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INTRODUCTION

Transformation semigroups play an important role in Semigroup Theory. It is
well-known that every semigroup can beembedded in a full transformation semi-
group ([8], p.3 or [11], p. 7). As we know, regularity is a crucial notion in Semi-
group Theory. All stamdard eransforimation semigroups are regular semigroups.
In addition, the full linefu'r‘transform@ition semigroup on a vector space and the
full n x n matrix semi’grg)_up over/a div._is%on ring are both regular. Semigroups of
order-preserving tranféﬂnations ha*}e l;een widcly studied. Combinatorial results
for them have been of interest 1n this sibij'ect. See (5], [6], [7], [9], [10], [12], [13],
[14], [15], [16], [17], [18], [22], [2'3};;'[124], [26’] and [27] for example. Order-preserving
transformation semigroups ne_ed_f%iot be"‘fgg}}l‘ar in general. In this research, the

regular elements of certain order=preserving transformation semigroups on chains
7 7

are of our interest to characterize. Combinatorial results on the regular elements

of some of these séinjgroups are also considered. "_ y

For a nonempty _é_et X, Tet"PX)P(X) "and I (_X ) denote respectively the
full transformation semrigroup on X, the,partial transformation semigroup on
X and the 11 partial transformation semigroup on X | respectively. It is well-
known that all“the semigroups T(X), P(X) and I(X) are regular ([8], p.4 or
[11], pa63 and 149) s For nonempty sets X and Y], et T(X,Y), P(X,Y) and
I(X,Y)"be the set of all transformations, the set of all partial transformations
and the set of all 1-1 partial transformations of X into Y, respectively. If Y
is a nonempty subset of X, then T(X,Y), P(X,Y) and I(X,Y) are clearly
subsemigroups of T'(X), P(X) and I(X), respectively. For @ # Y C X, let
TX,)Y)={aeT(X)|YaCY}, PX,Y)={ac P(X)|(domanY)a CY}
and I(X,Y) = {a € I(X) | (domanY)a C Y}. Then T(X,Y), P(X,Y) and
1(X,Y) are subsemigroups of T'(X), P(X) and I(X) containing T(X,Y), P(X,Y)



and I(X,Y), respectively. We may consider T'(X,Y) and T(X,Y) as generaliza-
tions of T(X). The semigroups P(X,Y) and P(X,Y) generalize P(X) as well
as I(X,Y) and I(X,Y) generalize I(X). The semigroup T(X,Y’) was introduced
and studied by Symons [29] in 1975 while Magill [19] introduced and studied the
semigroup T(X,Y) in 1966. In [25], the authors characterized the regular ele-
ments of the transformation semigroups 7(X,Y) and T(X,Y). In addition, the
number of regular elements of these two sets when X is finite was given in terms
of | X, Y], and their Stitling numbers of seetnd kind.

Let X and Y be noncmpty sets.J For € Z(Y, X), let (T'(X,Y),0) denote
the semigroup (T'(X @5 | avhere o+ 8 = afffor all o,3 € T(X,Y). The
semigroups (P(X,Y),8) where 0 € PI{Y, X) and (1(X,Y),0) where 0 € I(Y, X)
are defined similarly. /M'hese semigro{ij;é can be also considered as generaliza-
tions of T(X), P(X) and I1(X ),""respec":gixfély. They are special cases of general-
ized partial transformation semigfoupsl’:iytr_oduced by Sullivan [28] in 1975. In
1975, Magill and Subbiah {20] ,chal'actérizgd the regular elements of the semi-
groups (T'(X,Y),6) and (P(X,Y), g). Reééﬁﬂy, Chinram [3] considered when the

semigroup (P(X,Y),0) is regular and gé{ié!ﬂét‘ characterization of its regular ele-

ments in a different y regularity of the semigroup
(T(X,Y),0) was gi;/én in [2]. The regularity and the I'é—g-llllal“ elements of the semi-
groups (I(X,Y),6) were introduced in [4].

For a partiallytordered setl X, det OT (X )y QP X ) andyOL( X ) denote the order-
preserving full gransformation semigroup on X, the order-preserving partial trans-
formatiengsemigroup on-X and, the, order-preserving «l: L-partial, transformation
semigroup on X, “respectively. " It"is'known that OT(X) is a regular semigroup
if X is a finite chain ([8], p.203). Kemprasit and Changphas [14] extended this
result by showing that OT(X) is regular for any chain which is order-isomorphic
to a subset of Z, the set of integers under the natural order. It was also shown
in [14] that for any chain X, OP(X) and OI(X) are regular semigroups. In fact,
Kim and Kozhukhov [16] characterized a countable chain X for which OT'(X) is a

regular semigroup. It was also proved in [14] that if X is an interval in R, the set



of real numbers under the usual order, then OT'(X) is a regular semigroup if and
only if X is closed and bounded. Rungrattrakoon and Kemprasit [26] extended
this fact by showing that for a nontrivial interval X in a subfield F' of R, OT'(X)
is regular if and only if F' = R and X is closed and bounded. Then it follows as
a direct consequence that for any nontrivial interval X in Q, the set of rational
numbers under the usual order, OT(X) is not a regular semigroup. In fact, the
result in [26] mentioned above is a congeduence of the main theorem in [13]. In
23], the regularity of the.semigroup OT (X )as. investigated for a certain dictio-
nary chain X and it wag studied in f24] for X being an other dictionary chain.
In general, OT(X) negdMotebe rogular. Then we gave in [22] a characterization
determining when an _element of OT(}( ) is regular where X is any chain. In the
case of a finite chain X, Howie [1_()] gt:a;e the cardinality of OT'(X) and in [7],
Howie and Gomes provided thé"cardirf?liﬁy of OP(X). See also the papers [17]
and [18] of Laradji and Umar and thelii')@ppr 19] of Higgins. The cardinality of
OI(X) was first presented by Gatba in -'fﬁ}-g‘lt was also given in [5].

Let X and Y be partially"-i’érd@red segﬁenote by OT(X,Y),OP(X,Y) and
OI(X,Y) the set of all ordef‘-'piéservin—é‘ﬂifﬁ'rgmsformat_@ons, the set of all order-
preserving partial 'ti%nsf@%a&iens-and—th&set—ef—aﬂ—&rder—preserving 1-1 partial
transformations of X into Y, respectively. If Y is a ﬁg;empty subset of X, then
OT(X,Y),0P(X, Y)ﬁ-and OI(X,Y) are subsemigroups of OT(X),OP(X) and
OI(X), respectively. Fora YA &7) let QLY X |[¥)={ac OT(X) | Ya C Y},
OP(X,Y)={awec OP(X) | (domanY)a CY}and OI(X,Y) = {a € OI(X) |
(dom @R Ya)ar & Y4, Fhen QT (X, V), OPLXY ) and,QJ ( X Yo\ ane subsemigroups
of OT(X), OP(X)'and OI(X)" containing OT(X)Y);OP(X,Y yand OI(X,Y),
respectively. Also, we have that OT(X,Y) and OT(X,Y) generalize OT(X) and
likewise for OP(X,Y), OP(X,Y), OI(X,Y) and OI(X,Y). The regularity of the
semigroups OT(X,Y),OP(X,Y) and OI(X,Y) was studied in [27] where X is a
chain.

For any partially ordered sets X, Y and 6 € OT (Y, X), let (OT(X,Y), 0) be the
semigroup (OT(X,Y), x) where a x 3 = aff for all o, 5 € OT(X,Y). The semi-



groups (OP(X,Y),0) where § € OP(Y, X) and (OI(X,Y),0) where 8 € OI(Y, X)
are defined analogously. We also have that (OT(X,Y),0), (OP(X,Y),0) and
(OI(X,Y),0) generalize OT'(X), OP(X) and OI(X), respectively. In [15], the
authors considered when the semigroup (OT'(X,Y),0) is regular where X and
Y are any chains. Also, the regularity of the semigroups (OP(X,Y),6) and
(OI(X,Y),0) was determined in [12] shere X and Y are chains.

In this research, we extend above results for order-preserving transformation
semigroups. The regular _elements of fellewing semigroups are characterized:

d

OT(X,Y),0P(X,Y), OLXsY). OT(X,Y);OL(X,Y) and OI(X,Y) where X

is a chain and @ # Y _@X and (O7'(X,Y),0), (OP(X,Y),0) and (OI(X,Y),0)
where X and Y are anyé€hains and ¢ beliongs t0 OT(Y, X),0P(Y, X) and OI(Y, X),
respectively. In addition, Af 2 :, {1;2,,n} and Y = {1,2,...,m} where
m < n, the number of wegular elémenté"; of the semigroups OT'(X,Y),OP(X,Y),
OI(X,Y), OT(X,Y),;OR(X}Y) and GTCX,,Y) is investigated.

i oy
. . f i dalla
This research is organized as follows:

L

Chapter I contains the bééicAdeﬁnitiQTsJ_-notations and quoted results which

CY el

will be used for this _,researc}-l_. -

In Chapter II,V-'_V_\%e give necessary and sufficient (;%érlditions for the elements
of the semigroups OTj_(X, Y),OP(X)¥)and O (X, 1‘/) to be regular when XY
are chains and @ # Y ¢C..X. Then these characterizations are applied to prove
the above known results concerning the regularity of OT(X,Y),OP(X,Y) and
OI(X,Y). In addition, the regularelements of OT'(X,Y),OP(X,Y) and OI(X,Y)
are comtted whenX= {1, 2% 2 in}and ¥ = {1, 2).. ym} wherem < n.

In Chapter III, necessary and sufficient conditions for the elements of the semi-
groups OT(X,Y), OP(X,Y) and OI(X,Y) to be regular are provided when X, Y
are chains and @ # Y C X. These conditions are then applied to determine the
regularity of OT(X,Y), OP(X,Y) and OI(X,Y). Moreover, we also provide the
number of regular elements in each of the semigroups OT(X,Y), OP(X,Y) and
OI(X,Y) when X = {1,2,...,n} and Y = {1,2,...,m} where m < n.

Chapter IV contains characterizations of the regular elements of the gener-



alized order-preserving transformation semigroups (OT(X,Y),0), (OP(X,Y).6)
and (OI(X,Y),0) where X and Y are any chains. In addition, the regularity of
(0OT(X,Y),0), (OP(X,Y),0) and (OI(X,Y),0) is determined by making use of
our characterizations.

Note that a condition of the regularity of an element in some semigroups of

our interest is given in terms of the re

is a chain. Recall that the reg

AU INENTNEINS
ARIANTAUNNINGIAY



CHAPTER I
PRELIMINARIES

For a set X, let | X| denot

’,/}/r of X. The notation U stands for a
@r it @ = axa for some x € S,

: f S is regular. The set of all

disjoint union.
An element a of a se
and S is called a regular

regular elements of a s

r e S}

The domain and 1 mappil ill be denoted by dom a and
ran «, respectively. Foran emgm‘;}_}ﬂ,‘x, in of a mapping «, the image of
z under « is written as U xa~t. For A C dom a,

rEranao

e titz\mapping on a nonempty

set A is denoted i n ¢ the composition af of «
m'E; &, otherwise, af is the
usual composition of thf mappings « (rom nranl and [ (van o dom ) where 0 is the

empty transfﬁ%ﬂm% # ?j ATl Gty Womain. Then for any

mappings «, ff%nd v, we have

AR NIRURAINYIAE.

ran(af) = (ranaNdomf)f C ranf,

forz € X, = € dom(af) & € domaand za € dom f3,

(@B)y = a(B).

Let X be a nonempty set. We call a mapping o from X into itself a transfor-
mation of X. By a partial transformation of X we mean a mapping from a subset

of X into X. Then the empty transformation 0 is a partial transformation of X.



Let T(X), P(X) and I(X) denote the set of all transformations of X, the set of
all partial transformations of X and the set of all 1-1 partial transformations of

X, respectively, that is,

TX)={ala: X — X},
PX)={a:A— X | ACX},

W){ a is 1-1}.
@n lx, 0 is contained in P(X)

i ., \') are subsets of P(X). Therefore,
| emigroup having 7'(X) and I(X)
and I(X) are called the full

We can see that all of
and I(X) but not in
under the compositio
as its subsemigroups
transformation semigroupfon' X, the p A wsformation semigroup on X and
the 1-1 partial transfoumat ""*.,- the symunetric inverse semigroup on
X, respectively. By a trans| 7;; _ p o1 X we mean a subsemigroup of
P(X). Tt is well-known that all-the ser groups P(X), T(X) and I(X) are regular
for every set X ([8], p. 4 orL e .

For convenience;we

Yo

h } sing a bracket notation.

For example,

). i
(Z 2) ﬁands fof’dﬂje map mﬁ h dom ’] ﬁ 'j} rana = {c,d},

A

—c and ba = d, j
A ININAMI AN

ranff ={atU{a' |z € X N\ A} and za=
¥ if e X A

1
rQ

By the above notations, a mapping « can be written as o = < ) .

x rErana



For nonempty sets X and Y, let

TX,)Y)={a|a: X -Y},
P(X,Y)={a: A=Y |ACX),

I(X,)Y)={aePX,)Y) |« is 1—1}.

’/3 yand (X, X) =I(X). If Yisa

g CY}

Notice that T'(X, X) = T(X), P

nonempty subset of X, then

which are clearly su i 8- of T 1 wmd (X ), respectively.

domanNY)a CY},

)o

) _
and-[(X,Y) C I(X,Y). Also,

CY}.

Then 7(X, Y) c Tlx,
T(X,Y), P are subsemigroups of T'(X), P(X) and I(X),

;iiir::z EJ;:@EJ ’S:ﬂwmmmx;i e
Y R D iaf 111

The characterlzatlons of the regular elements in 7(X,Y) and T(X,Y) are

respectively given as follows:

Theorem 1.1. ([25]) Let X be a nonempty set, @ #Y C X and a € T(X,Y).
Then o € Reg(T(X,Y)) if and only if rana = Ya.

Theorem 1.2. ([25]) Let X be a nonempty set, @ #Y C X and a € T(X,Y).
Then a € Reg(T(X,Y)) if and only if ranaNY = Ya.



Next, let X and Y be any nonempty sets. Let S(X,Y) be T(X,Y), P(X,Y)
or I(X,Y). For § € S(Y, X), we define a sandwich operation * on S(X,Y’) by

axf = aff forall a,f e S(X,Y).

Then (S(X,Y),*) is a semigroup which we denote by (S(X,Y),6). The semi-
groups (T(X,Y),0), (P(X,Y),0) a JI(X, Y),0) are called the generalized full

%

. rtial transformation semigroup and
the generalized 1-1 partial transformat up of X into Y induced by 0,

respectively. Generalize i igroups introduced by Sullivan
(28] in 1975 have these.s 4s|special particular, (T(X, X), 1x),

(P(X,X),1x) and (/ migroups T'(X), P(X) and
I(X).

transformation semigroup, th

1AM WA 3
Moreover, for b ey, the semigrofip (1 X,Y %)ﬁs the sen@oup (I(X,Y),e)
ey RANSFTSE NRTTNETRE
aoﬁ=a<b)5= (chL;1> if b €erana and a € dom f3,

0 otherwise.

For a nonempty subset A of a partially ordered set (poset) X, we let max(A)
and min(A) denote the maximum and the minimum of A, respectively if they

exist. Also, for nonempty subsets A and B of X, let A < B mean that a < b
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foralla € Aand b € B. For z € X, let + < A stand for {z} < A. We define
A>B A< B/A>B,x>Ax < A and v > A analogously. The set of all
upper bounds of A in X and the set of all lower bounds of A in X are denoted by
ub(A) and Ib(A), respectively. Notice that x € ub(A) if and only if z > A, and
x € 1b(A) if and only if z < A.

Let X and Y be partially or

order-preserving if

say that X and Y oTphIE i rder-isomorphism from X

onto Y.
A transformation s ordered set X is said to be an
order-preserving transformation. semigroup. O if all of its elements are order-
%,_ — —

preserving. Let

—ﬁserving},

OI( X) {a € I[(X) | % is order-preserving}.

ien oot ANENIIY W on 70000

and I(X Observe that 0 and 1x belong to OPR{X) and OI(X)and 1x € OT( ).

e R4HA RAVE AN D TR R

transfor%tatzon semigroup on X, the order-preserving partial transformation semi-
group on X and the order-preserving 1-1 partial transformation semigroup on X,
respectively.

The following results for the semigroups OT(X), OP(X) and OI(X) are

known.

Theorem 1.4. ([8], p.203) If X is a finite chain, then OT(X) is a reqular semi-

group.
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Theorem 1.5. ([14]) For any chain X, the semigroups OP(X) and OI(X) are

reqular.

A characterization determining when an element of OT'(X) is regular where

X is a chain was given in [22] as follows:

Theorem 1.6. ([22]) Let X be a chai (X). Then o € Reg(OT (X))

(ii) If Ib(rana) # @
(i) If z € X \ (ra max({t Erana |t < x})

exists or min( \
The following coroll \\ corem 1.6.

Corollary 1.7. Let a € OT(X 1o i \;\ then o € Reg(OT'(X)).

Notice that Corollary 1.7 s a/generaliza f Theorem 1.4.

Tn the case thabwX iSRRI CHAMH g i of OT(X),0P(X) and
OI(X) were given }f‘_'+’ — :‘

Theorem 1.8. p(‘u [18]) If X 5 a ﬁmte chain of n elements, then

ﬂumnﬂ mmi
ammmmummma

Theorem 1.9. ([7], [17]) If X is a finite chain of n elements, then

o £ ()01 ).

Theorem 1.10. ([5], [6]) If X is a finite chain of n elements, then

o5 () -(2)
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For partially ordered sets X and Y, let

OT(X,Y)={aeT(X,Y) | a is order-preserving},
OP(X,Y)={a € P(X,Y) | « is order-preserving},

OI(X,Y)={a € I(X,Y) | «a is order-preserving}.

//z's. If a € OP(X,Y) and a,b € rana
il =T ﬁ%ﬁ
Proof. Let x € aa™" an . Then Rd ya = b. Since X is a chain,

r<yorx>y. lfx> der-preserving. This implies
O

Proposition 1.11. Let X and

are such that a < b inY,

that a > b, a contradi

define the mapping o U (3
as follows: dom(a U f3) U doimds =aand (@Uf),., = B

Proposition 1.12. Let &3 be partially ordered sets and o € OP(X,Y). If
doma = AU B, then oy, € OT(AY e )T(B,Y) and a = oy, U .

OP(X,Y) are such that

opﬁi, Y).
“““ﬁeﬁﬁeﬂﬂ"? %W g1

OT(X,Y) éaEOT ranaCY}

AR TR W)Wr%ﬂﬂfég}@ d

OI(X,Y)={a€OI(X) |rana C Y}.

dom a < dom (3 andﬁn

It is easy to see that OT(X,Y),OP(X,Y) and OI(X,Y) are subsemigroups of
OT(X),0P(X) and OI(X), respectively.

Due to the semigroup T(X,Y) introduced by Magill [19] and those P(X,Y)
and I(X,Y) mentioned previously for a set X and @ # Y C X, the following

order-preserving transformation semigroups are defined for a partially ordered set
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X and @ # Y C X analogously as follows:

OT(X,Y)={a € OT(X) | Ya CY},
OP(X,Y)={a € OP(X) | (domaNnY)a CY},

OI(X,)Y)={ae€OI(X) | (domanY)a CY}.

Then
OT(X,Y) C OP(X,Y) C OP(X),
OI(X,Y) C OT(X,X) =0T (X),
OP(X,X) OI(X,X) =0I(X)
and 0 belongs to al ), OI(X,Y) and
OI(X,Y)
The regularity of O ( Fé ,Y) where X is a chain and

=0
Theorem 1.14. ([27]) L Xheu | . AN Y C X. Then OT(X.,Y) is a
reqular semigroup zf and onﬁzf’_‘@; [ the following statements holds.
-“'«"

(i) |Y|=1. i y
(ili) |Y] = 2, min(X)“and max(X) exist, and Y :'ﬂnin(X),maX(X)}.

rhorom 8 I YHI RG0S

(i) OP(X, Y)qs a regular semiggoup if and o‘gl.y if Y =X.

® RRIEIR TR URVING A%

Next, let X and Y be any partially ordered sets. For § € OT(Y, X), let
(OT(X,Y),0) denote the semigroup OT'(X,Y) under the sandwich operation de-
termined by 6 and likewise for (OP(X,Y),0) with6 € OP(Y, X ) and (OI(X,Y),0)
with 0§ € OI(Y,X). We call the semigroups (OT(X,Y),0), (OP(X,Y),0) and
(OI(X,Y),0) the generalized order-preserving full transformation semigroup, the
generalized order-preserving partial transformation semigroup and the generalized

order-preserving 1-1 partial transformation semigroup of X into Y induced by 6,
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respectively. As before, (OT(X, X),1x), (OP(X,X),1x) and (OI(X, X),1x) are
respectively the semigroups OT'(X), OP(X) and OI(X).
The following theorem provided in [15] can be considered as a generalization

of Theorem 1.14.

Theorem 1.16. ([15]) Let X,Y be any chains and § € OT(Y,X). Then the
semigroup (OT(X,Y),0) i
holds.

nly if one of the following statements

(i) The semigroup O

onto X.
(i) |X|=1.
(iii) |Y]=1.

(i) 6 is an order-1s

il
(ii) dom@ =Y, ran X and | X| =

Theorem 1.6 u@@m@wg W SVET . ). the semigrony

(OI(X,Y), %I regular if and on@ if 0 is an order—zsomorphza@ from'Y onto X.

Re’ﬂlﬂlﬁﬁn@i&&ﬁa’li? NEAR

To count the regular elements of the semigroups OT'(X,Y), OP(X,Y), OI(X,Y),
OT(X,Y),OP(X,Y)and OI(X,Y)when X = {1,2,...,n}and Y = {1,2,...,m}
where m < n, the following proposition will be used. It is obtained from some

combinatorial ideas given in [7].

Proposition 1.19. ([7]) Let X and Y be finite chains. If |X| =n and |Y| =1,

then the number of all order-preserving transformations from X onto 'Y 1is (:fj)
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Moreover, the following standard combinatorial results are also used for our

counting.

Result 1.20. ([9]) For all natural numbers m and n with n < m,

20007

Result 1.21. ([17]) For al

Result 1.22. ([18]) /

Result 1.23. ([21], p.

Result 1.24. ([21 y..h- 'r..' n with n < m,
ﬁ%(ﬁ g lﬁﬁm A
Result 1. 25 , p-42) For all nitural numbers m,p and q, g

AN ﬂﬂfgj@J %ﬂ%nyﬂﬁ d

Result 1.25 yields the following result.
Result 1.26. For all natural numbers m and n,

(0=
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Proof. For all natural numbers m and n, we have

(070 - 260

|
—
N———

r=1

o 1 \1‘:""’ by Result 1.25

AULINENINYINg
PR TUAMINYAE



CHAPTER I1
SEMIGROUPS OF ORDER-PRESERVING
TRANSFORMATIONS WITH
RESTRICTED RANGE

The purpose of this*¢hapter is to characterize the regular elements of the
semigroups OT'(X, Y)yO (X V) and,| OI(X,Y) where X is a chain and @ #
Y C X. These resultstare ghen applied to prove Theorem 1.14 and Theorem 1.15,
respectively. In additien, the number of;rlegular elements in each of the semigroups
OT(X,Y),0P(X,Y) afl @1(X Y ispiovided when X = {1,2,...,n} and Y =

{1,2,...,m} where m <n. Fiist; we re’c-adll‘-'that
i :.. II'
¥ ol

OT (¥, Yjj=4a = OF() [tana C Y},
OP(X, ¥} =4 & OP(X)| ran o C Y},

OOy e OFOCE ey )

2.1 Characterizations of Regular Elements

Throughout this section, X denates & chain and @ # ¥V CX.

We begin this section by chatracterizing the regular elements of the semi-
group @WT(X, YY) \Recall that! the regular elements of the semigroups T'(X,Y)
and OT(X) are introduced in Theorem 1.1 and Theorem 1.6, respectively.

Theorem 2.1.1. For a € OT(X,Y), a € Reg(OT(X,Y)) if and only if a €
Reg(T'(X,Y)) and a € Reg(OT(X)). Consequently,

Reg(OT(X,Y)) = Reg(T(X,Y)) N Reg(OT(X)).

Proof. Assume that o € Reg(OT(X,Y)). Since OT(X,Y) is a subsemigroup of
T(X,Y) and OT(X), it follows that « is regular in 7(X,Y) and OT(X), i.e.,
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a € Reg(T(X,Y)) and o € Reg(OT(X)).

For the converse, assume that o € Reg(7T'(X,Y)) and a € Reg(OT(X)). By
Theorem 1.1, rana = Ya or equivalently, za ' NY # @ for all € rana. For
each x € ranq, choose y, € za™* NY. Then y,a = x for all x € rana. Let

B € OT(X) be such that &« = afa. Then Xa = Xaﬂa C XfBa C Xa =rana.
2(Ba)™ = (] x(Ba)".

W € ran(Bo) r Erana
Define 3 : X — Y by a bracket nota @

It follows that ran o = ran(fa).

If x € X, then z« hich implies that zaf o =

Yra = xa. Hence « ler-preserving, let 1,10 € X
be such that z; < 71,‘2 ‘ "" o = xofa, then 1,29 €
(z18a)(Ba)™t, so z18 )
(z10a)a™t < (zofBa)a
{Yar80} and ((2280)(Ba)™")0

Taf3 . 7 ‘
The proof is therdby complete: ‘ O

Ty 3a, then by Proposition 1.11,

28 Since ((z16a)(Ba)™)8" =
we have that xlﬁ, = Yz18a < Yzofa =

The following trﬂ)rem is another version of @neorem 2.1.1. It follows

s e YT

Theorem 2.192. For a € OT( % V), a € Reg (OT(X,Y)) J and only if the

R RIRINTUNNINY 1N

(i) r =Ya.

(ii) If ub(rana) # &, then max(ran«) ezists.
(iii) If Ib(ran«) # &, then min(ran«) exists.

(iv) If € X \ (rana Uub(ran ) Ulb(ran)), then max({t € rana |t < z})

exists or min({t € rana |t > x}) exists.

The next result follows directly from Theorem 1.1, Corollary 1.7 and Theorem
2.1.1.
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Corollary 2.1.3. Let o« € OT(X,Y). If rana is finite, then a € Reg(OT(X,Y))

if and only if rana = Ya.

Example 2.1.4. (1) Let X =R and Y = (—2,2). Define o : X — Y by

if z <0,

Then o € OT(X,Y), rane 0, 1}+ ﬁl} By Corollary 2.1.3, a €
Reg(OT(X,Y)). Let'¥ 1o e OT(X,Y') and Ya = {1}, so

a ¢ Reg(OT(X,Y")) \

Then f € OT(X,Y) and ;fg /8 an (3 has an upper bound in X but

ran 3 has no maximum, by Theorem 2.1.2, 5 ¢ Reg(OZ(X,Y)).
— -

(3) Let X = ,
ﬂumm{ﬂ%’ﬂmm

13:6

e AR RIS U AN AV AR Y .

Ib(ran \)),

2 1
)\ — 1 = —
{z € ran |x<3} [0,3)

and

2
{r €ran\ |z > g} =(1,2],

it follows that { € ran A | < 2} has no maximum and {z € ran X | z > 2} has

no minimum. By Theorem 2.1.2, A ¢ Reg(OT(X,Y)).
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Next, we shall apply Theorem 2.1.2 to prove Theorem 1.14 given in [27]. The

following series of lemmas is needed.

Lemma 2.1.5. Let |Y| > 2. If there is an element a € X such that a > Y or
a <Y, then the semigroup OT(X,Y) is not regular.

Proof. Let e, f € Y be such that e Deﬁne a: X =Y by

—

’U>CL

\":,\‘e a>Y and Ya = {f} for

). Hence OT(X,Y) is not a
O

\ ) is not a reqular semigroup.

Proof. Let e, f,g € Y be ot 7' b gandleta € X\Y. Ifa>Y
or a < Y, then by Lemma 2. , ) is not regular. Assume that a ¥ Y

and a £ Y. The A € 2 and {1 >sa} are nonempty. Define
o X N Y by __,{TA ‘
B ) € g u<a m

v>a

Then a € OTﬁ‘u H ’J%EJ éﬂzﬁ iw ﬁé";ﬂlqﬂlows from Corollary

2.1.3 that o ¢"Reg(OT(X,Y)) anéi we conclude that OT (X, Y) is not a regular

RWIANN 3TN UAIINYA Y i

Lemma 2.1.7. Let |Y| =2. Then OT(X,Y) is a reqular semigroup if and only
if min(X) and max(X) exist, and Y = {min(X), max(X)}.

Proof. Let Y = {e, f} be such that e < f. Assume that OT(X,Y) is regular.
Then by Lemma 2.1.5, for every a € X, a #» Y and a £ Y. Thus e < a < f for
all a € X. This implies that e = min(X) and f = max(X).

Conversely, assume that min(X) and max(X) exist, ¢ = min(X) and f =
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max(X). Let « € OT(X,Y). If |[rana| = 1, then a? = «, so a € Reg(OT(X,Y)).
If ranae = {e, f}, then ea = e and fa = [ since « is order-preserving. Thus

rana = Ya, so Corollary 2.1.3 implies that o € Reg(OT'(X,Y)). O

Theorem 2.1.8. The semigroup OT(X,Y) is regular if and only if one of the

following statements holds.

(i) Y =X and OT(X) is
(ii) |Y]=1.
(iii) |Y] = 2, min(X) el jst, = {min(X), max(X)}.

Proof. Assume that ppose that (i) and (ii) are false.

"N

Then (Y € X or O ¥ |'= 2,750 there are two cases to be

considered.

Lemma 2.1.7 that OP(X,Y) is regular if (iii) holds.

“e“f“eﬁmeﬁwwﬁwmni -

Next, we give characterlzatloé}s of the regular elements 111 OP(X,Y) and

CURRTRNN I NN Y

Lemma 2.1.9. Let A be a nonempty set and & # B C A. For a € P(A, B),
a € Reg(P(A, B)) if and only if rana = (doma N B)a.

Proof. Assume that o € Reg(P(A4, B)). Let 3 € P(A, B) be such that o = afa.
Then ran(af) C B, so

ran o = ran(afa) = (ran(af) Ndoma)a C (B Ndoma)a C rana,

which implies that rana = (doma N B)a.
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Conversely, assume that rana = (doma N B)a. Then za™' N B # & for all
x € rana. For each xz € rana, choose d, € ra~' N B. Then d,a = z for all

x € rana. Define f: rana — B by

X
ﬁ B (d$>xerana.

Then 8 € P(A, B). Since for z € dom o, za € dom 3 and za3 € dom «, it follows

that dom(afa) = doma. If_\ ; n zafa = (rva)fa = dyeo = za.

Therefore o = afa, so

Theorem 2.1.10. For «
(domanNY)a. Conseq

OP(X).

For the converse, assui hi : NY)a. Define 3 : rana — Y

as in the proof of Lemma 2.1.9 N —B= P(X Y) and a = afla. Since « is
__,sl",f-,r"d‘l ".-".j-. 1=
order-preserving, 1tﬁllows from P'f‘op’éslt i at #is order-preserving. Thus

- ;
Lemma 2.1.11. Let A be a nonempty set and & # B C A. For a € I(A, B),

o TN NEINT

Proof. Assumetthat o € Reg(I QA B)) Slnce I(A,B) is a subsemlgroup of

o Q PAGGA TRIYT TN - wmer

. Then (doma)a = (doma N B)a, so doma = doma N B since « is 1-1.
Hence doma C B.

Conversely, assume that doma C B. Then « € I(B). Since I(B) is a regular

subsemigroup of I(A, B), it follows that a € Reg(I(A, B)). O

Theorem 2.1.12. For a € OI(X,Y), a € Reg(OI(X,Y)) if and only if
doma CY. Consequently, Reg(OI(X,Y))=O0I(Y).
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Proof. If a@ € Reg(OI(X,Y)), then o € Reg(I(X,Y)) since OI(X,Y) is a sub-
semigroup of I(X,Y). So doma C Y by Lemm 2.1.11.

Conversely, assume that doma C Y. Then o € OI(Y), so a € Reg(OI(Y))
by Theorem 1.5, and hence a € Reg(OI(X,Y")) since OI(Y) is a subsemigroup of
OI(X,Y). O

We close this section with the proof of Theorem 1.15 by using Theorem 2.1.10
and Theorem 2.1.12.

Theorem 2.1.13. Let OS(X,¥") be !éP(X, Y) or OI(X,Y). Then OS(X,Y) is

a reqular semigroup if awd only if Y = X.

b
OI(X,Y) C OP(X,Y): But dofn o NV, = @, rana = {b} and doma = {a} € Y,

so by Theorem 2.1.10 dnd/Theoren 25;1.‘12, a & Reg(OS(X,Y)). IfY = X,
then OP(X,Y) = OP(X), OI(X,-Y) = OI(X), and both OP(X) and OI(X) are

|
Proof. Suppose that ¥ C#XS det o € X N\ YV andb € V. Then o = (a) €

regular semigroups by Theorem 145, corh-f;'}e,ting the proof. O]
2270

2.2 Combinatprial Results on Regulax_": Elements

We begin this section-_ by determining |OT(X,Y)|, |J-OP(X, Y)| and |OI(X,Y)]
where X and Y aré any finite chains. , Then fog X =41,2,...,n} and
Y = {1, 2, .18, m} where m < ni'|Rég(OT(X,Y))], |Reg(OP(X,Y))| and
| Reg(OI(X,Y))| are provided. In this case, the nonregular elements in OT'(X,Y),
OP(X,Y ) and OLLX}Y?) can Belcountéd:

The following two lemmas are needed to obtain the first purpose.

Lemma 2.2.1. Let X and Y be finite chains, |X| = n and |Y| = m. Then for

1<r<nand 1 <s<m,

[{a € OP(X,Y) | |doma| = r and |rana| = s}| = (“) (m) (7":1).

r S S

Proof. Let @ # X' C X and @ # Y’ C Y be such that |X'| = r and |[Y'| = s.

Then by Proposition 1.19, the number of order-preserving transformations from
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X’ onto Y’ is (Z_l) It follows that

r—1
{0 € OP(X,Y) |doma = X' and rana =Y'}| = (s—l)

This implies that for 1 <r <nand 1 <s<m,

1<r<n,
-1
{a e OP m+r >
r
Proof. Note that for all o & |ran | < min{|domal, |Y'|}
Then
[{o € OP(X,Y)fhdomal=r}] N L
Y. AX J
t . ry
1|‘ U acOP(X,Y)||do :-lu-’; =r and |ranq| :S}‘

‘Isl

ﬂuagmanjwﬂqnﬁmmmhﬁ
oL a@g‘a‘@w@ YAy,
OE O

1
- (n> (m tr ) by Result 1.27.
T T
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Theorem 2.2.3. Let X and Y be finite chains. If | X| =n and |Y| = m, then

(i) |OT(X,Y)| = <m+”_1>.

(i) [OP(X,Y)| = 2:; <Z> (m +:_1 .

(i) |OI(X,Y)| = (

=1+) [{e€OP(X,Y)||doma| =r}|

r=1

= -1
—1+y (:) (m +: ) by Lemma 2.2.2

200
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(iii) The following equalities hold.

|0I(X,Y)| = ‘{0} U J{a € 01(x,Y) | |domal = r}‘

= 1+) [{acOI(X,Y)]||domal = r}]

r=1

= 1—1—2 { ‘ VX,Y)||doma|:|rana|=r}|

by Lemma 2.2.1

Notice that Theorem 1.8, :- eOTe _ .9 Theorem 1.10 are special cases of
Theorem 2.2.3 wher)] |

The following e
{1,2,...,n}, Y ={

Reg(OT(X,Y))| when X =

1
e e et S
B0 TN TE (10N (LM

order-preserving, it follows that ma < xa = ya < ma, so zra = ma. This proves

that (X \Y)a = {ma}. If (X \Y)a = {ma}, then (X \Y)a C Y, this implies

that ran o = Y, and the proof is complete. O

Theorem 2.2.5. Let X = {1,2,...,n} and Y = {1,2,...,m} where m < n.
Then

Reg(OT(x, V)| = (77 7).

m
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Proof. If m = n, then Y = X, so OT(X,Y) = OT(Y). This together with
Theorem 1.4 yields Reg(OT(X,Y)) = OT(Y). Then the result for m = n follows
from Theorem 1.8. Assume that m < n. Let @ # Y’ C Y and |Y'| = s. By

Proposition 1.19, the number of all order-preserving transformations from Y onto

Y’ is (’Z__ll). Then

[{a € OT(X,Y) | Ya = | Y)a = {mal}}| = (Z‘__ 1).

It follows from Lemma 2.2.

Y)|rana=Ya=Y'}.

Hence

(10

SO

Y

o g
Therefore, it ﬁj‘g ,ﬂfﬁ( YE)J %a%dﬁ sﬂjq@éﬁ: ! ) .
51 W a»ﬂemmm%g @Wf@ a".“'&]

We obtain from Result 1.26 that

This implies that forE <s<

Reg(OT(x, V)| = (77 71).

m
O

Next, we count the regular elements of OP(X,Y) when X = {1,2,...,n} and
Y = {1,2,...,m} where m < n. Before proceeding, we require the following

lemmas.
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Lemma 2.2.6. Let X = {1,2,...,n} and Y = {1,2,...,m} where m < n. For

a € OP(X,Y), rana = (doma NY)a if and only if either

(i) doma CY or

(ii)) domanNY # @, domanN (X \NY)# @ and (doman (X \Y))a=
{max((domanNY)a)}.

1 o and suppose that (i) is false, i.e.,
doma ¢ Y. Then doma (X \Y) # @. To show that
(doman (X \Y))a € doma N (X \Y). Then
x > m > max(dom Joo by assumption. Since « is

order-preserving, w

max((domaNY) m- \ max((domaNY)a),
and we deduce that za ( ) holds
Conversely, if ( : = (doma)a = rana. Next
assume that (ii) holds. ot - . ))a = {max((doma NY)a)} C
(domaNY)a. This implies t = lomanY)aU(doman (X \Y))a =
(domaNY)a. 5
Hence the pr IS-Complete——————— O

Lemma 2.2.7. LetX g 2,...,n} a,nalJY {1,2,...,m} where m < n. Then

f"”“”ﬁﬂﬁ]ﬁ’”flﬂﬂ'ﬁ"ﬂﬂ'}ﬂi
ﬁ{aEO ﬁdomaﬁij lidhaﬂ%(‘l\a}:é& t and
TArSHIH (1
_(m\(n—m\ m+s—1
s t $ ‘
Proof. Let @ #Y' CY and @ # Z' C X \ Y be such that |Y'| = s and |Z'| =¢.
Then by Theorem 2.2.3(i), the number of order-preserving transformations from

Y’ into Y is (m+;_1). Therefore it follows that the number of order-preserving

transformations « : Y/ U Z’ — Y such that Z’a = max(Y’«) is also (m+: _1).
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Consequently,

‘{a € OP(X,Y) | domanY =Y’ doman (X \Y) =2 and

)

(doma N (X \Y))a = {max((domanN Y)a)}}‘

x((doma NY)a }}‘

Theorem 2.2.8. Let b d " = {1,2,...,m} where m < n.

Then
| Reg(QP m m—l—r—l)
e OSSN s '
Proof. If m = n, thE OP(X, @ . so Reg(OP(X,Y)) = OP(Y) by

Theorem 1.5 and thengthe result for mg= n follows from Theorem 1.9. Next,

s s 5L B THATA T I DG 20w
el ST

{a € OP(X,Y) |domanY # @, doman (X \Y) # & and
(doma N (X \Y))a = {max((domaNY)a)}}
= OP(Y)U{a € OP(X,Y)|domanY # @,doman (X \Y)# @ and
(doma N (X \Y))a = {max((domaNY)a)}}.
(1)

We know from Theorem 1.9 that
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Also, by Lemma 2.2.7, we have

‘{a € OP(X,)Y) |domanY # @,doman (X \Y) # &and
(doma N (X \Y))o,= {max((doma N Y)a)}}‘

JdomanN (X \NY)| =t and

U

At BTk Ny
ARIAIDIUHRIINIAY.. o

Theorem 1.10.

0

Theorem 2.2.9. If X is a finite chain and @ #Y C X, then

| Reg(OI(X, V)] = (ﬁ';fl')



CHAPTER III
SEMIGROUPS OF ORDER-PRESERVING
TRANSFORMATIONS SENDING
A FIXED SET INTO ITSELF

J
In this chapter, weeonsiderthe semigroups OF(X,Y), OP(X,Y ) and OI(X,Y)
where Y is a nonempty subsct of a Chain X. The main purpose of this chapter
is to characterize the'regulay eloments of OT(X,Y), OP(X,Y) and OI(X,Y).
We also give necessasy and sufhcwnt _eondltlons in terms of Y for OT(X,Y),
OP(X,Y) and OI(X, ¥) t0 be regularisemlgroups. Moreover, the cardinalities
of Reg(OT(X,Y)), Reg(@PLX:¥)) and-"-Reg(m(X, Y)) are provided when X =
{1,2,...,n} and Y = {1, 2. m“} Vherém<n
Recall that the semlgroupb OT(X Y);GP(X Y) and OI(X,Y), where Y is a

nonempty subset of: a chain X are deﬁned as follows: ,

ﬁ(X Y)={ae€OT(X) | YacC Y},?,-'
OP(X)Y)={a € OP(X) | (domaf¥)a C Y},

QIX,Y)rSde € QLX) (dom eQ Yo & V.

3.1 Characterizations of Regular“Elements

Throughout this section, let X be any chain and @ # Y C X.
We first give a necessary and sufficient condition for an element of OT(X,Y)

to be regular. The following two lemmas give necessary conditions for the regular

elements of OT(X,Y).

Lemma 3.1.1. Let o € Reg(OT(X,Y)). Then the following statements hold.

(i) If ub(rana) NY # @, then max(ran«) exists and belongs to Y.
(i) If Ib(rana) NY # &, then min(ran«) exists and belongs to Y .
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Proof. Assume that ub(rana) NY # @. Let u € ub(rana) NY and let 5 €
OT(X,Y) be such that a = aBa. Then rana < u, and thus

rana = Xa = Xafa = (rana)fa < ufa € ran a.
This implies that max(ran ) = ufa and ufa € Y fa C Y. This proves (i), and

(ii) follows in the same way. ’ ’ O
Lemma 3.1.2. Let a§ 6 X \ (rana U ub(rana) U

Ib(rana)). Ifz €Y, the

(i) max({t € rana

(ii) min({¢ € rana |

Proof. Let 3 € OT. : 5 1t 0= u’c Since x € X ~ (ranau
ub(ran o) U Ib(ran a) ‘ |

€ ran o 0 > g,
t t

! i
rana = {t € "_._-:: J{t erana |t > x}.

Since rfa € ran ol-' ;
then sa = (sa)fa '

This shows that

ﬂuﬂ ABNTNY YA

min({t Crana|t>z}) if wfo >,
suce 7 Pl ANNSAUNBANLAY 5

Now we give a necessary and sufficient condition for an element of OT(X,Y)

to be regular.

Theorem 3.1.3. Let o € OT(X,Y). Then o € Reg(OT(X,Y)) if and only if
the following four conditions hold.
(i) rananNY =Yoa.

(ii) If ub(rana) # @, then max(rana) exists.
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If ub(rana) NY # @, then max(rana) € Y.
(iii) If Ib(ranc«) # &, then min(ran«) ezists.
If Ib(rana) NY # @, then min(rana) € Y.
(iv) If € X \ (rana Uub(ran ) Ulb(ran)), then max({t € rana |t < x})
exists or min({t € rana |t > x}) exists.
If z is also in'Y, then max({t ¢ W a |t <ax}) exists and belongs toY or
a-l’

min({¢t € rana | t > z}) stoY.

(X,Y) is a subsemigroup of

Reg L (X )) and a € Reg(OT'(X)).
, by Theorem 1.6, the first

For \u d parts of (ii), (iii) and (iv), we
A

Proof. Assume that «
T(X,Y) and OT(X),
By Theorem 1.2, ra
parts of (ii), (iii) an

obtain from Lemma 3:1. ek ) emma 3.1.2, respectively
For the converse, \ \ ) hold. If ub(ran«) # &,
let v = max(ran o) and. (S (ran o) # &. If Ib(rana) # &, let

| = min(ran«) and so [ € Y il ib(ran 4 @. Forz € (X \ (rana U

/ -

-
max(Jf € ran a “lana |t < x}) exists

my = and bemlgs to Y,
At A9 9? TRNT

andlfxgéYl

PIRINIUANINGA Y

max({t €Erana |t < x}) if max({t €rana |t < x}) exists,

Ny =
min({t € rana |t > z}) otherwise.

By (iv), m, € Y for all z € (X \ (rana U ub(rana) Ulb(rana))) NY.
For each y € (X \ (rana Uub(rana) Ulb(rana))) NY, let

Ajy={ze X |{terana |t <z} ={t crana |t <y} and
{t crana |t >z} ={t €rana |t > y}}.
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Notice that y € A, for all y € (X \ (rana Uub(rana) Ulb(rana))) N'Y and for
Y1, Y2 € (X (ranaUub(ran a)Ulb(ran a))) NY’, either Ay, NA,, = @ or A, = A,,.
It follows that if z ¢ A, for all y € (X \ (rana U ub(rana) Ulb(rana))) NY,
then z ¢ Y. Since ranaNY = Ya by (i), this implies that za™* NY # & for all

r €ranaNY. For each x € ran «, choose an element

Then 2/ € Y for all ll x € rana. Also, we have

from Proposition 1.1

=9 m, a)) and = € A,

r some y € (X (rana U ubna) Ulb(rana))) NY,

ﬂuﬁﬂﬂﬂ‘ﬂ‘wﬂﬂﬂ‘? pd

for all y € 5 \ (rana U ub(ran o) U lb(rana))) ny.

AT MNDIRINIIDENAY

zafo = (za)fa = (za) a = za.

Hence 3 € T(X,Y) and a = aBa. It remains to show that 3 is order-preserving.
Let 21,29 € X be such that z; < z3. We can see that v/ = max(ranf) if
ub(rana) # @ and !’ = min(ran 5) if Ib(rana) # @. It follows that if x5 €
ub(ran ) or x; € Ib(ran «), then 216 < z93. Also, we have that if 21, 29 € rana,

then x106 = 1 < x5’ = x33. Therefore there are six cases to clarify as follows:
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Case 1: z; € rana and 25 € X \ (rana U ub(ran ) Ulb(rana)).

Subcase 1.1: 25 € A, for some y € (X \ (ran aUub(ran o))Ulb(ran o)) NY".
Then {t € rana | t < 23} = {t € rana | t < y} and {t € rana | t > 23} =
{t e rana | t > y}. If my = max({t € rana | t < y}), then z; < m, since

rp €{t €erana |t <z} ={t €rana |t < y}. Thus 10 = 21 < m,/ = xo6. If

HZ;UE < my, since m, € {t € rana | t >

Subcase 1.2: € (X aUub (rana) Ulb(ran))) NY.

my, = min({t € rana | t > y})

y} ={t €rana |t > xo}.

If n,, = max({t € ran . S so x18 =z < ng,’ = x0.

2y, and thus z10 = 7’ <

= IEzﬁ.
Case 2: 27 € X \ (r '%Q d x5 € Tana.
Subcase 2.1: 14 n aUub(ran a)Ulb(ran a))) Y
Then {t €Erana |t < z1} = }and {t €Erana |t > 21} = {t €
rana | t > y}. If.SLy e € ra < hen m, < x; < x, since
my € {t € rana | tocyr—=t-crana-it= b =m,) < x = xf. If

my:min({tel"ano;l t - cemQE{teranoz|t>x1}—

{t erana |t > y}. Th%refore 3 =m, < x2 = x90.

suveofstd SR TR T rmmny v

If n,, = max({t € rana | t < x1})gthen n,, <z < o, 50 21857 ny, < 5 = 1203,

I wﬂ%'l@a‘ﬂwﬂ U WA KE RN o <o -

Case 3: 21,2, € X \ (ranaUub(rana) Ulb(rana)), z; € Ay, and 2, € Ay,
for some y1,4, € (X \ (rano U ub(ran ) U lb(rana))) NY. Then {t € rano |
t <z} ={te€rana |t <y}, {t €crana |t >z} ={t €rana |t > y},

{terana |t <z} ={t €rana |t <y} and {t Erana |t > 23} = {t Eran« |

t>ya}.
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Subcase 3.1: m,, = max({t € rana | t < y1}) and m,, = max({t €
rana | t < yo}). Since {t € rana |t < y1} = {t € rana | t < 21} C {t €
rana | t < xo} = {t € rana | t < ya}, it follows that m,, < m,,, and so

1 =my," <my," = w20

Subcase 3.2: m, = max({t € rana | t < y;}) and m,, = min({t €

rana | t > yo}). Then m,, € { t <y} ={t €rana |t < a1} and

/} Hence my,, < x1 < 23 < my,,
.‘
E——

and m,, = max({t € ran« |

my, € {t €rana |t > yo}

so 18 =my, <my,' =

Subcase 3.3: m
t <)) If {t € ran Erana |t <y} ={t €
rana | t < yo} which i i t < y1} has no maximum
7 Erana |t < y1}) ¢ Y but

|t < yo}) € Y. Then there

or max({t € rana
max({t € rana | t <
exists an element ¢ € ra onsequently, m,, <c < my,.

_ / !/
Hence x18 = my, < my,

Subcase 3;45 My, {t/€ tana | jr}) and my, = min({t €
| )

€ rana |t > a} 2D {t €

follows, that m,, < m,,, and then

rana | t > 1} = @E ran

21 = myl < myz - x2@‘

e LU ANENINEINT < 0 0o
e mﬁ%iﬁﬁiﬁf AR R E

{tErana\t>x1} {t erana |t > y}.

Subcase 4.1: m, = max({t € rana | t < y}) and n,, = max({t € rana |
t < x9}). Since {t €erana |t <y} ={t €rana |t <x1} C{t Erana |t < a2},

we get m, < n,,, and it follows that z15 = m,/ <n,,’ = x,0.

Subcase 4.2: m, = max({t € rana | t < y}) and n,, = min({t €

rana | t > x3}). Then my, € {t € rana |t < y} = {t € rana | t < 21}
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and n,, € {t € rana | t > zo}. Hence m, < 21 < 3 < ny,, and therefore

18 =m, <ng,' = x0.

Subcase 4.3: m, = min({t € rana | t > y}) and n,, = max({t € rana |
t<mxo}). f{t €rana |y <t < axe} =, then {t €rana |t < x5} = {t €Erana |
t <y}and {t €rana |t > 23} = {t €rana | t > y}, so z2 € A,, contradicting

the assumption. Then there exi ent ¢ € rana such that y < ¢ < 2s.

This implies that m, < ¢ < n,

Subcase 4.4: ) and n,, = min({t € rana« |

t > x9}). Since {t € ran t >z} D{t €rana |t >z},

we have m, < ng,, so x

Case 5: z1,19 €
(X \ (ranaUub(ran o
ub(ran «) U lb(ran a))

{terana |t > a9} =

-

Subcase 5.1: n,, = mfpﬁg;r 10 {t.< x1}) and m, = max({t € ran« |

s-l“. ..i‘,f_._ .

t < y}). Since {t Edania | t <z} C

we obtain that n,, <

Subcase 5.2:1:'1:‘2 = max({t € rana | t < x} ' and m, = min({t € ran« |
. e = ‘ | no =
o T MY AN
: 1 = f X ran o
t < yﬁﬁ?ﬁrﬂﬂﬁ<ﬁjﬂ<wg thm&ﬁw EL (z:: {t e|

rana |t <y} and {t € rana | t > 21} = {t € rana | t > y}, so x; € A4, a
contradiction. Then there is an element ¢ € ran« such that 1 < ¢ < y. This

implies that n,, <c < m,, and thus 218 = n,," < m, = x,0.

Subcase 5.4: n,, = min({t € rana |t > z;}) and m, = min({t € rana |
t>y}). Since {t erana |t >z} D{t €rana |t >z} = {t €rana |t > y}, it

follows that n,, <m,. Hence 15 =n,,’ <m,” = z,0.
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Case 6: 71,75 € X \ (rana Uub(rana) U lb(rana)), z; ¢ A, for all y €
(X \ (rana U ub(rana) Ulb(rana))) NY and z, ¢ A4, for all y € (X \ (rana U
ub(rana) Ulb(rana))) NY.

Subcase 6.1: n,, = max({t € rana |t < 21}) and n,, = max({t € rana« |

t < x9}). Since {t Erana |t <z} C{t €Erana |t < xy}, we have n,, < ng,, so

xl/B - nml < nmg - .'L'Q/B ’,
Subcase 6.2: n,, xl} ) and n,, = min({t € ran« |

t > x}). Then nzl = 150.

1}) and n,, = max({t €

Subcase 6. 3

rana | t < x3}). Th maximum. [t follows that
{t erana |t < a1} C < ¢ < x4 for some ¢ € ran«
This implies that n,, = 2903.

Subcase 6.4: n, and n,, = min({t € ran« |
t > x9}). Since {t € ran gy Dt € 1ana | t > x5}, it follows that

;’:;";‘;fy iﬁwﬁf‘; fl ﬁmmm;;ﬁm
¥ ﬁﬁtﬁj aNJg EMM J q/ﬂ JpH

(iii) If Ib(rana) NY # @, then min(rana) € Y.
(iv) If 2 € (X \ (rana Uub(rana) Ulb(rana))) NY, then max({t € rana |
t<z})eY or min({t crana |t >zx}) €Y.

The following result which is obtained from Theorem 2.1.2 and Theorem 3.1.3
shows that any nonregular element of OT(X,Y’) cannot be a regular element of

OT(X,Y).
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Corollary 3.1.5. Reg(OT(X,Y) C Reg(OT(X,Y)) U (OT(X,Y) ~ OT(X,Y)),
or equivalently,

OT(X,Y) ~ Reg(OT(X,Y)) C OT(X,Y) ~ Reg(OT(X,Y)).

Y. Combining these two facts, we have

Proof. Let a € Reg(OT(X,Y)) and assume that o € OT(X,Y). Then rana N
m 2.1.2. Also, by Theorem 3.1.3,
« satisfies (ii), (iii) and ence a € Reg(OT(X,Y)) by

Y = Ya by Theorem 3.1.3 and ran V
Theorem 2.1.2 O

— H
From the second% \ t.\lrectly obtain the following

that rana = Ya, ie., a Satls

fact.

Corollary 3.1.6.

reqular.

Lemma 3.1.7. If (¥ and X, Y) € Rog(OT(X)), then OT(X,Y) is a
' W

Proof. Assume that |Y4f = 1 and OT(X Y) C Reg(OT(X)). Let Y = {c}. To

show thatﬁﬂ(mg ’g %E)jWﬂ’Tﬂ?EReg (OT(X)) and

ca = c. Thus'¥V = {¢} C rana, , §p Tan O N Y Y =Ya. Hence a satisfies (i)
QRTINS TN 16
satisfiestthe first part of (ii), (iii) and (iv) in Theorem 3.1.3. If ub(rana)NY # &,
then ¢ € ub(ran«), so max(ran«) = ¢ € Y since ¢ € rana. This shows that «
satisfies the second part of (ii) in Theorem 3.1.3. Similarly, if Ib(rana) NY # &,
then min(rana) = ¢ € Y, so « satisfies the second part of (iii) in Theorem
3.1.3. Since (X \ (rana U ub(rana) Ulb(rana))) NY = @, we immediately
obtain the second part of (iv) in Theorem 3.1.3. Hence by Theorem 3.1.3, o €
Reg(OT(X,Y)). O
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Lemma 3.1.8. Let |Y|=2. If OT(X,Y) C Reg(OT(X)), min(X) and max(X)
exist and Y = {min(X), max(X)}, then OT(X,Y) is a regular semigroup.

Proof. Assume that OT(X,Y) C Reg(OT(X)), min(X) and max(X) exist and
Y = {min(X), max(X)}. Let o € OT(X,Y). Then |Ya| = 1 or |[Ya| = 2 because
Y| =2.

Case 1: |Ya| = 1. Then Ya = {min(X)} or Ya = {max(X)}. If Ya =

{min(X)}, then min(X)a = max(X)a =mn(X). Since « is order-preserving,
J

min(X) = mia(@d0 e < max(X)a =min(X) for all z € X,
and we deduce that roe& smin(X) "for all 2 € X. Hence o®> = a, so a €
Reg(OT(X,Y)). Like\;x‘fi__s__e, 1Y jod= {max(X) }; then oo = max(X) for all z € X

and it follows that o€ Reg(OT(X ,‘Y))Z.' 4
N
Case 2: |Ya| =2. fhén Ya = Y Since @ is order-preserving, we have

min(X)a = min(X) and max(X )¢ = max(X). It follows that rana NY =Y =
Ya, min(rana) = min(XS G‘.':*Yr'_and maﬁé—é:h a) = max(X) € Y. This implies
that « satisfies (i), (ii) and-{iit) of Theé?‘eiﬁ"&l.& We have a € Reg(OT(X))
by assumption. Thén_']:h_eomm_l.ﬁ_tggeiheujjh_thiejfact that (X \ (rana U
ub(ran o) Ulb(ran a))) NY = & implies that « also B ies (iv) of Theorem 3.1.3.

Hence o € Reg(OT(X,Y)) by Theorem 3.1.3. -

This shows that QT (X,Y)!is a reégular seinigtoup, so the proof is complete. [

Theotem 2.1.9.~The semigroup OT(X,Y") ié a requlan semagroup if and only if
OT(X,¥) C Reg(OT (X)) and one of the following conditions holds.

(i) YV =X.

(ii) |Y]=1.

(ili) |Y]| =2, min(X) and max(X) exist, and Y = {min(X), max(X)}.

Proof. Assume that OT(X,Y) is regular. Then Reg(OT(X,Y)) = OT(X,Y),
and by Corollary 3.1.6, OT(X,Y) is regular. Since OT(X,Y) is a subsemigroup
of OT(X), it follows that OT(X,Y) = Reg(OT(X,Y)) C Reg(OT(X)). Suppose
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that (i) and (ii) are false. Then Y C X and |Y| > 2. Then the regularity of
OT(X,Y) and Lemma 2.1.6 imply that |Y| = 2. Let Y = {e, f} be such that
e < f. Since OT(X,Y) is regular, by Lemma 2.1.5, we have for every a € X,
a?Y anda £ Y. Thus e <a < f for all @ € X. This implies that e = min(X)
and f = max(X).

Conversely, OT(X,Y) is obviously regular if OT(X,Y) C Reg(OT(X)) and
Y = X. If OT(X,Y) C Reg V% Y| = 1, then by Lemma 3.1.7,
OT(X,Y) is regular. Al .@, Y) is regular if OT(X,Y) C
Reg(OT(X)) and (iii) h |

Hence the theoreM . O

Next, the regul

=8
o
o

(X,Y) and OI(X,Y) are

characterized.

Q

Theorem 3.1.10. For (OP(X,Y)) if and only if

ranaNY = (doman

that (doma N Y)g’} ran o N how t1 Y C (doma N Y)a, let

ch ; NY. Then x = a« for
some a € dom a. Thj T =aq = « WhiCl’ﬂ‘rﬂplieS that = € dom 3 and
zf € doma. It followssthat © € dom 5 Q¥ and hence 23 € (domf3NY)3 CY.

e then dodfe] W SE I FWHAR T b0 € @oman e

This proves thg'! ranaNY = (domaNY)a

QR ATE49T3 4 817 ﬂ%IW Ny 4o

for all 2 rana NY. For each = € ranaNY, choose d, € za~ ' NY and for each
x € rana \Y, choose e, € xa~!. Then d,a = x for all z € ranaNY and e;a = x

for all x € rana \ Y. Define § : rana — dom « by

ﬂ r u
dx €y z‘EranaﬂY'

u EranaNyY

Then (dom fNY)B = (rananNY)f = {d, | z € rananNY} C Y. Since a € OP(X),
it follows from Proposition 1.11 that 3 is order-preserving. Hence 8 € OP(X,Y).
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Since for x € doma,za € dom 3 and xaf € doma, we deduce that doma =

dom(afa). If x € dom «, then

dpoox = xav if zav €Y
rafa =

Cra =z if a0 @Y,

Wmd 0

1@the€heorem 3.1.10 is 1-1. Then

T A—
B eOI(X,Y). 7 |
Theorem 3.1.11. For -

(rananY)a ! CY.

so a = afia. Thus o € Reg(OP:

It can be seen that (3 co

+(X, Y)) if and only if

Proof. Assume that o j ,-,If ). X,Y) is a subsemigroup of
OP(X,Y), we have tha E@? X4 Yi)). By Theorem 3.1.10, rana NY =
(doma N Y)a. Then (rade n3a “(doma N Y)aa™'. Since aa™" is the

identity mapping on dom «, it fet :::"a‘ an Y)aa™ = domanNY. Hence

ume (TanaNY)a ' € domay, so
(rananNY)a™! C dorgyﬂ - a @(domaﬂY)a Cranany.
Since o~ la is the 1denia%mapp1ng on Lapa, we have that (rana NY)a la =

ranany. Thﬂt% @@ﬂq ﬂ:‘ﬂﬁrw E}’]tﬂp‘ﬁof of Theorem 3.1.10,

a = afa for séine f € OI(X,Y). ‘}Ience a € Reg (OI(X,Y)), as desired. O

b Gl AU NHARLL e

Theorem 3.1.12. Fora € OI(X,Y), a € Reg(OI(X,Y)) if and only if
(domanN(X\Y))aC X \Y.

Proof. Tt suffices to show that (ranaNY)a™" CY if and only if (doma N (X ~
Y))o € X \Y. Suppose first that (ranaNY)a™ C Y. Let 2 € domaN(X \Y).
Then za € rana. If za € YV, then z € (rana NY)a™ C Y, a contradiction.

Hence za € X \ 'Y, proving that (doma N (X \Y))a € X \Y. Now suppose
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that (domaN(X\Y))a C X\Y. Let z € (rananY)a™'. Then z € doma and
za €Y. Ifx € X\Y, then za € (domaN(X \Y))a C X \Y, a contradiction.
Thus z € Y. This proves that (rananNY)a ' CY. O

As a consequence of Theorem 3.1.10 and Theorem 3.1.11, a necessary and

sufficient condition for the OP(X,Y) and OI(X,Y) to be regular semigroups can

be given as follows:

Corollary 3.1.13. Let : v) {ﬁ I(X,Y). Then OS(X,Y) is

a reqular semigroup if

beY. Then a = (}) €
and ba™! = a ¢ Y, by
Y)). IfY = X, then
th OP(X) and OI(X) are

Proof. Suppose that™
OS(X,Y). Since
Theorem 3.1.10 an
OP(X,Y) = OP(X)

Throughout this = {1,2,...,m} where
m < n.
First of all, we deterfnifie the cardinalifids of OT (X i OP(X,Y)and OI(X,Y)

and then we i suﬂt}gn bﬂmﬁ lﬂlﬂe ‘jf OT(X,Y),0P(X,Y)

and OI X, Y Hence the numbers of the nenregular elements in OT(X Y),

A TRINIAAL TR

The qfollovvmg two lemmas given in [17] are needed to obtain our required

results.

Lemma 3.2.1. ([17]) Forr,s,k €Y,

{a € OP(Y) | |doma| = r,|rana| = s and max(ran ) = k}|

-(MEIDECY)
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Lemma 3.2.2. ([17]) Forr,k €Y,

[{a € OP(Y) | |doma| = r and max(rana) — k}| = (T) (’“ e 2).

kE—1

g o :

T
b /‘

{a€eO0T(X)|YaCY, ( ﬁ,._

= {O&l U ap | oy € OT(Y), F;’:;“:" 1

Bl 1

kand ay € OT(X NY, {k,..., n})}

Y]
(Y), {4 (ran ;) = k and

Then we get -
v,

AUERNIEYd (gl B

For 1 < k < mijiwe have

o ARVBADIWURIIAEARE. o

- |{a € OT(Y) | max(ran o) = k}‘ | OT(X \NY {k,..., n})‘

OT(X,Y)

= [{a € OP(Y) | |doma| = m and max(rana) = k}| | OT(X \ Y, {k, ..., n})|

_ (m> (k tm = 2> ((” —ktD+{n-m) - 1) by Lemma 3.2.2 and

m k—1 n—m
Theorem 2.2.3(i)

B E+m—2\/2n—m —k
N k—1 n—m ’
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Hence

Proof. We have

OP(X,Y) = {a

{a € A : 1Y 7 d doman (X \Y) # 2}

Fand doman (X \Y) # o}
[~7 E'j (1)
We know from Theoﬁn o

ﬂﬂpﬁ"‘yww%iww“”
Qmﬂ@&ﬂﬁw%@(ﬂﬂﬁ)ﬁﬂ o

To obtain the cardinality of OP(X,Y), it remains to find [{a € OP(X,Y) |
domaNY # @ and doma N (X \Y) # @}|. We see that

an

{a €OP(X,Y

~—"

| domanNY # @ and domanN (X \Y) # o}

n

|
3

m

s

{a € OP(X,Y) ||domaNnY|=s,|doman (X \Y)| =
1 k=1

Il
—
o~
Il

s

and max((domaNY)a) =k}
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U {a € OP(X)||domanY|=s,|doman (X \Y)|=t,
e (domanNY)a C Y max((domanY)a) =k

and (doma N (X \Y))a C {k,...,n}}.

For1<s<m,1<t<n-m and 1 < k < m, we have from Proposition 1.12

and Proposition 1.13 that
{a € OP(X)||doma oma@|—t (domanNY)aCY,

max( (X\Y))a C{k,...,n}}

Z{O{1UOé2|O!1€

Qg € = t}.
From this, we get
’{a € OP(X) | |doma S, nao; ~Y)| =t (domanY)a CY,
max(( A0y = & andi(do aﬂ(X\Y))ag{k:,...,n}}’

% |...n}) | |domal =1}

(n—k+1)+t : by Lemma 3.2.2 and

o e
ﬁgmtwm ‘ﬂm'mmaal

Thlsshowsthatforl<s§m,1§t§n—mand1§k§m,

‘{a € OP(X) ||domanY|=s,|domanN (X \NY)| =t (domanY)a CY,
ax((domaNY)a) =k and (domanN (X \NY))a C {k,,n}}‘

~OEE)C0T)
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Consequently,

[{a € OP(X,Y) |domanY # @ and doma N (X \Y) # o}

-3 *
S ABRRATAC T

AT IUNAINGINY
Theorem 3.2.5. |OI(X,Y)| = <2”; m) SN @) <IZ: i) (2” ;i”k_ k)

s=1 k=s
Proof. We see that
OI(X,Y) = {a€OI(X,Y) |doma C X \Y}U
{a € OI(X,Y)| 2 #doma CY}U
{a € OI(X,Y) |domaNY # @ and domanN (X \Y) # o}
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= OI(X\NY, X)UOI(Y)~{0}U
{a € OI(X,Y) |domanNY # @ and doman (X \Y) # o}. (1)

It follows from Theorem 2.2.3(iii) that

i : and doma N (X \Y) # @}
We see that if a € OF ' 7 ‘the v Y| = s and max((doma N
Y)a) = k, then |(dorﬁo¢ st ..;. Lo 5. This together with (dom a N
Y)a € {1,2,...,m} impligs that & > 5. Then we have

{aeW(X,YHdomaﬂ,@ga ; (X\Y) #£ o}

U ; e OIX,Y) | domanN (X \Y)| =

s=1 t=1 k=s |
‘ and max((doma Y )a

Qi@ﬂumlﬂﬂwmﬂﬂw

%om ﬂYaCYmaX domaﬂY) ) = k and

ARIANN 3TN WHOIN A &)

For 1 < s <k<mand1l <t < n—m, we obtain from Proposition 1.12 and

Proposition 1.13 that

{a € OI(X) | |domanY|=s,|doman (X \Y)| =t (domanY)a CY,
max((domaNY)a) =k, (domanN (X NY)aC{k+1,...,n}}
= {a1Uas | a3 € OI(Y),|doma;| = s, max(rana;) = k and

ay € OI(X \Y,{k+1,...,n}) and |dom | =t}
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= {1 U | a; € OP(Y),|domay| = |rana;| = s, max(rana;) = k and
ag € OP(XNY {k+1,..., n}) and |dom as| = |rana2|=t}.

It follows that

‘{anI( )| |[domanY|=s,|doman (X \Y)| =t (domanY)a CY,
max((doma NY)a)

maN(X\Y)aC{k+1,..., n}}‘
=[{a € OP(Y) | |dom a @x(rana = k}|-
..... } | |doma| = |[rana| = t}}

by Lemma 3.2.1 and
Lemma 2.2.1

HaEOHXH]®maﬂ )| = ¢, (domaNY)a CY,

YhaC{k+1,..., nH‘

.a 0
max((dom e ¥)a) =k and

()¢ R

Consequentlyﬂ 1 EE "j e %Jw ¢

’{ae I(X,Y) [domaNd # @ and doma N X\W@}‘

ARaN ﬂ}}%wflﬂ ]il)FCL’]/;ng

s=1 t=1 k=

From (1), (2), (3) and (4) and using Result 1.20, we obtain

- () S ()
SES(E)C
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To investigate the Reg(OT'(X; e prove the following two
lemmas.
Lemma 3.2.6. For « . )) if and only if rananNY =
Ya. i
Proof. Necessity follows imniedi: 6 orollary 3.1.4. To prove sufficiency,

suppose that ranaNY = ' upper bound of ran «, then la <
20 <...<na<wdince la € Vo C ¥
of Y that {la, 204.. 0 30

ﬂﬂc Y. If E (ran « Uﬁo

mm rana = la €

)L ) ﬂ?@@mﬁﬁ“ e
Lot} AR mmu&m §J neIas i and only f

(X~ Y)a C{max(Ya),m+1,...,n}.

....._.___J Sllows from the property

x(rana) € Y. We see that

(rana) Ulb(rana))) N

Proof. Assume that ranaNY = Ya. Let x € X \Y. Then za € Y or
za € XNY. Ifza € X \Y, then zaw € {m + 1,...,n}. Assume that za € Y.
Then za € ranaNY, so za = ya for some y € Y by assumption. Since « is

order-preserving, we have

ax(Ya) = (max(Y))a < ma < za = yo < (max(Y))a = max(Ya),
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which implies that za = max(Y«). This shows that (X \Y)a C {max(Ya),
m+1,...,n}.

Conversely, assume that (X \Y)a C {max(Ya),m+1,...,n}. Then
(XNY)anY C {max(Ya)} C Ya. Using this and the fact that Yo C Y, we
obtain that ranaNY = (YanY)U (X \Y)anY) =Ya. O

| (2(n_— m))'

Theorem 3.2.8. | Reg(OT

‘ A—d.
—— R
Proof. If m = n, the __ Reg(OT(X,Y)) = OT(Y) by
Theorem 1.4. Hence \\-"i‘ by using Theorem 1.8. Next,

\\\ =r and let k = max(Y”).

assume that m < n.

It follows from Proposi
{a e OT(X)Y) | Yo
= {a1Uaz|oz1 e OT

which implies that

|{a €OT(X, Y)Y.a= ¥ and (X \Y) w1}

_ o ‘4 m+1,.--,n})|
il

-1
m) ) by Proposition 1.19

?ﬂjw £17) 7 pid Theorem 22:3()
Weh;:mﬁ m;m;mnmm

{a e OT(X)Y)|Ya=Y and (X \Y)a C {k;m+1,...,n}}

(mn—m+1)+(n—m

fn

={a € OT(X,Y) |rananNY =Ya =YY"}
={a € Reg(OT(X,Y)) | Ya=Y"}.

Hence

[{a € Reg(OT(X,Y)) | Ya=Y'}| = (m N 1) (2(" - m)).

r—1 n—m
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This implies that for 1 <r < m,

o e ResOT(x ) val =y = () () (U2,

Consequently,
— 1\ (2(n —m)
-1 n—m

) ’ by Result 1.26.

sin OP(X,Y), the following

|Reg(OT(X,Y))| = >

O

/

Next, to determine t

lemmas are required.

Lemma 3.2.9. Let m in. & '  ; \:‘ ranaNY = (domanNY)a

iof and only if one of
(i) domaC X \Y
(ii) doma CY.

(i) domaNY # &, domaf { I (doma N (X \Y))a C

{max((dom & VF:‘

Proof. Assume that ElaﬂY = (domanY)a. If dormmY = @, thenrananY =
@ which implies that rama C X \ Y, so.we get (i) in this case. Suppose that

domany 28, ‘Hﬂﬁ]&ﬂ VTRV S et come g .

domaﬂu’ ) # @. Let x € doma,N (X \Y). gThen ra € Y or

e W’]Iﬂaﬂeﬂ(‘i AIHARIIR VN B < 7. om

va €rala Ny = (domaNY)a. Since a is order-preserving,

max((doma NY)a) = (max(domaNY))a

<ma < za < max((domanY)a),

and we deduce that o = max((doma NY)a). This shows that (doma N (X N\
Y))a C{max((domaNY)a),m+1,...,n}. Hence (iii) holds.

For the converse, if doma C X \Y and rana C X \ Y, then domanNY =
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@ and ranaNY = @, so ranaNY = (doma NY)a. If doma C Y, then
domaNY = doma, so rana = (doma)a = (doma NY)a C Y which implies
that rana NY = rana = (doma NY)a. Next, assume that (iii) holds. Then
(domanN(X\Y))anY C {max((domanY)a)} C (domanY)a. Also, we have
(domanNY)a CY. It follows that

ranaNY = ((doma N(X\Y))a)nY

manN(X~\Y))anY
N ( ))any)

fe? A \ maﬂY)a),m—l—l,...,n}}‘

«\J at |Yi| = s and |Z| = t.
Let@;éYQCYb chthat Yol = 7w ere1<m<sandletk:—max(Y2)

Proof. Let @ # Y1

Then by Prolﬁltlon 1427and PETOSIUM A3, w

i Nens

{a € OP(X, W|domaﬂY Yl,domaﬂ X\Y =7, ( domaﬂY)a—Ygand

QRGN TRATINGN A

={m L’ag |y € OT(Y1,Y),rancy =Yz and ap € OT(Z,{k,m+1,...,n})}.
It follows that

’{a € OP(X,Y) |domanY =Y, doman (X \Y) =2 (domanY)a =Y, and
(domanN (X \Y))aC {k,m—f—l,...,n}}‘

=[{a € OT(Y1,Y) | rana = Yo} | |OT(Z, {k,m +1,...,n})|



o4

(jj)((n—mﬂ)ﬂ—l)

(o))

This implies that for 1 <r <'s,

by Proposition 1.19 and Theorem 2.2.3(i)

‘{QEW(X,YHdomaﬂY = dor :Z,l(domaﬂY)a|:rand

iLa maﬂY)a),m—l—l,...,n}}’

maﬂY) ), m-l-l,...,n}}‘

<m and 1 <t<n-—m, *

o coPfi L TN RGNV

(dom N ( X\‘Y aC{max((d maﬂY&)’m%—l ..... n}}‘

- (ARG SJWTJ ngag

Consequently, for 1

0

Theorem 3.2.11.

|Reg(OP(X,Y))| = nzj(”;m> (n—mr r—l)

2OCTZCme)
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Proof. If m = n, then OP(X,Y) = OP(Y), so Reg(OP(X,Y)) = OP(Y) by
Theorem 1.5 and then using Theorem 1.9 to obtain the result for m = n. Next,

assume that m < n. It follows from Theorem 3.1.10 and Lemma 3.2.9 that

Reg(OP(X,Y)) ={a € OP(X,Y) |rtananY = (domaNY)a}
= {0}u{a € OP(X,Y)~ {0} ]|d
U{a € OP(X,Y)~ {0

nt(,xCX\Yand rana C X \Y}

@do \Y ) # & and

omaﬂY ),m+1,...,n}}

» {’»\ \ \ ) # & and

—,. C {m . maNY)a),m+1,...,n}}.

{a € OP(X,Y) | do

= OP(X\Y)U(
{acOPX,Y

and

Also, we have

AU INYNTNYING

‘{ae@( v)|domaﬂY7£%domar‘l /L\Y #@an%

QR AR TN UEAIAE BB 1.

ZZ‘{&EOP(X Y)||domanY|=s,|doman (X \Y)| =tand

(domanN (X \NY))a C {max((domanNY)a),m+1,. n}}‘

= (m) (n m) (m te ) (n me ) by Lemma 3.2.10
—\s t S t

2R 2
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From (1), (2), (3) and (4), we obtain that

Reg(OI(X,Y)) = {o &OL(X V) AN(XNY)aC XY}
4 Y )a CY and

(domon -—.--IE,-]: NaC X \NY}.

Proposition 1.12 andE ropositio

Y el Wﬁlﬁﬂiﬁff&iy

o QRN TUNAITINYIN Y

eg(OI(X,Y)) ={a;Uay | a; € OI(Y) and ay € OI(X \Y)}.
Hence

|Reg(OI(X,Y)| = |OI(Y)] |OI(X \Y)

_ <2m> (2(" - m)) by Theorem 1.10.

m n—m



CHAPTER IV

REGULAR ELEMENTS OF GENERALIZED
ORDER-PRESERVING TRANSFORMATION

In the last chapter, th{’ its of the ge ized order-preserving trans-
formation semigroups v )Y, X), (OP(X,Y),0) where

0 € OP(Y,X) and Y are characterized when X

and Y are chains. In Theorem 1.16 , Theorem

Before we determine t T(X,Y),0), (OP(X,Y),0) and
(OI(X,Y),0), it is convenie owing preliminary result
Lemma 4.1. Let Ea- d_B_be_nonempty sets. o3 ‘(A, B) and v € P(B, A)
are such that o = « s hold

(i) rana =ran fya)

v ra““CﬂT‘IIJEJ’JVIEWﬁWEJ']ﬂ‘i

(iii) v 4s I-1 omjran a.

e RRALRRIR ST HEIA R0

have

ran o = (dom o)« (dom ayfya) )
(dom avy) )
= ((ranaeNdom~)a™" )«

=rana Ndom~y C dom~.

This verifies (ii). Since o = ayfvya, it follows that z = zyfGvya« for all z € ran«,
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or in an other word, yfGvy« is the identity on ran . If y1, yo € ran a are such that
Y1y = Y27, then y1 = y1yBya = yayBya =y, so (iii) follows. O

First, we characterize the regular elements of (OT'(X,Y), 0) where § € OT (Y, X).

Theorem 4.2. For 0 € OT(Y, X) and a € OT(X,Y), o € Reg((OT(X,Y),0))

(i) af € Reg(OT(X
(ii) rana = ran(fa).

(iii) 0 is 1-1 on rana.

erl there exists 5 € OT(X,Y)
6 = (ab)(60)(ad). This

Proof. Assume that
such that o = af

ely from Lemma 4.1.

that X = U ket notation as follows:

y € ran(Bo) I

o MY m)ﬂmﬂg@ﬁa e
- I n‘ﬁz*laﬂz o

that 71 < z3. Then z,8a < zpBa. If 218a = x38a, then z1, 19 € (z16a)(Ba)™t,
$0 118 = dppa = T2 . Assume that ;8a < x98a. Since ran(fBa) = ran(fa),
we get z10a, zo0a € ran(fa). Since o € OT(Y), it follows from Proposition
1.11 that (z;8a)(0a)™t < (x2fa)(fa)™t. It follows that dy e < diypa. Since
((718a)(Ba)™M)B = {dupa} and ((v28a)(Ba)™)3 = {ds,pa}, We have that
xlﬂl = dy 80 < dzypa = xgﬁ/.

The proof is thereby complete. O
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We now use the above theorem to prove Theorem 1.16. To do this, the follow-

ing series of lemmas is needed.
Lemma 4.3. Let |X| > 1. If the semigroup (OT(X,Y),0) is reqular, then 6 is

1-1.

Proof. We will prove the lemma by contrapositive. Assume that 6 is not 1-1.

ch = df. Since |X| > 1, there exist

Then there are ¢,d € Y such t

a,b € X such that a < b.
!.d

\‘Qw

Then o € OT(X,Y) ‘- ¢, d € ran o are such that cf = df

and ¢ < d, it follows t F=Tron "‘-'s v

conclude from Theorem 4.2

that a is not a regular V), 0), r\ 1ence (OT'(X,Y),0) is not
a regular semigroup. \ \ O
Lemma 4.4. Let |Y| > y -‘, i element a € X such that a > ran@ or

a < ranf, then (OT(X Y), 9)%}_; lar semigroup.
_,,_.- Pt )

be defined by

Proof. Let e, f € ¥'besuch that e < f. Tet o X —1
~ N,
Fi

a—(u v)@ if @ >ranf and a_(u@) < if a <ran.

e e AWEANININNNT
MAC Y WINPT0 D11k

Lemma 4.5. If ranf C X and |Y| > 3, then the semigroup (OT(X,Y),0) is not

reqular.

Proof. Let e, f,g € Y be such that e < f < g and let a € X \ranf. If a > rané
or a < ranf, then Lemma 4.4 implies that (OT'(X,Y),#) is not regular. Assume
that a ¥ ranf and a £ ran6. Then {t € ran6 |t < a} and {t € ranf |t > a} are

nonempty sets. Define a: X — Y by



60

N
N (& f g u<a
v>a
Then « € OT(X,Y) and rana = {e, f,g} # {e,g} = ran(6a). It follows

immediately from Theorem 4.2 that « is not a regular element of (OT(X,Y),6).
This implies that (OT(X,Y),#) is not a regular semigroup. O

Lemma 4.6. Let |Y| = 2. Then (OF(X4Y),0) is a regular semigroup if and
only if min(X) and max(X) ewist, and tanl ={min(X), max(X)}.
7

Proof. Let Y = {e, f}Be sueh'that ¢ < f. Assumne that (OT(X,Y),6) is regular.
If | X| =1, then min(X') —=mmax () an"fl ran @ = {min(X)}. Suppose that | X| > 1.
We deduce from Leminad. 3/that -isil=l. Then ef < f¢ and rant = {ef, f0}.
Also by Lemma 4.4, for eyery a S * a?égane and @ «£ ranf. Thus e <a < f6
for all @ € X. This impliesthat ef. = nﬁp(X) and f6 = max(X).

Conversely, assume that mm(X ) éi:ﬁ'dﬁmax(X ) exist, and ranf = {min(X),
max(X)}. To show that (OT(X7§7), &) 1sr?>gglar, let « € OT(X,Y). Then either

|ranal =1 or |rana| = 2 be(j-at_ls;é Y] :?If |ran a| = 1, then afa = « because

o

ran(afa) C rana, 50 it is regular. Next, assume that [rana| = 2. Then rana =

{e, f}, so X = ea-_jL'Jfofl. Since e < f and « is_iorder—preserving, we have
min(X) € ea™! and max(X) € fa~'. Then min(X)a = e and max(X)a = f.
Therefore we get ran(fa)s= (ranf)a =gmin(X), max(X)}a = {e, f} = rana.

We now have |dom 4] = Jranf| "= 2 and it immediately follows that 6 is 1-1.
Since ran(af) is finite, by Corollary 1.7, af € Reg(OT(X))., By Theorem 4.2,
a € Reg(OI( X} YD), 0): O

Lemma 4.7. If (OT(X,Y),0) is a regular semigroup and 0 is an order-

isomorphism from Y onto X, then OT(X) is a regular semigroup.

Proof. Assume that (OT'(X,Y),0) is a regular semigroup and € is an order-
isomorphism from Y onto X. Then 0~ is an order-isomorphism from X onto Y.
To show that OT'(X) is regular, let « € OT(X). Then af~' € OT(X,Y). Since
(OT(X,Y),0) is regular, we have af~! = af~10380af~" for some 3 € OT(X,Y).
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Thus 56 € OT(X) and
a=aly =ab'0=ab71080a0710 = alxB0alx = afBba.

This implies that a € Reg(OT(X)). Hence OT'(X) is a regular semigroup. O

Theorem 4.8. The semigroup (OT( ),0) is reqular if and only if one of the
following statements holds. ’/
(i) The semigroup OT &an order-isomorphism from'Y
% __’
onto X. "!

(i) |X|=1.
(iii) Y| = 1.

holds by Lemma 4. 63
Case 2: |X| > 1,]Y|%>=l and Oﬁ] )48 not re lar Since (OT(X,Y),0) is

regular and %Jnra %L!&J fﬁ wf m 4.7 that 0 is not an

order—lsomorphlsm from Y onto X. As in the.proof of Caseyl, we have (iv) is

me WIANNIUNNTIVIEIAE

To prove sufficiency, we first assume that (i) is true. Let o € OT(X,Y).
Then af € OT(X), so af € Reg(OT(X)) because OT(X) is regular. Since
0 is an isomorphism from Y onto X, it follows that # is 1-1 and ranf = X.
Then ran(fa) = (ranf)a = Xa = rana. Since 0 is 1-1 and rana C Y, we
have that # is 1-1 on rana. In view of Theorem 4.2, « is a regular element of
(OT(X,Y),0). Hence (OT(X,Y),0) is a regular semigroup. Next, if | X| = 1,

then for « € OT(X,Y), |rana| = 1, so a = afa because ran(afa) C ran a and
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it follows that o € Reg(OT(X,Y),0). This shows that (OT'(X,Y), ) is a regular
semigroup if |X| = 1. It is clear that (OT(X,Y),6) is regular if |Y| = 1 since
|OT(X,Y)| = 1. Finally, if (iv) is true, then Lemma 4.6 shows that (OT(X,Y),0)

is a regular semigroup.

Hence the theorem is completely proved. O

i for the elements of the semigroups
%/),0) where 0 € OI(Y, X) to be

regular are provided. ; ‘
Theorem 4.9. For{ Q\N), a € Reg((OP(X,Y),0))

Next, necessary and suffici
.

Proof. 1t is immediate fr
(ii) and (iii) hold.
Now suppose,

dom 6)f = (ran «)0:

hen ran(af) = (ranaN
)™t # @ for every y €
y(0a)t. Then d, € Y and

| Nk ﬁ%ﬁﬂ‘?’%“iﬁ e
ammnﬁmumﬁwmaﬂ

The ma%pmg B is well-defined by (iii). To show that 3 is order-preserving, let

ran . For each y €

Y1, Y2 € rana be such that y160 < y»6. Since 0 is order-preserving, it follows from
(iii) that y; < ya. Since fa € OP(Y') and 41, y2 € ran o = ran(fa), by Proposition
L.11, y1(fa) ™t < yo(6a)~t. But dy, € y1(0c)™! and dy, € y2(0a)~, so dy, < dy,.
Then (y10)5 = d,, < d,, = (y20)5. Hence § € OP(X,Y). It remains to show that
a = afffa. Since for x € dom o, zaf € dom 3 and zadf = d,, € dom(f«), this
implies that dom(afffa) = doma. If x € doma, then zabf0a = (xald)s0a =



63

dza(fa) = za. Hence o = afffa. This shows that « is regular in (OP(X,Y),6)

and the verification is complete. O

Theorem 4.10. For § € OI(Y, X) and o € OI(X,Y), a € Reg((OI(X,Y),0)) if
and only if the following conditions hold.

l//

lem

(i) doma Crand.

(ii) rana € dom 6. N
Proof. Assume that « i e
OI(X,Y) such that o =

and rana C dom 6. .

doma =ranf Ndo g ' o o) C rané.
Conversely, assum ' i) hold nran(fa) = (ranfNdom a)a =

= (rana)a™! = doma.

(X, Y),0). Then there is 5 €

a 4.1 that ran o = ran(fa)

fa) = (ranf N dom a)a, so

Define = ( € OI(X,Y). We also have
that afpBfa = 04(9(056) ------ ran(fa) — Lioma@liana = @, SO
a € Reg((OI(X,Y),0)), 0

Theorem 4.9(i) an
an Theoremﬂ.lo to prove Theorem 1.17

Finally, we shall L ply Theorem 4.

and Theorem 1,18 resﬁ’eﬁv%. The foll&uﬁﬁ lemma is r%uired.

Pl 1aE) s

Lemma 4.1181Let OS(X,Y) be OP(X Y) or OI(X Y) cmd 0eOSY,X). If

" “@gﬁ”ﬂoﬂﬂﬂ?ﬂmﬁ“’] MY TRy~

Proof. We prove the lemma by contrapositive. Assume that dom# # Y or
ranf # X.

Case 1: domf # Y. Let y € Y ~\domé and = € X. Then (z) € OI(X,)Y) C
OP(X,Y). But ran( (z)) = {y} ¢ dom#6, so by Theorem 4.9 and Theorem 4.10,
we have (”y”) is not a regular element of (OS(X,Y),6).

Case 2: ranf # X. Let z € X ~\ranf and y € Y. Then (z) € OI(X,Y) C
OP(X,Y). But 9(;) = O,ran((z)) = {y} and dom((z)) = {z} ¢ ran#, so by
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Theorem 4.9 and Theorem 4.10, (z) ¢ Reg((0OS(X,Y),0)).

Hence (OS(X,Y),6) is not a regular semigroup, and hence the lemma is proved.

O

Theorem 4.12. For § € OP(X,Y), the semigroup (OP(X,Y),0) is reqular if
and only if

(i) € is an order-isomorphisn Y /X or
(ii) dom# =Y, ranf = -

Proof. To prove neces( that (C is a regular semigroup. We
' JIf | X| = 1, then (ii) holds.

have by Lemma 4.11
Assume that | X| > r-isomorphism from Y on

to X. It remains to the contrary that 6 is not

Then a € OP(X, fd e < f, it follows that

f is not 1-1 on ran eorem 4.9, aﬂx not a regular element of

a1l ‘Lﬁj ) ﬁﬁ PSR
T°W*T“£i Ssalenas

Case 16 is an order-isomorphism from Y onto X. Then domé# = Y, ranf =
and 0 is 1-1. Let « € OP(X,Y). Thenrana C Y = dom# and ran(fa) = (ran 6N
doma)a = (X Ndom o) = (dom a)av = ran av. It follows from Theorem 4.9 that

a is regular in (OP(X,Y),0). Hence (OP(X,Y),0) is a regular semigroup.

Case 2: domf =Y, ranf = X and |X| =1. Let « € OP(X,Y) ~ {0}. Then
|[rana| = 1, so 0 is 1-1 on rana. Since dom# =Y, ranf = X and |X| = 1, it

follows that rana C dom# and ran« = ran(fa). Hence by Theorem 4.9, « is
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regular in (OP(X,Y),0). This shows that (OP(X,Y),#) is a regular semigroup.
U

Theorem 4.13. For § € OI(Y, X), the semigroup (OI1(X,Y),0) is reqular if and

only if 0 is an order-isomorphism from'Y onto X.

Proof. Assume that (OI(X,Y), ) isaregular semigroup. By Lemma4.11, dom 6 =

Y and ranf = X. Since 0 € QI(Y, |, it follows that 6 is order-preserving and 6

is 1-1. Therefore we dedug orphism from Y onto X
Conversely, assume That-=s an ‘"\'c,_-_n from Y onto X. Then
dom# =Y and ranf M'ﬁ el doma C X = ranf and

rana C Y = dom@,‘

(OI(X,Y),0) is a reg

\\ (OI(X,Y
ar in ),0). Hence
$\ 0

\\

.r;f.

|
,I”:
iF |
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