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CHAPTER II

FEYNMAN PATH INTEGRALS

It is known that the operator for : ';ger and Heisenberg representations

ways yield the most transparent
understanding of quan phenofhena. There ’ sts.another equivalent formalism in
which operators are avoided and replaced | . ot e ite products of integrals call
Feynman path integrals{Feynman ; » | ,‘ 1981, Kleinert 1990]. In
contrast to the Schrodiager €quatic » 1 diffe ial equation specifying the
properties of a state at a leds nfinitesimal time earlier, the
path integral constitutes & “to the calculation of quantum

mechanical amplitudes.

Path Integral Repre:
W,

'I’hc path integral approach to quantum mechanics was developed by Feynman

eynmn 19PN A P arict movingin

cartesian coordinate system and served to calculate the transition amplitudes of the time

BNAL GERED LI Rt

(atslxats) = (lbl i}(tb, t,,)'xa) 3 hoty. 2.1)

For simplicity, we shall consider at first only a point particle in one cartesian dimension
and shall be interested only in causal or retarded time displacement amplitudes as

described in Chapter L.

013653
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Feynman realized that due to the fundamental composition law of the time
displacement operator , the amplitude (2.1) could be sliced into a large number, say
N+1, of time displacement operators, each acting across an infinitesimal time slice of

width € = t,-tp1 = (tp-12)/(N+1) > 0,

(xblj ) Ulews 1) - ‘
y t1) Ut 12) %a)- (2.2)

(xptp | Xata )

When inserting a compl ea fU’s,
f SAANRE R, 2.3)
the amplitude becomes s
(xptp Ixat F (xntn I xnoltn-l) s (2.4)
n=1
where we have iden = t9. The amplitudes
for the infinitesimal un%terv
Aty W‘s
with the abbrevxauon for the Hami

RT3t 0 N8 Y

The further development becomes simplest under the assumption that the Hamiltonian

(2.6)

H(p, %, t) be of the standard form, consisting of a sum of a kinetic and a potential

energy

Hp,xt) = T(pt)+V(xt). 2.7)
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For sufficiently small &, the time displacement operator

~

e-iEf = e""(f”’/ﬁ (2.8)

is factorizable according to the Baker-Hausdorff formula as follows

c-idT+V)m =

e il M g-eXMm* 2.9)

where the operator X has

X = 2L'[, ?]) B, S (i

The omitted terms of ordegé ° her and higher commutators of v

and T . If we neglect, for ORy der £ 2 we calculate for the

local matrix elements of e - & “the fol 0 1g'simple xpress1on

(eale - eilin] ) = ‘ "'- Alx) (c|e-ierG. u)r| x, )

- [[ak "__—_”f,

mmm,,,ﬂ(uﬂﬂ TIEJWWI 8113
4 W LRIV e

this becomes
feale -G 18], ) =

f gfm" exp (ipn (Xn - Xn-1)/#i- i€ [ T(pns ta) + V (X, ) ]/ 7} .

(2.11)

(2.13)
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Inserting this back into (2.4) we obtain the multiple integral

N | [T N+1| ™ .
(xotp | Xata) = HI dx,| I] I % exp{;s"’}, (2.14)
n=1 - o0 n=1 -0

where SV is the sum

sV 3 , "&»’%tn)]- (2.15)
——

)], @16

This is recognized as the classical canonicalaction for the path x (¢), p (¢) in phase
: : L p (¢),p(t) inp
space. Since the posy g HRISE Y I _“,; initial and final values

)

¥
xp and x, , the paths satis b= Xb,X(ta) = Xa.

In the same limit, the product of infinitely many integrals ifi (2.14) will be called a path

et WEHA N YN NN

AMpfahapagay e

By definition, there is always one more p, than x, integral in this product since

there is one p, for every pair of x, ’s, while the two x,, ’s at the end are held fixed.

This fact is recorded by the prime on the functional integral D “x . With this definition, .

the amplitude can be written in the short form
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(xptp | Xata) = fﬂ'x f%e o i (2.18)

- The path integral representation of the quantum mechanical amplitude has a simple

intuitive interpretation: The path integration corresponds to a sum over all path histories

along which a general physic / ossibly evolve. The exponential
e iS[p. A% s the quantum analog @n factor e -E/ksT in statistical

mechanics. Instead of an exponentia ility, however, it assigns a pure phase to

each possible history. The#6takémat ' oMl X, £, 10 X3, t, is obtained by
E (2.19)
where the sum comprises'a

X -space.
Of course, tt:gbo ' netry in. the functional integrals over x

and p is a result of , 7
proceed alternatively anﬂcecp the ir
displacement amplitude can.be derived by geing through the same steps as before but

workinginthe bl speb FGAeic) of TR e
Actuall ,?;'1 his original paper Feynman did mot give the pathdstegral formula in
se BB 2 DU AL AL AR vt

the form T (p,t) = p 2%/2M , he considered right-away the Hamiltonian

cnﬂ pp and p, fixed. The time

H = 52—+V(x t) (220)
2M *oR '

Then, in the above phase space formulation, the action in the time-sliced form (2.15)

becomes
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- N+l{ ( ) pz }
s = n \An ~Xn- ‘8L’ | %4 nstn )l - 2.21
,.Z=1 Pn (Xn - Xn-1)- €500 - €V (Xn, 1n) (2:21)

This can be quadratically completed to

SN o { _L(p -I,. lM)2 MS(E"X—"I) EV(Xn,tn)}.

1 w using the Fresnel integral

(2.22)

dx_, a>0
f =% e (2.23)
The phases follow from a on of the Gauss formula
Rea >0

(2.24)
to imaginary @ = il  to be approached inside the ra@ of validity of the formula,
which is from th Tjof thesimagi a -afis. To characterize this more clearly one
sets° o = X3} b%l mai w&mi Since the Fresnel

AN g

nature of the quadratic exponent is to be emphasized.

With the Fresnel formula, the momentum integral in (2.14) gives.

I ' { (p 'x" 1 ) } 5l /M (2.25)

and we remain with the alternative representation
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N oo
= BT o) B N
Coivhte) = ey 11 I o = | |EsY) e

n=1

where SV is now the sum

SN Y ' )Z-V(x,.,t,.)], 2.27)

with with xy .1 = Xp,

space rather than phase.

i

ﬁus wawswawni
QW’T"&“\‘Iﬁ‘im TRITNND

Figure 2.1 The zigzag paths along which a point particle propagates all possible
ways of reaching the point xp atatime #p starting from x, ata time 5

The particle explores all possible Ways of reaching a given final point x, starting from

a given initial point x,, the amplitude of each path being exp {i sy ﬁ}. See Fig. 2.1



22

for a geometric illustration of the path integration. In the continuum limit, the sum

(2.27) becomes the action in the Lagrangian form, expressed as a functional of x, X .

Skx, 21 = j.dtL(x,JE) = jbdt[ézixz-V(x,t)]- (2:28)

la

la

(2.29)

echanical amplitude (2.1),

This is Feynman’s origi ornula \’ .:-}\. LR
summing paths in configurafion space aind Wsin \ orm of the action.

e

We have used the same/integration symbol. 2 for the pure configuration

space path measure as in the different easures since the there is no

danger of confusion. Notice th egration in the phase space formula

(2.14) results now (2.26) which is not

accompanied by a dx, i B X

The Feynman E‘nphtudc can be used to calculm the quantum mechanical

TS YN
oL Ty vy -t T

Here the integration symbol |Dx  has yet a different meaning; it stands for

N+1 (%
f@x = fII dx, | 27ifie IM . 4 (2.31)

It contains no extra 1/Y2xifie /M factor, as in (2.26), (2.29), due to the integration over

the initial (=final) position x, = x, which represents the quantum mechanical trace.
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The use of the same symbol JDx cannot lead to a confusion since its present meaning

is easily recognized by the absence of x;,, x, coordinates on the left-hand side of an

equation.

Exact Solution for the Free Particle

In order to develop sc me ¢ D : nman ’s path integral formula let

us consider in detail thcye of'a ﬁ%w}nch in the canonical form

reads [Feynman and Hibb

(xb Iy Ixa Ia

Ag—x' L (2.33)

expression to be integr@d .27)ﬁith vanishing potential V

(x). This is a product of Gauss integrals which can easily be done successively using

fma<223>ﬂumwﬂmwa'1ﬂﬁ

N £
2
5 1 ¢ LM_M_ 2.34
V2mih(ty- 1)/ M TA¥ T ¢ G52

Notice that the result happens to be independent of the number of time slice.
There exists another method of calculating the free-particle amplitude which is

somewhat more involved but which will turn out to be useful in a generalized form
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when trying to treat nontrivial path integrals. In this method we count all paths with

respect to the classical path, i.e., we split all paths into the classical path

Xilt) = x +Z22%a(r g, (2.35)
Ip-1,

along which the free particle would run followmg the equation of motion

(2.36)
plus deviations &x () w
(2.37)
The deviations &x (¢ ) serting the decomposition
(2.38)
into the action we observe, that due 1o the “of motion (2.36) for the classical
path, the action separates into the sum : and a purely quadratic fluctuation
= O
173
MTI d x,,f(t)+Ed (t)6x(t)+x(t) @
te
ﬂuﬁn"flﬁmi )
Mgz} +M¢6x b dt g 6% +%— 5x)2
9 ®IRGN P13 11 ﬁ 7] t ']
w4 dt xc% +| ar(6x) (2.39)
t. t. :

In fact, this is a general consequence of the extremality property of the classical path,
= 0, (2.40)




which implies that a quadratic fluctuation expansion around it can have no linear term

in &x (), i.e., it must start as follows,

by 14 . .
2
S = sc,+lf d:I d:'—i—s—ax(:)ax( ) i
4 A 5x(t)8x(t =
(2.41)
where S, denotes the acti
(2.42)
As a consequence, the - : ' ! the product of a classical amplitude
e Salf and a fluctuatio
(xp tbl_xa ta) =M 432 ',,. A F o(tp,ta). (2.43)
where §; is now the classical a o »-""
(2.44)

and F o (1 - 1a) ﬁ'ﬁ%ﬂ%jﬂﬂqﬂi

ama’\ﬂﬂfi“futlﬁhﬁ%‘ﬂ’é’ y oo

Due to the vanishing of x (¢) at the end points this does not depend on x3, x, but
onl; on the instal and final times 7, #,. The time translational invariance reduces this
dependence further to the time difference 1, - t,. The subscript 0 of F (2 - )
indicates the free-particle nature of the fluctuation factor. Using (2.35) we find

immediately the classical action
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_ M (%.x)?
S ot (2.46)

The fluctuation factor, on the other hand, requires in the time-sliced definition of the

path integral the evaluation of the multiple intcgral

FY(t-1) ,, (2.47)
where S & is the time
(2.48)
At the end we have to tak
(2.49)
The remainder of tlus section willb; r I ating thc fluctuation factor (2.47).
For this it is useful V_.._:.u;.:_:;:.:.._;.:-‘:..:.:..:;:_.;i\ for dealing with such
T ————— = — \'
multiple integrals. Beca | : J L-a«‘ fluctuating 0x we shall

drop all & ’s, for brevxty

At BTG5 3 e i

(2.48) is the diffeténce operator V an‘gi its con]ugate V. They are dcﬁned as follows,

ama&ﬂmumwmaa

Vx() = Lix()-x(+e). (2.50)

They are two different discrete versions of the time derivative 0d;, to which they both

reduce in the continuum limit &€ — 0

£—-0

— 0; . (2.51)

v
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For the coordinates x, = x (t,) at the discrete times ¢, we shall therefore write

Vxn &= 'eL(xn+1'xn), NZnZOQ

Vx,. = %(x"_xn_l), N+12n21, (2.52)
The time-sliced action (2.60) can W/ai intermof V as follows (writing
as announced x, instead of

-d
i (2.53)

In this notation, the limit g e X, goes into the time

integral , and (V,x ) fengdftof%

sy il (2.54)

The time-sliced action becomes-the: Brang : Since the discretized time axis

with N + 1 steps co ':‘-‘-—v—-‘—-;—'-—u—---i-\ idvatives V , V are called

lattice derivatives.

In the problem at hand, the quantum fluctuations x , |= dx ,.) vanish at the

c,,dssomemw'mamwmm
qﬁa»ﬁﬁ‘imwmﬁmaﬂ )

The nght—hand side is a short notation for the matrix expression

. & ,
< Y xa W Ry = - : xn(V_)m. Xt s (2.56)

n=0 n,n -0

with the (N + 1) x (N + 1) matrix,
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7 ot S N ¢ I <
e v GURENE B 8¢
Wos Ws Bl 0 (2.57)
€
000. --1-21
0 00- 01 -2
This is obviously the lattice version ouble time derivative 8,2 to which it
reduces in the continuum limit & —~ 0. ore be called Ilattice Laplacian.
A further commo atti derivatives is that they can
both be diagonalized by ( 0 ) f"c expand |

(2.58)
and apply the lattice derivati
L+E) e -ia)t.)x (@)
1x (o). (2.59)
‘a o/
Hence, o the F@;&J&Qnﬂ ¥ Jodelcigtbvaoed 7]
(2.60)

RN T IN4 Y
In the confinuum limit € — 0 this becomes, of course, the eigenvalue of the ordinary
time derivative o;, i.e., -i times the frequency of the Fourier component . Asa

reminder of this we shall denote the eigenvaiUe of iV by £ and have

iVx(w) = Qx(w) = f:-(e-iw-l)x(w). (2.61)

For the conjugate lattice derivative we find similarly
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igx(w) = Ex(w) = -é—(e ioe - 1) x (o). (2.62)

where E is the complex conjugate number of €2, ie., 2 = Q *, which has the same

continuum limit @. As a consequence, the eigenvalues of the negative latuce Laplacian

-VV = VV are real and nonnegauve,

-VVx(w) = L[2-2cos(we)] 2 0.
>

(2.63)
When decomposin Quanturn fluctuation: a [= ox(t )] into its Fourier
components, not all eigen ~Since . vanishes at the initial time ¢ = ¢,

we can restrict the dccoin '
(2.64)
The vanishing at the final ti a restriction of the frequencies @

to the discrete values

(2.65)

“““"““‘“’Ffiﬁl“ifﬁ’ﬁfiﬁ‘%'swmni

x () = sinOm At -ta ) X(Vm).q, (2.66)
ama\am RTIRLT
With x (t) also the Fourier components x (@) are real. A further restriction comes

from the fact that for finite ¢, the series has to represent x (¢) only at the discrete

points x(t,), n = 0, ..., N+ 1. It is therefore sufficient to carry the sum only up to

m = N andexpand x(f,) as follows

x(tn) = 5‘:‘1 \/;% 5in Om(tn -ta ) X(Om). (2.67)



The set of the expansion functions is orthogonal and complete in the sense

N

N+1 Z SinVp (tn-ta)sinv,(ta-ta) = 6pm’,s (2.68)

n=1

2 3
N+1 z Sin‘l),n (tn‘t.)sinom (tn'—tl) = 6nn', (2.69)

m=1
respectively (where 0 < m, m 1 gonality relation follows directly

from rewriting the left-
s A - | [in +m)” =
N+12Re N L a0l t ol
where we have extended m at each end without harm. Being
of the geometric type this c . For m =m’ it obviously adds

upto 1 whilefor m #m’ i

'—>-m')}. (2.71)

The first expression in cnly brackets is equal to 1 for even-m - m* # 0 and imaginary

for odd m- ”ﬁ @g Weﬂpfﬂ ?c for even and odd
vely. Since m - m and

m+m’ # 0,re m + m '’ are either both even or both

o N S AT T -

and m” afe £[0, N + 1] in the expansion (2.67) and thus in (2.68)]. The proof of the
completeness relation (2.69) is completely analogous.
Inserting now the expansion (2.67) into the time-sliced fluctuation action (2.48)
and using the orthogonality relation (2.68) we can write
X Tt N+1 i
sy - MY o) - MY x(0n) O Onx (0m). (2.72)

n=0 m=1
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Thus the action decomposes into a sum of independent quadratic terms, with the

discrete set of eigenvalues

2.0, = _1_[2 2cos(ome)] = L L[2- 2cos(FM)|.  273)

With the action being quadratic, the fluctuation factor (2.47) becomes a product of

3

Gauss integrals

e Tl
t l" = WY dx,
tp - e i AR
Fo(cy f‘fsh V2rfie] M
.

»\ on)?). (2.74)
To perform these we must v: ‘ ”‘ ntegration from the local x, to

the Fourier components x (¥ !“‘ e to th ~_ : ahty relation (2.68), the trans-

formation has a unit detemninant.

F—>] (2.75)

2

After this, we use the Frcsﬁﬁ)rmulir .83) dnd see lﬁZ .74) becomes

ﬂﬂﬂ?ﬂ ﬂﬁWﬂ

Otp-ta) = = (2.76)
awwaﬁnmjim eioe?
To calculate the product we use the formula [Gmdstcyn and Ryznik 1980]
1 (1+x2-20cos 2 = &2—:";—‘1—4 @.77)

m=1

Taking the limit x — 1 gives
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N
I £2%Q.9.
m=1

N
m];[1 2(l-cos Nn}gl—) = N+1. (2.78)

Hence we obtain for the time-sliced fluctuation factor of a free particle

Flfs-t.) = = ; (2.79)

1 vﬁ;u\n e/M

Expressing this in terms of ¢, =i

(2.80)
We have dropped the e result is independent of
the number of time slic e ore .;“ [ 2.34) Note that the dimension of
the fluctuation factor is 1 . _ X /we might introduce a length scale

(2.81)
and write

(2.82)

Together with (2.46), the fulb:time displacement amplitude of a free particle (2.43) is
therefore given a o ai ET Ef
¢ a |, _8/\2
QRN SRR TRE N oo

Ex ion for the H i illator

A further problem that can be solved along similar lines is the time displacement

amplitude of the linear oscillator,
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(thblxatn)

rQ) ’xf%cxp{%S[p,x]}

SN

( :
= DXCXP(%S[X, Ji]} ; - (2.84)

J

with the canonical action

Slp. x L Mo? 2, (2.85)

and the Lagrangian one

(2.86)

(2.87)

The path integral is again a J)roduct of Gauss mtegrals Wth can be done successively.

In contrast to ﬁ %me‘wﬂ W&mxﬁjmod is now more

complicated than e fluctuation expagswn in whlch the paths are g&lt into classical

o PGB0, PRI Bfbe v

that the action it is quadratic in x = x_ + 0x, and decomposes into the sum of a
classical part

ty :
Sa = I dt%-(ff%z-wzx?:l)- (2.88)
" .

and a fluctuation part
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Sag = I“dt%[(ﬁ)z-wz(&)z,],. (2.89)
t,
with the boundary condition
(290)
There is no mixed term, due 16561 . yxsswal action. The equation of
motion is
(291)
Thus, as in the free-parti ' time displacement amplitude splits into a
classical and a fluctuation ' - |
(xptp|xata) = 1 in. e Sa IAF 4(tp-ta).  (292)

The subscript @ of (Ej)fecords the frequency of the ©

y

The classmalo onnecting al and fi pom , is obviously

ﬂu ﬁsxnwét t!)uismws“, t! (2.93)
N°“°°‘“ﬂ‘°ﬁ“1ﬂﬁ'ﬂ“ﬁ”ﬂ1§:il“iﬂ"l‘z'ml*‘i’§ 5y

m /6 which we shall always assume from now on

By a partial integration we can rewrite the classical action S; as

(2.94)

ts
Sa = I thLZ [Xcl(-ic:-wzxcl)]+M-2 Xcr k|t
t
F *



The first piece vanishes due to the equation of motion (2.91), so that we obtain the

simple expression
Sa = Mi-[xb*cl(tb)-xa Xcr(ta)] . (2.95)
Since
xcl(ta) = il : COS(D(tb t,)]
xa(ty) === )[%-t.)-x.]. (2.96)

we can rewrite the classica ' ’ 7
. Sa = o :/ ., \\ ity) -2xaxa ). (297)

We now turn to [ime slicing we use the matrix

notation for the operator - VV e the multiple integral

FaIY(t ,' -—.———:—,?zf"

ﬂummmwmﬂi

By going again tdjthe Fourier components the mtegratlons factorize in thc same way as

o QAR GO TR T

fluctuatiorfloperator which are now

0nQy-0? = L[2-2 cos(vme]l- 02 2.99)
E

stead of €, 5,»,, . Hence we obtain directly

. N
EN (6. 1) = el 1 ) 2.100
o (t:ta) mnglvggmgm_ezwz @190

V19109319
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The product of these eigenvalues is found by introducing an auxiliary frequency @ as

follows
in LE e
sin 2 5 (2.101)

Then we can decompose the product

[82.(2,,, .(_2,,, -£ 2w2]
',

[1 22,9, - &0l
m=
n2 —_Mmr__
2AN+1) (2.102)
The first factor is equal to d factor, the product of ratios
of eigenvalues, is found fron dsteyn and Ryznik 1980]
ﬁ 1] 1 sin[2(N+1)x] 2.103)
: sin 2x (N+1) i

m=

Hence we arrive at the V :
sin @ (t b-t a)

detN( £2VV - 2p2) ST ot
ﬂuﬁfmzr%wmm iy
e ABIANDINI NN INYNE Y

ty-ta < wlOD .

FRGrn] & sibea T HERE. . .
V2ni#/M sinw(ty -t,) £105)

We have agreed earlier [see Eq. (2.35)] that Vi should always mean e #/4. This is

why result (2.124) is valid only for
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ty -1a < 7lO . (2.106)

Let us now take the continuum limit, € — 0, N — o . Then the auxiliary

frequency @ tendsto @ and the fluctuation determinant becomes

det y (-e2v§7-e2m2) g0 BRSNS 1) (2.107)
4 ,

WE

(2.108)

prescription.

In the limit @ — h fluetnati 10rs agree, of course, with the free-

particle result (2.80).

In the continuum limit, the 53 alues in (2.102) can also be calculated

i o W

0 directly in each factor. This
)

t—:E Q -e2o? ~5)- e@aﬂ
AU IRENING TS
AN TEINTINENRY

In the limit ¢ — 0, the number N goes to infinity so that we wind up with an infinite

in the following simpleriwa

gives

product .of these factors. We can then use the well-known infinite-product formula for

the sine function.

sinx = x [] (1-—:&-, (2.110)
m=1' m?m?
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and find directly

Qnln ., f[ Vi - s Blfprts) (2.111)

m Q.0 -»? —),m=11)?n‘(02 sino(ty-ta)’

so that the fluctuation factor in the continuum becomes again (2.108).

il COS(D(Ib 'ta)'szxa]’.

(2.112)

Important info@:aﬁ\'c"’ 1c_m system is carried by the

correlation functions of thqggh x (t), which are defines as the functionai averages of a
~ product of the pﬂ %1@1% \gﬂog %&3 w EJ Qtﬂ §bjccts of this type are
often observable ?ﬂ simple scattering experiments. The most efficient way of extracting
them 760 altfcobyphocbich b Gehdide i abign B) & dxdridl Dlrce term and
studying t?lc response of the system to a disturbance. In this chapter we shall do this
with the harmonic action treated in the last chapter, with a source term linear in the path
x (t) coupled to a so-called current or external force j(t). Such a term does not
destroy the solvability of the path integral. The resulting amplitude is a simple
functional of j(¢) which serves to calculate the temporal correlation functions of the

system. It is the celebrated generating functional of the theory. Now we consider a
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harmonic oscillator with an action[Feynman and Hibbs 1965, Schulman 1981, Kleinert

1990]
Iy
Ly I d:lg—(fz-w%ﬂ), (2.113)
ta

and suppose that it is driven by an source current or an external force j(t)
coupled linearly to the partic 1

(2.114)
Since the total action

(2:113)
is at most quadratic in x, X , it1i ,;- 10°S0! ' path integral also in the presence of
this source term. In particular, :':‘.::.'; ‘n does not destroy the factorization
property (2.92) of . Ssical amplitude e iS<.i/#

and a fluctuation fac -y

(xptp xg‘a o ('M)s"’FwJ(th a) : (2.116)

(see Eq. (2. 92)%&‘3 qﬂ (EJ Ic] ? ﬂhﬂ ’mﬁm Xel, j (z) which
g T ST T e

Yo j()+ @ %xa,j(t) = j(2). (2.117)

In what follows we shall first work with the classical orbit x;(z) which extremizes the

action without the source term,
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Xp Sin@(t -tg)+x, sin(ty -1)
Sin w(tb ‘ta) 2 ;

xi(t) = (2.118)

We separate all paths into a sum of this classical orbit, x(¢), plus a fluctuating part

ox (),

x(t) = xq(r)+ (2.119)
The action separates into
S =8¢+ 87 V ‘ 0.1 +S source ,f1)
‘ ‘ TRANNS (2.120)
The time displacement
(xbtb Ity ) =
; = (4 (i /ﬁ )(s - »__-z_;'_ _ CES S -.___I ] 0. /] + s :ource’ﬂ)} .
. (2.121)

%

The classical action S o, ) is known from Section 2.3, Eq .97),

gl Wﬂﬁfwﬂﬁ’fﬁ Sl g
AT NN A

Ly
S source,cl = f dr x (t )] { )
ta

Iy
= m[ dt[xz sino(tp -1)+xp sin @t -t,,)]j(t).(z g
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consider now the fluctuation part of the action, S s = Sog +§ sourcefl . Since x(t)
extremizes only the action § , without the source, § a Will contain a term linear in
0x (¢). After a partial integration [which respects the vanishing of & (t,) at the ends],

it can be written as

i
$q = -bzif dedr’ S (t dréx(t)j(t), (2.125)
ta i .

where {D(t, t’) is the di

Q)(t, t ’)

Sl ( 2.126)

ions vanishing at the ends

is formally defined by the

It is a functional matri

ta,tp. The functional i

relation

NERBa ) T ITD

It is the standard classic%reen function of the harmonic millator

ot = gyl FHEN WAoo o
o am SRRLVen]rmn R

)
f dt'@(t " t')H (t . t) = 0. Appropriate boundary conditions, however, will
1,

remove this freedom. In the fluctuation action (2.125), we now perform a quadratic

completion via a shiftin &x (1) to
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ty
8X(t) = ax(r)+51m—f dr’ G(e,17)j(e7) (2.129)
ta

Then the action becomes diagonalin §X” and j, -

Sg =f dt[ dt{%—&i’(t)ﬂ) ri t')- —-l—j(t)G(t t)je )] (2.130)

The Green function obeys le-bounda c@e fluctuations 6x (t ),
G (t, t ’)

(2.131)

anish at the ends and run
through the same functional & the The measure of path
integration Ddx (¢) is obvibus 7;- e ‘ mple shift (2.129). Hence the
path integral D6X over eiSal ‘="‘ '2.130) gives, by the first term in
S 5, the usual fluctuation factor . : (1 in. (2,08)

=

Folts -t o =5
The only effect \gw ﬂﬂp?w ﬁuol mg from the second

term in (2.130) quagratic in the source ], plus the class1ca1 contribution (2.124). The
o/

R LML U L R s

written as thé product

(2.132)

(b5 [Xatqa )i = (st |Xata )oF sourced U]Fz:u,“‘ﬂ U1, {2.133)

where (x5 | X524 )o is the source-free time displacement amplitude

bt Ixit, Jo = e(i/ﬁ)so.de(tb-ta)= _1 @
V2m#i/ M sin(o(t b-ta)
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M 2 2 : !
xexP{2ﬁ sin @(tp -ta)[(x” +x2)cos @ (tp - 1a) - 225 X,

} " (2.134)
and F sourcect [j] the amplitude involving the classical source action

Fsource,cl [l] = e(i/ﬁ)snw.d =

I

[«

S
e {ﬁ Sin®(ty -14)

while F;";meﬂ ] is r 7 > qu 2 ratie source terms caused by the
fluctuations,
(2.136)
with the action being the
. S (2.137)
To complete the result itfemains to ¢ > Gr ‘ G(ne’)

We now calculamthe Green function of the diffntial operator - -2

:::::‘:i -i:r:: @tﬂﬂﬁ;&] mﬁtgﬁﬂyﬁhﬁnw by inverting
AN ARRHAR VAN em

except for the ambiguity by solutions of the homogeneous equation. The boundary
conditions for G (t, t ’) are those of the fluctuations &x (¢),ie. G (t, t ') has to vanish
if either ¢ or ¢’ or both hit and end point ¢, or ¢ p (Dirichlet boundary condition).

The Green function is symmetricin ¢ and ¢’. There are several ways of finding such

aG (t, t').



The simplest is by the following direct construction the result of which will be
referred to as the Wronskian construction . For different time arguments, ¢t > ¢ or

X o T (t, t ') has to solve the homogeneous differential equations

(a2-w2e () = o, (-aﬁ-aﬂ)a(t,r’) =0. (2.139)

The Green function G(t,t’) must, therefore be a linear combination of two

independent solutions of the homoger : s diffcséniial equation in ¢ as well as ¢, with
P \ €q

the boundary conditions to sii.as the e &r t >t’ we see that G (t, t ’)
. E——

must be proportional to

upper and at lower end, ¥ is)] s only the product solution -
Gt (2.140)
For t <t’ we obtain s
Gzt A (2.141)
The two cases can be
Gz (2.142)

where the symbols ¢, ¢ denote the largér/and smaller of the two times ¢,’,

respectively. Tl'axm ’l:mﬂ mwﬂ ’lngie limit of coincident
o~ TR T T
a,o(:,:') = -Cw cosw(tp - t)sin w(t'—ta). (2.143)

and for r <t’ by

a,G(:, t’) = Co sina)(tb - t')cosco(t “2a), (2.144)

At t =t’ we find the discontinuity
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UGt Narss-3Gt ) ar.e = Co sinafes -1,). (2.145)

This implies that - 8,2 G (t, t ') is proportional to a & -function,

-3°G(,t") = Co sinw(ty -14)8(t -+7). (2.146)

Fodsino(t<-tp). (2.147)

This exists only if ¢, - e ger multiple of 7 /-, just as the

amplitude without externa \c calculation of the time

displacement amplitude i (2 133).

Time Displacement Amp

| ZJ rﬂm‘wmm
M wsmw(t,, s sinw(ty -t)sinowl\t’ -t )1@1( ) (2.148)
QW’]@ MURIINENAE

Altogethcr e path integral in the presence of an external source j () reads

(5 lxata ) =f‘a>x(:)em{%['d'[% (20 %] =

Mo ex{_i_._ML 2 ix2) dosorlis <t -2xx}
V2mifisin w(tp - 1,) 3 Zﬁsinw(;,,-ta)[(xb X2) cosa (e - ta) - 245 %]
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ty
X exp {%ml dt[x, sinw(tp -t)+xp sinw(t -1,)]j(t)

hiMosino(ty -t,)

& 1 f‘dtf dt'sina)(tb-t)sina)(t'-ta)j(t)j(t')}.

ta (2.149)
If the source does not de d on t two exponents in (2.149) can be
integrated in time and beco
%
hlosino(ty -1,
1.)2
1) : (2.150)
Actually, this j = co } ined simpler by taking the
potential plus source term |
(2.151)

and quadratically comp . : :
aldfvbsndviny o
s S o b 4151 o] Dl

amplitude can plus immediately be written down as follows

A e R
V2m fisin @ (tp - 14) 2% sino(tp -1a)

-l et

-Z(x 12 R \]+i-‘—L:£L‘2}. 2.153
* Mo\ Mo TE Mo 2 )

(xptp |xata )j =const =
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From this we read off the total source action

S gwce =5 source, cl +S _?o‘urcg' fl =

cosatp -t5)-1). 5
wsin o(tp -ta)lj AR

1-cosoftp -ta) 1
+X5)j +———|tp 1o +2
wsino(ty -1a) (s +xa)j M

In the limit of a free parti¢ ' ,:'5,‘ | /] /,'— % = const result becomes particularly

(xbtb Ixata )j=const =

o - i
|
AX

-2: _—
Augangninens
PRIANTUAMINGIAY



	Chapter II Feynman Path Integrals
	Path Integral Representation
	Exact Solution for the Free Particle

	Exact Solution for the Harmonic Oscillator
	Path Integrals with the External Source
	Time Displacement Amplitude with A Source Term


