umforﬂbuﬂ %m&(ﬂg w H)’;ﬂ i und for the distance
between two dlstrlbutlon functlong

awwmmm MInenas

F(z) = G(2)] < K.

If K depends on x, then K is considered to be a non-uniform bound. On the other

hand, if K does not depend on x, then K is considered to be a uniform bound.
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In 1986, Siganov ([12]) gave a uniform bound under the assumption that the

third moment is finite. His result is as follows.

Theorem 4.1. (Siganov,1986). Let X1, Xs, ..., X, be independent random vari-

ables such that EX; = 0 and E|X;*> < oo for i = 1,2,...,n. Assume that

V@W

‘—'Ll

iE’Xi2 = 1. Then

=1

sup | P
z€R
In 1977, Paditz ( form bo nder the assumptions as in

Theorem 4.1. His result.a

Theorem 4.2. (Padi

for z e R.

In 2001, Chen and Shao; lg gay versions of a uniform bound and a

non-uniform boun W Wﬁ} he third moments. Their

results are as follow. m m

Theorem 4.3. (unifonim:bound) Let X,gXo, ..., X, be independent random vari-

s s o ik ELd %L&JM?HEJ 2 i a——
B QW’]ﬂ\ﬂﬂ‘i NW]'JVIEJ']GEJ

sup|P(W <2)—®(z) <41 ZEXQ (1X:| > 1) +ZE|X|31(|X|<1)

z€R =1 =1
Theorem 4.4. (non-uniform bound) Under the assumptions of Theorem 4.3,

there exists a constant C such that

EXZI(|X;| > 1 EIX,BI(X;] <1
\P(W, < z) |<CZ{ (X =1+2) | EIXiPI(X] < +IZI)}

(1+z2])? (1+z])
for z e R.
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In 2007, Neammanee and Thongtha ([5]) calculated the constant by using

Paditz-Siganov theorem. Their result is as follow.

Theorem 4.5. Under the assumption of Theorem 4.3, for z € R, we have

27 > 13 ]
[P(W, < z) — ®(2)] < CZ {EX I(Xil > 1+ [2]) | BIXGPI(Xi| <1+ ]z|)}

+ |z]2 1+ |23

where

In this chapter, we give uniform bounds on chi-square ap-
proximation to the ,,_!!_!,,_,,_E!!!,!,_!!7_7!,,!,!,;5»;,1:)_ nce of the second or the
third moments. To :‘.' g between the chi-square random

{

variable with degree of ‘reedom 1 and the standard normal random variable. The

relation is as ﬂl% El‘e{}‘iq %1 % fildefehddnf 3¢idard normal random

variables. It 1quvell known that ¢

RN IPANIINGINY

For the first part, we assume E|X;|® < co for i = 1,2,....,n. We apply Theo-
rem 4.1 and Theorem 4.2 to give uniform and non-uniform bounds on chi-square
approximation to the distribution of W2 under the existence of the third moment,

respectively. The followings are our results.



27

Theorem 4.6. (uniform bound) Let X, Xs, ..., X,, be independent random vari-
ables such that EX; = 0 and E|X;*> < oo for i = 1,2,...,n. Assume that

iEXiQ = 1. Then

=1

sup |[P(W? < 2) — x3(2)| < 1. 583ZE|X 3.

2>0
W/e assumption of Theorem 4.6 and
_).:-’-

Theorem 4.7. (non-unifo

z > 0, we have

or v =1,2,...,n. We apply
non-uniform bounds on chi-

square approximation ibutior 1= under the existence of the second

Theorem 4.8. (uniform bous X1 .., X, be independent random vari-

ables such that EX5 E|X, i _  1,2,...,n. Assume that

ST EXZ =1 Thomd. X

y y
s R g e <

Theorem 4. 9 (non-uniform bound) Under the, assumption aef sTheorem 4.8, for

o,qemmmmum 22NETRY

XQIX >1 E|\X;PI(|X; 1
PV < 2) - I<CZ (X2 1+V5) | BIXPI0X] <1+ v2)
1+2 1+ 22
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where

26.22  if 0<z< 169,
57.08  if 1.69<z <4,

92.64 if 4<z<0,

0 < 2 < 63.6804,

Then —/7 — Wn(

= (. dle Hhere exists mg € N
l
ll | : 1.|:l

ﬂuEJ’J‘HvEJWWEHﬂi
He“eﬂwﬁm@?ﬁ'm YAINYIAY

Proof 'of Theorem 4.6.

such that

Proof. Let Z be a standard normal random variable. From (4.1) and Theorem

2.1(1),

P(W, < —v2) = P W < —vZ— ) = lm P(W, < —VZ— )
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= |P(—vz < W, <Vz) = X1 (2)|

= |P(—Vz < W, <V2) — P(Z° < 2)]

= |P(-VZ< W, ROV /45

= |P(W, < V) — P(Wins F’é— P(Z < =2

< |P(W, <V/z) - P( JLq ' — P(Z < —V/2)]

= |[P(W, < /Z) (W D(~ {/E)I

P, < vz \ ) Bz )

\ 1 1

= [P(W, < Vz) - = —) = (=vz - )

— 1PV, < v3) - 0(v 4l 122 Sy B(—vE - )l (42)
From (4.2) and Theorem 4
sup |P(VV2 <z)-— y'r
<sup |PW <\/_¢'-g z)| + lim [P(W, < \/_——— - Z—l)|}

aplr @uﬂmmmf )
<wa5ﬁammmwnwmaﬂ

— 1.583 Z E|X,.
=1

Hence,

sup |P(W;? < z) — x7(2)| < 1.583 ) E|X;[.
2>0

i=1
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Proof of Theorem 4.7.

Proof. From (4.2) and Theorem 4.2, we have for each z > 0

[P(W; < 2) = xi(2)]

<[P(Wh < V2) = @(V2)| + lim [P(W, <

31.935 —
< E|X;|?
—1+|\/—|3Z | | x;\‘* ‘LH,;I"

31.935 «—
< 7Y N R
- 14+ |\/E|3 z;

~31.935 ZE|

1+Z2 =1

63.87 ZE

1+z2 =1

Hence, |[P(W? < z) —
Proof of Theorem 4.8.

Proof. From (4.2).a
y

sup [ POV? < 2) — b

2>0

<i&%®”ﬂﬂﬁ%%§%‘lﬂ$>-‘“-f—%)'}

1

<supP(Wn§\/_ VZz)| +gup lim |P(1, < \/_— B( \/__E|
Q‘Jﬂj@ﬁgﬁ BNV AT aﬁl y
gl < ) = el S g G

<41 {ZEXZ (1X;] > 1) +ZE|Xi]3I(]X¢| < 1)}

i=1 i=1

+4.1 {Z EXZI(|IXi| > 1)+ Y E[X:PI(|X,| < 1)}

i=1 i=1

— 82 {Z EX2I(|1X;| > 1)+ Z EIXPI(X,| < 1)} .

i=1 i=1
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Hence,

sup |[P(Wy; < 2) — xi(2)] < 8.2 {ZEXZ?I(IXZ-I > 1)+ ) EXPI(X] < 1)}~

2>0 i=1 =1

O

Proof of Theorem 4.9.

Proof. We can prove the , Theorem 4.5 and the same

technique of Theorem 4.8 O

AUEINENINEINS
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