In this chapter we study the regularity of matrix semigroups over some semirings.

It is known that for any field F and for any positive integer n, the matrix semigroup $M(F)$ is regular (that is, for any $n \times n$ matrix A over F, there exists an $n \times n$ matrix B over F such that $A=A B A$). More generally, it is known that for any ring R and for any positive integer n, the matrix semigroup $M(R)$ is regular if and only if R is a regular ring (see [3]) TO generalize this result, we characterize regular matrix semigroups M (S) with S an additively commutative semiring with 0 and 0 the only additive idempotent. We also characterize regular matrix semigroups $M_{n}(S)$ with S a semilattice semiring with 0,1 .

If solis an adajtively commutative semiring, the matrix semigroup $M_{1}(S)$ is isomorphic to the multiplicative structure of the semiring S. Thus we shall study the regularity of the matrix semigroup $M_{n}(S)$ with S an additively commutative semiring with 0 and $n \geqslant 2$.

The first theorem shows that the regularity of an additively commutative semiring S with 0 is a necessary condition for the matrix semigroup $M_{n}(S)$ to be regular where n is any positive integer $n \geqslant 2$. However this condition is not a sufficient one.

Theorem 3.1. Let S be an additively commutative semiring with 0 , n a positive integer and $n \geqslant 2$. If the matrix semigroup $M_{n}(S)$ is regular, then S is a regular semiring.

Proof. Let a be an element of S, and let A be the $n \times n$ matrix over S defined by

Since $M_{n}(S)$ is regular, $A=A B A$ for some $B \in M_{n}(S)$. Let $B=\left(b_{i j}\right)$. Then

$$
\begin{aligned}
& a=a\left(b_{11}+b_{n 1}+b_{1 n}+b_{n n}\right) a, \\
& a=a\left(b_{11}+b_{n 1}\right) a, \\
& a=a\left(b_{11}+b_{1 n}\right) a, \\
& 0=a b_{11} a .
\end{aligned}
$$

Since $a b_{11} a=0$, the second equality and the third equality give
$\mathrm{a}=\mathrm{ab} \mathrm{n} 1 \mathrm{a}$ and $\mathrm{a}=\mathrm{ab} \mathrm{ln}^{\mathrm{a}}$, respectively. Then the first equality gives $a=a+a b_{n n} a+a$. This shows that $a=a x a$ and $a=a+y+a$ for some $x, y \in S$. Hence S is a regular semiring. \#

Example. Let S be the semiring $(\{0,1,2,3\}$, max, $\min)$. Then S is an additively commutative semiring with zero 0 and identity 3 and S is a regular semiring. We denote $\max \{a, b\}$ and $\min \{a, b\}$ by $a+b$ and $a \cdot b$, respectively.

We shall show that the matrix semigroup $M_{2}(S)$ is not regular. Suppose it is regular. Let $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right] \varepsilon M_{2}(S)$. Then $A=A B A$ for some $B \in M_{2}(S)$.

since 0 is the zero and 3 is the identity of the semiring S. Thus

and

$$
\left(2 \cdot b_{2}+b_{4}\right) \cdot 3=2 \cdot b_{2}=\min \left\{2, b_{2}\right\} \leqslant 2
$$

we have that

$$
3=\left(2 \cdot b_{1}+b_{3}\right) \cdot 1+\left(2 \cdot b_{2}+b_{4}\right) \cdot 3=\max \left\{\left(2 \cdot b_{1}+b_{3}\right) \cdot 1,\left(2 \cdot b_{2}+b_{4}\right) \cdot 3\right\} \leqslant 2,
$$

a contradiction.
\#

The next theorem gives a necessary and sufficient condition for an additively commutative semiring S with 0 to have the property that the matrix semigroup $M_{n}(S)$ is regular for $n \geqslant 3$.

Theorem 3.2. Let S be an aditively commutative semiring with 0 and n a positive integer and $n \geqslant 3$. Then the matrix semigroup $M_{n}(S)$ is regular if and only if S is a regular ring.

Proof. Assume the matrix semigroup $M_{n}(S)$ is regular. To show that S is a regular ring, leta $\varepsilon . S$. Let A be an $n \times n$ matrix defined by
 that is, $A_{i j}=$
matrix semigroup $M_{n}(s)$ is regular, $A=A B A$ for some $B \varepsilon M_{n}(S)$. Let $B=\left(b_{i j}\right)$. Then
so $A B A=(A B) A=$

Since $A=A B A$, we have

$$
\begin{align*}
& a=a\left(b_{11}+b_{21}+b_{1 n}+b_{2 n}\right) a \\
& 0=a\left(b_{1, n-1}+b_{2, n-1}+b_{1 n}+b_{2 n}\right) a \cdot \cdots(1) \\
& 0=a\left(b_{21}+b_{31}+b_{2 n}+b_{3 n}\right) a \\
& 0=a\left(b_{11}+b_{n 1}+b_{12}+b_{n 2}\right) a \tag{4}
\end{align*}
$$

From (1), (2), (3) and (4) we have

$$
\begin{align*}
& a=a b_{11} a+a b_{21} a\left(b_{1 n}+b_{2 n}\right) a \\
& 0=a\left(b_{1, n-1}+b_{2, n-1}\right) a+a\left(b_{1 n^{+}}+b_{2 n}\right) a, \cdot, \cdot\left(1^{\prime}\right) \\
& 0=a b_{21} a+a\left(b_{3 n}+b_{2 n}+b_{3 n}\right) a
\end{align*}
$$

$$
\begin{aligned}
& 0=a_{11} a+a\left(b_{n 1}+b_{12}+b_{n 2}\right) a \\
& y \text {. Then }\left(2^{\prime}\right)+\left(3^{\prime}\right)+\left(4^{\prime}\right) \text { gives } a+a\left(b_{1, n-1}+b_{2, n-1}\right) a
\end{aligned}
$$

$$
+a\left(b_{31}+b_{2 n}+b_{3 n}\right) a_{6}+a\left(b_{n 1}+b_{12}+b_{n 2}\right) a=0 \text {. Hence } a+x=0 \text { for some }
$$

 we have that ${ }^{\prime}$ is a regular ring.

Let s be an additively commutative semiring with 0 . If s is a regular ring, then the matrix semigroup $M_{2}(S)$ is regular [3; Theorem 24 of Part II]. If the matrix semigroup $M_{2}(S)$ is regular, by Theorem $3.1, S$ is a regular semiring. The following example shows that if the matrix semigroup $M_{2}(S)$ is regular, S is not necessary to be a ring

Example. Let S be a Boolean algebra of 2 elements 0,1 . Then $0+0=0$, $0+1=1+0=1+1=1$ and $0 \cdot 0=0 \cdot 1=1 \cdot 0=0,1 \cdot 1=1$. Then S is not a ring. We shall show that the matrix semigroup $M_{2}(S)$ is regular. The matrix semigroup $M_{2}(S)$ has exactly 16 elements and they are

It is easy to check that the/following 11 matrices are all of idempotent of the matrix semigroup $M_{2}(S)$
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$,
$\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right.$
Consider the remaining 5 matrices :

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Since
ศนยฺ์วิ่ทยททัพยากร

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right],
$$

and

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

It follows that each of element of the matrix semigroup $M_{2}(S)$ is regular. \#

Corollary 3.3. Let S be a semilatice semiring with 0 and $|S|>1$. Then the matrix semigroup $M(S)$ is not regular if $n \geqslant 3$

Proof. Since eveny element of S is an additive idempotent and $|\mathrm{S}|>1, \mathrm{~S}$ is not a ring. By Theorem 3.2 , the matrix semigroup $M_{n}(S)$ is not regular for $n \geqslant 3$. \#

In any ring $R, 0$ iss the only additive idempotent of R.
However an additively commutative semiring with 0 which 0 is the only additive idempotent is not necessary to be a ring. The semirings $(\mathbb{N} \cup\{0\},+, \cdot),\left(Q^{+} \cup\{0\},+, \cdot\right)$ and $\left(\mathbb{R}^{+} \cup\{0\},+, \cdot\right)$ are examples. Then additively commutative semirings with 0 having 0 as the only additive idempotent are a generalization of rings. Next, we characterize regular matrix semigroup $M_{n}(S)$ with $n \geqslant 2$ and s an additively commutative semiring with having 0 as the only additive idempotent.

Theorem 3.4. Let S be an additively commutative semiring with 0 and assume that 0 is the only additive idempotent of S. Then for $n \geqslant 2$, the matrix semigroup $M_{n}(S)$ is regular if and only if S is a regular ring.

Proof. Let $n \geqslant 2$ and assume that the matrix semigroup $M_{n}(S)$ is regular. By Theorem $3.1, \mathrm{~S}$ is a regular semiring. Then $(\mathrm{S},+$) is a regular semigroup containing exactly one idempotent 0 . Hence $(S,+)$ is a group with identity 0 , so S is a ring. Therefore S is a regular ring.

The converse follows from [3; Theorem 24 of Part II].

Corollary 3.5. If S is one of the following semirings: $(\mathbb{N} \cup\{0\},+, \bullet)$, $\left(\mathscr{Q}^{+} \cup\{0\},+, \cdot\right),\left(\mathbb{R}^{+} \cup\{0\},+, \cdot\right) /$ then the matrix semigroup $M_{n}(S)$ is not regular for every

If S is a semilattice semiring with 0,1 , Corollary 3.3 shows that the matrix semigroup $M_{n}(S)$ is not regular for $n \geqslant 3$. The matrix semigroup $M_{2}(S)$ with S a semilattice semiring with 0,1 is now considered. The example after Theorem 3 shows that if S is a semilattice semiring with 0,1 , the matrix semigroup $M_{2}(S)$ is not nocessarily regular. A necessary and sufficient condition for a semilattice semiring S with 0,1 such that the matrix semigroup $M_{2}(S)$ is regular is given by the

Theorem 3.6 Let s be a semilattice semitring with 0,1 and n a posi tive integer and $n \geqslant 2$. Then the matrix semigroup $M_{n}(S)$ is regular if and only if $\mathrm{n}=2$ and S is a Boolean algebra.

Proof. Assume that the matrix semigroup $M_{n}(S)$ is regular. Since $|s|>1$ by Corollary $3.3, n \neq 3$. But $n \geqslant 2$, so $n=2$.

Claim that $a+1=1$ for every $a \varepsilon S$. Let a εS. Since the matrix semigroup $M_{n}(S)$ is regular and $\left[\begin{array}{ll}a & 1 \\ 1 & 1\end{array}\right] \varepsilon M_{2}(S)$, there exist
elements $x, y, z, w \in S$ such that

$$
\left[\begin{array}{ll}
a & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
a & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]\left[\begin{array}{cc}
a & 1 \\
1 & 1
\end{array}\right]
$$

Then

since $a^{2}=a$, so

Then $(1)+(2)+(3)+(4)$ gives
$a+1$
$a x+a y+a z+x+y+z+w$
since $s+s=s$ for every $s \in S$. Hence

Next, we want to show that S is a Boolean algebra, that is, we want to show that
(i) $a+b c=(a+b)(a+c)$ for $a l l a, b, c \in S$,
(ii) for every $a \in S$, there exists an element á ε s such that $a+a ́=1$ and $a a^{\prime}=0$.

To prove (i), let $a, b, c \in S$. Since $x+1=1$ for every $x \varepsilon S$,

$$
\begin{aligned}
(a+b)(a+c) & =a^{2}+a c+b a+b c \\
& =a+a b+a c+b c \\
& =a(1+b+c)+b c \\
& =a 1+b c \\
& =a+b c
\end{aligned}
$$

To prove (ii), let a ε. Since the matrix semigroup $M_{2}(S)$
is regular and
such that

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right]=} & {\left[\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right]\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]\left[\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
\frac{a x+z}{} \frac{a y+w}{a b} & a w \\
\frac{a z}{a} & a w
\end{array}\right]\left[\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right] }
\end{aligned}
$$

From (1) and (3), we have that $a x=a$. Then

$$
\begin{aligned}
1 & =a x+a y+a w+z \quad\left(\text { from }\left(\frac{1}{2}\right)\right) \\
& =a+a y+a w+z \\
& =a(1+y+w)+z \\
& =a 1+z \quad(\text { since } s+1=1 \text { for every } s \in S) \\
& =a+z .
\end{aligned}
$$

Then $a+z=1$, and $a z=0 \quad\left(\right.$ from $\left.\left(3^{\prime}\right)\right)$.
Hence S is a Boolean algebra.
To prove the converse, assume that S is a Boolean algebra and let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \varepsilon M_{2}(S)$. Then there exists an element $k \varepsilon S$ such that $(a d+b c)+k=1$ and $(a d+b c) k=0$. Since s is a semilattice semiring and $a d k+b c k=(a d+b c) k=0$, we have that $a d k=b c k=0$. Let $B=\left[\begin{array}{ll}d+k & b+k \\ c+k & a+k\end{array}\right] \cdot$ Then $B \& M_{2}(s)$ and $\begin{aligned} A B A & =\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}d+k & b+k \\ c+k & a+k\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \\ & =\left[\begin{array}{ll}a(d+k)+b(c+k) & a(b+k)+b(a+k) \\ c(d+k)+d(c+k) & c(b+k)+d(a+k)\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\end{aligned}$
$=\left[\begin{array}{lll}(a(d+k)+b(c+k)) a+(a(b+k)+b(a+k)) c & (a(d+k)+b(c+k)) b+(a(b+k)+b(a+k)) d \\ (c(d+k)+d(c+k)) a+(c(b+k)+d(a+k)) c & (c(d+k)+d(c+k)) b+(c(b+k)+d(a+k)) d\end{array}\right]$. Therefore $(A B A)_{1+}=(a(d+k)+b(c+k)) a+(a(b+k)+b(a+k)) c$ $a(d+k+b c+b k)+a b c+a c k+a b c+b c k$ $a(d+k+b c+b k+c k)+b c k$

$$
=A_{11},
$$

(ABA) ${ }_{12}=(a(d+k)+b(c+k)) b+(a(b+k)+b(a+k)) d$
$=b(a d+a k+c+k)+a b d+b d k+a b d+a d k$
$=b(a d+a k+c+k+d k)+a d k$
$=b(a d+b c+k+a k+d k) \quad($ since $a d k=0)$

Proof. Let m and M be the minimum element and the maximum elements of S, respectively. Then m and M are the zero and the identity of the semiring (S, \max , \min), respectively.

To show the semilattice semiring (S, \max , \min) is not a Boolean algebra, suppose it is a Boolean algebra. Since $|s|>2$, there exists an element $a \in S$ such that $m<a<M$. Then there exists an element á εS such that $a+a ́=M$ and $a a^{\prime}=m$. Since $a<M$ and $M=a+a ́=$ $\max \{a, a ́\}$, it follows that $a^{\prime}=M . \quad$ Then $m=a a^{\prime}=\min \{a, a ́\}=\min \{a, M\}$ $=a$, contradiction. Hence the semilattice semiring (S, max,min) is not a Boolean algebra. By Theorem 3.6 , the matrix semigroup $M_{n}((S, \max , \min))$ is not regular for every $n \geqslant 2$.

 จุฬาลงกรณ์มหาวิทยาลัย

