CHAPTER III

TRANSFORMATION SEMIGROUPS

The characte;‘izati on t of cardinality of a set X of
each of P , T, and I  wh ae subsemigroup was given
by Higgins in [2] whe ' a1 tial transformation

semigroup on X, the

inverse éemigroup

A continpa i izing transformation
semigroups having prepe -given in this chapter.
We characterize each J1-0 "; CTy which has a proper

dense subsemigroup in t 1lity of the set X where Gx 3 Mx 2

O.,, CP_, and CT ar_ th the transformation

X X

semigroup of all r'——-- nsformations of ;“ sformation semigroup

S orBtion semigroup of all

of all onto transfoﬁatlo 2 =

constant partlal trangfprmations of X and the transformatlon semigroup

R 3 ‘KLEJ T WDT
qmmmm UUNANYA AL oo

one of Gx i Mx or O,, then S has a proper dense subsemigroup if and only
if X is infinite. To prove these theorems, we need tl;e following fact:
For any infinite set X, there exists a subset A of X such that |a|= |X|

and X~A is infinite countable. To show this, let X be an infinite set.



20

Case 1 : X is countable. Then there is a 1-1 correspondence between
X and N (the set of positive integers). But 2N (={2n | n e N}) is a
subset of N such that |2N| = |N| and N~2N is infinite and countable,

so there exists a subset A of X such that |A| = |x| and X~A is infinite

and countable.

Case 2 : X is uncountabl n infinite set, X has an infinite

countable subset, say |a] = |x| and@ x~2 = C
which is infinite and . | S
Also, the fo /‘ a. ,
S h A%
é‘\‘ el '}

Lemma 3.1. If G is & u .‘ s'a subse igroup of G containing 1,

the identity of G,

Proof :

it follows frﬂuﬁﬁmﬁ»fwﬁoq ﬂmﬁ v™' € pom(u,6). ,
e AN TR AR T TN TNE =

|A| = |xh and X~A is infinite countable. Let S denote any one of Gx,

Mx or 0X where Gx , MX and 0x are the symmetric group on X, the

transformation semigroup of all 1-1 transformations of X and the

transformation semigroup of all onto transformations of X, respectively,

and let

U = {oes | acCaal
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and

U= {aesS | A=A} .
Then U and U’ are proper subsemigroups of S containing 1X‘ the ide_ntity

map on X.

’

€ U7 Let o), B £.5. If

A S Aa and A S AB, then ZAcB = (Ae If Aa S A and AR S A,

of S containing 1x.

To show tha point in X~A. Then

[avix}| = [a] and s there are bijections

¢ : AU{x} = A and o J": OB x Let B : X = X be such that

qé‘ BeGCS, so

AFTEE le\» ufic)) 4

B & (AU {x})B = A and

¢ U’. Hence U and U’

i
are proper subsemigrou

Lemma 3.3. ﬁ ﬂﬂﬂﬂﬂ%‘?ﬂ’ﬂﬁ[ﬂﬁ subset of X such .

that |A| |X| IX\AI and B a subset of X. Then the follomng
~RANINITUNMINY 1AL
; If AN B is infinite, then there exists a € G such that
A € Ao and A S Ba.
(34) If X ~(AUB) is infinite, then there exists n € Gx such
that An € A and Bn £ A.
(iii) If B is infinite and X~(A U B) and A N B are finite,

then there exists A € Gx such that AA € A and A N BA is infinite.
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Proof : (i) By assumption, we have IAnBI = |A| = IX\(AnB)I =
IX\A| , so there is an element a in Gy such that (ANB)® = A and

(X~(ANB))a = X~A. Then

e = [(A~B)U(ANB)]Ja

.

and

which imply that A n

(ii) By assumpti ' & IX\(AUB)l = |X_\A|,

so there exists an eler h that (AUB)N = A and

(X~(AUB))n = XNA. Since A= (AUBIN = An U Bn, we obtain that
! i ¥ :

An € A and Bn SA.

(iii) Ass‘,, ! 3T o B) and ANB are

finite. Let C = BIEX\A). Then C 1is infinit@since B is infinite and

B= (B~C)UC | { i i i.nd e exists an infinite
subset D of Cﬂgﬂﬁﬁﬁﬁ ﬂ:gij(C\D” = IAI "

From tnafwr]tﬁqﬂnj ‘DII § p-.| Yauc) = X~ (auB)
and- X~ (IIQB) is finite, wemaln wj(l (‘ﬂﬁl =aDE|= IX\Al.

A and

Let A be an element of Gx such that (AU(C~D))A

AAU(C~SD)A, so

(X~(AU(CND)))X = X~A. Then A = (AU(CSD)IA

AAC A and (C~ND)ACEA,

Next, we shall prove that BANA is infinite. Since
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BANA ((ANB)UC)ANA

= [(anBAUE)INA
= [(ANBAU(CSDAUDAINA

= [(AaNB)ANAIVUI(C~SD)IANAIUIDANA],
we obtain that |BANA|.» [(C~D)ANA|. But (C~D)AEA, so

V//://):mz\ is infinite. ,

|BAna| > [(c~D)A| = |c~

Theorem 3.4. For a

dense subsemigroup i

Proof : Let pic group on X. If X is finite,

then Gx is a finite g

subsemigroup. i - L - 'de ,\: subsemigroup, then X

is infinite. : i34 <R
i _:P'ﬁ."' ‘-.':" i

Conversely, assume that X is
A .i;‘.f.ﬂ,u»

e

Let A € X be such that

|al = |x| and X~A%s

By Lemma 3.2, we have‘that Uis a proper subsemigroup of G containing

ﬂ‘lJEJ’J‘VIEJVliWEJ’mi

To pro that U is den?e in Gx, lg: a € G B AaN(XNA).
oot 28 ﬁ%ﬁeﬂﬂﬁ%ﬂ%ﬂﬂ’l%m ﬂ d
Case 1 : X is uncountable. Then A is uncountable and thereff)re Aa is

uncountable. This implies that AaNA # @ since X~ A is countable.
Then |a| = |aa| = |(Aa~B)UB| = |aa~B|+|B| = |Aa~B| since Aa is
uncountable and B is countable. From the facts that X~ 2 is infinite

countable and B is countable, we have |X~A| = I(X\AG)UBl = X~ (Ra~ B)|~
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Then there is an element ¥ in GX such that (Aa~B)y = A and

(X~ (Aa~NB))y = X~A. Thus

[(A~RAa) U (RaNA)]y

AY

[(A~Aw) U(RaSB)ly

W

(A~ Aa)yUA

which implies that A & By Lemma 3.1,

7"1 e Dom(U, Gx).

Aoy

Therefore A € Aay, an oy & ' Sinc m U,Gx) is a subsemigroup

of Gx and oy, 1’1 € that o = (a‘v)’f1 e‘Dom(U,Gx).

Case 2 .: X is infini 4 is infinite countable and

therefore Aa is iqfinit €0}

Subcase 2 44 : 1'1"‘ Lemma 3.3 (ii),

there exists n in Gysuch that An € A and Aan @A. Therefore A < An-1

RS )71 v A LT
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then by Le.mma 3.3 (i), there exists an element ¥ in G such that

A S Ay and A C Aay. Therefore v, ay € U. It follows from Lemma 3.1

that 7'1 € Dom(U,Gx), and hence o = (m*r)'y"l € Dom(U,Gx). Assume that
AaNA is finite. By Lemma 3.3 (iii), there exists A in Gx such that

AL S A and AeANA is infinite. Therefore by Lemma 3.1, A € Dom(U,Gx),
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and we have by lemma 3.3 (i) that there exists v in Gy such that

X
A <Ay and A € (AaA)v. Then v, alv € U. By Lemma 3.1, v-1 € Dom(U,Gx).

Thus a) = (a.)w)v-1 € Dom(U,GX). Hence o = (a) 1-1 ] Dom(U,Gx).

-

This provesthat Dom(U ,Gx) = G Hence U is a proper dense

X"

subsemigroup of Gx = #

We need one more t for S =M, or O,, S has a

: X X
proper dense subsemigroup £ X is infinite .
Lemma 3.5. Let X &

 such that |A| = |x|

y one of M, or O

and X~NA is infinit % %

Let

and

Then Gy < Dom(U,S) E
—;@mﬁ R [C L e Pt
)T N 17k e i) e

Gx € Dom(U,S) and G, c pom(U’,S), it suffices to prove that
(wNG,)~'c Dom(u,s) and UNG, € Dom(U’,S ) since (UNG,) S U,

: =1 4 <l
(UnGx) c U’ and GX = <(UnGx)U (UnGx) >.kLet ate UnGx. Then

we have that
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=1 ] -1

o = 1xu ) 1X_€ U, o ES,
= o am'1, a e U, ! ¢ S5 1x = a-1u.
o L") 1y €U, o | Lo
and
o
ﬁe S; 1y = aa-1,
X
which imply by The : : ! | - nd o« € Dom(U’,S).
Hence we prove tha F: G Do Loy 4
Theorem 3.6. For g tra o ormaki semigroup of all 1-1
transformations of X has a : bsemigroup if and only if X is
infinite.
Proof : v’grcup of all 1-1

W
transformations of . If X is flmte, then Mx Gx, so by Theorem 3.4,

g L1 KLU-ALCL R it

subsemigroup, then X is 1nf1m.te.

amaRsnaniunaIRyd Y -

|A| Ix and X~A is infinite countable. Let
0L = fek MXI AacAl}.

By Lemma 3.2, we have that U “is a proper subsemigroup of Mx containing
1x. It follows from Lemma 3.5 that Gx_t_:_ Dom(U ,Mx).
First, we claim that {a e Mx A € Aa} € Dom(U ',Mx) . To prove,

the claim, let o € Mx be such that A SAa. Let B = AaN(XNA). Then
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B is countable since X~ A is countable, and also Aa = AUB. Since a

is 1-1 and X~ A is infinite countable, we have that (X~ A)a is infinite
countable. We have AaN(X~A)a =@ since a is 1-1, so (X~SNA)aN(AUB) =4.
Hence (X~ A)a € X~(AUB), so X~(AUB) is infinite countable. Then

|X\(AUB)| = |X\A|. But |AUB| = |A|, so there is an element B in

G, such that (AUB)B = = XN A. Then B e Dom(U ,bg()

X

Since Aa = AUB and (A AaB A, soaB e U’ Thus

o = (uB)B' € Dom(lym’ ‘4 —-——
Next, we s ; i 2 MX' Let a € Mx and

let B = AaN(X~A) = Aa~B and B = Aa> A.

Case 1: X is unco yand |A| = |Aa| since @ is

1-1. Since B is co hen there is a subset C of
Ao~B such that |c|= | ig/follo thé o~B| = [AaN(BUC) |. since

@ is 1-1, we have that AafCS2A)a = §, 80 (XNA)aSX\Aa. Then X\Aa is

Subcase 1 is u e. i X~Aa= ((XNANAQ)U(ANAG)

and XM\A is countabl
since B is co Ii ﬂnfm iIA\Au|=|(A\Aa)UB| and
|B|=]|c]. avtjg‘ﬂa\ ﬂ EJ jﬂ disjoint, Aa™N(BUC),
(A\Aa) zﬁﬂ g -AUB =
(Aa\(BUCqﬁA\Emhen there exists Ae G such that (Aa\B)A= AaM(BUC),

(ANA@)A = (ANAa)UB and BA=C. Then A~ e Dom(U ,M ) and AcA=((2\B)UB)A=

we have that ANAa is 1nmnte. Hence |ANAal= | (An2)UB|

(AaNB)AUBA = (AaN(BUC))UC =RAcNBESA. Hence aAeU , BOYeL = (aA)A—1e Dom(U ,Mx).

Subcase 1.2: X‘Aeis infinite countable. Then|XN(AaNB)|=|X\A|
and |AoNB|=|Aa|=|A| since B is countable. Let ¥ €Gy be such that (Aa“B)y=A
and (XMAoNB) )y = X\NA. Then 7-15 Dom(U',Mx) and Aoy = (AoN\B)yYyUBy = AUBy,
and therefore ASAcy. By the preceeding claim, aye Dom(U' ,Mx) . Hence

o = (u‘r)‘f“ € Dom(U M)
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Case 2 : X is infinite countable. By assumption,A, Aa, X~ A and

(X~ A)a are all infinite countable.

Subcase 2.1 : X~(AURAq@) is infinite. Then by Lemma 3.3 (ii),
we have that there exists p in Gx such that An € A and Aan < A. Thus

n—1 € Dom(U',Mx) and an € U’, and hence a = (um)n-1 € Dom(U',Mx).

!,/;%)e. If ANAa is infinite,

ists sch that A € AB and A € AaB,

Subcase 2.2 :
 then by Lemma 3.3 (i)

so B-l, oB € Dom(U’,M R © Dom(U',Mx).

Assume that ANAa is , there exists A in Gx

=1

such that AX € A and € Dom(U ',Mx) .« Xt

EG suchthatASAu

follows from Lemma 3y X
| -1

and A € (AaX)u. Then and hence oA = (Q\1)u
is an element in Dom(U *,M. 4l € Dom(U ',Mx),
a= (ad) e Dom(U',Mx)

This proves é L “is a proper dense

T

V.aé’ A

subsemigroup of My m . m
Theorem 3.7. ﬂrﬂ Heﬂaxym WWﬁW moup of all onto

transformation®| of X has a proper dense subsemlgroup 1f and only if X

seh. i1 AINIUNAINYIRNY

Proof 4 Let Ox be the transformation semigroup of all onto
transformations of X. If X is finite, then Ox = Gy, s0 by Theorem 3.4,

Ox has no proper dense subsemigroup. Hence, if 0x has a proper dense
subsemigroup, then X is infinite.
For the converse, assume that X is infinite. Let A € X be such

that |A| = |x| and X~ A is infinite countable.
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Set

{a €0 A C Aa}

X

c
Il

and -

U’ {an

’,bproper subsemigroups of O
at G

< Dom(U, O ) and

IAaC A}.

By Lemma 3.2, we have that

containing 1x. It fol

G, S Dom(U",0,). Lefum
is finite}.

* e \ ‘ *
To show that U is a ' subsemigroup of 2 let o 'B-e W, If Ao
Assume that A« € A and AB is

M,
finite. Then AaB = \‘ a. Since AB is finite,

we have that AaB and ABc is proves that U" is a subsemi-

group of 0x Next, we shal T show thi By Lemma 3.2, U'ﬂ Gx;‘ Gx,

Qs
RN -

3 ’ . . .
so there exists B & . B 4 and AB is infinite.

* | e —— "‘ .
Thus B € O~ U . "Henc pofox. Since

et b )
ﬂ um Fove m NEINT
oy, AT

To prove (i), assume that X is uncountable and let o ¢ Ox. Then A is

< Dom(U 10, -

uncountable and X = (AU(X~A))a = AaU(XNA)a. Since X~ A is countable,
Ac is uncountable. Since X = AaU(X“A)a, XNAa & (XNA)a which implies
that X~ Aa is countable. Then || = |X| = |aa| + |(x~Ae@)| = |aa].

Let B = AaN(XNA). Then B is countable and Aa~B = AcMA. From the
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facts that Aa is an uncountabie set and B"is.a countable set,

we obtain that lAal = IAa\Bl. Since X~ Aa is countable,

|Xx ~(ae~B)| = X N(AanB) | = [(X AU (XN2)| = [X~A|. Let y e Gy

be such that (Aa~B)y = A and (X> (Aq\B))y = XNA. Then 7—1 e Dom(U,0,)

:since_GX c Dom(U,Ox) . Because

Aay

Thus o' (u1)7_1 € Dom(U,Ox).

; \- countable. Then A is
infinite countable.” Fi e cllaim gk ¥e 0,

we obtain A € Aay.

To prove (i1

| 2 €aa} € Dom(U,0,).

To prove the claim, '€ Aa. Since A € Aaq, Aca

is infinite countable.

Case 1 : XNAais infi«? ol = |x~a| = |ae] = [2].

Let B € GX be su ':,;Jj- 3 = A : Al Ss-X~A. Then
1

cac

€ Dom(U',Ox). 'n ave that aB € U . Thus

a = (mB)B"‘I e Dom(U’,0Q,).

&L y
iz FULANENTNEAN T e, e
oo AN .

and (ANC)aNB = #. From the facts that Ao = ((A~NC)UC)a = (AN C)aVUCa

g

and Ca = B, we obtain that Aa = (ANC)aUB, so Aa>B = ((ANC)aUB)NB=
(AN C)a. Thus (A~C)a = Aa>B = AaNA. Since A S Aa, A = AaNA =
(ANC)a. Then ANC is infinite countable, and hence

ANC

|a~c| = |a] = |x~a] = [x~(A~C)|. Let y e Gy be such that Ay
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and (X~A)y = X~N(ANC). Then 7-1 e Dom(U ',Ox).' Since (A~Cla = A

and AY = A~C, we obtain Aya = (Ay)a = (A~Cla = A, so ya € U’. Thus

o= 7'1(7a) € Dom(U',Ox).

Hence {a € Oy | 2 € A} < Dom(u ",0y). Since . -
e
c Aca} € Dom(U 10y) .

'/‘&se in Ox, let a € OX' v

Aa is finite, then o (‘.O e that Aa is infinite

countable. Let B =y' The YA.= Aa™ B.

a 3.3 (ii), there

’ *
Dom (U ,ox) € pom(U ,0,), {e €0
2N

Next, we shall pr

Case 1 : . X~ (AU

! = *
exists n € G, such n ; e Dom(U ,Ox)

*
ando_meu,andhe

Case 2 : XS(AURe) i inite. 1f ANAa is infinite, then by
Lemma 3.3 (i)', there exists B & ¢ h . that A € AB and A € AcB. Then

: b,
=9 G

B aB)B” ! e Dom(U*,Ox).

-
s finite. 5 there exists A € G

Assume that A NAa X

such that AAC A a.nml-\aknA is infinite. Therﬁ‘"1 € Dom(U*,Ox). It

Byl 1’121y )ik
* - AR AR AR TN B Y

a = (ed)A” € Dom(U 10y ) .
* : *
This prove that Dom(U ,Ox) = Ox. Hence U is a proper dense

subsemigroup of 0x . #

Let X be a set. For AS X, A # @ and x e X, let Ax denote the

partial transformation of X with domain A and range {x}. Then
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chy = A | # #AS X, x e X}U{0}
and
| x e X} if X # 9,
; CTx=
{0} if X =4.

It is easily seen that for @ #AC X, 0 #BEX, x,y €

In particular, XxX sxefore CTx is a right

zero semigroup.

We shall prov that every right [left]
zero semigroup has no er--dense- igroup. This implies that
for any set X, CT_, has nc ._g~5;:'_¢%-,u ,-1:5_: bsemigroup .

d

Lemma 3.8. Everymg O %\as no proper dense

subsemigroup.

. ‘Hﬂ a EJm}’!ﬂ 103 0« senee
g NSO AN TRY

is a zigZag in U over S with value d. is imp ies xu for
some X € S, u € U. Since S is a right zero semigroup, we have that
xu =u, sod =ueg U, a contradiction. Then d ¢ U. Hence U = S.

This shows that S has no proper dense subsemigroup. #
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Theorem 3.9. For any set X, the transformation semigroup of all

constant transformations of X has no proper dense subsemigroup.

The last Theorem of this chapt;ar characterizes the transforma-

tion semigroup CPx which has a proper dense subsemigroup in term of

.

e mdm semigroup of all

the ca.f‘dinality of X as follos

Theorem 3.10. For

of » ﬁ_ oper dense subsemigroup

x| =1, then CP, = {0,1,}=

constant partial tran

. semigroup of all

= 0, then cP, = {0}

Px which implies by TheGret 'f;:f- as no proper dense subsemi-
group. Hence, if CP bsemigroup, then |X| ¥ 1.
Conversely : “He a fixed point of X

and let

P
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Ax{p} = 0

P
and
{p}x ifped,
{p}l A = 4
ks : if p #A .
This proves that U is . pM0CP, , let x € X, § # ASX. Then

Aqu. Ifx;lp,"“’ f:_:‘;'b."-' .', :Ifx=p,then

Ax=A =A ~ ech,
% X . 'CPy, A_ = Ap{p}q,
= A_{p} : qg = {p}p

Hence U is a pr er gense &
= e

;.f ’ | ]
]
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