

CHAPTER III

TRANSFORMATION SEMIGROUPS

The characterization in the term of cardinality of a set X of each of P_X , T_X and I_X which has a proper dense subsemigroup was given by Higgins in [2] where P_X , T_X and I_X are the partial transformation semigroup on X, the full transformation semigroup on X and the symmetric inverse semigroup on X.

A continuation of this work in characterizing transformation semigroups having proper dense subsemigroups is given in this chapter. We characterize each of G_X , M_X , O_X , CP_X and CT_X which has a proper dense subsemigroup in term of the cardinality of the set X where G_X , M_X , O_X , CP_X and CT_X are the symmetric group on X, the transformation semigroup of all 1-1 transformations of X, the transformation semigroup of all onto transformations of X, the transformation semigroup of all constant partial transformations of X and the transformation semigroup of all constant transformations of X, respectively.

The next three theorems of this chapter show that if S is any one of G_X , M_X or O_X , then S has a proper dense subsemigroup if and only if X is infinite. To prove these theorems, we need the following fact: For any infinite set X, there exists a subset A of X such that |A| = |X| and $X \setminus A$ is infinite countable. To show this, let X be an infinite set.

Case 1 : X is countable. Then there is a 1-1 correspondence between X and N (the set of positive integers). But 2N = |2n| + |2

<u>Case 2</u>: X is uncountable. Since X is an infinite set, X has an infinite countable subset, say C. Let $A = X \setminus C$. Then |A| = |X| and $X \setminus A = C$ which is infinite and countable.

Also, the following lemmas are required.

Lemma 3.1. If G is a group and U is a subsemigroup of G containing 1, the identity of G, then $U^{-1} \subseteq Dom(U,G)$.

Proof: Let $x \in U^{-1}$. Then $x^{-1} \in U$. Since $x = 1x, \qquad 1 \in U, \qquad x \in G,$ $= xx^{-1}x, \qquad x^{-1} \in U, \qquad x \in G, \qquad 1 = xx^{-1},$ $= x1, \qquad 1 \in U, \qquad x^{-1}x = 1,$

it follows from Theorem 1.1 that x ϵ Dom(U,G). Hence $U^{-1} \subseteq$ Dom(U,G).

Lemma 3.2. Let X be an infinite set and let $A \subseteq X$ be such that |A| = |X| and $X \setminus A$ is infinite countable. Let S denote any one of G_X , M_X or O_X where G_X , M_X and O_X are the symmetric group on X, the transformation semigroup of all 1-1 transformations of X and the transformation semigroup of all onto transformations of X, respectively, and let

$$U = \{\alpha \in S \mid A \subseteq A\alpha\}$$

$$U' = \{\alpha \in S \mid A\alpha \subseteq A\}$$
.

Then U and U' are proper subsemigroups of S containing $\mathbf{1}_{X}$, the identity map on X.

Proof: Clearly, $1_X \in U$ and $1_X \in U'$. Let α , $\beta \in S$. If $A \subseteq A\alpha$ and $A \subseteq A\beta$, then $A\alpha\beta = (A\alpha)\beta \supseteq A\beta \supseteq A$. If $A\alpha \subseteq A$ and $A\beta \subseteq A$, then $A\alpha\beta = (A\alpha)\beta \subseteq A\beta \subseteq A$. This proves that U and U' are subsemigroups of S containing 1_X .

To show that $U \neq S$ and $U' \neq S$, let x be a point in $X \setminus A$. Then $|A \cup \{x\}| = |A|$ and $|X \setminus (A \cup \{x\})| = |X \setminus A|$. Thus there are bijections $\varphi : A \cup \{x\} \to A$ and $\varphi' : X \setminus (A \cup \{x\}) \to X \setminus A$. Let $\beta : X \to X$ be such that $\beta|_{A \cup \{x\}} = \varphi$ and $\beta|_{X \setminus (A \cup \{x\})} = \varphi'$. Therefore $\beta \in G_X \subseteq S$, so $\beta^{-1}|_A = \varphi^{-1}$ and $\beta^{-1}|_{X \setminus A} = \varphi'^{-1}$. Then $A\beta \subsetneq (A \cup \{x\})\beta = A$ and $A \subsetneq A \cup \{x\} = A\beta^{-1}$ which imply that $\beta \not\in U$ and $\beta^{-1} \not\in U'$. Hence U and U' are proper subsemigroups of S containing 1_X .

- Lemma 3.3. Let X be an infinite countable set, A a subset of X such that $|A| = |X| = |X \setminus A|$ and B a subset of X. Then the following statements hold.
- (i) If A \cap B is infinite, then there exists α \in G_X such that $A \subseteq A\alpha$ and $A \subseteq B\alpha$.
- (ii) If X \((AUB) is infinite, then there exists $\eta \in G_{\widetilde{X}}$ such that Aq \subseteq A and Bq \subseteq A.
- (iii) If B is infinite and X \sim (A U B) and A \cap B are finite, then there exists λ \in G_X such that $A\lambda\subseteq A$ and $A\cap B\lambda$ is infinite.

 $\underline{\text{Proof}}: \text{ (i) By assumption, we have } |A \cap B| = |A| = |X \setminus (A \cap B)| = |X \setminus A|, \text{ so there is an element } \alpha \text{ in } G_X \text{ such that } (A \cap B) \alpha = A \text{ and } (X \setminus (A \cap B)) \alpha = X \setminus A. \text{ Then}$

 $A\alpha = [(A \sim B) \cup (A \cap B)]\alpha$ $= (A \sim B)\alpha \cup (A \cap B)\alpha$

 $= (A - B)\alpha UA$

and

which imply that $A \subseteq A\alpha$ and $A \subseteq B\alpha$.

(ii) By assumption, we get $|AUB| = |A| = |X \setminus (AUB)| = |X \setminus A|$, so there exists an element η in G_X such that $(AUB)\eta = A$ and $(X \setminus (AUB))\eta = X \setminus A$. Since $A = (AUB)\eta = A\eta \cup B\eta$, we obtain that $A\eta \subseteq A$ and $B\eta \subseteq A$.

Next, we shall prove that Bλ ∩ A is infinite. Since

 $B\lambda \cap A = ((A \cap B) \cup C)\lambda \cap A$

= $[(A \cap B)\lambda \cup (C\lambda)] \cap A$

= $[(A \cap B)\lambda \cup (C \setminus D)\lambda \cup D\lambda] \cap A$

 $= [(A \cap B)\lambda \cap A] \cup [(C \setminus D)\lambda \cap A] \cup [D\lambda \cap A],$

we obtain that $|B\lambda \cap A| \ge |(C \setminus D)\lambda \cap A|$. But $(C \setminus D)\lambda \subseteq A$, so $|B\lambda \cap A| \ge |(C \setminus D)\lambda| = |C \setminus D| = |D|$. Hence $B\lambda \cap A$ is infinite. #

Theorem 3.4. For a set X, the symmetric group on X has a proper dense subsemigroup if and only if X is infinite.

 $\underline{\operatorname{Proof}}$: Let G_X be the symmetric group on X. If X is finite, then G_X is a finite group, so by Theorem 2.5, G_X has no proper dense subsemigroup. Hence, if G_X has a proper dense subsemigroup, then X is infinite.

Conversely, assume that X is infinite. Let $A \subseteq X$ be such that |A| = |X| and $X \setminus A$ is infinite countable. Let

$$U = \{\alpha \in G_X \mid A \subseteq A\alpha\} .$$

By Lemma 3.2, we have that U is a proper subsemigroup of ${\rm G}_{\rm X}$ containing ${\rm 1}_{\rm X}.$

To prove that U is dense in G_X , let $\alpha \in G_X$. Let $B = A\alpha \cap (X \setminus A)$. Then B is countable, $A\alpha \cap A = A\alpha \setminus B$ and $B = A\alpha \setminus A$.

Case 1: X is uncountable. Then A is uncountable and therefore $A\alpha$ is uncountable. This implies that $A\alpha \cap A \neq \emptyset$ since $X \setminus A$ is countable. Then $|A| = |A\alpha| = |(A\alpha \setminus B) \cup B| = |A\alpha \setminus B| + |B| = |A\alpha \setminus B|$ since $A\alpha$ is uncountable and B is countable. From the facts that $X \setminus A$ is infinite countable and B is countable, we have $|X \setminus A| = |(X \setminus A\alpha) \cup B| = |X \setminus (A\alpha \setminus B)|$.

Then there is an element γ in G_X such that $(A\alpha \setminus B)\gamma = A$ and $(X \setminus (A\alpha \setminus B))\gamma = X \setminus A$. Thus

 $A\gamma = [(A \sim A\alpha) \cup (A\alpha \cap A)]\gamma$ $= [(A \sim A\alpha) \cup (A\alpha \sim B)]\gamma$ $= (A \sim A\alpha)\gamma \cup A$

which implies that $A\subseteq A\gamma$, and hence γ ϵ U. By Lemma 3.1, γ^{-1} ϵ $Dom(U, G_X)$. Also, we have that

 $A\alpha\gamma = ((A\alpha \sim B) \cup B)\gamma$ $= (A\alpha \sim B)\gamma \cup B\gamma$ $= A \cup B\gamma.$

Therefore $A \subseteq A\alpha\gamma$, and hence $\alpha\gamma \in U$. Since $Dom(U,G_X)$ is a subsemigroup of G_X and $\alpha\gamma$, $\gamma^{-1} \in Dom(U,G_X)$, it follows that $\alpha = (\alpha\gamma)\gamma^{-1} \in Dom(U,G_X)$.

 $\underline{\text{Case 2}}$: X is infinite countable. Then A is infinite countable and therefore $A\alpha$ is infinite countable.

Subcase 2.1: $X \sim (A \cup A\alpha)$ is infinite. By Lemma 3.3 (ii), there exists η in G_X such that $A\eta \subseteq A$ and $A\alpha\eta \subseteq A$. Therefore $A \subseteq A\eta^{-1}$ and $A \subseteq A(\alpha\eta)^{-1}$ which imply that η^{-1} , $(\alpha\eta)^{-1}$ ϵ U. We have by Lemma 3.1 that $\alpha\eta$ ϵ $Dom(U,G_X)$, and hence $\alpha = (\alpha\eta)\eta^{-1}$ ϵ $Dom(U,G_X)$.

Subcase 2.2: $X \sim (A \cup A\alpha)$ is finite. If $A\alpha \cap A$ is infinite, then by Lemma 3.3 (i), there exists an element γ in G_X such that $A \subseteq A\gamma$ and $A \subseteq A\alpha\gamma$. Therefore γ , $\alpha\gamma \in U$. It follows from Lemma 3.1 that $\gamma^{-1} \in \text{Dom}(U,G_X)$, and hence $\alpha = (\alpha\gamma)\gamma^{-1} \in \text{Dom}(U,G_X)$. Assume that $A\alpha \cap A$ is finite. By Lemma 3.3 (iii), there exists λ in G_X such that $A\lambda \subseteq A$ and $A\alpha\lambda \cap A$ is infinite. Therefore by Lemma 3.1, $\lambda \in \text{Dom}(U,G_X)$,

and we have by lemma 3.3 (i) that there exists ν in G_X such that $A \subseteq A_V \text{ and } A \subseteq (A\alpha\lambda)\nu. \text{ Then } \nu, \ \alpha\lambda\nu \in U. \text{ By Lemma 3.1, } \nu^{-1} \in \text{Dom}(U,G_X).$ Thus $\alpha\lambda = (\alpha\lambda\nu)\nu^{-1} \in \text{Dom}(U,G_X).$ Hence $\alpha = (\alpha\lambda)\lambda^{-1} \in \text{Dom}(U,G_X).$

This provesthat $Dom(U,G_X) = G_X$. Hence U is a proper dense subsemigroup of G_X . #

We need one more lemma to prove that for $S = M_X$ or O_X , S has a proper dense subsemigroup if and only if X is infinite.

Lemma 3.5. Let X be an infinite set, $A \subseteq X$ be such that |A| = |X| and X A is infinite countable. Let S denote any one of M_X or O_X .

$$U = \{\alpha \in S \mid A \subseteq A\alpha\}$$

and

$$U' = \{\alpha \in S \mid A\alpha \subseteq A\}$$
.

Then $G_X \subseteq Dom(U,S)$ and $G_X \subseteq Dom(U',S)$:

 $\underline{\operatorname{Proof}}: \quad \text{By Lemma 3.2, we have that U and U' are proper subsemigroups of S containing 1_X. Then $U \cap G_X \subseteq U$ and $(U \cap G_X)^{-1} \subseteq U'$. By the proof of Theorem 3.4, $U \cap G_X$ is a proper dense subsemigroup of G_X. Then by Lemma 2.2, $<(U \cap G_X) U (U \cap G_X)^{-1} > = G_X$. To prove that $G_X \subseteq \operatorname{Dom}(U,S)$ and $G_X \subseteq \operatorname{Dom}(U',S)$, it suffices to prove that $(U \cap G_X)^{-1} \subseteq \operatorname{Dom}(U,S)$ and $U \cap G_X \subseteq \operatorname{Dom}(U',S)$ since $(U \cap G_X) \subseteq U$, $(U \cap G_X)^{-1} \subseteq U'$ and $G_X = <(U \cap G_X) U (U \cap G_X)^{-1} > .$ Let $\alpha \in U \cap G_X$. Then we have that$

$$\alpha^{-1} = 1_X \alpha^{-1}, \qquad 1_X \in U, \quad \alpha^{-1} \in S,$$

$$= \alpha^{-1} \alpha \alpha^{-1}, \qquad \alpha \in U, \quad \alpha^{-1} \in S, \quad 1_X = \alpha^{-1} \alpha.$$

$$= \alpha^{-1} 1_X, \qquad 1_X \in U, \quad \alpha \alpha^{-1} = 1_X$$

$$\alpha = 1_{X}^{\alpha}, \qquad 1_{X} \in U', \alpha \in S,$$

$$= \alpha \alpha^{-1} \alpha, \qquad \alpha^{-1} \in U', \alpha \in S, \quad 1_{X} = \alpha \alpha^{-1},$$

$$= \alpha 1_{X}, \qquad 1_{X} \in U', \quad \alpha^{-1} \alpha = 1_{X}$$

which imply by Theorem 1.1 that α^{-1} ϵ Dom(U,S) and α ϵ Dom(U',S). Hence we prove that $G_X \subseteq Dom(U,S)$ and $G_X \subseteq Dom(U',S)$. #

Theorem 3.6. For a set X, the transformation semigroup of all 1-1 transformations of X has a proper dense subsemigroup if and only if X is infinite.

 \underline{Proof} : Let M_X be the transformation semigroup of all 1-1 transformations of X. If X is finite, then $M_X = G_X$, so by Theorem 3.4, M_X has no proper dense subsemigroup. Hence, if M_X has a proper dense subsemigroup, then X is infinite.

Conversely, assume that X is infinite. Let $A \subseteq X$ be such that |A| = |X| and $X \setminus A$ is infinite countable. Let

$$U' = \{\alpha \in M_X \mid A\alpha \subseteq A\}$$
.

By Lemma 3.2, we have that U'is a proper subsemigroup of M_X containing 1_X . It follows from Lemma 3.5 that $G_X \subseteq Dom(U', M_X')$.

First, we claim that $\{\alpha \in M_X \mid A \subseteq A\alpha\} \subseteq Dom(U',M_X')$. To prove the claim, let $\alpha \in M_X$ be such that $A \subseteq A\alpha$. Let $B = A\alpha \cap (X \setminus A)$. Then

B is countable since X \sim A is countable, and also A α = AUB. Since α is 1-1 and X \sim A is infinite countable, we have that $(X \sim A)\alpha$ is infinite countable. We have A $\alpha \cap (X \sim A)\alpha = \emptyset$ since α is 1-1, so $(X \sim A)\alpha \cap (A \cup B) = \emptyset$. Hence $(X \sim A)\alpha \subseteq X \sim (A \cup B)$, so $X \sim (A \cup B)$ is infinite countable. Then $|X \sim (A \cup B)| = |X \sim A|$. But $|A \cup B| = |A|$, so there is an element β in G_X such that $(A \cup B)\beta = A$ and $(X \sim (A \cup B))\beta = X \sim A$. Then $\beta^{-1} \in Dom(U', M_X)$. Since $A\alpha = A \cup B$ and $(A \cup B)\beta = A$, we obtain $A\alpha\beta = A$, so $\alpha\beta \in U'$. Thus $\alpha = (\alpha\beta)\beta^{-1} \in Dom(U', M_X)$.

Next, we shall prove that U' is dense in M_X . Let $\alpha \in M_X$ and let $B = A\alpha \cap (X \setminus A)$. Then B is countable, $A\alpha \cap A = A\alpha \setminus B$ and $B = A\alpha \setminus A$.

Case 1: X is uncountable. Then A is uncountable, and $|A| = |A\alpha|$ since α is 1-1. Since B is countable, $A\alpha \setminus B$ is infinite. Then there is a subset C of $A\alpha \setminus B$ such that |C| = |B|. This follows that $|A\alpha \setminus B| = |A\alpha \setminus (B \cup C)|$. Since α is 1-1, we have that $A\alpha \cap (X \setminus A)\alpha = \emptyset$, so $(X \setminus A)\alpha \subseteq X \setminus A\alpha$. Then $X \setminus A\alpha$ is infinite since $X \setminus A$ is infinite and α is 1-1.

Subcase 1.2: X\A\alpha is infinite countable. Then $|X\setminus (A_{\alpha}\setminus B)| = |X\setminus A|$ and $|A\alpha\setminus B| = |A\alpha| = |A|$ since B is countable. Let $\gamma \in G_X$ be such that $(A\alpha\setminus B)\gamma = A$ and $(X\setminus (A\alpha\setminus B))\gamma = X\setminus A$. Then $\gamma^{-1} \in Dom(U', M_X)$ and $A\alpha\gamma = (A\alpha\setminus B)\gamma \cup B\gamma = A \cup B\gamma$, and therefore $A\subseteq A\alpha\gamma$. By the preceeding claim, $\alpha\gamma \in Dom(U', M_X)$. Hence $\alpha = (\alpha\gamma)\gamma^{-1} \in Dom(U', M_X)$.

Case 2: X is infinite countable. By assumption, A, A α , X \sim A and $(X \sim A)\alpha$ are all infinite countable.

 $\underline{\text{Subcase 2.1}}: \quad X \smallsetminus (A \cup A\alpha) \text{ is infinite. Then by Lemma 3.3 (ii),}$ we have that there exists η in G_X such that $A\eta \subseteq A$ and $A\alpha\eta \subseteq A$. Thus $\eta^{-1} \in \text{Dom}(U',M_X) \text{ and } \alpha\eta \in U', \text{ and hence } \alpha = (\alpha\eta)\eta^{-1} \in \text{Dom}(U',M_X).$

Subcase 2.2: $X \sim (A \cup A\alpha)$ is finite. If $A \cap A\alpha$ is infinite, then by Lemma 3.3 (i), there exists $\beta \in G_X$ such that $A \subseteq A\beta$ and $A \subseteq A\alpha\beta$, so β^{-1} , $\alpha\beta \in Dom(U',M_X)$, and hence $\alpha = (\alpha\beta)\beta^{-1} \in Dom(U',M_X)$. Assume that $A \cap A\alpha$ is finite. By Lemma 3.3 (iii), there exists λ in G_X such that $A\lambda \subseteq A$ and $A\alpha\lambda \cap A$ is infinite. Then $\lambda^{-1} \in Dom(U',M_X)$. It follows from Lemma 3.3 (i) that there exists $\mu \in G_X$ such that $A \subseteq A\mu$ and $A \subseteq (A\alpha\lambda)\mu$. Then μ^{-1} , $\alpha\lambda\mu \in Dom(U',M_X)$, and hence $\alpha\lambda = (\alpha\lambda\mu)\mu^{-1}$ is an element in $Dom(U',M_X)$. Since $\lambda^{-1} \in Dom(U',M_X)$, $\alpha = (\alpha\lambda)\lambda^{-1} \in Dom(U',M_X)$.

This proves that $Dom(U',M_X) = M_X$. Hence U' is a proper dense subsemigroup of M_Y .

Theorem 3.7. For a set X, the transformation semigroup of all onto transformations of X has a proper dense subsemigroup if and only if X is infinite.

 $\underline{\operatorname{Proof}}$: Let O_X be the transformation semigroup of all onto transformations of X. If X is finite, then $O_X = G_X$, so by Theorem 3.4, O_X has no proper dense subsemigroup. Hence, if O_X has a proper dense subsemigroup, then X is infinite.

For the converse, assume that X is infinite. Let $A \subseteq X$ be such that |A| = |X| and $X \setminus A$ is infinite countable.

Set

$$U = \{\alpha \in O_X \mid A \subseteq A\alpha\}$$

and .

$$U' = \{\alpha \in O_X \mid A\alpha \subseteq A\}.$$

By Lemma 3.2, we have that U and U' are proper subsemigroups of O_X containing 1_X . It follows from Lemma 3.5 that $G_X \subseteq Dom(U,O_X)$ and $G_X \subseteq Dom(U',O_X)$. Let

$$U^* = U'U \{\alpha \in O_X \mid A\alpha \text{ is finite}\}.$$

To show that U^* is a proper subsemigroup of O_X , let α , $\beta \in U^*$. If $A\alpha$ and $A\beta$ are finite, then $A\alpha\beta$ is finite. Assume that $A\alpha \subseteq A$ and $A\beta$ is finite. Then $A\alpha\beta = (A\alpha)\beta \subseteq A\beta$ and $A\beta\alpha = (A\beta)\alpha$. Since $A\beta$ is finite, we have that $A\alpha\beta$ and $A\beta\alpha$ are finite. This proves that U^* is a subsemigroup of O_X . Next, we shall show that $U^* \neq O_X$. By Lemma 3.2, $U \cap G_X \neq G_X$, so there exists $\beta \in G_X$ such that $A\beta \not = A$. Then $\beta \not = U'$ and $A\beta$ is infinite. Thus $\beta \in O_X \cap U^*$. Hence U^* is a proper subsemigroup of O_X . Since $U' \subseteq U^*$, $G_X \subseteq Dom(U', O_X) \subseteq Dom(U^*, O_X)$.

Finally, we shall prove that

- (i) if X is uncountable, then U is dense in 0_X and
- (ii) if X is infinite countable, then U is dense in Ox.

To prove (i), assume that X is uncountable and let $\alpha \in O_X$. Then A is uncountable and $X = (AU(X \setminus A))\alpha = A\alpha U(X \setminus A)\alpha$. Since $X \setminus A$ is countable, $A\alpha$ is uncountable. Since $X = A\alpha U(X \setminus A)\alpha$, $X \setminus A\alpha \subseteq (X \setminus A)\alpha$ which implies that $X \setminus A\alpha$ is countable. Then $|A| = |X| = |A\alpha| + |(X \setminus A\alpha)| = |A\alpha|$. Let $B = A\alpha \cap (X \setminus A)$. Then B is countable and $A\alpha \setminus B = A\alpha \cap A$. From the

facts that $A\alpha$ is an uncountable set and B is a countable set, we obtain that $|A\alpha| = |A\alpha \setminus B|$. Since $X \setminus A\alpha$ is countable, $|X \setminus (A\alpha \setminus B)| = |X \setminus (A\alpha \cap A)| = |(X \setminus A\alpha) \cup (X \setminus A)| = |X \setminus A|. \text{ Let } \gamma \in G_X$ be such that $(A\alpha \setminus B) \gamma = A$ and $(X \setminus (A\alpha \setminus B)) \gamma = X \setminus A$. Then $\gamma^{-1} \in \text{Dom}(U, O_X)$ since $G_X \subseteq \text{Dom}(U, O_X)$. Because

 $A\alpha\gamma = [(A\alpha \setminus B) \cup B] \gamma$ $= (A\alpha \setminus B) \gamma \cup B\gamma$ $= A \cup B\gamma ,$

we obtain $A \subseteq A\alpha\gamma$. Therefore $\alpha\gamma \in U$. Thus $\alpha = (\alpha\gamma)\gamma^{-1} \in Dom(U, O_X)$.

To prove (ii), assume that X is infinite countable. Then A is infinite countable. First, we claim that $\{\alpha \in O_X \mid A \subseteq A\alpha\} \subseteq Dom(U',O_X)$. To prove the claim, let $\alpha \in O_X$ be such that $A \subseteq A\alpha$. Since $A \subseteq A\alpha$, $A\alpha$ is infinite countable.

Case 1: $X \sim A\alpha$ is infinite. Then $|X \sim A\alpha| = |X \sim A| = |A\alpha| = |A|$. Let $\beta \in G_X$ be such that $(A\alpha)\beta = A$ and $(X \sim A\alpha)\beta = X \sim A$. Then $\beta^{-1} \in Dom(U',O_X)$. Since $A\alpha\beta = (A\alpha)\beta = A$, we have that $\alpha\beta \in U'$. Thus $\alpha = (\alpha\beta)\beta^{-1} \in Dom(U',O_X)$.

Case 2: $X \sim A\alpha$ is finite. Then $(X \sim A) \sim (X \sim A\alpha)$ is infinite. But $(X \sim A) \sim (X \sim A\alpha) = (X \sim A) \cap A\alpha$, so $(X \sim A) \cap A\alpha$ is infinite. Let $B = A\alpha \cap (X \sim A)$. Then $A\alpha \cap A = A\alpha \sim B$. Let $C = B\alpha^{-1} \cap A$. Then $C\alpha = B$ and $(A \sim C)\alpha \cap B = \emptyset$. From the facts that $A\alpha = ((A \sim C) \cup C)\alpha = (A \sim C)\alpha \cup C\alpha$ and $C\alpha = B$, we obtain that $A\alpha = (A \sim C)\alpha \cup B$, so $A\alpha \sim B = ((A \sim C)\alpha \cup B) \sim B = (A \sim C)\alpha$. Thus $(A \sim C)\alpha = A\alpha \sim B = A\alpha \cap A$. Since $A \subseteq A\alpha$, $A = A\alpha \cap A = (A \sim C)\alpha$. Then $A \sim C$ is infinite countable, and hence $|A \sim C| = |A| = |X \sim A| = |X \sim (A \sim C)|$. Let $\gamma \in G_X$ be such that $A\gamma = A \sim C$

and $(X \sim A)\gamma = X \sim (A \sim C)$. Then $\gamma^{-1} \in Dom(U', O_X)$. Since $(A \sim C)\alpha = A$ and $A\gamma = A \sim C$, we obtain $A\gamma\alpha = (A\gamma)\alpha = (A \sim C)\alpha = A$, so $\gamma\alpha \in U'$. Thus $\alpha = \gamma^{-1}(\gamma\alpha) \in Dom(U', O_X)$.

Hence $\{\alpha \in O_X \mid A \subseteq A\alpha\} \subseteq Dom(U',O_X)$. Since $Dom(U',O_X) \subseteq Dom(U^*,O_X)$, $\{\alpha \in O_X \mid A \subseteq A\alpha\} \subseteq Dom(U^*,O_X)$.

Next, we shall prove that U^* is dense in O_X , let $\alpha \in O_X$. If $A\alpha$ is finite, then $\alpha \in U^* \subseteq Dom(U^*,O_X)$. Assume that $A\alpha$ is infinite countable. Let $B = A\alpha \cap (X \setminus A)$. Then $A\alpha \cap A = A\alpha \setminus B$.

Case 1: $X \sim (A \cup A\alpha)$ is infinite. Then by Lemma 3.3 (ii), there exists $\eta \in G_X$ such that $A\eta \subseteq A$ and $A\alpha\eta \subseteq A$. Then $\eta^{-1} \in Dom(U^*, O_X)$ and $\alpha\eta \in U^*$, and hence $\alpha = (\alpha\eta)\eta^{-1} \in Dom(U^*, O_X)$.

Case 2: $X \sim (A \cup A \alpha)$ is finite. If $A \cap A \alpha$ is infinite, then by Lemma 3.3 (i), there exists $\beta \in G_X$ such that $A \subseteq A \beta$ and $A \subseteq A \alpha \beta$. Then $\beta^{-1} \in Dom(U^*,O_X)$ and $\alpha \beta \in Dom(U^*,O_X)$. Hence $\alpha = (\alpha \beta)\beta^{-1} \in Dom(U^*,O_X)$. Assume that $A \cap A \alpha$ is finite. By Lemma 3.3 (iii), there exists $\lambda \in G_X$ such that $A \lambda \subseteq A$ and $A \alpha \lambda \cap A$ is infinite. Then $\lambda^{-1} \in Dom(U^*,O_X)$. It follows from Lemma 3.3 (i) that there exists $\beta \in G_X$ such that $A \subseteq A \beta$ and $A \subseteq (A \alpha \lambda)\beta$. Then β^{-1} , $\alpha \lambda \beta \in Dom(U^*,O_X)$, and hence $\alpha \lambda = (\alpha \lambda \beta)\beta^{-1} \in Dom(U^*,O_X)$. Since $\lambda^{-1} \in Dom(U^*,O_X)$, $\alpha = (\alpha \lambda)\lambda^{-1} \in Dom(U^*,O_X)$.

This prove that $Dom(U^*,O_X) = O_X$. Hence U^* is a proper dense subsemigroup of O_X . #

Let X be a set. For $A\subseteq X$, $A\neq\emptyset$ and $x\in X$, let A denote the partial transformation of X with domain A and range $\{x\}$. Then

$$CP_{X} = \{A_{x} \mid \emptyset \neq A \subseteq X, x \in X\} \cup \{0\}$$

$$CT_{X} = \begin{cases} \{X_{X} \mid x \in X\} & \text{if } X \neq \emptyset, \\ \{0\} & \text{if } X = \emptyset. \end{cases}$$

It is easily seen that for $\emptyset \neq A \subseteq X$, $\emptyset \neq B \subseteq X$, x,y εX ,

$$A_{x}B_{y} = \begin{cases} A_{y} & \text{if } x \in B, \\ 0 & \text{if } x \in B. \end{cases}$$

In particular, X = X = X for all x,y $\in X$. Therefore CT_X is a right zero semigroup.

We shall prove in the following lemma that every right [left] zero semigroup has no proper dense subsemigroup. This implies that for any set X, CT_{X} has no proper dense subsemigroup.

Lemma 3.8. Every right [left] zero semigroup has no proper dense subsemigroup.

<u>Proof</u>: Let S be a right zero semigroup and U a dense subsemigroup of S. Let d ϵ S. If d ϵ U, then by Theorem 1.1, there is a zigzag in U over S with value d. This implies that d = xu for some x ϵ S, u ϵ U. Since S is a right zero semigroup, we have that xu = u, so d = u ϵ U, a contradiction. Then d ϵ U. Hence U = S. This shows that S has no proper dense subsemigroup.

Theorem 3.9. For any set X, the transformation semigroup of all constant transformations of X has no proper dense subsemigroup.

The last Theorem of this chapter characterizes the transformation semigroup ${\sf CP}_{\sf X}$ which has a proper dense subsemigroup in term of the cardinality of X as follows :

Theorem 3.10. For a set X, the transformation semigroup of all constant partial transformations of X has a proper dense subsemigroup if, and only if |X| > 1.

 $\frac{\text{Proof}}{\text{Constant partial transformations of X.}} \text{ If } |X| = 0 \text{, then } CP_X = \{0\}$ which has no proper dense subsemigroup. If |X| = 1, then $CP_X = \{0,1_X\} = P_X$ which implies by Theorem 1.3 that CP_X has no proper dense subsemigroup. Hence, if CP_X has a proper dense subsemigroup, then |X| > 1.

Conversely, assume that $\left|X\right|>1$. Let p be a fixed point of X and let

$$U = \{A_{x} \mid \emptyset \neq A \subseteq X, x \in X \setminus \{p\}\} \cup \{\{p\}_{p}, 0\}.$$

Let $q \in X \setminus \{p\}$. Then $\{q\}_p \notin U$, so $U \neq CP_X$. If x, $y \in X \setminus \{p\}$ and $\emptyset \neq A \subseteq X$, $\emptyset \neq B \subseteq X$, then

$$A_{x}^{B}_{y} = \begin{cases} A_{y} & \text{if } x \in B, \\ \\ 0 & \text{if } x \notin B, \end{cases}$$

$$A_{x}\{p\}_{p} = 0$$

$$\{p\}_{p}^{A}_{x} = \begin{cases} \{p\}_{x} & \text{if } p \in A, \\ 0 & \text{if } p \notin A. \end{cases}$$

This proves that U is a subsemigroup of CP_X , let $x \in X$, $\emptyset \neq A \subseteq X$. Then $P_X \in U$. If $P_X \neq P$, then $P_X \in U \subseteq Dom(U, CP_X)$. If $P_X = P$, then

$$A_{x} = A_{p} = A_{q} \{q\}_{p}, \qquad A_{q} \in U, \quad \{q\}_{p} \in CP_{X},$$

$$= A_{p} \{p\}_{q} \{q\}_{p}, \qquad \{p\}_{q} \in U, \quad A_{p} \in CP_{X}, A_{q} = A_{p} \{p\}_{q},$$

$$= A_{p} \{p\}_{p}, \qquad \{p\}_{p} \in U, \quad \{p\}_{q} \{q\}_{p} = \{p\}_{p}$$

which implies by Theorem 1.1 that $A_p \in Dom(U, CP_X)$.

Hence U is a proper dense subsemigroup of CPX. #

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย