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CHAPTER1I
INTRODUCTION

A functional equation is an equation in which the unknowns are functions.
The objective of studying a functional equation is either to find all the functions
satisfying the equation, possibly with additional conditions, or to study its
relation with other functional equations. The following example demonstrates

a solution of a functional equation.

Example. Find all functions f : R — R such that
f(x+y)— f(z) =y foreveryz,yecR. (1.1)
Solution: Letting x = 0 in equation (1.1), we then have

fly)— f(0)=vy foreveryy € R.

Letting ¢ = f(0), the function f must be given by f(y) = y + ¢ for every y € R.
Conversely, it is not hard to see that any function f defined by f(z) = z + ¢,
where c is a constant, also satisfies equation (1.1). The function f is said to be

the solution of equation (1.1). O

Besides finding the solution of an equation, the equivalence among equa-
tions are also widely studied. For example, it was found ([3]) that, for given

nonempty open interval I C R* and p € [0, 1], the functional equation

flor+(1=p) + ) = f@) + f) foray €1 (12)



has the same set of solutions with the functional equation,

24(v7Y) = f(@)+ fy) forzyel. (1.3)

In other words, we can say that equation (1.2) is equivalent to equation (1.3).
Various functional equations have been studied. One of interesting results is

the one concerning the functional equation
fle+h,y)+ f(x—h,y)— f(x,y+h)— f(x,y—h) =0 forz,y € R. (14)

This equation can be considered as a functional equation analogue of the wave

equation
O LNOK
or2 Oy’

In 1969, ].A. Baker [2] proved that all continuous solutions of equation (1.4) must
be of the form

f(z,y) = alz +y)+ Bz —y),
where o, 3 : R — R are arbitrary continuous functions. Nevertheless, if the con-

tinuity of the function f is not assumed, McKiernan [6] found that each solution

of equation (1.4) must be of the form

f(x,y) = alz+y) + B(x —y) + Az, y),

where o, 8 : R — R are arbitrary functions and A : R? — R is a skew-symmetric

bi-additive function. More precisely, the function A satisfies the equations

Az + 2,y) = Az, y) + A2, ), Az, y +2) = Az, y) + Alx, 2),
and Az, y) = —A(y, )

forall z,y, z € R.



In 1988, S. Haruki [5] has studied the functional equation

fx+hyy) =2f(x,y) + flx—hi,y)  flo,y+he) = 2f(x,y) + f(x,y — ha)

hi h3

(1.5)
for all x,y, hi, ha € R such that hy, hy # 0. This equation can be represented by

using the divided symmetric partial difference operators as

A%,hl f(x7 y) - A%,h2f<$’ y)
Note that the operator A here is defined by

h
[l y+2) = flz,y—1%)
> .

Al,hf(m7 y) o

AZ,hf(x7 y) 7

Thus, the functional equation (1.5) can be regarded as another analogue of the
wave equation.

Note that if the spans are restricted to h; = h,, equation (1.5) becomes equa-
tion (1.4). So equation (1.4) is called the symmetric case of equation (1.5). The

general solution of equation (1.4) is

f(@,y) =ao + a1(z® + v°) + as(32%y + v*) + as(3zy” + 2°) + au(2®y + zy?)

+ Ay (z) + As(y) + B(z,y),

where ag, a1, as, as, ay are constants in R, A;, A5 are additive functions and B is
a bi-additive function.

In this thesis, we will extend Haruki’s work to the functional equation

f(l’—i—hl,y,t)—2f(l’7y,t>+f(l’—h1,y,t) f(x,y—i—hQ,t)—2f(x,y,t)—|—f(x,y—h2,t)
02 o 12
f(x,y,t—l—h;;)—2f(x,y,t)—|—f(x,y,t—h3)

h



forall z,y,t € Rand hy, he, hs € R \ {0}. This equation can be written as

A%,hlf(xa Y, t) + Ag,hgf(xu Y, t) = Ag,hgf(xa Y, t) (16)
Equation (1.6) can be considered as an analogue of the wave equation for

wave motion in 2 dimensions,

Pf  OPf  0f
ox2 Oy ot




CHAPTER II
PRELIMINARIES

In this chapter, we will give basic concepts of additive and multi-additive

functions and also recall Haruki’s results (please refer to [5] for details).

Definition 2.1. Let (G, +) be a commutative group. A function A : G — G is
said to be additive if

Az +y) = A(z) + Aly) forall z,y € G.

Proposition 2.2. Let A : R — R be an additive function, x € R and r € Q. Then
(i.) A(0) =0,
(ii.) A(—z) = —A(x),
(iii.) A(rx) =rA(z).
A generalization of additivity to multi-variate functions is as follows:

Definition 2.3. Let G be a commutative group and n € N. A function f : G" —

G is additive in the i variable if

flry,xe, oo @i+ Yiy ooy xn) = flay, Toy oy xn) + f(ar, Toy o Yy Tp)

for every zy,x9,...,2,,y; € G.
If f is additive in each of its variables, f will be called an n-additive function.

A 2-additive function is also known as being bi-additive.

Remark. It can be easily seen that if f is additive in the i variable, then

f(l’l, ce 7$i_1,0,$i+1, - ,l’n) = 0 forall L1y 3 Li1, Lit1y---,Tn € G.



Next we recall the important results which were published by Haruki [5].

Theorem 2.4. (Haruki) Let ¢, p : R — R be functions satisfying (A2¢)(z) = p(x),

where
Oz -+ 1) = 20(z) + o(e — )

Then

d(z) = a; + A(z) + agz® + asa®

o(x) = 2as + 6asx

where ay, as, as are constants and A is an additive function.

Theorem 2.4 can be applied to any function ¢ whose second-order difference

is independent of the span, h. Moreover, the following Haruki’s solution for

(A2,9)(z,y) = (AF.9)(z,y) (2.1)

forall z,y € Rand s,t € R \ {0} is also required in our work.

Theorem 2.5. (Haruki) Let g : R? — R satisfy equation (2.1). Then

9(x,y) =ap + a1 (2> + ¥*) + a2(37%y + v*) + a3 (32 + %) + au(zy + 21®)

+ A (z) + As(y) + B(z, y)

where ay, a1, az, as, ay are constants in R, Ay, Ay are additive functions and B is a bi-

additive function.



CHAPTER III
FUNCTIONAL EQUATION ANALOGUE OF
2-DIMENSIONAL WAVE EQUATION

The divided symmetric partial difference operator is defined for f : R* — R

as follows:
b —f(r—1t
(A pf)(z,y,t) = flz+50.0) . flx—5,y,t)
b4 — _h
(Agpf)(z,y,t) = fley+3.0) - f(x,y—35,1)
! _h
(As,hf)(m,y,t) = f<x’y’t+ 5) ; f(xvy,t 2)
and

(AL )y t) = (AAG )@y t)  forie {1,2,3}.
Then a functional equation analogous to the wave equation with velocity c is

C2(<Aih1f)<x7 Y, t) + (Ag,h2f>($a Y, t)) = (A§7h3f)(x, Y, t) (31)

for z,y,t € Rand hy, ho, hy € R~ {0}.

The next theorem gives a relationship among solutions of equation (3.1).

Theorem 3.1. Let f1, fo : R® — Rand ¢ € R ~ {0}. Assume that
fa(z,y,t) = fi(z,y,ct) for x,y,t € R. Then the equation

A%,hlfl(m7yat) + A%,hgfl(xay’t) = Ag’thl(Jf,y,t)



for x,y,t € Rand hy, he, hs € R \ {0}, is equivalent to

CQ(A%,hlfQ(x’ y7t) + A;thg(l’?y,t)) = A%,hg,f?(xv y7t)

for x,y,t € Rand hy, hy, hs € R~ {0}.

Proof. The statement follows from the following observation:

02(Aih1f2(x7 Y, t) + A%,hng(x7 Y, t)) - Ag,hng(x7 Y, t)

= 02(Aih1f2(xayat> + A%,hgf?(xv Y, t))
_ (f2(3773/7t+ h3) - 2f2<ﬂf,y,t) + f2(x7y7t_ h’3>
h3
= Cz(Af,hlfl(xJ% Ct) + A;thl(fI:,y, Ct))
. C2(f1(xay7 ct + Ch3> [} 2f1(:[;7 Y, Ct) + fl(xaya at — Ch?)))
(Ch3)2

= C2(Aih1 fl (Zﬂ, Y, t/> + Ag,hgfl (I, Y, t/)) \ C2A§,h§f1 (SL’, Y, tl)

)

where ¢ = ct and hj; = chs.

Theorem 3.1 allows us to concentrate on solving the equation

(Aihlf) ('Tv Y, t) + (Ag,hgf) (.27, Y, t) — (Aiz’),h3f) (‘Ta Y, t)

When expanded, the equation (3.4) is

f(a:—i—hl,y,t)—2f(a:,y,t)+f(a:—h1,y,t)

hi
f($,y+h2,t)_2f($,y,t)+f($,y—h2,t)
+ 2
h’2
f(a:,y,t—i—hg)—2f(x,y,t)—|—f(a:,y,t—h3)

We need the following lemma before approaching our main result.

(3.2)

(3.3)

(3.4)



Lemma 3.2. Let g : R*? — Rand f : R® — R such that f is additive in the first
variable. Then f and g satisfy the system of equations

A%,hlg(ya t) = Ag,hgg(ya t)

:L‘g(yv t) + Ag,hl f(xa Y, t) = Ag,hgf(xa Y, t) (35)
forall x,y,t € Rand hy, hy € R\ {0} if and only if

f(@,y,t) = Co(x) + (v +t*)Ci(z) + (£ + 3y°t) Co() + (y* + 3yt*)Cs(z)
+ (yt? + y*)Cu(x) + boat® + Ay (z,t) + Ax(, y) + Asz(x, y, 1)
+ 2t? By (y) + 2t° Bs(y) — xy° Bo(t) — 2y° By(t)

gy, t) = 2bo + 2B (y) + 2B5(t) + 6t Bs(y) + 6yBa(t)

where B;’s and C;’s are additive functions, A, A, are bi-additive, As is 3-additive and

b is a constant.

Proof. From the solution of one-dimensional wave functional equation in

Theorem 2.5, we have

g(y,t) = by +bi(y® + %) + ba(y® + 3yt?) + b3 (£? + 3y°t) + ba(y°t + yt?)

+ Bi(y) + Ba(t) + B*(y, t)

where b;’s are constants, B, B, are additive and B* is bi-additive. From equa-

tion (3.5), substituting h, = 1 and then apply Theorem 2.4, we have
f(‘rv Y, t) = D0<x7 t) + Dl(‘r7 Y, t) + y2D2($7 t) + y3D3($, t)

where D, is additive in the second variable. Substituting this and g(y,¢) into



10
equation (3.5), we get

box + bix(y® + t2) + box(y® + 3yt?) + bsz(t* + 3y*t) + byx(y*t + yt*) + 2 B1(y)

= A§7h3 (Do(,t) + Dy(z,y,t) + y*Do(z,t) + y* Ds(x,1)). (3.6)

Observe that whenever r € Q, substituting ry for y in equation (3.6) yields a

polynomial of variable r as following

wby + by (r?y? + 1) + wbo(rPy® + 3ryt?) + 2bs(t? + 3r2yt) + xby(ry*t + ryt?)
+reBi(y) + xBy(t) + reB*(y,t)) + 2Ds(x,t) + 6ryDs(z, t)

- Ag,hg(DO(xa t) + TDl(ZC, y7t) + r2y2D2($a t) + T3y3D3(gjvt>) = Oa

with all rational numbers being its roots. Hence all the coefficients of the poly-

nomial must vanish, that is,

box + biat® + bsat® + wBy(t) + 2Dy (x, t) = A7}, Do(, 1), (3.7)
3bywyt® + bywyt® + x By (y) + xB*(y,t) + 6yDs(x,t) = A7y, Di(x,y,t),  (3.8)
bizy® + 3bsry’t = AihngDQ(x, t), (3.9)

boxy® + byxy’t = Aith?’Dg(x, t). (3.10)

By equation (3.9), equation (3.10) and using Theorem 2.4, we have

b b

Dy(z,t) = Cy(x) + Ey(z,t) + Elxtz + gxtg‘, (3.11)
b b

Ds(z,t) = Cs(x) + Ey(z,t) + 5233252 + gxﬁ (3.12)

where E; and E, are additive in the second variable. Now equation (3.7) be-

comes

AihQDo(x, t) = box + 2C1(x) + 2Bo(t) + 2B (z,t) + 2byat® + 2bswt®.  (3.13)
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Therefore, by Theorem 2.4, we get
A}, Do(x,t) = k(z) + tCo(x) (3.14)
for some k,C5 : R — R. Thus
box + 2C1(x) + xBa(t) + 2E1(z,t) + 2byat® + 2bzat® = k(x) + tCo(z).

By replacing t with r¢ and use the fact about polynomial roots as previous, we
get by = 0 = bs and byx + 20 (z) = k(x) and 2B, (t) + 2E; (2, t) = tCy(x). Hence,
by Theorem 2.4 and the equation (3.14), we obtain

bQZE + 201 ([L‘) 2 CQ(I)

Dy(z,t) = Co(z) + Ar(z,t) + 5 =+

t3

where A, is additive in the second variable. And since b; = 0 and b3 = 0,

equation (3.11) becomes

tCQ ([L’) — Z’BQ (t)

DQ(ZL’,t) :C'l(x)—i—El(x,t) :C1($>+ 9

We get back to equations (3.8) and (3.12), we have
A?,hQDl(% y,t) = 2Bi(y) + 6yCs(x) + £B*(y,t) + 6y Es(x,t) + 6boxyt”® + 2bsayt®.

By similar reasoning as previous, by = 0 = by, B*(y, t) + 6yEs(x,t) = tEs(x,y)

and

B E.
Dule, 1) = As(a,9) + Ao,y 0) 4 DL OO 2 B 5 545

Ds(x,t) = Cs(x) + Ex(x,t)

where Aj is additive in the third variable. Note that E5 is additive in the second
variable since Es(x,y) = xB*(y,1) + 6yEs(z,1). If we substitute ¢ = 0 into
equation (3.15), we get Ay(z,y) = Di(x,y,0), which is additive in the second
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variable. Since all other functions in equation (3.15) are additive functions of v,

we can see that As is additive in the second variable. Thus

f(z,y,t) = Co(x) + Ay(x,t) + box +§C1(I)t2 n CQéx)tS
+ Ag(a,y) + Ag(o ) + 2 4; 6yCs() 2 E3(g, ¥) s
tCo(x) — xBo(t
+ % (O (x) + 2(2) ; 2B ( ))
+y(C3(x) + Ea(z,1))
_ 2 2 3 2 CQ([E) 3 9 bO )
= Co(w) + (" +1)Cr(w) + (1 + 3y) == + (v + 3yt*) Cs(x) + ot
+ Ai(z,t) + As(z,y) + As(z, y, t) + ot 312(?/) L E3(év, y)
_ 2220 s, (3.16)

2

and  g(y,t) =bo+ Bi(y) + Ba(t) + tE5(1,y) — 6yE(1,1). (3.17)

Now we want to show that each function in the solution is additive in the
first variable. Substituting y = 0 = ¢ in equation (3.16), we get that Cy(z) =

f(z,0,0) is additive by an assumption on f. Let
py(x) = y*Ci(2) + y°Cs(x) + As(,y). (3.18)

If we substitute ¢ = 0 in equation (3.16), we get ¢, (z) = f(x,y,0) — Cy(x). Hence
for each y € R, ¢, is additive. One can verify (from equation (3.18)) that

Ci(2) = = 201(2) + 262(2) — 50(0),
Cs(z) = %@1(‘73) - %w(az) + é@s(:r),
Ao, ) =36, (2) — Sion(2) + 50(0).

Hence we have that C; and C5 are additive and A, is bi-additive. Next, let y = 0
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in equation (3.16). We get

f(z,0,t) = Co(z) + t2Ci(z) + t302T(x) + %mﬂ + Aj(z,t).

We let ¢y(z) = > 22 4 A, (2,t). Then ¢y (x) = f(x,0,t) — Co(x) — t>Cy (a) — Bat?,

an additive function of z. From the definition of ¢;, we have

Co(z) = —2¢1(x) + ¢o(x),

Av(et) = Soula) — coula)

Hence C; is additive and A, is bi-additive (it is already additive in the second

variable). Next we let

Es(x,
Yyi(x) = As(x,y. t) + tg—d%c—w + y° By (2, ). (3.19)
Then we also have
C
) = Fla,.1) — Cola) — (2 + )0 (0) — (4350 20— g7 1 390
2
D00 A, ) Ay — 22 DYy VBN

which is additive in z. From equation (3.19),

Ay, 0) = 2000) = Syu(e) — GUnala)
Es(w,y) = —2¢y1(%) + ¢y 2(v),

Ey(w,t) = — éiﬂl,t(%) + %%,t(x)'

Hence every functions in equation (3.16) is additive with respect to x.
Now we are ready to finalize the solution for f, substitute equations (3.16)

and (3.17) into equation (3.5), we obtain

tEs(x,y) — xtEs(l,y) = 6yFy(x,t) — 6zyFy(1,1). (3.20)
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Define T'(x,y) = E3(z,y) — vE5(1, y). By equation (3.20), we obtain

T(l’,y) = 6yE2(ZE, 1) - nyE2(1v 1) = yC4(I)

where Cy(z) = 6Fy(x,1) — 6xFEy(1,1). Note that C, is additive. So we have

tEs(x,y) = wtEs(1,y) + ytCu(x),
6yEs(x,t) = 6zyEs(1,t) + ytCy(z).

Thus, from equation (3.16),

C
fl9.0)= Cola) + 7 + A + P+ 370 2 4 (7 13y ()
C b
o+ ) P M 4 ) + Aol ) + Aalt)
+ xtQ—Bléy) — zy? B22<t) 4wt? Es(1,) + 2y FBy(1,1).
Also recall that

g(y,t) = by + Bi(y) + Ba(t) + tEs(1,y) — 6yFa(1,1).

This completes the proof. O

We can obtain a simpler version of this Lemma, which is also required for

the main theorem.

Corollary 3.3. Let f,g: R* — R. Then f and g satisfy the system of equations

A%,mQ(?J, t) = Ag,mg(ya t)

g(yu t) + A%,hlf(gﬁ t) = A%,hgf(yv t) (321)
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forall y,t € Rand hy, hy € R~ {0} if and only if

f(@,y) = co+er(y? +12) + et + 3y%t) + c3(y® + 3yt?)
+ C4<yt3 + ygt) + bot? + Ai(t) + Ax(y) + As(y, t)
+*Bi(y) + t°Bs(y) — y*Ba(t) — y* Ba(t)

gy, t) = 2bo + 2B (y) + 2Bs(t) + 6t Bs(y) + 6yB(t)

where Ay, Ay, By, By, Bs, By are additive functions, As is bi-additive and by, ¢y, ¢4, . . ., ¢4

are constants.

Proof. Note that the equation (3.21) can be rewritten as

zg(y,t) + a7, fy. t) = a3, f(y,1).

Now we let f*(z,y,t) = 2 f(y,t). Then f* is additive in the first variable and

AL 9y t) = A3, 9(y, 1),

29y )+ A5, (@, 1) = A5, (2,9, ).
By Lemma 3.2, we have

f(xy,t) = Cola) + (v +1*)Ci(x) + (2 + 3y*t) () + (y° + 3yt*) Cs ()
+ (yt* + y*)Cu(x) + boxt® + Ay (z,t) + Ax(, y) + Az, y, 1)
+at?Bi(y) + 2t’ Bs(y) — 2y By(t) — wy° Bu(t)

9(y,t) = 2bo + 2B (y) + 2Ba(t) + 6t B3(y) + 6y Ba(?)
where B;’s are additive, A, a, are bi-additive and Aj is 3-additive. The desired
result follows from f(y,t) = f*(1,y,t). O

Having Lemma 3.2 and Corollary 3.3, we are ready to solve the functional

equation (3.4).
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Theorem 3.4. Let f : R® — R. Then f satisfies equation (3.4) if and only if

f(,y,t) = ao + ar(y® + %) + ao(t® + 3y°t) + as(v® + 3yt®) + as(y’t + yt?)
+ as(2? + 17) + ag(2° + 32t?) + (y* + t*) Ay (z) + (2 + 3y*t) As(2)
)+ (Pt +yt) Au(w) + (2% + ) As(y) + (2% — y7) Ao (t)
+ (82 + 32%) A7 (y) + (2 + 3t?) As(y) + 3(23t + xt3) Ag (1)
— (y° = 32%y) Aso(t) + (2° = 3ay?) An () + 3(2°y — 2y°) Awa (1)
+ Aiz(x) + A1a(t) + A1s(y) + Bi(z,y) + Ba(y, t) + Bs(z,t) + T3(z, y, t)

+ (y° + 3yt*) Az (x

where a;’s are constants, A;’s are additive, B;'s are bi-additive and T is 3-additive.

Proof. Firstly, we put hy = 1 = kg in equation (3.4) and then apply Theorem 2.4.
We obtain

f(,y, ) = Ay, ) + B(z,y,t) + 2°Cly, 1) + °D(y, 1)
where B is additive in first variable. Substitute this into equation (3.4), we have

20(y,t) + 62D(y,t) + A2, (A(y,t) + B(x,y, t) + 2°C(y, t) + 2> D(y, t))
= A}, (A(y, t) + B(z,y,t) + 2°C(y, t) + 2°D(y, t)).

By replacing x with rz, where r € QQ, we get a polynomial (of ) with infinite

number of roots, and hence its coefficients must be all zero;

2C(y,t) + A2, Ay, t) = A}, Ay, t), (3.22)
62D (y, ) + A2, B(z,y,t) = AZ, B(x,y,1), (3.23)
2A§h2 (y.t) = 2°A7,,C(y, 1), (3.24)

? A, D(y,t) = 2*A7, D(y,t). (3.25)
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From Corollary 3.3 and equations (3.22) and (3.24) we have

Ay, t) = ao+ ar(y® + 1°) + as(t® + 3y°t) + as(y” + 3yt®) + as(y’t + yt*) + cot?
+ A1) + As(y) + As(y, t) + 2Ci(y) + t2Cs(y) — y°Ca(t) — y*Cu(t),
C(y, t) = ¢o+ Cl (y) + Cg(t) + Sth(y) + 3yC4(t)

From Lemma 3.2, equations (3.23) and (3.25), we obtain

B(z,y,t) = Bo(x) + (y* + t*) Bi(z) + (£ + 3y™) Ba(x) + (y° + 3yt*) Bs(2)
+ ('t + yt*) Ba(x) + 3doat? + Eq(,1) + Ea(w,y) + Es(x,y.1)
+ 32t Dy (y) + 3t D3(y) — 3wy>Dy(t) — 3xy° Dy(t),

D(y,t) = do+ Di(y) + Da(t) + 3tDs(y) + 3yD4(t),

where each unknown function is additive in every variable. Hence
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flz,y,t) = ag + ar(y® + t2) + ao(t® + 3y*t) + as(y® + 3yt?) + as(y3t + yt®) + cot?

+ A1 (1) + As(y) + As(y, t) + °Cr(y) + °Cs(y) — y?Ca(t) — v °Cu(t)
+ Bo(z) + (v* + t*) Bi(z) + (t* + 3y*t) Ba(z) + (v° + 3yt®) Bs(z)
+ (3t + yt*) By(w) + 3doxt? + Ei(z,t) + Esy(w,y) + Es(z,y,t)
+ 32t> D1 (y) + 3xt> D3(y) — 30y Dy(t) — 32y Dy(t)
+ 2% (co + Ci(y) + Cu(t) + 3tCs(y) + 3yCiy(t))
+ 23(do + D1 (y) + Da(t) + 3tDs(y) + 3yDy(t))

= ap + ay(y? +12) 4 ao(t® + 3y°t) + as(y® + 3yt?) + au(y’t + yt?)
+ co(z® + %) + do(2® 4 32t?) + (v* + t*) By () + (£* + 3y*t) Ba(z)
+ (y* + 3yt?) Bs(x) + (y*t + yt*) By(z) + (2* + *)C1(y)
+ (£ 4 322 Cs(y) + (2 + 3t?) Dy (y) + 3(x3t + 2t*) D3 (y)
+ (2% = y?)Ca(t) = (v = 32y)Cu(t) + (2 — 3xy®) Da(t)
+ 3(2%y — 2y®)Dy(t) + Bolx) + AL (t) + As(y) + Es(z,y)

+ AS(y7t> + El(xat) =+ E3<xay7t)'

It is straightforward to verify that a function of the above form is a solution

of equation (3.4). Hence the proof is completed. O
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