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INTRODUCTION

Transformation semigroups play an important role in Semigroup Theory. It is

well-known that every semigroup can be embedded in a full transformation semi-

group ([8], p. 3 or [11], p. 7). As we know, regularity is a crucial notion in Semi-

group Theory. All standard transformation semigroups are regular semigroups.

In addition, the full linear transformation semigroup on a vector space and the

full n× n matrix semigroup over a division ring are both regular. Semigroups of

order-preserving tranformations have been widely studied. Combinatorial results

for them have been of interest in this subject. See [5], [6], [7], [9], [10], [12], [13],

[14], [15], [16], [17], [18], [22], [23], [24], [26] and [27] for example. Order-preserving

transformation semigroups need not be regular in general. In this research, the

regular elements of certain order-preserving transformation semigroups on chains

are of our interest to characterize. Combinatorial results on the regular elements

of some of these semigroups are also considered.

For a nonempty set X, let T (X), P (X) and I(X) denote respectively the

full transformation semigroup on X, the partial transformation semigroup on

X and the 1-1 partial transformation semigroup on X, respectively. It is well-

known that all the semigroups T (X), P (X) and I(X) are regular ([8], p. 4 or

[11], p. 63 and 149). For nonempty sets X and Y , let T (X, Y ), P (X, Y ) and

I(X, Y ) be the set of all transformations, the set of all partial transformations

and the set of all 1-1 partial transformations of X into Y , respectively. If Y

is a nonempty subset of X, then T (X, Y ), P (X, Y ) and I(X, Y ) are clearly

subsemigroups of T (X), P (X) and I(X), respectively. For ∅ 6= Y ⊆ X, let

T (X, Y ) = {α ∈ T (X) | Y α ⊆ Y }, P (X, Y ) = {α ∈ P (X) | (domα ∩ Y )α ⊆ Y }

and I(X, Y ) = {α ∈ I(X) | (domα ∩ Y )α ⊆ Y }. Then T (X, Y ), P (X, Y ) and

I(X, Y ) are subsemigroups of T (X), P (X) and I(X) containing T (X, Y ), P (X, Y )
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and I(X, Y ), respectively. We may consider T (X, Y ) and T (X, Y ) as generaliza-

tions of T (X). The semigroups P (X, Y ) and P (X, Y ) generalize P (X) as well

as I(X, Y ) and I(X, Y ) generalize I(X). The semigroup T (X, Y ) was introduced

and studied by Symons [29] in 1975 while Magill [19] introduced and studied the

semigroup T (X, Y ) in 1966. In [25], the authors characterized the regular ele-

ments of the transformation semigroups T (X, Y ) and T (X, Y ). In addition, the

number of regular elements of these two sets when X is finite was given in terms

of |X|, |Y |, and their Stirling numbers of second kind.

Let X and Y be nonempty sets. For θ ∈ T (Y,X), let (T (X, Y ), θ) denote

the semigroup (T (X, Y ), ∗) where α ∗ β = αθβ for all α, β ∈ T (X, Y ). The

semigroups (P (X, Y ), θ) where θ ∈ P (Y,X) and (I(X, Y ), θ) where θ ∈ I(Y,X)

are defined similarly. These semigroups can be also considered as generaliza-

tions of T (X), P (X) and I(X), respectively. They are special cases of general-

ized partial transformation semigroups introduced by Sullivan [28] in 1975. In

1975, Magill and Subbiah [20] characterized the regular elements of the semi-

groups (T (X, Y ), θ) and (P (X, Y ), θ). Recently, Chinram [3] considered when the

semigroup (P (X, Y ), θ) is regular and gave a characterization of its regular ele-

ments in a different version. A characterization of the regularity of the semigroup

(T (X, Y ), θ) was given in [2]. The regularity and the regular elements of the semi-

groups (I(X, Y ), θ) were introduced in [4].

For a partially ordered set X, let OT (X), OP (X) and OI(X) denote the order-

preserving full transformation semigroup on X, the order-preserving partial trans-

formation semigroup on X and the order-preserving 1-1 partial transformation

semigroup on X, respectively. It is known that OT (X) is a regular semigroup

if X is a finite chain ([8], p. 203). Kemprasit and Changphas [14] extended this

result by showing that OT (X) is regular for any chain which is order-isomorphic

to a subset of Z, the set of integers under the natural order. It was also shown

in [14] that for any chain X, OP (X) and OI(X) are regular semigroups. In fact,

Kim and Kozhukhov [16] characterized a countable chain X for which OT (X) is a

regular semigroup. It was also proved in [14] that if X is an interval in R, the set
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of real numbers under the usual order, then OT (X) is a regular semigroup if and

only if X is closed and bounded. Rungrattrakoon and Kemprasit [26] extended

this fact by showing that for a nontrivial interval X in a subfield F of R, OT (X)

is regular if and only if F = R and X is closed and bounded. Then it follows as

a direct consequence that for any nontrivial interval X in Q, the set of rational

numbers under the usual order, OT (X) is not a regular semigroup. In fact, the

result in [26] mentioned above is a consequence of the main theorem in [13]. In

[23], the regularity of the semigroup OT (X) was investigated for a certain dictio-

nary chain X and it was studied in [24] for X being an other dictionary chain.

In general, OT (X) need not be regular. Then we gave in [22] a characterization

determining when an element of OT (X) is regular where X is any chain. In the

case of a finite chain X, Howie [10] gave the cardinality of OT (X) and in [7],

Howie and Gomes provided the cardinality of OP (X). See also the papers [17]

and [18] of Laradji and Umar and the paper [9] of Higgins. The cardinality of

OI(X) was first presented by Garba in [6]. It was also given in [5].

Let X and Y be partially ordered sets. Denote by OT (X, Y ), OP (X, Y ) and

OI(X, Y ) the set of all order-preserving transformations, the set of all order-

preserving partial transformations and the set of all order-preserving 1-1 partial

transformations of X into Y , respectively. If Y is a nonempty subset of X, then

OT (X, Y ), OP (X, Y ) and OI(X, Y ) are subsemigroups of OT (X), OP (X) and

OI(X), respectively. For ∅ 6= Y ⊆ X, let OT (X, Y ) = {α ∈ OT (X) | Y α ⊆ Y },

OP (X, Y ) = {α ∈ OP (X) | (domα ∩ Y )α ⊆ Y } and OI(X, Y ) = {α ∈ OI(X) |

(domα∩Y )α ⊆ Y }. Then OT (X, Y ), OP (X, Y ) and OI(X, Y ) are subsemigroups

of OT (X), OP (X) and OI(X) containing OT (X, Y ), OP (X, Y ) and OI(X, Y ),

respectively. Also, we have that OT (X, Y ) and OT (X, Y ) generalize OT (X) and

likewise for OP (X, Y ), OP (X, Y ), OI(X, Y ) and OI(X, Y ). The regularity of the

semigroups OT (X, Y ), OP (X, Y ) and OI(X, Y ) was studied in [27] where X is a

chain.

For any partially ordered sets X, Y and θ ∈ OT (Y,X), let (OT (X, Y ), θ) be the

semigroup (OT (X, Y ), ∗) where α ∗ β = αθβ for all α, β ∈ OT (X, Y ). The semi-
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groups (OP (X, Y ), θ) where θ ∈ OP (Y,X) and (OI(X, Y ), θ) where θ ∈ OI(Y,X)

are defined analogously. We also have that (OT (X, Y ), θ), (OP (X, Y ), θ) and

(OI(X, Y ), θ) generalize OT (X), OP (X) and OI(X), respectively. In [15], the

authors considered when the semigroup (OT (X, Y ), θ) is regular where X and

Y are any chains. Also, the regularity of the semigroups (OP (X, Y ), θ) and

(OI(X, Y ), θ) was determined in [12] where X and Y are chains.

In this research, we extend above results for order-preserving transformation

semigroups. The regular elements of following semigroups are characterized:

OT (X, Y ), OP (X, Y ), OI(X, Y ), OT (X, Y ), OP (X, Y ) and OI(X, Y ) where X

is a chain and ∅ 6= Y ⊆ X and (OT (X, Y ), θ), (OP (X, Y ), θ) and (OI(X, Y ), θ)

whereX and Y are any chains and θ belongs toOT (Y,X), OP (Y,X) andOI(Y,X),

respectively. In addition, if X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m} where

m ≤ n, the number of regular elements of the semigroups OT (X, Y ), OP (X, Y ),

OI(X, Y ), OT (X, Y ), OP (X, Y ) and OI(X, Y ) is investigated.

This research is organized as follows:

Chapter I contains the basic definitions, notations and quoted results which

will be used for this research.

In Chapter II, we give necessary and sufficient conditions for the elements

of the semigroups OT (X, Y ), OP (X, Y ) and OI(X, Y ) to be regular when X, Y

are chains and ∅ 6= Y ⊆ X. Then these characterizations are applied to prove

the above known results concerning the regularity of OT (X, Y ), OP (X, Y ) and

OI(X, Y ). In addition, the regular elements ofOT (X, Y ), OP (X, Y ) andOI(X, Y )

are counted when X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m} where m ≤ n.

In Chapter III, necessary and sufficient conditions for the elements of the semi-

groups OT (X, Y ), OP (X, Y ) and OI(X, Y ) to be regular are provided when X, Y

are chains and ∅ 6= Y ⊆ X. These conditions are then applied to determine the

regularity of OT (X, Y ), OP (X, Y ) and OI(X, Y ). Moreover, we also provide the

number of regular elements in each of the semigroups OT (X, Y ), OP (X, Y ) and

OI(X, Y ) when X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m} where m ≤ n.

Chapter IV contains characterizations of the regular elements of the gener-



5

alized order-preserving transformation semigroups (OT (X, Y ), θ), (OP (X, Y ), θ)

and (OI(X, Y ), θ) where X and Y are any chains. In addition, the regularity of

(OT (X, Y ), θ), (OP (X, Y ), θ) and (OI(X, Y ), θ) is determined by making use of

our characterizations.

Note that a condition of the regularity of an element in some semigroups of

our interest is given in terms of the regularity of an elements in OT (X) where X

is a chain. Recall that the regular elements of OT (X) were characterized in [22].



CHAPTER I

PRELIMINARIES

For a set X, let |X| denote the cardinality of X. The notation ∪̇ stands for a

disjoint union.

An element a of a semigroup S is said to be regular if a = axa for some x ∈ S,

and S is called a regular semigroup if every element of S is regular. The set of all

regular elements of a semigroup S will be denoted by Reg(S), that is,

Reg(S) = {a ∈ S | a = axa for some x ∈ S}.

The domain and the range of a mapping α will be denoted by domα and

ranα, respectively. For an element x in the domain of a mapping α, the image of

x under α is written as xα. Notice that domα =
·⋃

x∈ ranα

xα−1. For A ⊆ domα,

denote by α|A the restriction of α to A. The identity mapping on a nonempty

set A is denoted by 1A. For any mappings α and β, the composition αβ of α

and β is defined as follows: αβ = 0 if ranα ∩ dom β = ∅, otherwise, αβ is the

usual composition of the mappings α|(ranα∩ dom β)α−1 and β|(ranα∩ dom β)
where 0 is the

empty transformation, that is, the mapping with empty domain. Then for any

mappings α, β and γ, we have

dom(αβ) = (ranα ∩ dom β)α−1 ⊆ domα,

ran(αβ) = (ranα ∩ dom β)β ⊆ ran β,

for x ∈ X, x ∈ dom(αβ) ⇔ x ∈ domα and xα ∈ dom β,

(αβ)γ = α(βγ).

Let X be a nonempty set. We call a mapping α from X into itself a transfor-

mation of X. By a partial transformation of X we mean a mapping from a subset

of X into X. Then the empty transformation 0 is a partial transformation of X.
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Let T (X), P (X) and I(X) denote the set of all transformations of X, the set of

all partial transformations of X and the set of all 1-1 partial transformations of

X, respectively, that is,

T (X) = {α | α : X → X},

P (X) = {α : A→ X | A ⊆ X},

I(X) = {α ∈ P (X) | α is 1-1}.

We can see that all of T (X), P (X) and I(X) contain 1X , 0 is contained in P (X)

and I(X) but not in T (X) and T (X), and I(X) are subsets of P (X). Therefore,

under the composition of mappings, P (X) is a semigroup having T (X) and I(X)

as its subsemigroups. The semigroups T (X), P (X) and I(X) are called the full

transformation semigroup on X, the partial transformation semigroup on X and

the 1-1 partial transformation semigroup or the symmetric inverse semigroup on

X, respectively. By a transformation semigroup on X we mean a subsemigroup of

P (X). It is well-known that all the semigroups P (X), T (X) and I(X) are regular

for every set X ([8], p. 4 or [11], p. 63 and 149).

For convenience, we sometimes write a mapping by using a bracket notation.

For example,

(
a b

c d

)
stands for the mapping α with domα = {a, b}, ranα = {c, d},

aα = c and bα = d,

(
A x

a x′

)
x∈XrA

stands for the mapping β with dom β = X,

ran β = {a} ∪ {x′ | x ∈ X r A} and xα =

a if x ∈ A,

x′ if x ∈ X r A.

By the above notations, a mapping α can be written as α =

(
xα−1

x

)
x∈ ranα

.
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For nonempty sets X and Y , let

T (X, Y ) = {α | α : X → Y },

P (X, Y ) = {α : A→ Y | A ⊆ X},

I(X, Y ) = {α ∈ P (X, Y ) | α is 1− 1}.

Notice that T (X,X) = T (X), P (X,X) = P (X) and I(X,X) = I(X). If Y is a

nonempty subset of X, then

T (X, Y ) = {α ∈ T (X) | ranα ⊆ Y },

P (X, Y ) = {α ∈ P (X) | ranα ⊆ Y },

I(X, Y ) = {α ∈ I(X) | ranα ⊆ Y }

which are clearly subsemigroups of T (X), P (X) and I(X), respectively.

For ∅ 6= Y ⊆ X, let

T (X, Y ) = {α ∈ T (X) | Y α ⊆ Y },

P (X, Y ) = {α ∈ P (X) | (domα ∩ Y )α ⊆ Y },

I(X, Y ) = {α ∈ I(X) | (domα ∩ Y )α ⊆ Y }.

Then T (X, Y ) ⊆ T (X, Y ), P (X, Y ) ⊆ P (X, Y ) and I(X, Y ) ⊆ I(X, Y ). Also,

T (X, Y ), P (X, Y ) and I(X, Y ) are subsemigroups of T (X), P (X) and I(X),

respectively. Notice that 1X ∈ T (X, Y ) but 1X /∈ T (X, Y ) if Y ( X. The semi-

groups T (X, Y ) and T (X, Y ) were introduced and studied by Magill [19] in 1966

and Symons [29] in 1975, respectively. We observe that T (X,X) = T (X,X) =

T (X), P (X,X) = P (X,X) = P (X) and I(X,X) = I(X,X) = I(X).

The characterizations of the regular elements in T (X, Y ) and T (X, Y ) are

respectively given as follows:

Theorem 1.1. ([25]) Let X be a nonempty set, ∅ 6= Y ⊆ X and α ∈ T (X, Y ).

Then α ∈ Reg(T (X, Y )) if and only if ranα = Y α.

Theorem 1.2. ([25]) Let X be a nonempty set, ∅ 6= Y ⊆ X and α ∈ T (X, Y ).

Then α ∈ Reg(T (X, Y )) if and only if ranα ∩ Y = Y α.
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Next, let X and Y be any nonempty sets. Let S(X, Y ) be T (X, Y ), P (X, Y )

or I(X, Y ). For θ ∈ S(Y,X), we define a sandwich operation ∗ on S(X, Y ) by

α ∗ β = αθβ for all α, β ∈ S(X, Y ).

Then (S(X, Y ), ∗) is a semigroup which we denote by (S(X, Y ), θ). The semi-

groups (T (X, Y ), θ), (P (X, Y ), θ) and (I(X, Y ), θ) are called the generalized full

transformation semigroup, the generalized partial transformation semigroup and

the generalized 1-1 partial transformation semigroup of X into Y induced by θ,

respectively. Generalized partial transformation semigroups introduced by Sullivan

[28] in 1975 have these semigroups as special cases. In particular, (T (X,X), 1X),

(P (X,X), 1X) and (I(X,X), 1X) are respectively the semigroups T (X), P (X) and

I(X).

Example 1.3. ([12]) Let X and Y be nonempty sets and a ∈ X. Then(
T (X, Y ),

(
Y
a

))
is the semigroup T (X, Y ) with the operation ∗ defined by

α ∗ β = α

(
Y

a

)
β =

(
X

aβ

)
for all α, β ∈ T (X, Y ).

Also,
(
P (X, Y ),

(
Y
a

))
is the semigroup P (X, Y ) with the operation ◦ defined by

α ◦ β = α

(
Y

a

)
β =


(

domα

aβ

)
if α 6= 0 and a ∈ dom β,

0 otherwise.

Moreover, for b ∈ Y , the semigroup
(
I(X, Y ),

(
b
a

))
is the semigroup (I(X, Y ), •)

where

α • β = α

(
b

a

)
β =


(
bα−1

aβ

)
if b ∈ ranα and a ∈ dom β,

0 otherwise.

For a nonempty subset A of a partially ordered set (poset) X, we let max(A)

and min(A) denote the maximum and the minimum of A, respectively if they

exist. Also, for nonempty subsets A and B of X, let A < B mean that a < b
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for all a ∈ A and b ∈ B. For x ∈ X, let x < A stand for {x} < A. We define

A > B,A ≤ B,A ≥ B, x > A, x ≤ A and x ≥ A analogously. The set of all

upper bounds of A in X and the set of all lower bounds of A in X are denoted by

ub(A) and lb(A), respectively. Notice that x ∈ ub(A) if and only if x ≥ A, and

x ∈ lb(A) if and only if x ≤ A.

Let X and Y be partially ordered sets. For α ∈ P (X, Y ), α is said to be

order-preserving if

for any x1, x2 ∈ domα, x1 ≤ x2 in X ⇒ x1α ≤ x2α in Y .

A bijection ϕ : X → Y is called an order-isomorphism if ϕ and ϕ−1 are order-

preserving. It is clear that if both X and Y are chains and ϕ : X → Y is an

order-preserving bijection, then ϕ is an order-isomorphism from X onto Y . We

say that X and Y are order-isomorphic if there is an order-isomorphism from X

onto Y .

A transformation semigroup on a partially ordered set X is said to be an

order-preserving transformation semigroup on X if all of its elements are order-

preserving. Let

OT (X) = {α ∈ T (X) | α is order-preserving},

OP (X) = {α ∈ P (X) | α is order-preserving},

OI(X) = {α ∈ I(X) | α is order-preserving}.

Then OT (X), OP (X) and OI(X) are respectively subsemigroups of T (X), P (X)

and I(X). Observe that 0 and 1X belong to OP (X) and OI(X) and 1X ∈ OT (X).

The semigroups OT (X), OP (X) and OI(X) are called the order-preserving full

transformation semigroup on X, the order-preserving partial transformation semi-

group on X and the order-preserving 1-1 partial transformation semigroup on X,

respectively.

The following results for the semigroups OT (X), OP (X) and OI(X) are

known.

Theorem 1.4. ([8], p.203) If X is a finite chain, then OT (X) is a regular semi-

group.
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Theorem 1.5. ([14]) For any chain X, the semigroups OP (X) and OI(X) are

regular.

A characterization determining when an element of OT (X) is regular where

X is a chain was given in [22] as follows:

Theorem 1.6. ([22]) Let X be a chain and α ∈ OT (X). Then α ∈ Reg(OT (X))

if and only if the following three conditions hold.

(i) If ub(ranα) 6= ∅, then max(ranα) exists.

(ii) If lb(ranα) 6= ∅, then min(ranα) exists.

(iii) If x ∈ X r
(

ranα ∪ ub(ranα) ∪ lb(ranα)
)
, then max({t ∈ ranα | t < x})

exists or min({t ∈ ranα | t > x}) exists.

The following corollary is a direct consequence of Theorem 1.6.

Corollary 1.7. Let α ∈ OT (X). If ranα is finite, then α ∈ Reg(OT (X)).

Notice that Corollary 1.7 is a generalization of Theorem 1.4.

In the case that X is a finite chain, the cardinalities of OT (X), OP (X) and

OI(X) were given as follows:

Theorem 1.8. ([9], [10], [18]) If X is a finite chain of n elements, then

|OT (X)| =
(

2n− 1

n− 1

)
=

(
2n− 1

n

)
.

Theorem 1.9. ([7], [17]) If X is a finite chain of n elements, then

|OP (X)| =
n∑
r=0

(
n

r

)(
n+ r − 1

r

)
.

Theorem 1.10. ([5], [6]) If X is a finite chain of n elements, then

|OI(X)| =
n∑
r=0

(
n

r

)2

=

(
2n

n

)
.
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For partially ordered sets X and Y , let

OT (X, Y ) = {α ∈ T (X, Y ) | α is order-preserving},

OP (X, Y ) = {α ∈ P (X, Y ) | α is order-preserving},

OI(X, Y ) = {α ∈ I(X, Y ) | α is order-preserving}.

Proposition 1.11. Let X and Y be chains. If α ∈ OP (X, Y ) and a, b ∈ ranα

are such that a < b in Y , then aα−1 < bα−1 in X.

Proof. Let x ∈ aα−1 and y ∈ bα−1. Then xα = a and yα = b. Since X is a chain,

x < y or x ≥ y. If x ≥ y, then xα ≥ yα since α is order-preserving. This implies

that a ≥ b, a contradiction. Hence x < y.

If α and β are mappings with disjoint domains, we define the mapping α ∪ β

as follows: dom(α ∪ β) = domα ∪ dom β, (α ∪ β)|domα
= α and (α ∪ β)|dom β

= β.

The following facts are clearly seen.

Proposition 1.12. Let X and Y be partially ordered sets and α ∈ OP (X, Y ). If

domα = A ∪̇B, then α|A ∈ OT (A, Y ), α|B ∈ OT (B, Y ) and α = α|A ∪ α|B .

Proposition 1.13. Let X and Y be chains. If α, β ∈ OP (X, Y ) are such that

domα < dom β and ranα ≤ ran β, then α ∪ β ∈ OP (X, Y ).

If Y is a nonempty subset of a partially ordered set X, then

OT (X, Y ) = {α ∈ OT (X) | ranα ⊆ Y },

OP (X, Y ) = {α ∈ OP (X) | ranα ⊆ Y },

OI(X, Y ) = {α ∈ OI(X) | ranα ⊆ Y }.

It is easy to see that OT (X, Y ), OP (X, Y ) and OI(X, Y ) are subsemigroups of

OT (X), OP (X) and OI(X), respectively.

Due to the semigroup T (X, Y ) introduced by Magill [19] and those P (X, Y )

and I(X, Y ) mentioned previously for a set X and ∅ 6= Y ⊆ X, the following

order-preserving transformation semigroups are defined for a partially ordered set
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X and ∅ 6= Y ⊆ X analogously as follows:

OT (X, Y ) = {α ∈ OT (X) | Y α ⊆ Y },

OP (X, Y ) = {α ∈ OP (X) | (domα ∩ Y )α ⊆ Y },

OI(X, Y ) = {α ∈ OI(X) | (domα ∩ Y )α ⊆ Y }.

Then

OT (X, Y ) ⊆ OT (X, Y ) ⊆ OT (X), OP (X, Y ) ⊆ OP (X, Y ) ⊆ OP (X),

OI(X, Y ) ⊆ OI(X, Y ) ⊆ OI(X), OT (X,X) = OT (X,X) = OT (X),

OP (X,X) = OP (X,X) = OP (X), OI(X,X) = OI(X,X) = OI(X)

and 0 belongs to all of the semigroups OP (X, Y ), OP (X, Y ), OI(X, Y ) and

OI(X, Y ).

The regularity of OT (X, Y ), OP (X, Y ) and OI(X, Y ) where X is a chain and

∅ 6= Y ⊆ X was studied in [27].

Theorem 1.14. ([27]) Let X be a chain and ∅ 6= Y ⊆ X. Then OT (X, Y ) is a

regular semigroup if and only if one of the following statements holds.

(i) Y = X and OT (X) is a regular semigroup.

(ii) |Y | = 1.

(iii) |Y | = 2, min(X) and max(X) exist, and Y = {min(X),max(X)}.

Theorem 1.15. ([27]) Let X be a chain and ∅ 6= Y ⊆ X.

(i) OP (X, Y ) is a regular semigroup if and only if Y = X.

(ii) OI(X, Y ) is a regular semigroup if and only if Y = X.

Next, let X and Y be any partially ordered sets. For θ ∈ OT (Y,X), let

(OT (X, Y ), θ) denote the semigroup OT (X, Y ) under the sandwich operation de-

termined by θ and likewise for (OP (X, Y ), θ) with θ ∈ OP (Y,X) and (OI(X, Y ), θ)

with θ ∈ OI(Y,X). We call the semigroups (OT (X, Y ), θ), (OP (X, Y ), θ) and

(OI(X, Y ), θ) the generalized order-preserving full transformation semigroup, the

generalized order-preserving partial transformation semigroup and the generalized

order-preserving 1-1 partial transformation semigroup of X into Y induced by θ,
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respectively. As before, (OT (X,X), 1X), (OP (X,X), 1X) and (OI(X,X), 1X) are

respectively the semigroups OT (X), OP (X) and OI(X).

The following theorem provided in [15] can be considered as a generalization

of Theorem 1.14.

Theorem 1.16. ([15]) Let X, Y be any chains and θ ∈ OT (Y,X). Then the

semigroup (OT (X, Y ), θ) is regular if and only if one of the following statements

holds.

(i) The semigroup OT (X) is regular and θ is an order-isomorphism from Y

onto X.

(ii) |X| = 1.

(iii) |Y | = 1.

(iv) |Y | = 2, min(X) and max(X) exist, and ran θ = {min(X),max(X)}.

The following two theorems given in [12] can be also considered as generaliza-

tions of Theorem 1.15(i) and Theorem 1.15(ii), respectively.

Theorem 1.17. ([12]) Let X and Y be chains. For θ ∈ OP (Y,X), the semigroup

(OP (X, Y ), θ) is regular if and only if

(i) θ is an order-isomorphism from Y onto X or

(ii) dom θ = Y, ran θ = X and |X| = 1.

Theorem 1.18. ([12]) Let X and Y be chains. For θ ∈ OI(Y,X), the semigroup

(OI(X, Y ), θ) is regular if and only if θ is an order-isomorphism from Y onto X.

Recall that for nonnegative integers n and r,
(
n
r

)
= 0 if r > n.

To count the regular elements of the semigroupsOT (X, Y ), OP (X, Y ), OI(X, Y ),

OT (X, Y ), OP (X, Y ) andOI(X, Y ) whenX = {1, 2, . . . , n} and Y = {1, 2, . . . ,m}

where m ≤ n, the following proposition will be used. It is obtained from some

combinatorial ideas given in [7].

Proposition 1.19. ([7]) Let X and Y be finite chains. If |X| = n and |Y | = r,

then the number of all order-preserving transformations from X onto Y is
(
n−1
r−1

)
.
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Moreover, the following standard combinatorial results are also used for our

counting.

Result 1.20. ([9]) For all natural numbers m and n with n ≤ m,

n∑
k=0

(
n

k

)(
m

k

)
=

(
n+m

m

)
.

Result 1.21. ([17]) For all natural numbers n and r,

n∑
k=1

(
k + r − 2

k − 1

)
=

(
n+ r − 1

n− 1

)
=

(
n+ r − 1

r

)
.

Result 1.22. ([18]) For all natural numbers n and r,

n∑
k=r

(
k − 1

r − 1

)
=

(
n

r

)
.

Result 1.23. ([21], p.68) For every natural number n,

n∑
r=0

(
n

r

)
= 2n.

Result 1.24. ([21], p.53) For all natural numbers m and n with n ≤ m,

n∑
r=1

(
m

r

)(
n− 1

r − 1

)
=

(
m+ n− 1

n

)
.

Result 1.25. ([1], p.42) For all natural numbers m, p and q,

m∑
k=0

(
p

k

)(
q

m− k

)
=

(
p+ q

m

)
.

Result 1.25 yields the following result.

Result 1.26. For all natural numbers m and n,

m∑
r=1

(
m

r

)(
n− 1

r − 1

)
=

(
m+ n− 1

n

)
.
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Proof. For all natural numbers m and n, we have

m∑
r=1

(
m

r

)(
n− 1

r − 1

)
=

m−1∑
k=0

(
m

k + 1

)(
n− 1

k

)

=
m−1∑
k=0

(
m

m− (k + 1)

)(
n− 1

k

)

=
m−1∑
k=0

(
n− 1

k

)(
m

(m− 1)− k

)

=

(
m+ n− 1

m− 1

)
by Result 1.25

=

(
m+ n− 1

n

)
.

The following result is a direct consequence of Result 1.24 and Result 1.26.

Result 1.27. For all natural numbers m and n,

min{m,n}∑
r=1

(
m

r

)(
n− 1

r − 1

)
=

(
m+ n− 1

n

)
.



CHAPTER II

SEMIGROUPS OF ORDER-PRESERVING

TRANSFORMATIONS WITH

RESTRICTED RANGE

The purpose of this chapter is to characterize the regular elements of the

semigroups OT (X, Y ), OP (X, Y ) and OI(X, Y ) where X is a chain and ∅ 6=

Y ⊆ X. These results are then applied to prove Theorem 1.14 and Theorem 1.15,

respectively. In addition, the number of regular elements in each of the semigroups

OT (X, Y ), OP (X, Y ) and OI(X, Y ) is provided when X = {1, 2, . . . , n} and Y =

{1, 2, . . . ,m} where m ≤ n. First, we recall that

OT (X, Y ) = {α ∈ OT (X) | ranα ⊆ Y },

OP (X, Y ) = {α ∈ OP (X) | ranα ⊆ Y },

OI(X, Y ) = {α ∈ OI(X) | ranα ⊆ Y }.

2.1 Characterizations of Regular Elements

Throughout this section, X denotes a chain and ∅ 6= Y ⊆ X.

We begin this section by characterizing the regular elements of the semi-

group OT (X, Y ). Recall that the regular elements of the semigroups T (X, Y )

and OT (X) are introduced in Theorem 1.1 and Theorem 1.6, respectively.

Theorem 2.1.1. For α ∈ OT (X, Y ), α ∈ Reg(OT (X, Y )) if and only if α ∈

Reg(T (X, Y )) and α ∈ Reg(OT (X)). Consequently,

Reg(OT (X, Y )) = Reg(T (X, Y )) ∩ Reg(OT (X)).

Proof. Assume that α ∈ Reg(OT (X, Y )). Since OT (X, Y ) is a subsemigroup of

T (X, Y ) and OT (X), it follows that α is regular in T (X, Y ) and OT (X), i.e.,
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α ∈ Reg(T (X, Y )) and α ∈ Reg(OT (X)).

For the converse, assume that α ∈ Reg(T (X, Y )) and α ∈ Reg(OT (X)). By

Theorem 1.1, ranα = Y α or equivalently, xα−1 ∩ Y 6= ∅ for all x ∈ ranα. For

each x ∈ ranα, choose yx ∈ xα−1 ∩ Y . Then yxα = x for all x ∈ ranα. Let

β ∈ OT (X) be such that α = αβα. Then Xα = Xαβα ⊆ Xβα ⊆ Xα = ranα.

It follows that ranα = ran(βα). Thus X =
·⋃

x∈ ran(βα)

x(βα)−1 =
·⋃

x∈ ranα

x(βα)−1.

Define β
′
: X → Y by a bracket notation as follows:

β
′
=

(
x(βα)−1

yx

)
x∈ ranα

.

If x ∈ X, then xα = (xα)βα, so xα ∈ (xα)(βα)−1 which implies that xαβ
′
α =

yxαα = xα. Hence α = αβ
′
α. To show that β

′
is order-preserving, let x1, x2 ∈ X

be such that x1 < x2. Then x1βα ≤ x2βα. If x1βα = x2βα, then x1, x2 ∈

(x1βα)(βα)−1, so x1β
′
= yx1βα = x2β

′
. If x1βα < x2βα, then by Proposition 1.11,

(x1βα)α−1 < (x2βα)α−1. It follows that yx1βα < yx2βα. Since ((x1βα)(βα)−1)β
′
=

{yx1βα} and ((x2βα)(βα)−1)β
′

= {yx2βα}, we have that x1β
′

= yx1βα < yx2βα =

x2β
′
.

The proof is thereby complete.

The following theorem is another version of Theorem 2.1.1. It follows

directly from Theorem 1.1, Theorem 1.6 and Theorem 2.1.1.

Theorem 2.1.2. For α ∈ OT (X, Y ), α ∈ Reg(OT (X, Y )) if and only if the

following four conditions hold.

(i) ranα = Y α.

(ii) If ub(ranα) 6= ∅, then max(ranα) exists.

(iii) If lb(ranα) 6= ∅, then min(ranα) exists.

(iv) If x ∈ X r
(

ranα ∪ ub(ranα) ∪ lb(ranα)
)
, then max({t ∈ ranα | t < x})

exists or min({t ∈ ranα | t > x}) exists.

The next result follows directly from Theorem 1.1, Corollary 1.7 and Theorem

2.1.1.
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Corollary 2.1.3. Let α ∈ OT (X, Y ). If ranα is finite, then α ∈ Reg(OT (X, Y ))

if and only if ranα = Y α.

Example 2.1.4. (1) Let X = R and Y = (−2, 2). Define α : X → Y by

xα =

0 if x < 0,

1 if x ≥ 0.

Then α ∈ OT (X, Y ), ranα = {0, 1} and Y α = {0, 1}. By Corollary 2.1.3, α ∈

Reg(OT (X, Y )). Let Y ′ = [0, 2). Then α ∈ OT (X, Y ′) and Y ′α = {1}, so

α /∈ Reg(OT (X, Y ′)) by Corollary 2.1.3.

(2) Let X = R and Y = [0,∞). Define β : X → Y by

xβ =


x

x+ 1
if x ≥ 0,

0 if x < 0.

Then β ∈ OT (X, Y ) and ran β = [0, 1). Since ran β has an upper bound in X but

ran β has no maximum, by Theorem 2.1.2, β /∈ Reg(OT (X, Y )).

(3) Let X = Y = [0, 1) ∪ (1, 2]. Define λ : X → Y by

xλ =


x

3
if x ∈ [0, 1),

x if x ∈ (1, 2].

Then λ ∈ OT (X, Y ) and ranλ = [0, 1
3
)∪(1, 2]. Since 2

3
∈ Xr

(
ranλ∪ub(ranλ)∪

lb(ranλ)
)
,

{x ∈ ranλ | x < 2

3
} = [0,

1

3
)

and

{x ∈ ranλ | x > 2

3
} = (1, 2],

it follows that {x ∈ ranλ | x < 2
3
} has no maximum and {x ∈ ranλ | x > 2

3
} has

no minimum. By Theorem 2.1.2, λ /∈ Reg(OT (X, Y )).
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Next, we shall apply Theorem 2.1.2 to prove Theorem 1.14 given in [27]. The

following series of lemmas is needed.

Lemma 2.1.5. Let |Y | ≥ 2. If there is an element a ∈ X such that a > Y or

a < Y , then the semigroup OT (X, Y ) is not regular.

Proof. Let e, f ∈ Y be such that e < f . Define α : X → Y by

α =

(
u v

e f

)
u<a
v≥ a

if a > Y and α =

(
u v

e f

)
u≤ a
v >a

if a < Y.

Then α ∈ OT (X, Y ), ranα = {e, f}, Y α = {e} for a > Y and Y α = {f} for

a < Y . By Corollary 2.1.3, α /∈ Reg(OT (X, Y )). Hence OT (X, Y ) is not a

regular semigroup.

Lemma 2.1.6. If Y ( X and |Y | ≥ 3, then OT (X, Y ) is not a regular semigroup.

Proof. Let e, f, g ∈ Y be such that e < f < g and let a ∈ X r Y . If a > Y

or a < Y , then by Lemma 2.1.5, OT (X, Y ) is not regular. Assume that a ≯ Y

and a ≮ Y . Then {t ∈ Y | t < a} and {t ∈ Y | t > a} are nonempty. Define

α : X → Y by

α =

(
u a v

e f g

)
u<a
v >a

.

Then α ∈ OT (X, Y ), ranα = {e, f, g} and Y α = {e, g}. It follows from Corollary

2.1.3 that α /∈ Reg(OT (X, Y )) and we conclude that OT (X, Y ) is not a regular

semigroup.

Lemma 2.1.7. Let |Y | = 2. Then OT (X, Y ) is a regular semigroup if and only

if min(X) and max(X) exist, and Y = {min(X),max(X)}.

Proof. Let Y = {e, f} be such that e < f . Assume that OT (X, Y ) is regular.

Then by Lemma 2.1.5, for every a ∈ X, a ≯ Y and a ≮ Y . Thus e ≤ a ≤ f for

all a ∈ X. This implies that e = min(X) and f = max(X).

Conversely, assume that min(X) and max(X) exist, e = min(X) and f =
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max(X). Let α ∈ OT (X, Y ). If | ranα| = 1, then α2 = α, so α ∈ Reg(OT (X, Y )).

If ranα = {e, f}, then eα = e and fα = f since α is order-preserving. Thus

ranα = Y α, so Corollary 2.1.3 implies that α ∈ Reg(OT (X, Y )).

Theorem 2.1.8. The semigroup OT (X, Y ) is regular if and only if one of the

following statements holds.

(i) Y = X and OT (X) is a regular semigroup.

(ii) |Y | = 1.

(iii) |Y | = 2, min(X) and max(X) exist, and Y = {min(X),max(X)}.

Proof. Assume that OT (X, Y ) is regular and suppose that (i) and (ii) are false.

Then (Y ( X or OT (X) is not regular) and |Y | ≥ 2, so there are two cases to be

considered.

Case 1: Y ( X and |Y | ≥ 2. Then the regularity of OT (X, Y ) and Lemma 2.1.6

yield |Y | = 2. Hence (iii) holds by Lemma 2.1.7.

Case 2: OT (X) is not regular and |Y | ≥ 2. Since OT (X, Y ) is regular, it follows

that Y ( X, so by Lemma 2.1.6, |Y | = 2. Thus (iii) holds by Lemma 2.1.7.

Conversely, OT (X, Y ) is obviously regular if (i) or (ii) holds. We have by

Lemma 2.1.7 that OT (X, Y ) is regular if (iii) holds.

Therefore the theorem is proved.

Next, we give characterizations of the regular elements in OP (X, Y ) and

OI(X, Y ), respectively.

Lemma 2.1.9. Let A be a nonempty set and ∅ 6= B ⊆ A. For α ∈ P (A,B),

α ∈ Reg(P (A,B)) if and only if ranα = (domα ∩B)α.

Proof. Assume that α ∈ Reg(P (A,B)). Let β ∈ P (A,B) be such that α = αβα.

Then ran(αβ) ⊆ B, so

ranα = ran(αβα) = (ran(αβ) ∩ domα)α ⊆ (B ∩ domα)α ⊆ ranα,

which implies that ranα = (domα ∩B)α.
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Conversely, assume that ranα = (domα ∩ B)α. Then xα−1 ∩ B 6= ∅ for all

x ∈ ranα. For each x ∈ ranα, choose dx ∈ xα−1 ∩ B. Then dxα = x for all

x ∈ ranα. Define β : ranα→ B by

β =

(
x

dx

)
x∈ ranα

.

Then β ∈ P (A,B). Since for x ∈ domα, xα ∈ dom β and xαβ ∈ domα, it follows

that dom(αβα) = domα. If x ∈ domα, then xαβα = (xα)βα = dxαα = xα.

Therefore α = αβα, so α ∈ Reg(P (A,B)), as desired.

Theorem 2.1.10. For α ∈ OP (X, Y ), α ∈ Reg(OP (X, Y )) if and only if ranα =

(domα ∩ Y )α. Consequently,

Reg(OP (X, Y )) = Reg(P (X, Y )) ∩OP (X).

Proof. If α ∈ Reg(OP (X, Y )), then α ∈ Reg(P (X, Y )) since OP (X, Y ) is a sub-

semigroup of P (X, Y ), so ranα = (domα ∩ Y )α by Lemma 2.1.9.

For the converse, assume that ranα = (domα ∩ Y )α. Define β : ranα → Y

as in the proof of Lemma 2.1.9. Then β ∈ P (X, Y ) and α = αβα. Since α is

order-preserving, it follows from Proposition 1.11 that β is order-preserving. Thus

β ∈ OP (X, Y ), and so α ∈ Reg(OP (X, Y )), as desired.

Lemma 2.1.11. Let A be a nonempty set and ∅ 6= B ⊆ A. For α ∈ I(A,B),

α ∈ Reg(I(A,B)) if and only if domα ⊆ B.

Proof. Assume that α ∈ Reg(I(A,B)). Since I(A,B) is a subsemigroup of

P (A,B), it follows that α ∈ Reg(P (A,B)). By Lemma 2.1.9, ranα = (domα ∩

B)α. Then (domα)α = (domα ∩ B)α, so domα = domα ∩ B since α is 1-1.

Hence domα ⊆ B.

Conversely, assume that domα ⊆ B. Then α ∈ I(B). Since I(B) is a regular

subsemigroup of I(A,B), it follows that α ∈ Reg(I(A,B)).

Theorem 2.1.12. For α ∈ OI(X, Y ), α ∈ Reg(OI(X, Y )) if and only if

domα ⊆ Y . Consequently, Reg(OI(X, Y )) = OI(Y ).
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Proof. If α ∈ Reg(OI(X, Y )), then α ∈ Reg(I(X, Y )) since OI(X, Y ) is a sub-

semigroup of I(X, Y ). So domα ⊆ Y by Lemm 2.1.11.

Conversely, assume that domα ⊆ Y . Then α ∈ OI(Y ), so α ∈ Reg(OI(Y ))

by Theorem 1.5, and hence α ∈ Reg(OI(X, Y )) since OI(Y ) is a subsemigroup of

OI(X, Y ).

We close this section with the proof of Theorem 1.15 by using Theorem 2.1.10

and Theorem 2.1.12.

Theorem 2.1.13. Let OS(X, Y ) be OP (X, Y ) or OI(X, Y ). Then OS(X, Y ) is

a regular semigroup if and only if Y = X.

Proof. Suppose that Y ( X. Let a ∈ X r Y and b ∈ Y . Then α =
(
a
b

)
∈

OI(X, Y ) ⊆ OP (X, Y ). But domα ∩ Y = ∅, ranα = {b} and domα = {a} * Y,

so by Theorem 2.1.10 and Theorem 2.1.12, α /∈ Reg(OS(X, Y )). If Y = X,

then OP (X, Y ) = OP (X), OI(X, Y ) = OI(X), and both OP (X) and OI(X) are

regular semigroups by Theorem 1.5, completing the proof.

2.2 Combinatorial Results on Regular Elements

We begin this section by determining |OT (X, Y )|, |OP (X, Y )| and |OI(X, Y )|

where X and Y are any finite chains. Then for X = {1, 2, . . . , n} and

Y = {1, 2, . . . , m} where m ≤ n, |Reg(OT (X, Y ))|, |Reg(OP (X, Y ))| and

|Reg(OI(X, Y ))| are provided. In this case, the nonregular elements in OT (X, Y ),

OP (X, Y ) and OI(X, Y ) can be counted.

The following two lemmas are needed to obtain the first purpose.

Lemma 2.2.1. Let X and Y be finite chains, |X| = n and |Y | = m. Then for

1 ≤ r ≤ n and 1 ≤ s ≤ m,∣∣{α ∈ OP (X, Y ) | | domα| = r and | ranα| = s}
∣∣ =

(
n

r

)(
m

s

)(
r − 1

s− 1

)
.

Proof. Let ∅ 6= X ′ ⊆ X and ∅ 6= Y ′ ⊆ Y be such that |X ′| = r and |Y ′| = s.

Then by Proposition 1.19, the number of order-preserving transformations from
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X ′ onto Y ′ is
(
r−1
s−1

)
. It follows that

∣∣{α ∈ OP (X, Y ) | domα = X ′ and ranα = Y ′}
∣∣ =

(
r − 1

s− 1

)
.

This implies that for 1 ≤ r ≤ n and 1 ≤ s ≤ m,

∣∣{α ∈ OP (X, Y ) | | domα| = r and | ranα| = s}
∣∣ =

(
n

r

)(
m

s

)(
r − 1

s− 1

)
.

Lemma 2.2.2. Let X and Y be finite chains, |X| = n and |Y | = m. Then for

1 ≤ r ≤ n,

∣∣{α ∈ OP (X, Y ) | | domα| = r}
∣∣ =

(
n

r

)(
m+ r − 1

r

)
.

Proof. Note that for all α ∈ OP (X, Y ) r {0}, 1 ≤ | ranα| ≤ min{| domα|, |Y |}.

Then

∣∣{α ∈ OP (X, Y ) | | domα| = r}
∣∣

=
∣∣∣min{r,m}⋃

s=1

{α ∈ OP (X, Y ) | | domα| = r and | ranα| = s}
∣∣∣

=

min{r,m}∑
s=1

∣∣{α ∈ OP (X, Y ) | | domα| = r and | ranα| = s}
∣∣

=

min{r,m}∑
s=1

(
n

r

)(
m

s

)(
r − 1

s− 1

)
by Lemma 2.2.1

=

(
n

r

)min{r,m}∑
s=1

(
m

s

)(
r − 1

s− 1

)

=

(
n

r

)(
m+ r − 1

r

)
by Result 1.27.
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Theorem 2.2.3. Let X and Y be finite chains. If |X| = n and |Y | = m, then

(i) |OT (X, Y )| =

(
m+ n− 1

n

)
.

(ii) |OP (X, Y )| =
n∑
r=0

(
n

r

)(
m+ r − 1

r

)
.

(iii) |OI(X, Y )| =

(
n+m

m

)
.

Proof. (i) We have that

|OT (X, Y )| =
∣∣∣min{n,m}⋃

s=1

{α ∈ OT (X, Y ) | | ranα| = s}
∣∣∣

=

min{n,m}∑
s=1

∣∣{α ∈ OT (X, Y ) | | ranα| = s}
∣∣

=

min{n,m}∑
s=1

∣∣{α ∈ OP (X, Y ) | | domα| = n and | ranα| = s}
∣∣

=

min{n,m}∑
s=1

(
n

n

)(
m

s

)(
n− 1

s− 1

)
by Lemma 2.2.1

=

min{n,m}∑
s=1

(
m

s

)(
n− 1

s− 1

)

=

(
m+ n− 1

n

)
by Result 1.27.

(ii) We see that

|OP (X, Y )| =
∣∣∣{0} ∪ n⋃

r=1

{α ∈ OP (X, Y ) | | domα| = r}
∣∣∣

= 1 +
n∑
r=1

∣∣{α ∈ OP (X, Y ) | | domα| = r}
∣∣

= 1 +
n∑
r=1

(
n

r

)(
m+ r − 1

r

)
by Lemma 2.2.2

=
n∑
r=0

(
n

r

)(
m+ r − 1

r

)
.
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(iii) The following equalities hold.

|OI(X, Y )| =
∣∣∣{0} ∪ n⋃

r=1

{α ∈ OI(X, Y ) | | domα| = r}
∣∣∣

= 1 +
n∑
r=1

∣∣{α ∈ OI(X, Y ) | | domα| = r}
∣∣

= 1 +
n∑
r=1

∣∣{α ∈ OP (X, Y ) | | domα| = | ranα| = r}
∣∣

= 1 +
n∑
r=1

(
n

r

)(
m

r

)(
r − 1

r − 1

)
by Lemma 2.2.1

=



n∑
r=0

(
n

r

)(
m

r

)
if n ≤ m,

m∑
r=0

(
n

r

)(
m

r

)
if n > m,

=

(
n+m

m

)
by Result 1.20.

Notice that Theorem 1.8, Theorem 1.9 and Theorem 1.10 are special cases of

Theorem 2.2.3 when Y = X.

The following lemma is needed to determine |Reg(OT (X, Y ))| when X =

{1, 2, . . . , n}, Y = {1, 2, . . . ,m} and m ≤ n.

Lemma 2.2.4. Let X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m} where m < n. Then

for α ∈ OT (X, Y ), ranα = Y α if and only if (X r Y )α = {mα}.

Proof. Suppose that ranα = Y α. Let x ∈ X r Y be arbitrary. Then x > m.

Since xα ∈ ranα = Y α, we can choose y ∈ Y such that xα = yα. Since α is

order-preserving, it follows that mα ≤ xα = yα ≤ mα, so xα = mα. This proves

that (XrY )α = {mα}. If (XrY )α = {mα}, then (XrY )α ⊆ Y α, this implies

that ranα = Y α, and the proof is complete.

Theorem 2.2.5. Let X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m} where m ≤ n.

Then

|Reg(OT (X, Y ))| =
(

2m− 1

m

)
.
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Proof. If m = n, then Y = X, so OT (X, Y ) = OT (Y ). This together with

Theorem 1.4 yields Reg(OT (X, Y )) = OT (Y ). Then the result for m = n follows

from Theorem 1.8. Assume that m < n. Let ∅ 6= Y ′ ⊆ Y and |Y ′| = s. By

Proposition 1.19, the number of all order-preserving transformations from Y onto

Y ′ is
(
m−1
s−1

)
. Then∣∣{α ∈ OT (X, Y ) | Y α = Y ′ and (X r Y )α = {mα}

}∣∣ =

(
m− 1

s− 1

)
.

It follows from Lemma 2.2.4 that{
α ∈ OT (X, Y ) | Y α = Y ′ and (X r Y )α = {mα}

}
= {α ∈ OT (X, Y ) | ranα = Y α = Y ′}.

Hence

|{α ∈ OT (X, Y ) | ranα = Y α = Y ′}| =
(
m− 1

s− 1

)
.

But we have from Corollary 2.1.3 that

{α ∈ OT (X, Y ) | ranα = Y α = Y ′} = {α ∈ Reg(OT (X, Y )) | ranα = Y ′},

so

|{α ∈ Reg(OT (X, Y ))| ranα = Y ′}| =
(
m− 1

s− 1

)
.

This implies that for 1 ≤ s ≤ m,

|{α ∈ Reg(OT (X, Y )) | | ranα| = s}| =
(
m

s

)(
m− 1

s− 1

)
.

Therefore, it follows that

|Reg(OT (X, Y ))| =
m∑
s=1

(
m

s

)(
m− 1

s− 1

)
.

We obtain from Result 1.26 that

|Reg(OT (X, Y ))| =
(

2m− 1

m

)
.

Next, we count the regular elements of OP (X, Y ) when X = {1, 2, . . . , n} and

Y = {1, 2, . . . ,m} where m ≤ n. Before proceeding, we require the following

lemmas.
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Lemma 2.2.6. Let X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m} where m < n. For

α ∈ OP (X, Y ), ranα = (domα ∩ Y )α if and only if either

(i) domα ⊆ Y or

(ii) domα ∩ Y 6= ∅, domα ∩ (X r Y ) 6= ∅ and (domα ∩ (X r Y ))α =

{max((domα ∩ Y )α)}.

Proof. Assume that ranα = (domα ∩ Y )α and suppose that (i) is false, i.e.,

domα * Y . Then domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅. To show that

(domα ∩ (X r Y ))α = {max((domα ∩ Y )α)}, let x ∈ domα ∩ (X r Y ). Then

x > m ≥ max(domα ∩ Y ) and xα ∈ (domα ∩ Y )α by assumption. Since α is

order-preserving, we obtain that

max((domα ∩ Y )α) = (max(domα ∩ Y ))α ≤ xα ≤ max((domα ∩ Y )α),

and we deduce that xα = max((domα ∩ Y )α). Hence (ii) holds.

Conversely, if (i) holds, then (domα ∩ Y )α = (domα)α = ranα. Next,

assume that (ii) holds. Then (domα ∩ (X r Y ))α = {max((domα ∩ Y )α)} ⊆

(domα∩Y )α. This implies that ranα = (domα∩Y )α∪ (domα∩ (XrY ))α =

(domα ∩ Y )α.

Hence the proof is complete.

Lemma 2.2.7. Let X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m} where m < n. Then

for 1 ≤ s ≤ m and 1 ≤ t ≤ n−m,∣∣∣{α ∈ OP (X, Y )
∣∣ | domα ∩ Y | = s, | domα ∩ (X r Y )| = t and

(domα ∩ (X r Y ))α = {max((domα ∩ Y )α)}
}∣∣∣

=

(
m

s

)(
n−m
t

)(
m+ s− 1

s

)
.

Proof. Let ∅ 6= Y ′ ⊆ Y and ∅ 6= Z ′ ⊆ X r Y be such that |Y ′| = s and |Z ′| = t.

Then by Theorem 2.2.3(i), the number of order-preserving transformations from

Y ′ into Y is
(
m+s−1

s

)
. Therefore it follows that the number of order-preserving

transformations α : Y ′ ∪ Z ′ → Y such that Z ′α = max(Y ′α) is also
(
m+s−1

s

)
.
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Consequently,∣∣∣{α ∈ OP (X, Y )
∣∣ domα ∩ Y = Y ′, domα ∩ (X r Y ) = Z ′ and

(domα ∩ (X r Y ))α = {max((domα ∩ Y )α)}
}∣∣∣

=

(
m+ s− 1

s

)
.

This implies that for 1 ≤ s ≤ m and 1 ≤ t ≤ n−m,∣∣∣{α ∈ OP (X, Y )
∣∣ | domα ∩ Y | = s, | domα ∩ (X r Y )| = t and

(domα ∩ (X r Y ))α = {max((domα ∩ Y )α)}
}∣∣∣

=

(
m

s

)(
n−m
t

)(
m+ s− 1

s

)
.

Theorem 2.2.8. Let X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m} where m ≤ n.

Then

|Reg(OP (X, Y ))| = 1 + 2n−m
m∑
s=1

(
m

s

)(
m+ r − 1

s

)
.

Proof. If m = n, then OP (X, Y ) = OP (Y ), so Reg(OP (X, Y )) = OP (Y ) by

Theorem 1.5 and then the result for m = n follows from Theorem 1.9. Next,

assume that m < n. Then by Theorem 2.1.10 and Lemma 2.2.6, we have

Reg(OP (X, Y )) = {α ∈ OP (X, Y ) | ranα = (domα ∩ Y )α}

= {α ∈ OP (X, Y ) | domα ⊆ Y } ∪{
α ∈ OP (X, Y ) | domα ∩ Y 6= ∅, domα ∩ (X r Y ) 6= ∅ and

(domα ∩ (X r Y ))α = {max((domα ∩ Y )α)}
}

= OP (Y ) ∪
{
α ∈ OP (X, Y ) | domα ∩ Y 6= ∅, domα ∩ (X r Y ) 6= ∅ and

(domα ∩ (X r Y ))α = {max((domα ∩ Y )α)}
}
.

(1)

We know from Theorem 1.9 that
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|OP (Y )| =
m∑
s=0

(
m

s

)(
m+ s− 1

s

)
. (2)

Also, by Lemma 2.2.7, we have∣∣∣{α ∈ OP (X, Y ) | domα ∩ Y 6= ∅, domα ∩ (X r Y ) 6= ∅ and

(domα ∩ (X r Y ))α = {max((domα ∩ Y )α)}
}∣∣∣

=
m∑
s=1

n−m∑
t=1

∣∣∣{α ∈ OP (X, Y )
∣∣ | domα ∩ Y | = s, | domα ∩ (X r Y )| = t and

(domα ∩ (X r Y ))α = {max((domα ∩ Y )α)}
}∣∣∣

=
m∑
s=1

n−m∑
t=1

(
m

s

)(
n−m
t

)(
m+ s− 1

s

)
. (3)

From (1), (2) and (3), we have that

|Reg(OT (X,Y ))| =
m∑
s=0

(
m

s

)(
m+ s− 1

s

)
+

m∑
s=1

n−m∑
t=1

(
m

s

)(
n−m
t

)(
m+ s− 1

s

)

= 1 +
m∑
s=1

(
m

s

)(
m+ s− 1

s

)
+

n−m∑
t=1

(
n−m
t

) m∑
s=1

(
m

s

)(
m+ s− 1

s

)

= 1 +
n−m∑
t=0

(
n−m
t

) m∑
s=1

(
m

s

)(
m+ s− 1

s

)

= 1 + 2n−m
m∑
s=1

(
m

s

)(
m+ s− 1

s

)
by Result 1.23.

The last result of this section follows directly from Theorem 2.1.12 and

Theorem 1.10.

Theorem 2.2.9. If X is a finite chain and ∅ 6= Y ⊆ X, then

|Reg(OI(X, Y ))| =
(

2|Y |
|Y |

)
.



CHAPTER III

SEMIGROUPS OF ORDER-PRESERVING

TRANSFORMATIONS SENDING

A FIXED SET INTO ITSELF

In this chapter, we consider the semigroupsOT (X, Y ), OP (X, Y ) andOI(X, Y )

where Y is a nonempty subset of a chain X. The main purpose of this chapter

is to characterize the regular elements of OT (X, Y ), OP (X, Y ) and OI(X, Y ).

We also give necessary and sufficient conditions in terms of Y for OT (X, Y ),

OP (X, Y ) and OI(X, Y ) to be regular semigroups. Moreover, the cardinalities

of Reg(OT (X, Y )), Reg(OP (X, Y )) and Reg(OI(X, Y )) are provided when X =

{1, 2, . . . , n} and Y = {1, 2, . . . ,m} where m ≤ n.

Recall that the semigroups OT (X, Y ), OP (X, Y ) and OI(X, Y ), where Y is a

nonempty subset of a chain X, are defined as follows:

OT (X, Y ) = {α ∈ OT (X) | Y α ⊆ Y },

OP (X, Y ) = {α ∈ OP (X) | (domα ∩ Y )α ⊆ Y },

OI(X, Y ) = {α ∈ OI(X) | (domα ∩ Y )α ⊆ Y }.

3.1 Characterizations of Regular Elements

Throughout this section, let X be any chain and ∅ 6= Y ⊆ X.

We first give a necessary and sufficient condition for an element of OT (X, Y )

to be regular. The following two lemmas give necessary conditions for the regular

elements of OT (X, Y ).

Lemma 3.1.1. Let α ∈ Reg(OT (X, Y )). Then the following statements hold.

(i) If ub(ranα) ∩ Y 6= ∅, then max(ranα) exists and belongs to Y .

(ii) If lb(ranα) ∩ Y 6= ∅, then min(ranα) exists and belongs to Y .
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Proof. Assume that ub(ranα) ∩ Y 6= ∅. Let u ∈ ub(ranα) ∩ Y and let β ∈

OT (X, Y ) be such that α = αβα. Then ranα ≤ u, and thus

ranα = Xα = Xαβα = (ranα)βα ≤ uβα ∈ ranα.

This implies that max(ranα) = uβα and uβα ∈ Y βα ⊆ Y . This proves (i), and

(ii) follows in the same way.

Lemma 3.1.2. Let α ∈ Reg(OT (X, Y )) and x ∈ X r
(

ranα ∪ ub(ranα) ∪

lb(ranα)
)
. If x ∈ Y , then

(i) max({t ∈ ranα | t < x}) exists and belongs to Y or

(ii) min({t ∈ ranα | t > x}) exists and belongs to Y .

Proof. Let β ∈ OT (X, Y ) be such that α = αβα. Since x ∈ X r
(

ranα ∪

ub(ranα) ∪ lb(ranα)
)
, it follows that

{t ∈ ranα | t < x} 6= ∅, {t ∈ ranα | t > x} 6= ∅,

ranα = {t ∈ ranα | t < x} ∪̇ {t ∈ ranα | t > x}.

Since xβα ∈ ranα, it follows that xβα < x or xβα > x. For s ∈ X, if sα < x,

then sα = (sα)βα ≤ xβα. If sα > x, then sα = (sα)βα ≥ xβα.

This shows that

xβα =

max({t ∈ ranα | t < x}) if xβα < x,

min({t ∈ ranα | t > x}) if xβα > x.

Since x ∈ Y , we have xβα ∈ Y , so the result follows.

Now we give a necessary and sufficient condition for an element of OT (X, Y )

to be regular.

Theorem 3.1.3. Let α ∈ OT (X, Y ). Then α ∈ Reg(OT (X, Y )) if and only if

the following four conditions hold.

(i) ranα ∩ Y = Y α.

(ii) If ub(ranα) 6= ∅, then max(ranα) exists.
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If ub(ranα) ∩ Y 6= ∅, then max(ranα) ∈ Y .

(iii) If lb(ranα) 6= ∅, then min(ranα) exists.

If lb(ranα) ∩ Y 6= ∅, then min(ranα) ∈ Y .

(iv) If x ∈ X r
(

ranα ∪ ub(ranα) ∪ lb(ranα)
)
, then max({t ∈ ranα | t < x})

exists or min({t ∈ ranα | t > x}) exists.

If x is also in Y , then max({t ∈ ranα | t < x}) exists and belongs to Y or

min({t ∈ ranα | t > x}) exists and belongs to Y .

Proof. Assume that α ∈ Reg(OT (X, Y )). Since OT (X, Y ) is a subsemigroup of

T (X, Y ) and OT (X), it follows that α ∈ Reg
(
T (X, Y )

)
and α ∈ Reg(OT (X)).

By Theorem 1.2, ranα ∩ Y = Y α, so (i) holds. Also, by Theorem 1.6, the first

parts of (ii), (iii) and (iv) are true. For the second parts of (ii), (iii) and (iv), we

obtain from Lemma 3.1.1(i), Lemma 3.1.1(ii) and Lemma 3.1.2, respectively.

For the converse, assume that (i), (ii), (iii) and (iv) hold. If ub(ranα) 6= ∅,

let u = max(ranα) and so u ∈ Y if ub(ranα) ∩ Y 6= ∅. If lb(ranα) 6= ∅, let

l = min(ranα) and so l ∈ Y if lb(ranα) ∩ Y 6= ∅. For x ∈
(
X r (ranα ∪

ub(ranα) ∪ lb(ranα))
)
, if x ∈ Y , let

mx =


max({t ∈ ranα | t < x}) if max({t ∈ ranα | t < x}) exists

and belongs to Y,

min({t ∈ ranα | t > x}) otherwise,

and if x /∈ Y , let

nx =

 max({t ∈ ranα | t < x}) if max({t ∈ ranα | t < x}) exists,

min({t ∈ ranα | t > x}) otherwise.

By (iv), mx ∈ Y for all x ∈
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y .

For each y ∈
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y , let

Ay =
{
x ∈ X | {t ∈ ranα | t < x} = {t ∈ ranα | t < y} and

{t ∈ ranα | t > x} = {t ∈ ranα | t > y}
}

.
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Notice that y ∈ Ay for all y ∈
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y and for

y1, y2 ∈
(
Xr(ranα∪ub(ranα)∪lb(ranα))

)
∩Y , either Ay1∩Ay2 = ∅ or Ay1 = Ay2 .

It follows that if x /∈ Ay for all y ∈
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y ,

then x /∈ Y. Since ranα ∩ Y = Y α by (i), this implies that xα−1 ∩ Y 6= ∅ for all

x ∈ ranα ∩ Y . For each x ∈ ranα, choose an element

x′ ∈

xα
−1 ∩ Y if x ∈ Y,

xα−1 if x /∈ Y.

Then x′ ∈ Y for all x ∈ ranα ∩ Y and x′α = x for all x ∈ ranα. Also, we have

from Proposition 1.11 that

for x1, x2 ∈ ranα, x1 < x2 implies x′1 < x′2.

Define β : X → X by

xβ =



x′ if x ∈ ranα,

u′ if x > ranα,

l′ if x < ranα,

my
′ if x ∈ X r (ranα ∪ ub(ranα) ∪ lb(ranα)) and x ∈ Ay

for some y ∈
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y,

nx
′ if x ∈ X r (ranα ∪ ub(ranα) ∪ lb(ranα)) and x /∈ Ay

for all y ∈
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y.

We see that Y β ⊆ Y and for x ∈ X, xα ∈ ranα, and thus

xαβα = (xα)βα = (xα)
′
α = xα.

Hence β ∈ T (X, Y ) and α = αβα. It remains to show that β is order-preserving.

Let x1, x2 ∈ X be such that x1 < x2. We can see that u′ = max(ran β) if

ub(ranα) 6= ∅ and l′ = min(ran β) if lb(ranα) 6= ∅. It follows that if x2 ∈

ub(ranα) or x1 ∈ lb(ranα), then x1β ≤ x2β. Also, we have that if x1, x2 ∈ ranα,

then x1β = x1
′ < x2

′ = x2β. Therefore there are six cases to clarify as follows:
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Case 1: x1 ∈ ranα and x2 ∈ X r
(

ranα ∪ ub(ranα) ∪ lb(ranα)
)
.

Subcase 1.1: x2 ∈ Ay for some y ∈
(
Xr(ranα∪ub(ranα)∪lb(ranα))

)
∩Y .

Then {t ∈ ranα | t < x2} = {t ∈ ranα | t < y} and {t ∈ ranα | t > x2} =

{t ∈ ranα | t > y}. If my = max({t ∈ ranα | t < y}), then x1 ≤ my since

x1 ∈ {t ∈ ranα | t < x2} = {t ∈ ranα | t < y}. Thus x1β = x1
′ ≤ my

′ = x2β. If

my = min({t ∈ ranα | t > y}), then x1 < x2 < my since my ∈ {t ∈ ranα | t >

y} = {t ∈ ranα | t > x2}. So x1β = x1
′ < my

′ = x2β.

Subcase 1.2: x2 /∈ Ay for all y ∈
(
Xr (ranα∪ub(ranα)∪ lb(ranα))

)
∩Y .

If nx2 = max({t ∈ ranα | t < x2}), then x1 ≤ nx2 , and so x1β = x1
′ ≤ nx2

′ = x2β.

If nx2 = min({t ∈ ranα | t > x2}), then x1 < x2 < nx2 , and thus x1β = x1
′ <

nx2
′ = x2β.

Case 2: x1 ∈ X r
(

ranα ∪ ub(ranα) ∪ lb(ranα)
)

and x2 ∈ ranα.

Subcase 2.1: x1 ∈ Ay for some y ∈
(
Xr(ranα∪ub(ranα)∪lb(ranα))

)
∩Y .

Then {t ∈ ranα | t < x1} = {t ∈ ranα | t < y} and {t ∈ ranα | t > x1} = {t ∈

ranα | t > y}. If my = max({t ∈ ranα | t < y}), then my < x1 < x2 since

my ∈ {t ∈ ranα | t < y} = {t ∈ ranα | t < x1}, so x1β = my
′ < x2

′ = x2β. If

my = min({t ∈ ranα | t > y}), then my ≤ x2 since x2 ∈ {t ∈ ranα | t > x1} =

{t ∈ ranα | t > y}. Therefore x1β = my
′ ≤ x2

′ = x2β.

Subcase 2.2: x1 /∈ Ay for all y ∈
(
Xr (ranα∪ub(ranα)∪ lb(ranα))

)
∩Y .

If nx1 = max({t ∈ ranα | t < x1}), then nx1 < x1 < x2, so x1β = n′x1
< x′2 = x2β.

If nx1 = min({t ∈ ranα | t > x1}), then nx2 ≤ x2, and hence x1β = nx1
′ ≤ x2

′ =

x2β.

Case 3: x1, x2 ∈ X r
(

ranα ∪ ub(ranα) ∪ lb(ranα)
)
, x1 ∈ Ay1 and x2 ∈ Ay2

for some y1, y2 ∈
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y . Then {t ∈ ranα |

t < x1} = {t ∈ ranα | t < y1} , {t ∈ ranα | t > x1} = {t ∈ ranα | t > y1},

{t ∈ ranα | t < x2} = {t ∈ ranα | t < y2} and {t ∈ ranα | t > x2} = {t ∈ ranα |

t > y2}.
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Subcase 3.1: my1 = max({t ∈ ranα | t < y1}) and my2 = max({t ∈

ranα | t < y2}). Since {t ∈ ranα | t < y1} = {t ∈ ranα | t < x1} ⊆ {t ∈

ranα | t < x2} = {t ∈ ranα | t < y2}, it follows that my1 ≤ my2 , and so

x1β = my1
′ ≤ my2

′ = x2β.

Subcase 3.2: my1 = max({t ∈ ranα | t < y1}) and my2 = min({t ∈

ranα | t > y2}). Then my1 ∈ {t ∈ ranα | t < y1} = {t ∈ ranα | t < x1} and

my2 ∈ {t ∈ ranα | t > y2} = {t ∈ ranα | t > x2}. Hence my1 < x1 < x2 < my2 ,

so x1β = my1
′ < my2

′ = x2β.

Subcase 3.3: my1 = min({t ∈ ranα | t > y1}) and my2 = max({t ∈ ranα |

t < y2}). If {t ∈ ranα | y1 < t < y2} = ∅, then {t ∈ ranα | t < y1} = {t ∈

ranα | t < y2} which impossible since {t ∈ ranα | t < y1} has no maximum

or max({t ∈ ranα | t < y1}) exists and max({t ∈ ranα | t < y1}) /∈ Y but

max({t ∈ ranα | t < y2}) exists and max({t ∈ ranα | t < y2}) ∈ Y . Then there

exists an element c ∈ ranα such that y1 < c < y2. Consequently, my1 ≤ c ≤ my2 .

Hence x1β = m′y1 ≤ m′y2 = x2β.

Subcase 3.4: my1 = min({t ∈ ranα | t > y1}) and my2 = min({t ∈

ranα | t > y2}). Since {t ∈ ranα | t > y1} = {t ∈ ranα | t > x1} ⊇ {t ∈

ranα | t > x2} = {t ∈ ranα | t > y2}, it follows that my1 ≤ my2 , and then

x1β = m′y1 ≤ m′y2 = x2β.

Case 4: x1, x2 ∈ X r
(

ranα ∪ ub(ranα) ∪ lb(ranα)
)
, x1 ∈ Ay for some y ∈(

X r (ranα ∪ ub(ranα) ∪ lb(ranα))
)
∩ Y and x2 /∈ Ay for all y ∈

(
X r (ranα ∪

ub(ranα) ∪ lb(ranα))
)
∩ Y . Then {t ∈ ranα | t < x1} = {t ∈ ranα | t < y} and

{t ∈ ranα | t > x1} = {t ∈ ranα | t > y}.

Subcase 4.1: my = max({t ∈ ranα | t < y}) and nx2 = max({t ∈ ranα |

t < x2}). Since {t ∈ ranα | t < y} = {t ∈ ranα | t < x1} ⊆ {t ∈ ranα | t < x2},

we get my ≤ nx2 , and it follows that x1β = my
′ ≤ nx2

′ = x2β.

Subcase 4.2: my = max({t ∈ ranα | t < y}) and nx2 = min({t ∈

ranα | t > x2}). Then my ∈ {t ∈ ranα | t < y} = {t ∈ ranα | t < x1}
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and nx2 ∈ {t ∈ ranα | t > x2}. Hence my < x1 < x2 < nx2 , and therefore

x1β = my
′ < nx2

′ = x2β.

Subcase 4.3: my = min({t ∈ ranα | t > y}) and nx2 = max({t ∈ ranα |

t < x2}). If {t ∈ ranα | y < t < x2} = ∅, then {t ∈ ranα | t < x2} = {t ∈ ranα |

t < y} and {t ∈ ranα | t > x2} = {t ∈ ranα | t > y}, so x2 ∈ Ay, contradicting

the assumption. Then there exists an element c ∈ ranα such that y < c < x2.

This implies that my ≤ c ≤ nx2 . Hence x1β = m′y ≤ n′x2
= x2β.

Subcase 4.4: my = min({t ∈ ranα | t > y}) and nx2 = min({t ∈ ranα |

t > x2}). Since {t ∈ ranα | t > y} = {t ∈ ranα | t > x1} ⊇ {t ∈ ranα | t > x2},

we have my ≤ nx2 , so x1β = m′y ≤ n′x2
= x2β.

Case 5: x1, x2 ∈ X r
(

ranα ∪ ub(ranα) ∪ lb(ranα)
)
, x1 /∈ Ay for all y ∈(

Xr (ranα∪ub(ranα)∪ lb(ranα))
)
∩Y and x2 ∈ Ay for some y ∈

(
Xr (ranα∪

ub(ranα) ∪ lb(ranα))
)
∩ Y . Then {t ∈ ranα | t < x2} = {t ∈ ranα | t < y} and

{t ∈ ranα | t > x2} = {t ∈ ranα | t > y}.

Subcase 5.1: nx1 = max({t ∈ ranα | t < x1}) and my = max({t ∈ ranα |

t < y}). Since {t ∈ ranα | t < x1} ⊆ {t ∈ ranα | t < x2} = {t ∈ ranα | t < y},

we obtain that nx1 ≤ my. Then x1β = nx1
′ ≤ my

′ = x2β.

Subcase 5.2: nx1 = max({t ∈ ranα | t < x1}) and my = min({t ∈ ranα |

t > y}). Then nx1 ∈ {t ∈ ranα | t < x1} and my ∈ {t ∈ ranα | t > y} = {t ∈

ranα | t > x2}. Thus nx1 < x1 < x2 < my, so x1β = nx1
′ < my

′ = x2β.

Subcase 5.3: nx1 = min({t ∈ ranα | t > x1}) and my = max({t ∈ ranα |

t < y}). If {t ∈ ranα | x1 < t < y} = ∅, then {t ∈ ranα | t < x1} = {t ∈

ranα | t < y} and {t ∈ ranα | t > x1} = {t ∈ ranα | t > y}, so x1 ∈ Ay, a

contradiction. Then there is an element c ∈ ranα such that x1 < c < y. This

implies that nx1 ≤ c ≤ my, and thus x1β = nx1
′ ≤ my

′ = x2β.

Subcase 5.4: nx1 = min({t ∈ ranα | t > x1}) and my = min({t ∈ ranα |

t > y}). Since {t ∈ ranα | t > x1} ⊇ {t ∈ ranα | t > x2} = {t ∈ ranα | t > y}, it

follows that nx1 ≤ my. Hence x1β = nx1
′ ≤ my

′ = x2β.
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Case 6: x1, x2 ∈ X r
(

ranα ∪ ub(ranα) ∪ lb(ranα)
)
, x1 /∈ Ay for all y ∈(

X r (ranα ∪ ub(ranα) ∪ lb(ranα))
)
∩ Y and x2 /∈ Ay for all y ∈

(
X r (ranα ∪

ub(ranα) ∪ lb(ranα))
)
∩ Y .

Subcase 6.1: nx1 = max({t ∈ ranα | t < x1}) and nx2 = max({t ∈ ranα |

t < x2}). Since {t ∈ ranα | t < x1} ⊆ {t ∈ ranα | t < x2}, we have nx1 ≤ nx2 , so

x1β = nx1
′ ≤ nx2

′ = x2β.

Subcase 6.2: nx1 = max({t ∈ ranα | t < x1}) and nx2 = min({t ∈ ranα |

t > x2}). Then nx1 < x1 < x2 < nx2 , so x1β = nx1
′ < nx2

′ = x2β.

Subcase 6.3: nx1 = min({t ∈ ranα | t > x1}) and nx2 = max({t ∈

ranα | t < x2}). Then {t ∈ ranα | t < x1} has no maximum. It follows that

{t ∈ ranα | t < x1} ( {t ∈ ranα | t < x2}. Hence x1 < c < x2 for some c ∈ ranα.

This implies that nx1 ≤ c ≤ nx2 , and thus x1β = nx1
′ ≤ nx2

′ = x2β.

Subcase 6.4: nx1 = min({t ∈ ranα | t > x1}) and nx2 = min({t ∈ ranα |

t > x2}). Since {t ∈ ranα | t > x1} ⊇ {t ∈ ranα | t > x2}, it follows that

nx1 ≤ nx2 , and hence x1β = nx1
′ ≤ nx2

′ = x2β.

Hence β ∈ OT (X, Y ), and the theorem is completely proved.

As an immediate consequence of Theorem 3.1.3, we have

Corollary 3.1.4. Let α ∈ OT (X, Y ) be such that ranα is finite. Then α ∈

Reg(OT (X, Y )) if and only if the following four conditions hold.

(i) ranα ∩ Y = Y α.

(ii) If ub(ranα) ∩ Y 6= ∅, then max(ranα) ∈ Y .

(iii) If lb(ranα) ∩ Y 6= ∅, then min(ranα) ∈ Y .

(iv) If x ∈
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y , then max({t ∈ ranα |

t < x}) ∈ Y or min({t ∈ ranα | t > x}) ∈ Y .

The following result which is obtained from Theorem 2.1.2 and Theorem 3.1.3

shows that any nonregular element of OT (X, Y ) cannot be a regular element of

OT (X, Y ).
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Corollary 3.1.5. Reg(OT (X, Y ) ⊆ Reg(OT (X, Y )) ∪ (OT (X, Y ) r OT (X, Y )),

or equivalently,

OT (X, Y )r Reg(OT (X, Y )) ⊆ OT (X, Y )r Reg(OT (X, Y )).

Proof. Let α ∈ Reg(OT (X, Y )) and assume that α ∈ OT (X, Y ). Then ranα ∩

Y = Y α by Theorem 3.1.3 and ranα ⊆ Y . Combining these two facts, we have

that ranα = Y α, i.e., α satisfies (i) of Theorem 2.1.2. Also, by Theorem 3.1.3,

α satisfies (ii), (iii) and (iv) of Theorem 2.1.2. Hence α ∈ Reg(OT (X, Y )) by

Theorem 2.1.2.

From the second inclusion of Corollary 3.1.5, we directly obtain the following

fact.

Corollary 3.1.6. If OT (X, Y ) is a regular semigroup, then OT (X, Y ) is also

regular.

Next, we characterize when OT (X, Y ) is a regular semigroup. For our required

result, the following lemmas are needed.

Lemma 3.1.7. If |Y | = 1 and OT (X, Y ) ⊆ Reg(OT (X)), then OT (X, Y ) is a

regular semigroup.

Proof. Assume that |Y | = 1 and OT (X, Y ) ⊆ Reg(OT (X)). Let Y = {c}. To

show that OT (X, Y ) is regular, let α ∈ OT (X, Y ). Then α ∈ Reg(OT (X)) and

cα = c. Thus Y = {c} ⊆ ranα, so ranα ∩ Y = Y = Y α. Hence α satisfies (i)

of Theorem 3.1.3. Since α ∈ Reg(OT (X)), it follows from Theorem 1.6 that α

satisfies the first part of (ii), (iii) and (iv) in Theorem 3.1.3. If ub(ranα)∩Y 6= ∅,

then c ∈ ub(ranα), so max(ranα) = c ∈ Y since c ∈ ranα. This shows that α

satisfies the second part of (ii) in Theorem 3.1.3. Similarly, if lb(ranα) ∩ Y 6= ∅,

then min(ranα) = c ∈ Y , so α satisfies the second part of (iii) in Theorem

3.1.3. Since
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y = ∅, we immediately

obtain the second part of (iv) in Theorem 3.1.3. Hence by Theorem 3.1.3, α ∈

Reg(OT (X, Y )).
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Lemma 3.1.8. Let |Y | = 2. If OT (X, Y ) ⊆ Reg(OT (X)), min(X) and max(X)

exist and Y = {min(X),max(X)}, then OT (X, Y ) is a regular semigroup.

Proof. Assume that OT (X, Y ) ⊆ Reg(OT (X)), min(X) and max(X) exist and

Y = {min(X),max(X)}. Let α ∈ OT (X, Y ). Then |Y α| = 1 or |Y α| = 2 because

|Y | = 2.

Case 1: |Y α| = 1. Then Y α = {min(X)} or Y α = {max(X)}. If Y α =

{min(X)}, then min(X)α = max(X)α = min(X). Since α is order-preserving,

min(X) = min(X)α ≤ xα ≤ max(X)α = min(X) for all x ∈ X,

and we deduce that xα = min(X) for all x ∈ X. Hence α2 = α, so α ∈

Reg(OT (X, Y )). Likewise, if Y α = {max(X)}, then xα = max(X) for all x ∈ X

and it follows that α ∈ Reg(OT (X, Y )).

Case 2: |Y α| = 2. Then Y α = Y . Since α is order-preserving, we have

min(X)α = min(X) and max(X)α = max(X). It follows that ranα ∩ Y = Y =

Y α, min(ranα) = min(X) ∈ Y and max(ranα) = max(X) ∈ Y . This implies

that α satisfies (i), (ii) and (iii) of Theorem 3.1.3. We have α ∈ Reg(OT (X))

by assumption. Then Theorem 1.6 together with the fact that
(
X r (ranα ∪

ub(ranα)∪ lb(ranα))
)
∩Y = ∅ implies that α also satisfies (iv) of Theorem 3.1.3.

Hence α ∈ Reg(OT (X, Y )) by Theorem 3.1.3.

This shows that OT (X, Y ) is a regular semigroup, so the proof is complete.

Theorem 3.1.9. The semigroup OT (X, Y ) is a regular semigroup if and only if

OT (X, Y ) ⊆ Reg(OT (X)) and one of the following conditions holds.

(i) Y = X.

(ii) |Y | = 1.

(iii) |Y | = 2, min(X) and max(X) exist, and Y = {min(X),max(X)}.

Proof. Assume that OT (X, Y ) is regular. Then Reg(OT (X, Y )) = OT (X, Y ),

and by Corollary 3.1.6, OT (X, Y ) is regular. Since OT (X, Y ) is a subsemigroup

of OT (X), it follows that OT (X, Y ) = Reg(OT (X, Y )) ⊆ Reg(OT (X)). Suppose
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that (i) and (ii) are false. Then Y ( X and |Y | ≥ 2. Then the regularity of

OT (X, Y ) and Lemma 2.1.6 imply that |Y | = 2. Let Y = {e, f} be such that

e < f . Since OT (X, Y ) is regular, by Lemma 2.1.5, we have for every a ∈ X,

a ≯ Y and a ≮ Y . Thus e ≤ a ≤ f for all a ∈ X. This implies that e = min(X)

and f = max(X).

Conversely, OT (X, Y ) is obviously regular if OT (X, Y ) ⊆ Reg(OT (X)) and

Y = X. If OT (X, Y ) ⊆ Reg(OT (X)) and |Y | = 1, then by Lemma 3.1.7,

OT (X, Y ) is regular. Also, by Lemma 3.1.8, OT (X, Y ) is regular if OT (X, Y ) ⊆

Reg(OT (X)) and (iii) holds.

Hence the theorem is proved.

Next, the regular elements of the semigroups OP (X, Y ) and OI(X, Y ) are

characterized.

Theorem 3.1.10. For α ∈ OP (X, Y ), α ∈ Reg(OP (X, Y )) if and only if

ranα ∩ Y = (domα ∩ Y )α.

Proof. Assume that α ∈ Reg(OP (X, Y )). Since (domα ∩ Y )α ⊆ Y , we have

that (domα ∩ Y )α ⊆ ranα ∩ Y . To show that ranα ∩ Y ⊆ (domα ∩ Y )α, let

β ∈ OP (X, Y ) be such that α = αβα and let x ∈ ranα ∩ Y . Then x = aα for

some a ∈ domα. Thus x = aα = aαβα = xβα which implies that x ∈ dom β and

xβ ∈ domα. It follows that x ∈ dom β ∩ Y and hence xβ ∈ (dom β ∩ Y )β ⊆ Y .

We then deduce that xβ ∈ domα ∩ Y . Consequently, x = xβα ∈ (domα ∩ Y )α.

This proves that ranα ∩ Y = (domα ∩ Y )α.

For the converse, assume that ranα∩Y = (domα∩Y )α. Then xα−1∩Y 6= ∅

for all x ∈ ranα ∩ Y . For each x ∈ ranα ∩ Y, choose dx ∈ xα−1 ∩ Y and for each

x ∈ ranαrY, choose ex ∈ xα−1. Then dxα = x for all x ∈ ranα∩Y and exα = x

for all x ∈ ranαr Y . Define β : ranα→ domα by

β =

(
x u

dx eu

)
x∈ ranα∩Y
u∈ ranαrY

.

Then (dom β∩Y )β = (ranα∩Y )β = {dx | x ∈ ranα∩Y } ⊆ Y . Since α ∈ OP (X),

it follows from Proposition 1.11 that β is order-preserving. Hence β ∈ OP (X, Y ).
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Since for x ∈ domα, xα ∈ dom β and xαβ ∈ domα, we deduce that domα =

dom(αβα). If x ∈ domα, then

xαβα =

dxαα = xα if xα ∈ Y,

exαα = xα if xα /∈ Y,

so α = αβα. Thus α ∈ Reg(OP (X, Y )), as desired.

It can be seen that β constructed in the proof of Theorem 3.1.10 is 1-1. Then

β ∈ OI(X, Y ).

Theorem 3.1.11. For α ∈ OI(X, Y ), α ∈ Reg(OI(X, Y )) if and only if

(ranα ∩ Y )α−1 ⊆ Y .

Proof. Assume that α ∈ Reg(OI(X, Y )). Since OI(X, Y ) is a subsemigroup of

OP (X, Y ), we have that α ∈ Reg(OP (X, Y )). By Theorem 3.1.10, ranα ∩ Y =

(domα ∩ Y )α. Then (ranα ∩ Y )α−1 = (domα ∩ Y )αα−1. Since αα−1 is the

identity mapping on domα, it follows that (domα∩Y )αα−1 = domα∩Y . Hence

(ranα ∩ Y )α−1 = domα ∩ Y ⊆ Y .

Conversely, assume that (ranα∩Y )α−1 ⊆ Y . But (ranα∩Y )α−1 ⊆ domα, so

(ranα∩Y )α−1 ⊆ domα∩Y . Thus (ranα∩Y )α−1α ⊆ (domα∩Y )α ⊆ ranα∩Y .

Since α−1α is the identity mapping on ranα, we have that (ranα ∩ Y )α−1α =

ranα∩Y . Therefore (domα∩Y )α = ranα∩Y . From the proof of Theorem 3.1.10,

α = αβα for some β ∈ OI(X, Y ). Hence α ∈ Reg(OI(X, Y )), as desired.

We provide a different version in determining Reg(OI(X, Y )) as follows:

Theorem 3.1.12. For α ∈ OI(X, Y ), α ∈ Reg(OI(X, Y )) if and only if(
domα ∩ (X r Y )

)
α ⊆ X r Y .

Proof. It suffices to show that (ranα ∩ Y )α−1 ⊆ Y if and only if
(

domα ∩ (X r

Y )
)
α ⊆ XrY . Suppose first that (ranα∩Y )α−1 ⊆ Y . Let x ∈ domα∩ (XrY ).

Then xα ∈ ranα. If xα ∈ Y , then x ∈ (ranα ∩ Y )α−1 ⊆ Y , a contradiction.

Hence xα ∈ X r Y , proving that
(

domα ∩ (X r Y )
)
α ⊆ X r Y . Now suppose
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that
(

domα∩(XrY )
)
α ⊆ XrY . Let x ∈ (ranα∩Y )α−1. Then x ∈ domα and

xα ∈ Y . If x ∈ XrY , then xα ∈
(

domα∩ (XrY )
)
α ⊆ XrY , a contradiction.

Thus x ∈ Y . This proves that (ranα ∩ Y )α−1 ⊆ Y .

As a consequence of Theorem 3.1.10 and Theorem 3.1.11, a necessary and

sufficient condition for the OP (X, Y ) and OI(X, Y ) to be regular semigroups can

be given as follows:

Corollary 3.1.13. Let OS(X, Y ) be OP (X, Y ) or OI(X, Y ). Then OS(X, Y ) is

a regular semigroup if and only if Y = X.

Proof. Suppose that Y ( X. Let a ∈ X r Y and b ∈ Y . Then α =
(
a
b

)
∈

OS(X, Y ). Since domα ∩ Y = ∅, ranα ∩ Y = {b} and bα−1 = a /∈ Y , by

Theorem 3.1.10 and Theorem 3.1.11, α /∈ Reg(OS(X, Y )). If Y = X, then

OP (X, Y ) = OP (X), OI(X, Y ) = OI(X), and both OP (X) and OI(X) are

regular semigroups by Theorem 1.5. Hence the result follows.

3.2 Combinatorial Results on Regular Elements

Throughout this section, let X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m} where

m ≤ n.

First of all, we determine the cardinalities ofOT (X, Y ), OP (X, Y ) andOI(X, Y )

and then we investigate the numbers of the regular elements ofOT (X, Y ), OP (X, Y )

and OI(X, Y ). Hence the numbers of the nonregular elements in OT (X, Y ),

OP (X, Y ) and OI(X, Y ) are directly obtained.

The following two lemmas given in [17] are needed to obtain our required

results.

Lemma 3.2.1. ([17]) For r, s, k ∈ Y ,

|{α ∈ OP (Y ) | | domα| = r, | ranα| = s and max(ranα) = k}|

=

(
m

r

)(
k − 1

s− 1

)(
r − 1

s− 1

)
.
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Lemma 3.2.2. ([17]) For r, k ∈ Y ,

|{α ∈ OP (Y ) | | domα| = r and max(ranα) = k}| =
(
m

r

)(
k + r − 2

k − 1

)
.

Theorem 3.2.3. |OT (X, Y )| =
m∑
k=1

(
k +m− 2

k − 1

)(
2n− k −m
n−m

)
.

Proof. We see that

OT (X, Y ) =
m⋃
k=1

{α ∈ OT (X, Y ) | max(Y α) = k}

=
m⋃
k=1

{
α ∈ OT (X) | Y α ⊆ Y,max(Y α) = k and

(X r Y )α ⊆ {k, . . . , n}
}
.

It follows from Proposition 1.12 and Proposition 1.13 that for 1 ≤ k ≤ m,

{
α ∈ OT (X) | Y α ⊆ Y,max(Y α) = k and (X r Y )α ⊆ {k, . . . , n}

}
=
{
α1 ∪ α2 | α1 ∈ OT (Y ),max(ranα1) = k and α2 ∈ OT (X r Y, {k, . . . , n})

}
.

Then we get

OT (X, Y ) =
m⋃
k=1

{
α1 ∪ α2 | α1 ∈ OT (Y ),max(ranα1) = k and

α2 ∈ OT (X r Y, {k, . . . , n})
}
.

For 1 ≤ k ≤ m, we have

∣∣{α1 ∪ α2 | α1 ∈ OT (Y ),max(ranα1) = k and α2 ∈ OT (X r Y, {k, . . . , n})
}∣∣

=
∣∣{α ∈ OT (Y ) | max(ranα) = k}

∣∣ ∣∣OT (X r Y, {k, . . . , n})
∣∣

=
∣∣{α ∈ OP (Y ) | | domα| = m and max(ranα) = k}

∣∣ ∣∣OT (X r Y, {k, . . . , n})
∣∣

=

(
m

m

)(
k +m− 2

k − 1

)(
(n− k + 1) + (n−m)− 1

n−m

)
by Lemma 3.2.2 and

Theorem 2.2.3(i)

=

(
k +m− 2

k − 1

)(
2n−m− k
n−m

)
.
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Hence

|OT (X, Y )| =
m∑
k=1

(
k +m− 2

k − 1

)(
2n−m− k
n−m

)
.

Theorem 3.2.4.

|OP (X, Y )| =
n−m∑
r=0

(
n−m
r

)(
n+ r − 1

r

)
+

m∑
s=1

m∑
k=1

(
m

s

)(
k + s− 2

k − 1

) n−m∑
t=0

(
n−m
t

)(
n− k + t

t

)
.

Proof. We have

OP (X, Y ) = {α ∈ OP (X, Y ) | domα ⊆ X r Y } ∪

{α ∈ OP (X, Y ) | ∅ 6= domα ⊆ Y } ∪

{α ∈ OP (X, Y ) | domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅}

= OP (X r Y,X) ∪ OP (Y )r {0}∪

{α ∈ OP (X, Y ) | domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅}.

(1)

We know from Theorem 2.2.3(ii) that

|OP (X r Y,X)| =
n−m∑
r=0

(
n−m
r

)(
n+ r − 1

r

)
(2)

and

|OP (Y )r {0}| =
m∑
s=1

(
m

s

)(
m+ s− 1

s

)
. (3)

To obtain the cardinality of OP (X, Y ), it remains to find
∣∣{α ∈ OP (X, Y ) |

domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅}
∣∣. We see that

{α ∈OP (X, Y ) | domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅}

=
m⋃
s=1

n−m⋃
t=1

m⋃
k=1

{
α ∈ OP (X, Y ) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t

and max((domα ∩ Y )α) = k
}
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=
m⋃
s=1

n−m⋃
t=1

m⋃
k=1

{
α ∈ OP (X) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t,

(domα ∩ Y )α ⊆ Y,max((domα ∩ Y )α) = k

and (domα ∩ (X r Y ))α ⊆ {k, . . . , n}
}
.

For 1 ≤ s ≤ m, 1 ≤ t ≤ n −m and 1 ≤ k ≤ m, we have from Proposition 1.12

and Proposition 1.13 that

{
α ∈ OP (X) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t, (domα ∩ Y )α ⊆ Y,

max((domα ∩ Y )α) = k and (domα ∩ (X r Y ))α ⊆ {k, . . . , n}
}

=
{
α1 ∪ α2 | α1 ∈ OP (Y ), | domα1| = s,max(ranα1) = k,

α2 ∈ OP (X r Y, {k, . . . , n}) and | domα2| = t
}
.

From this, we get∣∣∣{α ∈ OP (X) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t, (domα ∩ Y )α ⊆ Y,

max((domα ∩ Y )α) = k and (domα ∩ (X r Y ))α ⊆ {k, . . . , n}
}∣∣∣

=
∣∣∣{α ∈ OP (Y ) | | domα| = s and max(ranα) = k

}∣∣∣·∣∣∣{α ∈ OP (X r Y, {k, . . . , n}) | | domα| = t
}∣∣∣

=

(
m

s

)(
k + s− 2

k − 1

)(
n−m
t

)(
(n− k + 1) + t− 1

t

)
by Lemma 3.2.2 and

Lemma 2.2.2

=

(
m

s

)(
k + s− 2

k − 1

)(
n−m
t

)(
n− k + t

t

)
.

This shows that for 1 ≤ s ≤ m, 1 ≤ t ≤ n−m and 1 ≤ k ≤ m,

∣∣∣{α ∈ OP (X) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t, (domα ∩ Y )α ⊆ Y,

max((domα ∩ Y )α) = k and (domα ∩ (X r Y ))α ⊆ {k, . . . , n}
}∣∣∣

=

(
m

s

)(
k + s− 2

k − 1

)(
n−m
t

)(
n− k + t

t

)
.
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Consequently,∣∣{α ∈ OP (X, Y ) | domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅}
∣∣

=
m∑
s=1

n−m∑
t=1

m∑
k=1

(
m

s

)(
k + s− 2

k − 1

)(
n−m
t

)(
n− k + t

t

)

=
m∑
s=1

m∑
k=1

(
m

s

)(
k + s− 2

k − 1

) n−m∑
t=1

(
n−m
t

)(
n− k + t

t

)
. (4)

From (1), (2), (3) and (4) and using Result 1.21, we obtain

|OP (X, Y )| =
n−m∑
r=0

(
n−m
r

)(
n+ r − 1

r

)
+

m∑
s=1

(
m

s

)(
m+ s− 1

s

)
+

m∑
s=1

m∑
k=1

(
m

s

)(
k + s− 2

k − 1

) n−m∑
t=1

(
n−m
t

)(
n− k + t

t

)

=
n−m∑
r=0

(
n−m
r

)(
n+ r − 1

r

)
+

m∑
s=1

(
m

s

) m∑
k=1

(
k + s− 2

k − 1

)
+

m∑
s=1

m∑
k=1

(
m

s

)(
k + s− 2

k − 1

) n−m∑
t=1

(
n−m
t

)(
n− k + t

t

)

=
n−m∑
r=0

(
n−m
r

)(
n+ r − 1

r

)
+

m∑
s=1

m∑
k=1

(
m

s

)(
k + s− 2

k − 1

) n−m∑
t=0

(
n−m
t

)(
n− k + t

t

)
.

Hence the result follows.

Theorem 3.2.5. |OI(X, Y )| =
(

2n−m
n

)
+

m∑
s=1

m∑
k=s

(
m

s

)(
k − 1

s− 1

)(
2n−m− k

n− k

)
.

Proof. We see that

OI(X, Y ) = {α ∈ OI(X, Y ) | domα ⊆ X r Y }∪

{α ∈ OI(X, Y ) | ∅ 6= domα ⊆ Y }∪

{α ∈ OI(X, Y ) | domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅}



48

= OI(X r Y,X) ∪OI(Y )r {0}∪

{α ∈ OI(X, Y ) | domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅}. (1)

It follows from Theorem 2.2.3(iii) that

|OI(X r Y,X)| =
(

2n−m
n

)
(2)

and by Theorem 1.10 and Result 1.22, we have

|OI(Y )r {0}| =
m∑
s=1

(
m

s

)(
m

s

)
=

m∑
s=1

(
m

s

) m∑
k=s

(
k − 1

s− 1

)

=
m∑
s=1

m∑
k=s

(
m

s

)(
k − 1

s− 1

)
. (3)

Next, we will find
∣∣{α ∈ OI(X, Y ) | domα∩Y 6= ∅ and domα∩ (X rY ) 6= ∅}

∣∣.
We see that if α ∈ OI(X, Y ) is such that | domα ∩ Y | = s and max((domα ∩

Y )α) = k, then |(domα ∩ Y )α| = | domα ∩ Y | = s. This together with (domα ∩

Y )α ⊆ {1, 2, . . . ,m} implies that k ≥ s. Then we have

{α ∈ OI(X, Y ) | domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅}

=
m⋃
s=1

n−m⋃
t=1

m⋃
k=s

{
α ∈ OI(X, Y ) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t

and max((domα ∩ Y )α) = k
}

=
m⋃
s=1

n−m⋃
t=1

m⋃
k=s

{
α ∈ OI(X) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t

(dom ∩Y )α ⊆ Y,max((domα ∩ Y )α) = k and

(domα ∩ (X r Y ))α ⊆ {k + 1, . . . , n}
}
.

For 1 ≤ s ≤ k ≤ m and 1 ≤ t ≤ n − m, we obtain from Proposition 1.12 and

Proposition 1.13 that{
α ∈ OI(X) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t, (domα ∩ Y )α ⊆ Y,

max((domα ∩ Y )α) = k, (domα ∩ (X r Y ))α ⊆ {k + 1, . . . , n}
}

=
{
α1 ∪ α2 | α1 ∈ OI(Y ), | domα1| = s,max(ranα1) = k and

α2 ∈ OI(X r Y, {k + 1, . . . , n}) and | domα2| = t
}



49

=
{
α1 ∪ α2 | α1 ∈ OP (Y ), | domα1| = | ranα1| = s,max(ranα1) = k and

α2 ∈ OP (X r Y, {k + 1, . . . , n}) and | domα2| = | ranα2| = t
}
.

It follows that∣∣∣{α ∈ OI(X) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t, (domα ∩ Y )α ⊆ Y,

max((domα ∩ Y )α) = k and (domα ∩ (X r Y ))α ⊆ {k + 1, . . . , n}
}∣∣∣

=
∣∣{α ∈ OP (Y ) | | domα| = | ranα| = s and max(ranα) = k}

∣∣·∣∣{α ∈ OP (X r Y, {k + 1, . . . , n}) | | domα| = | ranα| = t}
∣∣

=

(
m

s

)(
k − 1

s− 1

)(
s− 1

s− 1

)(
n−m
t

)(
n− k
t

)(
t− 1

t− 1

)
by Lemma 3.2.1 and

Lemma 2.2.1

=

(
m

s

)(
k − 1

s− 1

)(
n−m
t

)(
n− k
t

)
.

This shows that for 1 ≤ s ≤ k ≤ m and 1 ≤ t ≤ n−m,∣∣∣{α ∈ OI(X) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t, (domα ∩ Y )α ⊆ Y,

max((domα ∩ Y )α) = k and (domα ∩ (X r Y ))α ⊆ {k + 1, . . . , n}
}∣∣∣

=

(
m

s

)(
k − 1

s− 1

)(
n−m
t

)(
n− k
t

)
.

Consequently,∣∣∣{α ∈ OI(X, Y ) | domα ∩ Y 6= ∅ and domα ∩ (X r Y ) 6= ∅}
∣∣∣

=
m∑
s=1

n−m∑
t=1

m∑
k=s

(
m

s

)(
k − 1

s− 1

)(
n−m
t

)(
n− k
t

)
. (4)

From (1), (2), (3) and (4) and using Result 1.20, we obtain

|OI(X, Y )| =

(
2n−m

n

)
+

m∑
s=1

m∑
k=s

(
m

s

)(
k − 1

s− 1

)
+

m∑
s=1

n−m∑
t=1

m∑
k=s

(
m

s

)(
k − 1

s− 1

)(
n−m
t

)(
n− k
t

)
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=

(
2n−m

n

)
+

m∑
s=1

m∑
k=s

(
m

s

)(
k − 1

s− 1

)
+

m∑
s=1

m∑
k=s

(
m

s

)(
k − 1

s− 1

) n−m∑
t=1

(
n−m
t

)(
n− k
t

)

=

(
2n−m

n

)
+

m∑
s=1

m∑
k=s

(
m

s

)(
k − 1

s− 1

) n−m∑
t=0

(
n−m
t

)(
n− k
t

)

=

(
2n−m

n

)
+

m∑
s=1

m∑
k=s

(
m

s

)(
k − 1

s− 1

)(
2n−m− k

n− k

)
,

as required.

To investigate the cardinality of Reg(OT (X, Y )), we prove the following two

lemmas.

Lemma 3.2.6. For α ∈ OT (X, Y ), α ∈ Reg(OT (X, Y )) if and only if ranα∩Y =

Y α.

Proof. Necessity follows immediately from Corollary 3.1.4. To prove sufficiency,

suppose that ranα ∩ Y = Y α. If u ∈ Y is an upper bound of ranα, then 1α ≤

2α ≤ . . . ≤ nα ≤ u. Since 1α ∈ Y α ⊆ Y and u ∈ Y , it follows from the property

of Y that {1α, 2α, . . . , nα} ⊆ Y , i.e., ranα ⊆ Y , so max(ranα) ∈ Y . We see that

min(ranα) = 1α ∈ Y α ⊆ Y . If x ∈
(
X r (ranα ∪ ub(ranα) ∪ lb(ranα))

)
∩ Y ,

then {t ∈ ranα | t < x} ⊆ {1, 2, . . . , x} ⊆ Y , so max({t ∈ ranα | t < x}) ∈ Y . It

follows from Corollary 3.1.4 that α ∈ Reg(OT (X, Y )).

Lemma 3.2.7. Let m < n. For α ∈ OT (X, Y ), ranα ∩ Y = Y α if and only if

(X r Y )α ⊆ {max(Y α),m+ 1, . . . , n}.

Proof. Assume that ranα ∩ Y = Y α. Let x ∈ X r Y . Then xα ∈ Y or

xα ∈ X r Y . If xα ∈ X r Y , then xα ∈ {m + 1, . . . , n}. Assume that xα ∈ Y .

Then xα ∈ ranα ∩ Y , so xα = yα for some y ∈ Y by assumption. Since α is

order-preserving, we have

max(Y α) =
(

max(Y )
)
α ≤ mα ≤ xα = yα ≤

(
max(Y )

)
α = max(Y α),
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which implies that xα = max(Y α). This shows that (XrY )α ⊆ {max(Y α),

m+ 1, . . . , n}.

Conversely, assume that (X r Y )α ⊆ {max(Y α),m+ 1, . . . , n}. Then

(X r Y )α ∩ Y ⊆ {max(Y α)} ⊆ Y α. Using this and the fact that Y α ⊆ Y , we

obtain that ranα ∩ Y = (Y α ∩ Y ) ∪ ((X r Y )α ∩ Y ) = Y α.

Theorem 3.2.8. |Reg(OT (X, Y ))| =
(

2m− 1

m− 1

)(
2(n−m)

n−m

)
.

Proof. If m = n, then OT (X, Y ) = OT (Y ), so Reg(OT (X, Y )) = OT (Y ) by

Theorem 1.4. Hence the result for m = n is true by using Theorem 1.8. Next,

assume that m < n. Let ∅ 6= Y ′ ⊆ Y be such that |Y ′| = r and let k = max(Y ′).

It follows from Proposition 1.12 and Proposition 1.13 that

{α ∈ OT (X, Y ) | Y α = Y ′ and (X r Y )α ⊆ {k,m+ 1, . . . , n}}

=
{
α1 ∪ α2 | α1 ∈ OT (Y ), ranα1 = Y ′ and α2 ∈ OT (X r Y, {k,m+ 1, . . . , n})

}
,

which implies that∣∣{α ∈OT (X, Y ) | Y α = Y ′ and (X r Y )α ⊆ {k,m+ 1, . . . , n}}
∣∣

=
∣∣{α ∈ OT (Y ) | ranα = Y ′}

∣∣ ∣∣OT (X r Y, {k,m+ 1, . . . , n})
∣∣

=

(
m− 1

r − 1

)(
(n−m+ 1) + (n−m)− 1

n−m

)
by Proposition 1.19

and Theorem 2.2.3(i)

=

(
m− 1

r − 1

)(
2(n−m)

n−m

)
.

We have from Lemma 3.2.7 and Lemma 3.2.6 that{
α ∈ OT (X, Y ) | Y α = Y ′ and (X r Y )α ⊆ {k,m+ 1, . . . , n}

}
= {α ∈ OT (X, Y ) | ranα ∩ Y = Y α = Y ′}

= {α ∈ Reg(OT (X, Y )) | Y α = Y ′}.

Hence

|{α ∈ Reg(OT (X, Y )) | Y α = Y ′}| =
(
m− 1

r − 1

)(
2(n−m)

n−m

)
.
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This implies that for 1 ≤ r ≤ m,

|{α ∈ Reg(OT (X, Y )) | |Y α| = r}| =
(
m

r

)(
m− 1

r − 1

)(
2(n−m)

n−m

)
.

Consequently,

|Reg(OT (X, Y ))| =
m∑
r=1

(
m

r

)(
m− 1

r − 1

)(
2(n−m)

n−m

)

=

(
2m− 1

m

)(
2(n−m)

n−m

)
by Result 1.26.

Next, to determine the number of regular elements in OP (X, Y ), the following

lemmas are required.

Lemma 3.2.9. Let m < n. For α ∈ OP (X, Y )r {0}, ranα∩ Y = (domα∩ Y )α

if and only if one of the following statements holds.

(i) domα ⊆ X r Y and ranα ⊆ X r Y .

(ii) domα ⊆ Y .

(iii) domα ∩ Y 6= ∅, domα ∩ (X r Y ) 6= ∅ and (domα ∩ (X r Y ))α ⊆

{max((domα ∩ Y )α),m+ 1, . . . , n}.

Proof. Assume that ranα∩Y = (domα∩Y )α. If domα∩Y = ∅, then ranα∩Y =

∅ which implies that ranα ⊆ X r Y , so we get (i) in this case. Suppose that

domα ∩ Y 6= ∅. If domα ⊆ Y , then (ii) holds. Next, assume that domα * Y ,

i.e., domα ∩ (X r Y ) 6= ∅. Let x ∈ domα ∩ (X r Y ). Then xα ∈ Y or

xα ∈ X r Y . If xα ∈ X r Y , then xα ∈ {m + 1, . . . , n}. If xα ∈ Y , then

xα ∈ ranα ∩ Y = (domα ∩ Y )α. Since α is order-preserving,

max((domα ∩ Y )α) = (max(domα ∩ Y ))α

≤ mα ≤ xα ≤ max((domα ∩ Y )α),

and we deduce that xα = max((domα ∩ Y )α). This shows that (domα ∩ (X r

Y ))α ⊆{max((domα ∩ Y )α),m+ 1, . . . , n}. Hence (iii) holds.

For the converse, if domα ⊆ X r Y and ranα ⊆ X r Y , then domα ∩ Y =
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∅ and ranα ∩ Y = ∅, so ranα ∩ Y = (domα ∩ Y )α. If domα ⊆ Y , then

domα ∩ Y = domα, so ranα = (domα)α = (domα ∩ Y )α ⊆ Y which implies

that ranα ∩ Y = ranα = (domα ∩ Y )α. Next, assume that (iii) holds. Then

(domα∩ (XrY ))α∩Y ⊆ {max((domα∩Y )α)} ⊆ (domα∩Y )α. Also, we have

(domα ∩ Y )α ⊆ Y . It follows that

ranα ∩ Y =
(
(domα ∩ Y )α ∪ (domα ∩ (X r Y ))α

)
∩ Y

=
(
(domα ∩ Y )α ∩ Y

)
∪
(
(domα ∩ (X r Y ))α ∩ Y

)
= (domα ∩ Y )α.

The proof is thereby complete.

Lemma 3.2.10. For 1 ≤ s ≤ m and 1 ≤ t ≤ n−m,∣∣∣{α ∈ OP (X, Y ) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t and

(domα ∩ (X r Y ))α ⊆ {max((domα ∩ Y )α),m+ 1, . . . , n}
}∣∣∣

=

(
m

s

)(
n−m
t

)(
m+ s− 1

s

)(
n−m+ t

t

)
.

Proof. Let ∅ 6= Y1 ⊆ Y and ∅ 6= Z ⊆ X r Y be such that |Y1| = s and |Z| = t.

Let ∅ 6= Y2 ⊆ Y be such that |Y2| = r where 1 ≤ r ≤ s and let k = max(Y2).

Then by Proposition 1.12 and Proposition 1.13, we have

{
α ∈ OP (X, Y ) | domα ∩ Y = Y1, domα ∩ (X r Y ) = Z, (domα ∩ Y )α = Y2 and

(domα ∩ (X r Y ))α ⊆ {k,m+ 1, . . . , n}
}

=
{
α1 ∪ α2 | α1 ∈ OT (Y1, Y ), ranα1 = Y2 and α2 ∈ OT (Z, {k,m+ 1, . . . , n})

}
.

It follows that∣∣∣{α ∈ OP (X, Y ) | domα ∩ Y = Y1, domα ∩ (X r Y ) = Z, (domα ∩ Y )α = Y2 and

(domα ∩ (X r Y ))α ⊆ {k,m+ 1, . . . , n}
}∣∣∣

=
∣∣{α ∈ OT (Y1, Y ) | ranα = Y2}

∣∣ ∣∣OT (Z, {k,m+ 1, . . . , n})
∣∣
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=

(
s− 1

r − 1

)(
(n−m+ 1) + t− 1

t

)
by Proposition 1.19 and Theorem 2.2.3(i)

=

(
s− 1

r − 1

)(
n−m+ t

t

)
.

This implies that for 1 ≤ r ≤ s,∣∣∣{α ∈ OP (X, Y ) | domα ∩ Y = Y1, domα ∩ (X r Y ) = Z, |(domα ∩ Y )α| = r and

(domα ∩ (X r Y ))α ⊆ {max((domα ∩ Y )α),m+ 1, . . . , n}
}∣∣∣

=

(
m

r

)(
s− 1

r − 1

)(
n−m+ t

t

)
.

Hence∣∣∣{α ∈ OP (X, Y ) | domα ∩ Y = Y1, domα ∩ (X r Y ) = Z, and

(domα ∩ (X r Y ))α ⊆ {max((domα ∩ Y )α),m+ 1, . . . , n}
}∣∣∣

=
s∑
r=1

(
m

r

)(
s− 1

r − 1

)(
n−m+ t

t

)

=

(
m+ s− 1

s

)(
n−m+ t

t

)
by Result 1.24.

Consequently, for 1 ≤ s ≤ m and 1 ≤ t ≤ n−m,∣∣∣{α ∈ OP (X, Y ) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t, and

(domα ∩ (X r Y ))α ⊆ {max((domα ∩ Y )α),m+ 1, . . . , n}
}∣∣∣

=

(
m

s

)(
n−m
t

)(
m+ s− 1

s

)(
n−m+ t

t

)
.

Theorem 3.2.11.

|Reg(OP (X, Y ))| =
n−m∑
r=0

(
n−m
r

)(
n−m+ r − 1

r

)

+
m∑
s=1

(
m

s

)(
m+ s− 1

s

) n−m∑
t=0

(
n−m
t

)(
n−m+ t

t

)
.



55

Proof. If m = n, then OP (X, Y ) = OP (Y ), so Reg(OP (X, Y )) = OP (Y ) by

Theorem 1.5 and then using Theorem 1.9 to obtain the result for m = n. Next,

assume that m < n. It follows from Theorem 3.1.10 and Lemma 3.2.9 that

Reg(OP (X, Y )) = {α ∈ OP (X, Y ) | ranα ∩ Y = (domα ∩ Y )α}

= {0} ∪ {α ∈ OP (X, Y )r {0} | domα ⊆ X r Y and ranα ⊆ X r Y }

∪ {α ∈ OP (X, Y )r {0} | domα ⊆ Y } ∪{
α ∈ OP (X, Y ) | domα ∩ Y 6= ∅, domα ∩ (X r Y ) 6= ∅ and

(domα ∩ (X r Y ))α ⊆ {max((domα ∩ Y )α),m+ 1, . . . , n}
}

= OP (X r Y ) ∪ (OP (Y )r {0}) ∪{
α ∈ OP (X, Y ) | domα ∩ Y 6= ∅, domα ∩ (X r Y ) 6= ∅ and

(domα ∩ (X r Y ))α ⊆ {max((domα ∩ Y )α),m+ 1, . . . , n}
}
.

(1)

By Theorem 1.9, we have

|OP (X r Y )| =
n−m∑
r=0

(
n−m
r

)(
n−m+ r − 1

r

)
(2)

and

|OP (Y )r {0}| =
m∑
s=1

(
m

s

)(
m+ s− 1

s

)
. (3)

Also, we have

∣∣∣{α ∈ OP (X, Y ) | domα ∩ Y 6= ∅, domα ∩ (X r Y ) 6= ∅ and

(domα ∩ (X r Y ))α ⊆ {max((domα ∩ Y )α),m+ 1, . . . , n}
}∣∣∣

=
m∑
s=1

n−m∑
t=1

∣∣∣{α ∈ OP (X, Y ) | | domα ∩ Y | = s, | domα ∩ (X r Y )| = t and

(domα ∩ (X r Y ))α ⊆ {max((domα ∩ Y )α),m+ 1, . . . , n}
}∣∣∣

=
m∑
s=1

n−m∑
t=1

(
m

s

)(
n−m
t

)(
m+ s− 1

s

)(
n−m+ t

t

)
by Lemma 3.2.10

=
m∑
s=1

(
m

s

)(
m+ s− 1

s

) n−m∑
t=1

(
n−m
t

)(
n−m+ t

t

)
. (4)
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From (1), (2), (3) and (4), we obtain that

|Reg(OP (X, Y ))| =
n−m∑
r=0

(
n−m
r

)(
n−m+ r − 1

r

)
+

m∑
s=1

(
m

s

)(
m+ s− 1

s

)

+
m∑
s=1

(
m

s

)(
m+ s− 1

s

) n−m∑
t=1

(
n−m
t

)(
n−m+ t

t

)

=
n−m∑
r=0

(
n−m
r

)(
n−m+ r − 1

r

)
+

m∑
s=1

(
m

s

)(
m+ s− 1

s

) n−m∑
t=0

(
n−m
t

)(
n−m+ t

t

)
,

as desired.

Theorem 3.2.12. |Reg(OI(X, Y ))| =
(

2m

m

)(
2(n−m)

n−m

)
.

Proof. By Theorem 3.1.12, we have

Reg(OI(X, Y )) = {α ∈ OI(X, Y ) | (domα ∩ (X r Y ))α ⊆ X r Y }

= {α ∈ OI(X) | (domα ∩ Y )α ⊆ Y and

(domα ∩ (X r Y ))α ⊆ X r Y }.

Proposition 1.12 and Proposition 1.13 imply that

{α ∈ OI(X) | (domα ∩ Y )α ⊆ Y and (domα ∩ (X r Y ))α ⊆ X r Y }

= {α1 ∪ α2 | α1 ∈ OI(Y ) and α2 ∈ OI(X r Y )}.

Consequently,

Reg(OI(X, Y )) = {α1 ∪ α2 | α1 ∈ OI(Y ) and α2 ∈ OI(X r Y )}.

Hence

|Reg(OI(X, Y ))| = |OI(Y )| |OI(X r Y )|

=

(
2m

m

)(
2(n−m)

n−m

)
by Theorem 1.10.



CHAPTER IV

REGULAR ELEMENTS OF GENERALIZED

ORDER-PRESERVING TRANSFORMATION

SEMIGROUPS

In the last chapter, the regular elements of the generalized order-preserving trans-

formation semigroups (OT (X, Y ), θ) where θ ∈ OT (Y,X), (OP (X, Y ), θ) where

θ ∈ OP (Y,X) and (OI(X, Y ), θ) where θ ∈ OI(Y,X) are characterized when X

and Y are chains. In addition, we provide the proofs of Theorem 1.16 , Theorem

1.17 and Theorem 1.18 by using these characterizations.

Throughout this chapter, let X and Y be any chains.

Before we determine the regular elements of (OT (X, Y ), θ), (OP (X, Y ), θ) and

(OI(X, Y ), θ), it is convenient to have the following preliminary result.

Lemma 4.1. Let A and B be nonempty sets. If α, β ∈ P (A,B) and γ ∈ P (B,A)

are such that α = αγβγα, then the following conditions hold.

(i) ranα = ran(γα).

(ii) ranα ⊆ dom γ.

(iii) γ is 1-1 on ranα.

Proof. Since ranα = ran(αγβγα) ⊆ ran(γα) ⊆ ranα, we obtain (i). Also, we

have

ranα = (domα)α =
(

dom(αγβγα)
)
α

⊆
(

dom(αγ)
)
α

=
(
(ranα ∩ dom γ)α−1

)
α

= ranα ∩ dom γ ⊆ dom γ.

This verifies (ii). Since α = αγβγα, it follows that z = zγβγα for all z ∈ ranα,
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or in an other word, γβγα is the identity on ranα. If y1, y2 ∈ ranα are such that

y1γ = y2γ, then y1 = y1γβγα = y2γβγα = y2, so (iii) follows.

First, we characterize the regular elements of (OT (X, Y ), θ) where θ ∈ OT (Y,X).

Theorem 4.2. For θ ∈ OT (Y,X) and α ∈ OT (X, Y ), α ∈ Reg((OT (X, Y ), θ))

if and only if the following conditions hold.

(i) αθ ∈ Reg(OT (X)).

(ii) ranα = ran(θα).

(iii) θ is 1-1 on ranα.

Proof. Assume that α ∈ Reg((OT (X, Y ), θ)). Then there exists β ∈ OT (X, Y )

such that α = αθβθα. Thus αθ, βθ ∈ OT (X) and αθ = (αθ)(βθ)(αθ). This

verifies (i) and, of course, (ii) and (iii) follow immediately from Lemma 4.1.

For the converse, assume that (i), (ii) and (iii) hold. Let β ∈ OT (X) be such

that αθ = (αθ)β(αθ). Then α
(
θ|ranα

)
= αθβα

(
θ|ranα

)
. Since θ|ranα is 1-1, it follows

that α = αθβα. Then ranα = ran(αθβα) ⊆ ran(βα) ⊆ ranα, so ranα = ran(βα).

Hence ran(βα) = ranα = ran(θα). For each y ∈ ran(βα) = ran(θα), choose an

element dy ∈ y(θα)−1. Then dy ∈ Y and dy(θα) = y for all y ∈ ran(βα). Note

that X =
·⋃

y ∈ ran(βα)

y(βα)−1. Define β′ : X → Y by a bracket notation as follows:

β′ =

(
y(βα)−1

dy

)
y ∈ ran(βα)

.

If x ∈ X, then xα ∈ ranα = ran(βα) and xα = xαθβα = (xαθ)βα, so

xαθ ∈ (xα)(βα)−1 which implies that xαθβ′θα = (xαθ)β′θα = dxα(θα) = xα.

Hence α = αθβ′θα. To show that β′ is order-preserving, let x1, x2 ∈ X be such

that x1 < x2. Then x1βα ≤ x2βα. If x1βα = x2βα, then x1, x2 ∈ (x1βα)(βα)−1,

so x1β
′

= dx1βα = x2β
′
. Assume that x1βα < x2βα. Since ran(βα) = ran(θα),

we get x1βα, x2βα ∈ ran(θα). Since θα ∈ OT (Y ), it follows from Proposition

1.11 that (x1βα)(θα)−1 < (x2βα)(θα)−1. It follows that dx1βα < dx2βα. Since

((x1βα)(βα)−1)β
′

= {dx1βα} and ((x2βα)(βα)−1)β
′

= {dx2βα}, we have that

x1β
′
= dx1βα < dx2βα = x2β

′
.

The proof is thereby complete.
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We now use the above theorem to prove Theorem 1.16. To do this, the follow-

ing series of lemmas is needed.

Lemma 4.3. Let |X| > 1. If the semigroup (OT (X, Y ), θ) is regular, then θ is

1-1.

Proof. We will prove the lemma by contrapositive. Assume that θ is not 1-1.

Then there are c, d ∈ Y such that c < d and cθ = dθ. Since |X| > 1, there exist

a, b ∈ X such that a < b. Define α : X → Y by

α =

(
x y

c d

)
x< b
y≥ b

.

Then α ∈ OT (X, Y ) and ranα = {c, d}. Since c, d ∈ ranα are such that cθ = dθ

and c < d, it follows that θ is not 1-1 on ranα. We conclude from Theorem 4.2

that α is not a regular element of (OT (X, Y ), θ), and hence (OT (X, Y ), θ) is not

a regular semigroup.

Lemma 4.4. Let |Y | ≥ 2. If there is an element a ∈ X such that a > ran θ or

a < ran θ, then (OT (X, Y ), θ) is not a regular semigroup.

Proof. Let e, f ∈ Y be such that e < f . Let α : X → Y be defined by

α =

(
u v

e f

)
u<a
v≥ a

if a > ran θ and α =

(
u v

e f

)
u≤ a
v >a

if a < ran θ.

Then α ∈ OT (X, Y ), ranα = {e, f}, ran(θα) = {e} for a > ran θ and ran(θα) =

{f} for a < ran θ. By Theorem 4.2, α /∈ Reg(OT (X, Y ), θ). Hence (OT (X, Y ), θ)

is not regular.

Lemma 4.5. If ran θ ( X and |Y | ≥ 3, then the semigroup (OT (X, Y ), θ) is not

regular.

Proof. Let e, f, g ∈ Y be such that e < f < g and let a ∈ X r ran θ. If a > ran θ

or a < ran θ, then Lemma 4.4 implies that (OT (X, Y ), θ) is not regular. Assume

that a ≯ ran θ and a ≮ ran θ. Then {t ∈ ran θ | t < a} and {t ∈ ran θ | t > a} are

nonempty sets. Define α : X → Y by
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α =

(
u a v

e f g

)
u<a
v >a

.

Then α ∈ OT (X, Y ) and ranα = {e, f, g} 6= {e, g} = ran(θα). It follows

immediately from Theorem 4.2 that α is not a regular element of (OT (X, Y ), θ).

This implies that (OT (X, Y ), θ) is not a regular semigroup.

Lemma 4.6. Let |Y | = 2. Then (OT (X, Y ), θ) is a regular semigroup if and

only if min(X) and max(X) exist, and ran θ = {min(X),max(X)}.

Proof. Let Y = {e, f} be such that e < f . Assume that (OT (X, Y ), θ) is regular.

If |X| = 1, then min(X) = max(X) and ran θ = {min(X)}. Suppose that |X| > 1.

We deduce from Lemma 4.3 that θ is 1-1. Then eθ < fθ and ran θ = {eθ, fθ}.

Also by Lemma 4.4, for every a ∈ X, a ≯ ran θ and a ≮ ran θ. Thus eθ ≤ a ≤ fθ

for all a ∈ X. This implies that eθ = min(X) and fθ = max(X).

Conversely, assume that min(X) and max(X) exist, and ran θ = {min(X),

max(X)}. To show that (OT (X, Y ), θ) is regular, let α ∈ OT (X, Y ). Then either

| ranα| = 1 or | ranα| = 2 because |Y | = 2. If | ranα| = 1, then αθα = α because

ran(αθα) ⊆ ranα, so it is regular. Next, assume that | ranα| = 2. Then ranα =

{e, f}, so X = eα−1 ∪̇ fα−1. Since e < f and α is order-preserving, we have

min(X) ∈ eα−1 and max(X) ∈ fα−1. Then min(X)α = e and max(X)α = f .

Therefore we get ran(θα) = (ran θ)α = {min(X),max(X)}α = {e, f} = ranα.

We now have | dom θ| = | ran θ| = 2 and it immediately follows that θ is 1-1.

Since ran(αθ) is finite, by Corollary 1.7, αθ ∈ Reg(OT (X)). By Theorem 4.2,

α ∈ Reg(OT (X, Y ), θ).

Lemma 4.7. If (OT (X, Y ), θ) is a regular semigroup and θ is an order-

isomorphism from Y onto X, then OT (X) is a regular semigroup.

Proof. Assume that (OT (X, Y ), θ) is a regular semigroup and θ is an order-

isomorphism from Y onto X. Then θ−1 is an order-isomorphism from X onto Y .

To show that OT (X) is regular, let α ∈ OT (X). Then αθ−1 ∈ OT (X, Y ). Since

(OT (X, Y ), θ) is regular, we have αθ−1 = αθ−1θβθαθ−1 for some β ∈ OT (X, Y ).
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Thus βθ ∈ OT (X) and

α = α1X = αθ−1θ = αθ−1θβθαθ−1θ = α1Xβθα1X = αβθα.

This implies that α ∈ Reg(OT (X)). Hence OT (X) is a regular semigroup.

Theorem 4.8. The semigroup (OT (X, Y ), θ) is regular if and only if one of the

following statements holds.

(i) The semigroup OT (X) is regular and θ is an order-isomorphism from Y

onto X.

(ii) |X| = 1.

(iii) |Y | = 1.

(iv) |Y | = 2, min(X) and max(X) exist, and ran θ = {min(X),max(X)}.

Proof. To prove necessity, assume that the semigroup (OT (X, Y ), θ) is regular

and suppose that (i), (ii) and (iii) are false. Then |X| > 1 and |Y | > 1 and (θ is

not an order-isomorphism from Y into X or OT (X) is not regular).

Case 1: |X| > 1, |Y | > 1 and θ is not an isomorphism from Y onto X. Since

(OT (X, Y ), θ) is regular, it follows from Lemma 4.3 that θ is 1-1. Then ran θ ( X.

We therefore deduce from Lemma 4.5 that |Y | ≤ 2, and thus |Y | = 2. Thus (iv)

holds by Lemma 4.6.

Case 2: |X| > 1, |Y | > 1 and OT (X) is not regular. Since (OT (X, Y ), θ) is

regular and OT (X) is not regular, it follows from Lemma 4.7 that θ is not an

order-isomorphism from Y onto X. As in the proof of Case 1, we have (iv) is

true.

To prove sufficiency, we first assume that (i) is true. Let α ∈ OT (X, Y ).

Then αθ ∈ OT (X), so αθ ∈ Reg(OT (X)) because OT (X) is regular. Since

θ is an isomorphism from Y onto X, it follows that θ is 1-1 and ran θ = X.

Then ran(θα) = (ran θ)α = Xα = ranα. Since θ is 1-1 and ranα ⊆ Y , we

have that θ is 1-1 on ranα. In view of Theorem 4.2, α is a regular element of

(OT (X, Y ), θ). Hence (OT (X, Y ), θ) is a regular semigroup. Next, if |X| = 1,

then for α ∈ OT (X, Y ), | ranα| = 1, so α = αθα because ran(αθα) ⊆ ranα and
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it follows that α ∈ Reg(OT (X, Y ), θ). This shows that (OT (X, Y ), θ) is a regular

semigroup if |X| = 1. It is clear that (OT (X, Y ), θ) is regular if |Y | = 1 since

|OT (X, Y )| = 1. Finally, if (iv) is true, then Lemma 4.6 shows that (OT (X, Y ), θ)

is a regular semigroup.

Hence the theorem is completely proved.

Next, necessary and sufficient conditions for the elements of the semigroups

(OP (X, Y ), θ) where θ ∈ OP (Y,X) and (OI(X, Y ), θ) where θ ∈ OI(Y,X) to be

regular are provided.

Theorem 4.9. For θ ∈ OP (Y,X) and α ∈ OP (X, Y ), α ∈ Reg((OP (X, Y ), θ))

if and only if the following conditions hold.

(i) ranα = ran(θα).

(ii) ranα ⊆ dom θ.

(iii) θ is 1-1 on ranα.

Proof. It is immediate from Lemma 4.1 that if α ∈ Reg((OP (X, Y ), θ)), then (i),

(ii) and (iii) hold.

Now suppose, conversely, that (i), (ii) and (iii) hold. Then ran(αθ) = (ranα∩

dom θ)θ = (ranα)θ. Since ranα = ran(θα), we get y(θα)−1 6= ∅ for every y ∈

ranα. For each y ∈ ranα, choose an element dy ∈ y(θα)−1. Then dy ∈ Y and

dy(θα) = y for all y ∈ ranα. Define β : ran(αθ)(= (ranα)θ)→ Y by

β =

(
yθ

dy

)
y∈ranα

.

The mapping β is well-defined by (iii). To show that β is order-preserving, let

y1, y2 ∈ ranα be such that y1θ < y2θ. Since θ is order-preserving, it follows from

(iii) that y1 < y2. Since θα ∈ OP (Y ) and y1, y2 ∈ ranα = ran(θα), by Proposition

1.11, y1(θα)−1 < y2(θα)−1. But dy1 ∈ y1(θα)−1 and dy2 ∈ y2(θα)−1, so dy1 < dy2 .

Then (y1θ)β = dy1 < dy2 = (y2θ)β. Hence β ∈ OP (X, Y ). It remains to show that

α = αθβθα. Since for x ∈ domα, xαθ ∈ dom β and xαθβ = dxα ∈ dom(θα), this

implies that dom(αθβθα) = domα. If x ∈ domα, then xαθβθα = (xαθ)βθα =
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dxα(θα) = xα. Hence α = αθβθα. This shows that α is regular in (OP (X, Y ), θ)

and the verification is complete.

Theorem 4.10. For θ ∈ OI(Y,X) and α ∈ OI(X, Y ), α ∈ Reg((OI(X, Y ), θ)) if

and only if the following conditions hold.

(i) domα ⊆ ran θ.

(ii) ranα ⊆ dom θ.

Proof. Assume that α is a regular element of (OI(X, Y ), θ). Then there is β ∈

OI(X, Y ) such that α = αθβθα. It follows from Lemma 4.1 that ranα = ran(θα)

and ranα ⊆ dom θ. Then (domα)α = ranα = ran(θα) = (ran θ ∩ domα)α, so

domα = ran θ ∩ domα because α is 1-1. Hence domα ⊆ ran θ.

Conversely, assume that (i) and (ii) hold. Then ran(θα) = (ran θ∩domα)α =

(domα)α = ranα and dom(αθ) = (ranα ∩ dom θ)α−1 = (ranα)α−1 = domα.

Define β = (αθ)−1α(θα)−1. It is evident that β ∈ OI(X, Y ). We also have

that αθβθα = αθ(αθ)−1α(θα)−1θα = 1dom(αθ)α1ran(θα) = 1domαα1ranα = α, so

α ∈ Reg((OI(X, Y ), θ)), as desired.

As in the proof of Theorem 4.10, we can see that Theorem 4.10(i) implies

Theorem 4.9(i) and the converse holds if α is 1-1.

Finally, we shall apply Theorem 4.9 and Theorem 4.10 to prove Theorem 1.17

and Theorem 1.18, respectively. The following lemma is required.

Lemma 4.11. Let OS(X, Y ) be OP (X, Y ) or OI(X, Y ) and θ ∈ OS(Y,X). If

the semigroup (OS(X, Y ), θ) is regular, then dom θ = Y and ran θ = X.

Proof. We prove the lemma by contrapositive. Assume that dom θ 6= Y or

ran θ 6= X.

Case 1: dom θ 6= Y . Let y ∈ Y r dom θ and x ∈ X. Then
(
x
y

)
∈ OI(X, Y ) ⊆

OP (X, Y ). But ran(
(
x
y

)
) = {y} * dom θ, so by Theorem 4.9 and Theorem 4.10,

we have
(
x
y

)
is not a regular element of (OS(X, Y ), θ).

Case 2: ran θ 6= X. Let x ∈ X r ran θ and y ∈ Y . Then
(
x
y

)
∈ OI(X, Y ) ⊆

OP (X, Y ). But θ
(
x
y

)
= 0, ran(

(
x
y

)
) = {y} and dom(

(
x
y

)
) = {x} * ran θ, so by



64

Theorem 4.9 and Theorem 4.10,
(
x
y

)
/∈ Reg((OS(X, Y ), θ)).

Hence (OS(X, Y ), θ) is not a regular semigroup, and hence the lemma is proved.

Theorem 4.12. For θ ∈ OP (X, Y ), the semigroup (OP (X, Y ), θ) is regular if

and only if

(i) θ is an order-isomorphism from Y onto X or

(ii) dom θ = Y , ran θ = X and |X| = 1.

Proof. To prove necessity, assume that (OP (X, Y ), θ) is a regular semigroup. We

have by Lemma 4.11 that dom θ = Y and ran θ = X. If |X| = 1, then (ii) holds.

Assume that |X| > 1. We will show that θ is an order-isomorphism from Y on

to X. It remains to show that θ is 1-1. Suppose on the contrary that θ is not

1-1. Then there exist a ∈ X, e, f ∈ Y such that e < f and eθ = fθ = a. Since

|X| > 1, there is b ∈ X r {a}. Since X is a chain, we get b < a or a < b. Define

α : {a, b} → Y by

α =

(
b a

e f

)
if b < a and α =

(
a b

e f

)
if a < b.

Then α ∈ OP (X, Y ). Since e, f ∈ ranα, eθ = fθ and e < f , it follows that

θ is not 1-1 on ranα. In view of Theorem 4.9, α is not a regular element of

(OP (X, Y ), θ), which is contrary to the hypothesis. Hence we deduce that θ is

1-1, so (i) hold if |X| > 1.

To prove sufficiency, assume that (i) or (ii) holds.

Case 1: θ is an order-isomorphism from Y onto X. Then dom θ = Y, ran θ = X

and θ is 1-1. Let α ∈ OP (X, Y ). Then ranα ⊆ Y = dom θ and ran(θα) = (ran θ∩

domα)α = (X ∩ domα)α = (domα)α = ranα. It follows from Theorem 4.9 that

α is regular in (OP (X, Y ), θ). Hence (OP (X, Y ), θ) is a regular semigroup.

Case 2: dom θ = Y , ran θ = X and |X| = 1. Let α ∈ OP (X, Y ) r {0}. Then

| ranα| = 1, so θ is 1-1 on ranα. Since dom θ = Y , ran θ = X and |X| = 1, it

follows that ranα ⊆ dom θ and ranα = ran(θα). Hence by Theorem 4.9, α is
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regular in (OP (X, Y ), θ). This shows that (OP (X, Y ), θ) is a regular semigroup.

Theorem 4.13. For θ ∈ OI(Y,X), the semigroup (OI(X, Y ), θ) is regular if and

only if θ is an order-isomorphism from Y onto X.

Proof. Assume that (OI(X, Y ), θ) is a regular semigroup. By Lemma 4.11, dom θ =

Y and ran θ = X. Since θ ∈ OI(Y,X), it follows that θ is order-preserving and θ

is 1-1. Therefore we deduce that θ is an order-isomorphism from Y onto X.

Conversely, assume that θ is an order-isomorphism from Y onto X. Then

dom θ = Y and ran θ = X. If α ∈ OI(X, Y ), then domα ⊆ X = ran θ and

ranα ⊆ Y = dom θ, so by Theorem 4.10, α is regular in (OI(X, Y ), θ). Hence

(OI(X, Y ), θ) is a regular semigroup, as required.
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