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CHAPTER I

UNITARY CAYLEY GRAPHS AND THEIR ENERGY

1.1 Unitary Cayley Graphs

The study of algebraic properties of graphs has become an exciting research topic

in the last twenty years, leading to many fascinating results and questions. There

are many articles on assigning a graph to a ring such as [1], [2] and [20].

Let R be a finite commutative ring with unity 1 6= 0. Its unit group of all

invertible elements is denoted by R×. The unitary Cayley graph of R, GR =

Cay(R,R×), is the Cayley graph whose vertex set is R and edge set is {{a, b} :

a, b ∈ R and a−b ∈ R×}. For some other recent papers on unitary Cayley graphs,

we refer the reader to [14], [19], [20] and [21].

For two graphs G and H, their tensor product G⊗H is the graph with vertex-

set V (G)×V (H), where ((u, v), (u′, v′)) ∈ E(G⊗H) if and only if ((u, u′), (v, v′)) ∈

E(G)×E(H). Recall that a local ring is a commutative ring which has a unique

maximal ideal, and a finite commutative ring is a product of finite local rings

(Theorem 8.7 of [3]). Furthermore, if R is a local ring with a unique maximal

ideal M , then R× = RrM .

Example 1.1.1. (i) It is easy to see that every field is a local ring with maximal

ideal {0}.
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(ii) The ring of integers modulo ps, Zps = Z/psZ, where p is a prime number

and s ≥ 1, is a local ring with maximal ideal pZ/psZ.

We have the following results.

Proposition 1.1.2. [2] Let R be a finite commutative ring.

(i) GR is a regular graph of degree |R×|.

(ii) If R ∼= R1 × · · · ×Rs is a product of local rings, then GR =
s⊗
i=1

GRi
.

(iii) If R is a local ring with maximal ideal M , then GR is a complete multipartite

graph whose partite sets are the cosets of M .

The complement of a graph G, denoted by Ḡ, is the graph with the same

vertex set as G such that two vertices of Ḡ are adjacent if and only if they are

not adjacent in G.

Let G be a graph. The eigenvalues [resp. eigenvectors] of G are defined to

be the eigenvalues [resp. eigenvectors] of its adjacency matrix A(G). The set of

all eigenvalues of G is called the spectrum of G. The eigenvalues of G and its

complement Ḡ are studied in the next proposition.

Proposition 1.1.3. [10, 24] If a graph G with n vertices is k-regular, then G and

Ḡ have the same eigenvectors. The eigenvalue associated with n-vector ~1n, whose

entry are all 1, is k for G and n − k − 1 for Ḡ. If x 6= ~1 is an eigenvector of G

for eigenvalue λ of G, then its associated eigenvalue in Ḡ is −1− λ.

Akhtar et al. [2] studied and obtained all eigenvalues of the unitary Cayley

graph GR. We now present these eigenvalues with multiplicities. As is standard,
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if λ1, . . . , λk are eigenvalues of a graph G of respective multiplicities m1, . . . ,mk,

we use the notation SpecG =

λ1 . . . λk

m1 . . . mk

 to describe the spectrum of G.

Proposition 1.1.4. Let R be a finite local ring with maximal ideal M of size m.

Then

SpecGR =

|R×| −m 0

1 |R|
m
− 1 |R|

m
(m− 1)

 =

|R×| −m 0

1
|R×|
m

|R|
m

(m− 1)

 .

In particular, if F is the field with q elements, then

SpecGF =

q − 1 −1

1 q − 1

 =

|F×| −1

1 |F×|

 .

Proof. Since R is a local ring with maximal ideal M , by Proposition 1.1.2 (iii) GR

is a complete multipartite graph with |R|/m partite sets, each of size m = |M |. In

view of the regularity of GR, by Proposition 1.1.3, if λ1, . . . , λn are eigenvalues for

A(GR), that is not associated with ~1, then −1 − λ1, . . . ,−1 − λn are eigenvalues

for A(ḠR). However, ḠR is a disjoint union of |R|/m cliques, each of size m. For

the eigenvector ~1, its eigenvalue for ḠR is |R|− |R×|−1 = m−1, so its eigenvalue

for GR is |R×|. Therefore, SpecGR =

|R×| −m 0

1 |R|
m
− 1 |R|

m
(m− 1)

.

1.2 Energy of Unitary Cayley Graphs

We first recall another fact.

Proposition 1.2.1. Let G and H be graphs. Suppose that λ1, . . . , λn are the

eigenvalues of G and µ1, . . . , µm are the eigenvalues of H (repetition is possible).

Then the eigenvalues of G⊗H are λiµj, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
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Proof. The result follows immediately from the well known fact that A(G⊗H) is

the tensor product of the matrices A(G) and A(H), and that the eigenvalues of a

tensor product of matrices may be found by taking products of the eigenvalues of

the factors.

Applying Propositions 1.1.2 and 1.2.1, we obtain the following lemma.

Lemma 1.2.2. Let R be a finite commutative ring, where R = R1×R2×· · ·×Rs

and Ri is a local ring with maximal ideal Mi of size mi for all i ∈ {1, 2, . . . , s}.

Then the eigenvalues of GR are

(i) (−1)|C|
|R×|∏

j∈C |R
×
j |/mj

with multiplicity
∏

j∈C |R
×
j |/mj for all subsets C of

{1, 2, . . . , s}, and

(ii) 0 with multiplicity |R| −
∏s

i=1

(
1 +
|R×i |
mi

)
.

The sum of absolute values of all eigenvalues of a graph G is called the energy

of G and denoted by EngyG. The energy is a graph parameter stemming from the

Hückel molecular orbital approximation for the total π-electron energy (for survey

on molecular graph energy see e.g., [6] and [12]). This concept was introduced

by Gutman [11]. Later, the energy of graph was studied intensively in many

literatures (see e.g., [12], [13], [17] and [18]). Note that it follows directly from

Proposition 1.2.1 that:

Proposition 1.2.3. Let G and H be graphs. Then

EngyG⊗H = EngyG EngyH.
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We next proceed to compute the energy of the unitary Cayley graph of a finite

commutative ring R.

Theorem 1.2.4. Let R be a finite commutative ring, where R = R1×R2×· · ·×Rs

and Ri is a local ring with maximal ideal Mi of size mi for all i ∈ {1, 2, . . . , s}.

Then

EngyGR = 2s|R×|.

Proof. Recall from Proposition 1.1.2 (ii) that GR =
⊗s

i=1GRi
. In addition,

EngyGRi
= 2|R×i | for all i ∈ {1, 2, . . . , s} by Proposition 1.1.4. Thus, Propo-

sition 1.2.3 implies

EngyGR =
s∏
i=1

EngyGRi
= 2s

s∏
i=1

|R×i | = 2s|R×|

as desired.

Remark. The above result generalizes Theorem 2.3 of Ilić [14] on the unitary

Cayley graph Cay(Zn,Z×n ). His proof used some results on eigenvalues from [19]

and the fact that this graph is circulant and applied the Gauss sum for computing

its energy.

A graph G with n vertices is said to be hyperenergetic if its energy exceeds

the energy of the complete graph Kn, or equivalently if EngyG > 2n− 2. Hyper-

energetic graphs are important because molecular graphs with maximum energy

pertain to maximality stable π-electron systems. It has been proved in [6] that

for every n ≥ 8, there always exists a hyperenergetic graph of order n. Moreover,

Ilić [14] characterized all hyperenergetic unitary Cayley graphs when R = Zn.
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Let R be a finite commutative ring, where R = R1 × R2 × · · · × Rs and Ri

is a local ring with maximal ideal Mi of size mi for all i ∈ {1, 2, . . . , s}. Then

R× = R×1 ×R×2 × · · · ×R×s . Since each Ri is a local ring, R×i = Ri rMi for all i.

Thus, we have

|R×| =
s∏
i=1

(|Ri| −mi) = |R|
s∏
i=1

(
1− 1

|Ri|/mi

)
.

Recall that |Ri|/mi ≥ 2 for all i ∈ {1, 2, . . . , s}. It follows that GR is hyperener-

getic if and only if 2s−1|R×| ≥ |R|, which is equivalent to have the inequality

2s−1 ≥ |R|
|R×|

=
|R|

|R|
∏s

i=1
|Ri|/mi−1
|Ri|/mi

=

∏s
i=1 |Ri|/mi∏s

i=1 (|Ri|/mi − 1)
. (1.2.1)

We conclude criteria to determine if GR is hyperenergetic as follows.

Theorem 1.2.5. Let R be a finite commutative ring, where R = R1×R2×· · ·×Rs

and Ri is a local ring with maximal ideal Mi of size mi for all i ∈ {1, 2, . . . , s}.

Assume that

|R1|/m1 ≤ |R2|/m2 ≤ · · · ≤ |Rs|/ms.

(i) For s = 1, GR is not hyperenergetic.

(ii) For s = 2, GR is hyperenergetic if and only if |R1|/m1 ≥ 3 and |R2|/m2 ≥ 4.

(iii) For s ≥ 3, GR is hyperenergetic if and only if (|Rs−2|/ms−2 ≥ 3) or

(|Rs−1|/ms−1 ≥ 3 and |Rs|/ms ≥ 4).

Proof. Suppose that GR is hyperenergetic. It follows from inequality (1.2.1) that

s ≥ 2. If s = 2, we have

2 ≥ |R1|/m1

(|R1|/m1 − 1)

|R2|/m2

(|R2|/m2 − 1)
,
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and so |R1|/m1 ≥ 3 and |R2|/m2 ≥ 4.

Next, we assume that s ≥ 3 and |Rs−2|/ms−2 < 3. Then |Ri|/mi = 2 for all

i ∈ {1, 2, . . . , s− 2}. By (1.2.1), we get

2 ≥ |Rs−1|/Rs−1

(|Rs−1|/ms−1 − 1)

|Rs|/ms

(|Rs|/ms − 1)
.

Hence, we obtain the same conclusion |Rs−1|/ms−1 ≥ 3 and |Rs|/ms ≥ 4 as be-

fore. Another direction easily follows from substitutions and computations using

inequality (1.2.1).

Example 1.2.6. 1. Let R = Z[i]/(2 + i)3. We know that |R| = N(2 + i)3 =

125, R× ∼= Z53−52 and |R×| = 100. Then EngyGR = 2(100) = 200 ≤ 248 =

2(125)− 2 = 2|R| − 2 which shows that GR is not hyperenergetic.

2. Let R = Z[i]/(5)2 ∼= Z[i]/(2 + i)2 × Z[i]/(2 − i)2 ∼= R1 × R2. Then |R| =

N(5)2 = 625, R× ∼= Z52−5 × Z52−5 which make |R×| = 20 × 20 = 400 and

m1 = m2 = |Z[i]/(2+i)2|
|Z[i]/(2+i)| = 5. Hence, |R1|

m1
= |R2|

m2
= 5. By Theorem 1.2.4

we have EngyGR = 22(400) = 1, 600 > 1, 248 = 2(625) − 2 = 2|R| − 2.

Therefore, GR is hyperenergetic.

3. Let R = Z[i]/(1 + i)3(2 + i)2 ∼= Z[i]/(1 + i)3×Z[i]/(2 + i)2 ∼= R1×R2. Then

|R| = N(1 + i)3 ×N(2 + i)2 = 8× 25 = 200, R× ∼= Z4 × Z52−5 which make

|R×| = 4 × 20 = 80, m1 = |Z[i]/(1+i)3|
|Z[i]/(1+i)| = 4 and m2 = |Z[i]/(2+i)2|

|Z[i]/(2+i)| = 5. Hence,

|R1|
m1

= 8
4

= 2 and |R2|
m2

= 5. By Theorem 1.2.4 we have EngyGR = 22(80) =

320 < 398 = 2(200)− 2 = 2|R| − 2. Hence, GR is not hyperenergetic.

4. Let R = Z[i]/(2 + 3i)(5) ∼= Z[i]/(2 + 3i) × Z[i]/(2 + i) × Z[i]/(2 − i) ∼=

R1×R2×R3. Then |R| = N(2+3i)×N(2+i)×N(2−i) = 13×5×5 = 325,



8

R× ∼= Z12 × Z4 × Z4 which make |R×| = 12× 4× 4 = 192 and m1 = m2 =

m3 = 1. Hence, |R1|
m1

= 13 and |R2|
m2

= |R3|
m3

= 5. By Theorem 1.2.4 we have

EngyGR = 23(192) = 1, 536 > 648 = 2(325) − 2 = 2|R| − 2. Thus GR is

hyperenergetic.

5. LetR = Z[i]/(1+i)(5) ∼= Z[i]/(1+i)×Z[i]/(2+i)×Z[i]/(2−i) ∼= R1×R2×R3.

Then |R| = N(1+i)×N(2+i)×N(2−i) = 2×5×5 = 50, R× ∼= Z1×Z4×Z4

which make |R×| = 4 × 4 = 16 and m1 = m2 = m3 = 1. Hence, |R1|
m1

= 2

and |R2|
m2

= |R3|
m3

= 5. By Theorem 1.2.4 we have EngyGR = 23(16) = 128 >

98 = 2(50)− 2 = 2|R| − 2 which shows that GR is not hyperenergetic.

Remark. We can use Theorem 1.2.5 to determine the above example directly.



CHAPTER II

GCD-GRAPHS AND COMPLEMENT OF UNITARY

CAYLEY GRAPHS

2.1 GCD-Graphs

Throughout this section, we consider a unique factorization domain D. Let c ∈ D

be a nonzero nonunit element. We have the quotient ring D/(c) = {x+ (c) : x ∈

D} is a commutative ring. Assume that this ring is finite. Let C be a set of proper

divisors of c. Define the gcd-graph, Dc(C), to be a graph whose vertex set is D/(c)

and edge set is

{{x+ (c), y + (c)} : x, y ∈ D and gcd(x− y, c) ∈ C}.

The gcd considered here is unique up to associate. We refer the reader to basic

abstract algebra textbooks such as [9] for more details on quotient rings and

the gcd of elements in a unique factorization domain. It is easy to see that

Dc({1}) = GD/(c) = Cay(D/(c), D/(c)×) previously studied in the first chapter.

The definition above generalizes gcd-graphs or integral circulant graphs (i.e.,

its adjacency matrix is circulant and all eigenvalues are integers) defined over Z

(see [19] and [23]). For further development on integral circulant graphs, see [5],

[15], [16] and [4]. Note that the gcd-graphs are circulant if and only if D/(c) is

cyclic under addition. This is the case for D = Z and we can apply the Gauss
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sum to compute the energy [23]. However, D/(c) may not be cyclic in general.

Fortunately, Theorem 1.2.4 can be used to determine the energy of our gcd-graphs.

Theorem 2.1.1. Let c = pa11 . . . pann be factored as a product of irreducible elements

and assume that D/(c) is finite. For 1 ≤ i ≤ n, if ai = 1, then we have

EngyDc({1, pi}) = 2n−1|D/(pi)||D/(c/pi)×|.

Proof. Let 1 ≤ i ≤ n and assume that ai = 1. We first observe that the edge set

E(Dc(1, pi)) = {{x+ (c), y + (c)} : x, y ∈ D and gcd(x− y, c) = 1 or pi}

= {{x+ (c), y + (c)} : x, y ∈ D and gcd(x− y, c/pi) = 1}

∼= {{(x+ (pi), x+ (c/pi)), (y + (pi), y + (c/pi))} : x, y ∈ D and

gcd(x− y, c/pi) = 1} .

Thus, the graph Dc({1, pi}) is isomorphic to the graph
◦
K |D/(pi)| ⊗GD/(c/pi), where

◦
K |D/(pi)| is the |D/(pi)|-complete graph with a loop on each vertex and GD/(c/pi)

denotes the unitary Cayley graph of the ring D/(c/pi). Since A(
◦
K |D/(pi)|) is the

|D/(pi)| × |D/(pi)| matrix whose entry are all 1, we have

Spec
◦
K |D/(pi)|=

|D/(pi)| 0

1 |D/(pi)| − 1

 .

Hence,

EngyDc({1, pi}) = |D/(pi)|EngyGD/(c/pi) = 2n−1|D/(pi)||D/(c/pi)×|

by Theorem 1.2.4.

The Cartesian product of two graphs G and H is the graph G�H such that

V (G�H) = V (G)× V (H) and any two vertices (u, u′) and (v, v′) are adjacent in
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G�H if and only if either u = v and u′ is adjacent with v′ in H, or u′ = v′ and u

is adjacent with v in G. Next, we recall that A(G�H) = A(G) ⊗ I + I ⊗ A(H)

which implies our next proposition.

Proposition 2.1.2. Let G and H be two graphs. Suppose that λ1, . . . , λn are the

eigenvalues of G and µ1, . . . , µm are the eigenvalues of H (repetition is possible).

Then the eigenvalues of the graph G�H are λi + µj, where 1 ≤ i ≤ n and

1 ≤ j ≤ m.

This proposition results in the computation of energy for another gcd-graph.

Lemma 2.1.3. Let D be a UFD. If p1 and p2 are non-associate primes in D such

that D/(p1) and D/(p2) are finite, then

Engy(GD/(p1)�GD/(p2)) = 22|D/(p1)×||D/(p2)×|.

Proof. Recall that D/(p1) and D/(p2) are finite fields. Then by Proposition 1.1.4,

we have SpecGD/(p1) =

|D/(p1)×| −1

1 |D/(p1)×|

 and

SpecGD/(p2) =

|D/(p2)×| −1

1 |D/(p2)×|

 .

Thus, we obtain from Proposition 2.1.2 that Spec(GD/(p1)�GD/(p2)) is given by|D/(p1)×|+ |D/(p2)×| |D/(p1)×| − 1 |D/(p2)×| − 1 −2

1 |D/(p2)×| |D/(p1)×| |D/(p1)×||D/(p2)×|

 .
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Consequently,

Engy(GD/(p1)�GD/(p2)) = (|D/(p1)×|+ |D/(p2)×|) + |D/(p2)×|(|D/(p1)×| − 1)

+ |D/(p1)×|(|D/(p2)×| − 1) + 2|D/(p1)×||D/(p2)×|

= 22|D/(p1)×||D/(p2)×|

as desired.

Theorem 2.1.4. Let c = p1 . . . pkp
ak+1

k+1 . . . p
an
n be factored as a product of irre-

ducible elements, where al > 1 for all l ∈ {k + 1, . . . , n}. Assume that D/(c) is

finite. For 1 ≤ i < j ≤ k, we have

EngyDc({pi, pj}) = 2n|D/(c)×|.

Proof. Let 1 ≤ i < j ≤ k. Note that

E(Dc({pi, pj})) = {{x+ (c), y + (c)} : x, y ∈ D and gcd(x− y, c) = pi or pj}

= {{x+ (c), y + (c)} : x, y ∈ D and gcd(x− y, c/pipj) = 1 and

gcd(x− y, c) = pi or pj}

∼= {{(x+ (c/pipj), x+ (pipj)), (y + (c/pipj), y + (pipj))} : x, y ∈ D and

gcd(x− y, c/pipj) = 1 and gcd(x− y, c) = pi or pj}.

Then Dc({pi, pj}) is isomorphic to GD/(c/pipj) ⊗ G, where G is the graph whose

vertex set V (G) = D/(pipj) ∼= D/(p1)×D/(p2) by the Chinese remainder theorem,
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and edge set

E(G) = {{x+ (pipj), y + (pipj)} : x, y ∈ D and gcd(x− y, c) = pi or pj}

= {{(x+ (pi), x+ (pj)), (y + (pi), y + (pj))} : x, y ∈ D and

x− y ∈ (pi, pj)− (pipj)}

∼= {{(x+ (pi), x+ (pj)), (y + (pi), y + (pj))} : x, y ∈ D and

[(x− y ∈ (pi) and x− y /∈ (pj)) or (x− y ∈ (pj) and x− y /∈ (pi))]}.

This implies that the graph G is isomorphic to the product GD/(pi)�GD/(pj).

Hence,

EngyDc({pi, pj}) = EngyGD/(c/pipj) EngyG

= EngyGD/(c/pipj) Engy(GD/(pi)�GD/(pj))

= (2n−2|D/(c/pipj)×|)(22|D/(pi)×||D/(pj)×|)

= 2n|D/(c)×|

by Theorem 1.2.4 and Proposition 2.1.2.

Remark. Theorems 2.1.1 and 2.1.4 extend the work in Section 4 of [14]. Again,

our computational approach is different and straightforward.

2.2 Complement of Unitary Cayley Graphs

This final section covers the energy of the complement of unitary Cayley graphs.

Recall from Proposition 1.1.3 that the spectrum of ḠR consists of eigenvalues

|R|−|R×|−1,−1−λ2, . . . ,−1−λ|R|, where λi is an eigenvalue of GR not associated

to ~1 for all i ∈ {2, 3, . . . , |R|}.



14

Theorem 2.2.1. Let R be a finite ring, where R = R1 × R2 × · · · × Rs, and Ri

is a local ring with maximal ideal Mi of size mi for all i ∈ {1, 2, . . . , s}. Then

Engy ḠR = 2|R| − 2 + (2s − 2)|R×| −
s∏
i=1

|Ri|/mi +
s∏
i=1

(2− |Ri|/mi).

Proof. Let λ1 = |R×|, λ2, . . . , λ|R| be the eigenvalues of GR and N = {1, 2, . . . s}.

By Lemma 1.2.2 (i), we first verify the sum

∑
λi 6=0
i 6=1

|λi + 1| =
∑
C⊆N
C 6=∅

∏
j∈C

|R×j |
mj

∣∣∣∣∣(−1)|C|
|R×|∏

j∈C |R
×
j |/mj

+ 1

∣∣∣∣∣
=
∑
C⊆N
C 6=∅

∣∣∣∣∣(−1)|C||R×|+
∏
j∈C

|R×j |/mj

∣∣∣∣∣
=
∑
C⊆N
C 6=∅

|R×|+
∑
C⊆N
C 6=∅

(−1)|C|
∏
j∈C

|R×j |/mj

= (2s − 1)|R×|+ (−1 +
s∏
i=1

(1− |R×i |/mi))

= (2s − 1)|R×| − 1 +
s∏
i=1

(2− |Ri|/mi) (2.2.1)

because |R×i | = |Ri rMi| = |Ri| −mi for all i ∈ {1, 2, . . . , s}. Hence,

Engy ḠR = (|R| − |R×| − 1) +
∑
i 6=1

| − 1− λi|

= (|R| − |R×| − 1) +
∑
i 6=1

|λi + 1|

= (|R| − |R×| − 1) +
∑
i 6=1
λi 6=0

|λi + 1|+ nullityGR,

where nullityGR is the multiplicity of zero as the eigenvalue. Thus, Lemma 1.2.2

(ii) implies that

nullityGR = |R| −
s∏
i=1

(
1 +
|R×i |
mi

)
= |R| −

s∏
i=1

|Ri|/mi.
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Together with Eq. (2.2.1), we finally reach

Engy ḠR = (|R| − |R×| − 1) +
(

(2s − 1)|R×| − 1 +
s∏
i=1

(2− |Ri|/mi)
)

+
(
|R| −

s∏
i=1

|Ri|/mi

)
= 2|R| − 2 + (2s − 2)|R×| −

s∏
i=1

|Ri|/mi +
s∏
i=1

(2− |Ri|/mi).

This completes the proof.

Corollary 2.2.2. Let D be a UFD and c ∈ D. Assume that c = pa11 p
a2
2 . . . pass is

factored as a product of irreducible elements and D/(c) is finite. Then

Engy(ḠD/(c)) = 2|D/(c)| − 2 + (2s − 2)|D/(c)×| −
s∏
i=1

D/(pi) +
s∏
i=1

(2− |D/(pi)|).

Proof. The Chinese remainder theorem implies that

D/(c) ∼= D/(pa11 )×D/(pa22 )× · · · ×D/(pass ).

Moreover, we have the isomorphism

D/(pall )/(pl)/(p
al
l ) ∼= D/(pl)

for all l ∈ {1, 2, . . . , s}. Hence, Theorem 2.2.1 directly gives the desired result.

Remark. The above corollary generalizes Theorem 3.1 of [14].



CHAPTER III

ENERGY OF THE RESTRICTED UNITARY CAYLEY

GRAPHS ON QUADRATIC RESIDUES

This final chapter consists of two sections. They present results on the energy of

the restricted unitary Cayley graphs on quadratic residues of a positive integer

n > 1 and of a non-constant polynomial f over finite fields. The computations

make use of the energy of the unitary Cayley graphs discovered in Section 1.2.

3.1 Quadratic Residues of n

Let n > 1 be a positive integer. The unitary Cayley graph of Zn, Gn := GZn =

Cay(Zn,Z×n ), is the Cayley graph whose vertex set is Zn and edge set is {{a, b} :

a, b ∈ Zn and a− b ∈ Z×n }. Here, Z×n denotes the unit group of Zn.

Consider the exact sequence of groups

1 −→ Kn −→ Z×n
θ−→ (Z×n )2 −→ 1, (3.1.1)

where θ : a 7→ a2 is the square mapping on Z×n with kernel Kn = {a ∈ Z×n :

a2 = 1} and (Z×n )2 = {a2 : a ∈ Z×n } is the set of quadratic residues of n. Let

Tn = Kn(Z×n )2. Define the subgraph Hn of the unitary Cayley graphs by Hn =

Cay(Zn, Tn), in which two vertices are adjacent if and only if their difference

is in Tn. Observe that Hn is undirected. The quadratic unitary Cayley graph
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Cay(Zn, (Z×n )2) was introduced by Beaudrap [7]. He bounded the diameter of such

graphs and characterized the conditions on n for Cay(Zn, (Z×n )2) to be perfect.

However, sometimes his graphs are directed.

In what follows, we study the structure of the graph Hn and obtain its eigen-

values. In addition, we compute the energy of Hn in our final theorem.

Let p be an odd prime and s ≥ 1. We recall that Z×ps is cyclic, so it has a unique

element of order two, namely −1. Then Kps = {a ∈ Zps : a2 = 1} = {1,−1}.

Thus, Tps = ±(Z×ps)2, and hence Lemma 2 of [7] gives the next lemma.

Lemma 3.1.1. For s ≥ 1 and an odd prime p, we have

Hps
∼= Hp⊗

◦
Kps−1 ,

where
◦
Kps−1 is the ps−1-complete graph with a loop on each vertex.

Let G = (V,E) be a regular graph with v vertices and degree k. G is said to

be strongly regular if there are also integers λ and µ such that:

(i) every two adjacent vertices have λ common neighbours, and

(ii) every two non-adjacent vertices have µ common neighbours.

A graph of this kind is sometimes said to be a strongly regular graph with param-

eters (v, k, λ, µ). We can explicitly determine the eigenvalues of a strongly regular

graph as follows:

Lemma 3.1.2. [10] A strongly regular graph with parameters (v, k, λ, µ) has ex-

actly three eigenvalues:
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(i) k whose multiplicity is 1,

(ii) 1
2
[(λ− µ) +

√
(λ− µ)2 + 4(k − µ)] whose multiplicity is

1
2
[(v − 1)− 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)
], and

(iii) 1
2
[(λ− µ)−

√
(λ− µ)2 + 4(k − µ)] whose multiplicity is

1
2
[(v − 1) + 2k+(v−1)(λ−µ)√

(λ−µ)2+4(k−µ)
].

Let r be a prime power such that r ≡ 1 mod 4. Note that this implies that

the unique finite field of order r, Fr, contains a square root of −1. The Paley graph

is the graph whose vertex set is Fr and edge set is {{a, b} : a, b ∈ Fr and a− b ∈

(F×r )2}.

Lemma 3.1.3. The Paley graph over the finite field Fr is strongly regular with

parameters (r, r−1
2
, r−5

4
, r−1

4
).

Proof. Define the map χ : Fr → {−1, 0, 1} by

χ(a) =



0, if a = 0;

1, if a ∈ (F×r )2;

−1, otherwise.

Clearly, χ is a homomorphism from F×r onto {−1, 1}. Note that χ(a − b) = 1 if

and only if a is adjacent to b. Let a, b ∈ Fr. To count the number of x in Fr such

that χ(a− x) = χ(b− x), we first consider

∑
x 6=a,b

χ[(a− x)(b− x)] =
∑
x 6=a,b

χ(a−x)=χ(b−x)

1−
∑
x6=a,b

χ(a−x)6=χ(b−x)

1.
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For x 6= b, χ(b− x) = χ(b− x)−1, so the sum on the left can be written as

∑
x 6=a,b

χ

(
a− x
b− x

)
=
∑
x6=a,b

χ

(
1 +

a− b
b− x

)
=
∑
x 6=0,1

χ(x) = −1,

since exactly half of the non-zero elements of Fr are quadratic residues. This

same reason also gives us that k = r−1
2

. Now suppose that a adjacent to b.

Then
∑

x 6=a,b χ(a− x) =
∑

x 6=a,b χ(b− x) = −1. We have four equations in four

unknowns: define α to be the number of times that χ(x−a) = 1 and χ(x−b) = 1,

β to be the number of times that χ(x − a) = 1 and χ(x − b) = −1 and γ and δ

similarly in case χ(x − a) = −1. Thus, α + β is just the total number of times

χ(x−a) = 1, which is r−3
2

, and β+γ is the number of times χ(x−a) and χ(x− b)

have different signs, which is r−1
2

. Solving these and the other two equations give

λ = 1
4
(r−5). On the other hand, if a is not adjacent to b, then we can solve again

to get µ = 1
4
(r − 1).

We know that the adjacency matrix of the ps−1-complete graph with a loop

on each vertex,
◦
Kps−1 , is the ps−1 × ps−1 matrix of all 1s, and hence

Spec
◦
Kps−1=

ps−1 0

1 ps−1 − 1

 .

Moreover, if p ≡ 1 mod 4, then −1 is a quadratic residue of p, so Tp = (Z×p )2.

Thus, Hp is the Paley graph which is strongly regular with parameters (p, (p −

1)/2, (p− 5)/4, (p− 1)/4) by Lemma 3.1.3. Hence, from Lemma 3.1.2,

SpecHp =

p−1
2

−1+√p
2

−1−√p
2

1 p−1
2

p−1
2

 .

By Proposition 1.2.1, this leads to our first theorem.
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Theorem 3.1.4. Let p be a prime. If p ≡ 1 mod 4, then

SpecHps =

ps−1(p−1)
2

ps−1(−1+√p)
2

ps−1(−1−√p)
2

0

1 p−1
2

p−1
2

ps − p


for all s ≥ 1.

Next, we assume that q is a prime and q ≡ 3 mod 4. Then −1 is a quadratic

non-residue of q, so of qs. Thus, (−1)(Z×qs)2 ∩ (Z×qs)2 = ∅. This implies

|Tqs| = |(Z×qs)2 ∪ (−1)(Z×qs)2|

= |(Z×qs)2|+ |(−1)(Z×qs)2|

= 2|(Z×qs)2|

=
2|Z×qs|
|Kqs|

= |Z×qs|

from the exactness of (3.1.1). Since Tqs ⊆ Z×qs , Tqs = Z×qs . Hence, Hqs is the

unitary Cayley graph Gqs and we may obtain its eigenvalues from Proposition

1.1.4.

Theorem 3.1.5. Let q be a prime. If q ≡ 3 mod 4, then Hqs is the unitary

Cayley graph Gqs and

SpecHqs =

(q − 1)qs−1 −qs−1 0

1 q − 1 qs − q


for all s ≥ 1.

Theorem 3.1.6. Assume that p1, . . . , ps are primes congruent to 1 modulo 4 and

q1, . . . , qt are primes congruent to 3 modulo 4. Then the following statements hold.
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(i) If n = pa11 . . . pass q
b1
1 . . . qbtt for all ai ≥ 1 and bj ≥ 1, then

Hn
∼= Hp

a1
1 ...pass

⊗H
q
b1
1 ...q

bt
t
.

(ii) Hp
a1
1 ...pass

∼= Hp
a1
1
⊗ · · · ⊗Hpass for all ai ≥ 1.

(iii) H
q
b1
1 ...q

bt
t

∼= G
q
b1
1
⊗ · · · ⊗G

q
bt
t

∼= G
q
b1
1 ...q

bt
t

for all bj ≥ 1.

Proof. Note that Zn ∼= Zpa11 ...pass
×Z

q
b1
1 ...q

bt
t

induces the isomorphisms Z×n ∼= Z×
p
a1
1 ...pass

×

Z×
q
b1
1 ...q

bb
t

and (Z×n )2 ∼= (Z×
p
a1
1 ...pass

)2 × (Z×
q
b1
1 ...q

bt
t

)2. In addition, Kn
∼= Kp

a1
1 ...pass

×

K
q
b1
1 ...q

bt
t

. Thus, Hn
∼= Hp

a1
1 ...pass

× H
q
b1
1 ...q

bt
t

. Since (Z×
p
a1
1 ...pass

)2 ∼= (Z×
p
a1
1

)2 × · · · ×

(Z×
pass

)2 and Kp
a1
1 ...pass

∼= Kp
a1
1
× · · · ×Kpass , we have

Tpa11 ...pass
= Kp

a1
1 ...pass

(Z×
p
a1
1 ...pass

)2

∼= Kp
a1
1

(Z×
p
a1
1

)2 × · · · ×Kpass (Z×
pass

)2

= Tpa11 × · · · × Tpass ,

Similarly, T
q
b1
1 ...q

bt
t

∼= T
q
b1
1
× · · ·×T

q
bt
t

which equals Z×
q
b1
1

× · · ·×Z×
q
bt
t

because qj ≡ 3

mod 4. Hence, T
q
b1
1 ...q

bt
t

= Z×
q
b1
1 ...q

bt
t

, and so H
q
b1
1 ...q

bt
t

∼= G
q
b1
1
⊗ · · · ⊗G

q
bt
t

∼= G
q
b1
1 ...q

bt
t

as desired.

Moreover, it follows from Proposition 1.2.1 that EngyG⊗H = EngyG EngyH.

A direct computation from Theorems 3.1.4, 3.1.5 and 3.1.6 gives a formula for the

energy of the graph Hn, where n is odd.

Theorem 3.1.7. Assume that p1, . . . , ps are primes congruent to 1 modulo 4 and

q1, . . . , qt are primes congruent to 3 modulo 4. Then the following statements hold.
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(i) If n = pa11 . . . pass q
b1
1 . . . qbtt for all ai ≥ 1 and bj ≥ 1, then

EngyHn = (EngyHp
a1
1 ...pass

)(EngyH
q
b1
1 ...q

bt
t

).

(ii) EngyHp
a1
1 ...pass

=
∏s

i=1 EngyHp
ai
i

= 2−s
∏s

i=1 (paii − p
ai−1
i )(1 +

√
pi).

(iii) EngyH
q
b1
1 ...q

bt
t

= EngyG
q
b1
1 ...q

bt
t

= 2t
∏t

j=1 (q
bj
j − q

bj−1
j ).

3.2 Quadratic Residues of f

Let Fq be the finite field with q = ps elements of characteristic odd prime p. Let

A = Fq[T ], and let f ∈ A be a non-constant polynomial. Consider the exact

sequence of groups

1 −→ Kf −→ (A/fA)×
θ−→ ((A/fA)×)2 −→ 1, (3.2.1)

where θ : a 7→ a2 is the square mapping on (A/fA)× with kernel K = {a ∈

(A/fA)× : a2 = 1} and ((A/fA)×)2 = {a2 : a ∈ (A/fA)×}.

Let Tf = Kf ((A/fA)×)2. Define the graph Hf = Cay(A/fA, Tf ), in which two

vertices are adjacent if and only if their difference is in Tf . Observe that Hf is

undirected, so its adjacency matrix is symmetric. In this section, we study the

structure of the graph Hf and obtain its eigenvalues. Furthermore, we compute

the energy of Hf .

Let P ∈ A be an irreducible polynomial and e ≥ 1. Write |P | for qdegP . We

recall that the group (A/P eA)× is an abelian group of order (|P | − 1)|P |e−1. It

follows from the theory of finite abelian groups that as a group (A/P eA)× is a

product of cyclic group of order |P | − 1 (isomorphic to (A/PA)×) and a p-group
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P . Hence, (A/P eA)× has a unique element of order two, namely −1 which is

(−1, 1) in (A/PA)× × P . Then KP e = {a ∈ (A/P eA)× : a2 = 1} = {1,−1}.

Thus, TP e = ±((A/P eA)×)2. Next, we proceed by recalling Theorem 1.10 of [22]

that:

Theorem 3.2.1. [22] Let d be a positive integer such that d | (|P | − 1). Then

xd ≡ a mod P e has a solution if and only if a
|P |−1

d ≡ 1 mod P in A.

Therefore, to determine the case when −1 is a quadratic residue of P e, we

consider when (−1)
|P |−1

2 ≡ 1 mod P in A, so

1 ≡ (−1)
|P |−1

2 ≡ (−1)
qdegP−1

2 ≡ (−1)
ps(degP )−1

2 mod P,

which makes −1 ∈ ((A/P eA)×)2 whenever (p ≡ 1 mod 4) or (p ≡ 3 mod 4 and

s(degP )) is even.

Lemma 3.2.2. For e ≥ 1 and an irreducible polynomial P in A, we have

HP e ∼= HP⊗
◦
K |P |e−1 ,

where
◦
K |P |e−1 is the |P |e−1-complete graph with a loop on each vertex.

Proof. Since (A/P eA)× ∼= (A/PA)× × P for some p-group P of order |P |e−1,

we can write each element a ∈ (A/P eA)× as (a1, a2) ∈ (A/PA)× × P . Then

the adjacency condition becomes a − b ∈ ((A/P eA)×)2 if and only if a1 − b1 ∈

((A/PA)×)2. Thus, we have HP e ∼= HP⊗
◦
K |P |e−1 as desired.

Since the adjacency matrix of
◦
K |P |e−1 is the |P |e−1 × |P |e−1 matrix of all 1s,

we get

Spec
◦
K |P |e−1=

|P |e−1 0

1 |P |e−1 − 1

 .
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Moreover, if −1 is a quadratic residue of P , then TP = ((A/PA)×)2. Thus, HP is

the Paley graph which is strongly regular with parameters (|P |, (|P |−1)/2, (|P |−

5)/4, (|P | − 1)/4) by Lemma 3.1.3. Hence, from Lemma 3.1.2

SpecHP =

 |P |−12

−1+
√
|P |

2

−1−
√
|P |

2

1 |P |−1
2

|P |−1
2

 .

By Proposition 1.2.1, this brings us to the following theorem.

Theorem 3.2.3. Let P ∈ A be irreducible. Assume that (p ≡ 1 mod 4) or (p ≡ 3

mod 4 and s(degP ) is even). Then

SpecHP e =

 |P |
e−1(|P |−1)

2

|P |e−1(−1+
√
|P |)

2

|P |e−1(−1−
√
|P |)

2
0

1 |P |−1
2

|P |−1
2

|P |e − |P |


for all e ≥ 1.

Next, for the finite field Fq with q = ps elements of characteristic p, we assume

that p ≡ 3 mod 4 and s(degP ) is odd. Then −1 is a quadratic non-residue

modulo P e. Thus, (−1)((A/P eA)×)2 ∩ ((A/P eA)×)2 = ∅. This implies

|TP e| = |((A/P eA)×)2 ∪ (−1)((A/P eA)×)2|

= |((A/P eA)×)2|+ |((A/P eA)×)2|

= 2|((A/P eA)×)2|

=
2|(A/P eA)×|
|KP e|

= |(A/P eA)×|

from the exactness of (3.2.1). Since TP e ⊆ (A/P eA)×, we have TP e = (A/P eA)×.

Hence, HP e is the unitary Cayley graph GP e := Cay(A/P eA, (A/P eA)×) over the

finite ring A/P eA and we can obtain its eigenvalues from Proposition 1.1.4.
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Theorem 3.2.4. Let P ∈ A be irreducible. Assume that p ≡ 3 mod 4, s(degP )

is odd. Then HP e is the unitary Cayley graph GP e and

SpecHP e =

(|P | − 1)|P |e−1 −|P |e−1 0

1 |P | − 1 |P |e − |P |

 .

Theorem 3.2.5. Let P1, . . . , Pr+t ∈ A be irreducible. Assume that p ≡ 3 mod 4,

s is odd, degP1, . . . , degPr are even and degPr+1, . . . , degPr+t are odd. Then the

following statements hold.

(i) If f = P e1
1 . . . P er

r P
l1
r+1 . . . P

lt
r+t, then

Hf
∼= HP

e1
1 ...P er

r
⊗H

P
l1
r+1...P

lt
r+t
.

(ii) HP
e1
1 ...P er

r

∼= HP
e1
1
⊗ · · · ⊗HP er

r
.

(iii) H
P

l1
r+1...P

lt
r+t

∼= G
P

l1
r+1
⊗ · · · ⊗G

P
lt
r+t

∼= G
P

l1
r+1...P

lt
r+t

.

Proof. Note that A/fA ∼= A/(P e1
1 . . . P er

r )A×A/(P l1
r+1 . . . P

lt
r+t)A induces the iso-

morphisms

(A/fA)× ∼= (A/(P e1
1 . . . P er

r )A)× × (A/(P l1
r+1 . . . P

lt
r+t)A)×

and

((A/fA)×)2 ∼= ((A/(P e1
1 . . . P er

r )A)×)2 × ((A/(P l1
r+1 . . . P

lt
r+t)A)×)2.

In addition, Kf
∼= KP

e1
1 ...P er

r
× K

P
l1
r+1...P

lt
r+t

. Thus, Hf
∼= HP

e1
1 ...P er

r
× H

P
l1
r+1...P

lt
r+t

.

Since

((A/(P e1
1 . . . P er

r )A)×)2 ∼= ((A/(P e1
1 )A)×)2 × · · · × ((A/(P er

r )A)×)2
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and

KP
e1
1 ...P er

r

∼= KP
e1
1
× · · · ×KP er

r
,

we have

TP e1
1 ...P er

r
= KP

e1
1 ...P er

r
((A/(P e1

1 . . . P er
r )A)×)2

∼= KP
e1
1

((A/(P e1
1 )A)×)2 × · · · ×KP er

r
((A/(P er

r )A)×)2

= TP e1
1
× · · · × TP er

r
,

Similarly, T
P

l1
r+1...P

lt
r+t

∼= T
P

l1
r+1
× · · · × T

P
lt
r+t

which equals (A/(P l1
1 )A)× × · · · ×

(A/(P lt
t )A)× because degPj, j ≥ r + 1 is odd. Hence,

T
P

l1
r+1...P

lt
r+t

= (A/(P l1
r+1 . . . P

lt
r+t)A)×,

and so H
P

l1
r+1...P

lt
r+t

∼= G
P

l1
r+1
⊗ · · · ⊗G

P
lt
r+t

∼= G
P

l1
r+1...P

lt
r+t

as desired.

Finally, a direct computation from Theorems 3.2.4 and 3.2.5 gives a formula

for the energy of the graph Hf .

Theorem 3.2.6. Let P1, . . . , Pr+t ∈ A be irreducible. Assume that p ≡ 3 mod 4,

s is odd, degP1, . . . , degPr are even and degPr+1, . . . , degPr+t are odd. Then the

following statements hold.

(i) If f = P e1
1 . . . P er

r P
l1
r+1 . . . P

lt
r+t, then

EngyHf = (EngyHP
e1
1 ...P er

r
)(EngyH

P
l1
r+1...P

lt
r+t

).

(ii) EngyHP
e1
1 ...P er

r
=
∏r

i=1 EngyHP
ei
i

= 2−r
∏r

i=1 (|Pi|ei − |Pi|ei−1)(1 +
√
|Pi|).

(iii) EngyH
P

l1
r+1...P

lt
r+t

= EngyG
P

l1
r+1...P

lt
r+t

= 2t
∏t

j=1 (|Pr+j|lj − |Pr+j|lj−1).
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Corollary 3.2.7. Let Pi ∈ A be irreducible and ei ≥ 1 for all i. Assume that

(p ≡ 1 mod 4) or (p ≡ 3 mod 4 and s is even). Then

EngyHP
e1
1 ...P er

r
= 2−r

r∏
i=1

(|Pi|ei − |Pi|ei−1)(1 +
√
|Pi|).
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