CHAPTER III

RESULTS AND DISCUSSION

3.1 Synthesis

p-tert-Butylcalix[4]areng was prepared by the condensation of p-tertbutylphenol with formaldehyde pra minimum amount of sodium hydroxide and diphenylether was used as solvent, as described by Gutsche [42]. The recommended conditions for refluxing were necessary to yield the desired tetrameric unit. The yield of p-terthutylcalix[4]arene prepared by this method (2.1.1) was 60% after recrystallizatiof in toluene. This compound was checked by ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectroscopy and the spectrum is shown in Figure A.1. ArOH was observed as a singlet, 50.32 ppm and HOArH a singlet, at 7.17 ppm. $\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ar}$ appeared as an AB system at 4.20 and 3.44 ppm with a coupling constant of $13,0 \mathrm{~Hz}$. The tert-butyl groups where observed as a singlet at 1.99 ppm . The ${ }^{1} \mathrm{H}$-NMR data shows that the synthesized p-tert-butylcalix[4] arene was in core coriformattion. The mask spectran (EI'), Figure A.20, reveals the molecular peak at $648(100 \%)$. The elemental analysis showed that the p-tent-putplealis 44 arene contained one oluenemolecule 6

2[(1-Formyl-2-phenyl)oxy]ethylbromide (2a) was prepared according to a reported procedure[43]. Salicylaldehyde was reacted with an excessive amount of 1,2-dibromoethane while refluxing in acetonitrile under nitrogen atmosphere. The reaction yielded 2 [(1-formyl-2-phenyl)oxy]ethylbromide (2a) as a major product (51\%) and 2,2'-(1,2-dioxyethane)bisbenzaldehyde (2b) as a
minor product (2\%). The characteristic of (2a) is a white solid, $\mathrm{Mp} .58^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum is shown in Figure A. 2 and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis is shown in Table 3.2. The spectrum confirms the proposed structure for (2a), Scheme I.

The minor product (2 b) is a disubstituted product which can be confirmed by its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum in deutereted chloroform (Figure A3 and Table 3.3).

25,27-bis[2-[(1-formyl-2-phenyl)oxy]ethyl]-p-tert-butylcalix[4]arene (3) was prepared from a ronction between 2[(1-formyl-2-phenyl)oxy] ethylbromide (2a) and p-tcr-butylealix[4]arene by refluxing the reaction mixture in acetonitrile uider nitregen atmosphere (Scheme I). The reaction was a replacement of hydroxyl protons by alkyl groups with a loss of HBr with an aid of potassium carbonate base. The reaction was complete in 63 hours. The pure 1,3-dialdehyde deriyative.(3) was obtained after a chromatographic separation on a silica gel colump with dichloromethane as eluent with 67% yield. The ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum of (3) is Gisplayed in Figure A.4. The analysis of the spectrum (Table 3.4) showed that (3) existed as 1,3-disubstituted cone-conformation, $\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ar}$ appeared as an AB system at 4.28 and $3.28 \mathrm{ppm}_{6}$ with कcoupling constant of $13.0 \mathrm{~Hz} z_{5}$ while $\mathrm{HOAr}-t-\mathrm{C}_{4} \mathrm{H}_{9}$ and ROAr-t-C4H appeared at 1.26 and 1.03 ppm , respectively.

Scheme IPpresents synthetic pathways for constructing Schiff base

 derivatives of p-tert-butylcalix[4]arene, 4(a-e) by condensing the dialdehyde derivative (3) with appropriate primary diamines; 1,3-propylenediamine, 1,4-butylenediamine, diethylene triamine, triethylene tetramine, and tetraethylene pentamine. The dialdehyde derivative (3) was refluxed with excessive amount (10%) of the appropriate primary diamino compound inacetonitrile-methanol for 9 hours. The reaction mixture precipitated as a white solid for $4(\mathrm{a}-\mathrm{c})$ and a yellow solid for 4 (d-e). The yields were $86 \%, 88 \%, 97 \%$, 24% and 28%, respectively. The reaction of (3) and diethylenetriamine proceeded with a faster rate and higher yield than the rest, this could be due to a, more or less, better fit of the primary diamine bridge onto the calixarene unit, thus leading to a more effective ring closure. All the products were white powders except for (4d) and (4e) which swere pale yellow. They were all solids melting with decomposition at temperaures ranging from $192^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$. They were characterized by ${ }^{-} \mathrm{H}_{-} \mathrm{NM}, \mathrm{FAB}^{+-} \mathrm{MS}$ techniques and elemental analysis. From the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ speofra, $4(a-b)$ were deduced to be 1,3 -bridge- p -tert-butylcalix[4]arene derivatives in cone conformation due to the presence of only two singlets for the ferebuty groips at 1.30 and 0.87 ppm for (4a), 1.29 and 0.83 ppm for (46), one AB system for $\mathrm{ArCH}_{2} \mathrm{Ar}$ at 4.44 and 3.27 ppm $(\mathrm{J}=13.0 \mathrm{~Hz})$ for $(4 \mathrm{a})$ and 4.44 and $3.22 \mathrm{ppm}(\mathrm{J}=13.0 \mathrm{~Hz})$ for (4 b) [38].

The imine protons afpeared at 8.73 ppm for (4a) and 8.81 ppm for (4b). When the bridge was exteruded 10 contain more than 4 carbon atoms, the ${ }^{1} \mathrm{H}$-NMR spectra of the obtained Schiff base-derivatives, 4(c-e), are more complicated. However, all three compounds exhitited $\mathbf{H C = N}$ signal in the same region as those of (4a) and (4b). (4c) gave two $\mathbf{H C}=\mathrm{N}$ signals at 8.77 and 8.67 ppm , indiogtting fwo conformationsinthe product. The integration ratios of signals in Figutre A. 7 were consistent with the structure proposed for (4c) in Scheme GI. The 9 ghef onformation oguld be partual cone which was not attempted to be assigned in this study. The elemental analysis and mass spectral data are consistent with the molecular formula of (4c). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of (4d) and (4e), Figures A. 8 and A. 9 , were obtained with difficulty due to the low solubility of the Schiff base in deuterated chloroform. The imine protons appeared at 8.73 and 8.72 ppm , respectively. The complex pattern for tert- $\mathrm{C}_{4} \mathrm{H}_{9}$
indicates a mixture of conformations with the same empirical formulas. The elemental analysis data of both (4d) and (4e) compounds were consistent with the proposed empirical formulas with one methanol molecule in the structure.

4(c-e) are novel compounds, constructed as models for calix[4]arene containing more than two nitrogen atoms in the bridging cap. The yellow color and low solubility (4d) and (4e) couldy indicate the existence of polymeric substance resulting from the connectiol or he long aza-chain with two calix[4] arene units.

The acidic form of the Sefiff base derivatives could be synthesized by hydrogenating the corresponding Schiff base compounds with NaBH_{4} in tetrahydrofuran and acidifying the product of the reduction reaction with HCl in methanolic solution as reported elsewhere [43]. $5(\mathrm{a}-\mathrm{c})$ were obtained in good yields, $95 \%, 81 \%$, and 89%, respeotively, NH_{2} signals appeared in the down field region, 9.80 ppm for (5a) and 9.13 ppm for (5b). 5 (c) exhibited two $\mathrm{NH}_{2}{ }^{+}$ signals at 9.99 and 9.56 ppm , with integation of $1: 2 . \mathrm{ArCH}_{2} \mathrm{NH}_{2}{ }^{+}$appeared at 4.63, 4.60 and 4.69 fpm , respectively, deve to the wifluence of the positive charge on the nitrogen atom. Interestingly, (5c) was obtained in pure cone conformation, despite the presence of other conformation in its precursor (4c). Mass spectrum, Fifigureg. 22 , shows appeak at $/ 1016.4$ Which indicates a loss of HCl molecules ffrom the original structure in the spectrometer. The same effect was obseryed for a Anass spectral minalypispof (5a) and (Sb) [459.C(5c) serves as a model with three ammonium sites for anion complexation study.
${ }^{1} \mathrm{H}$-NMR spectra of (5d) and (5e), Figures A. 13 and A.14, are not well defined. However, the $\mathrm{NH}_{2}{ }^{+}$signals can be observed at 9.15 and 9.25 ppm , respectively.The synthesized (5 d) and (5 e) are believed to be acidic forms of (4d) and (4e).

Basic forms of $5(\mathrm{a}-\mathrm{c})$ could be obtained by neutralizing the corresponding acidic form $5(\mathrm{a}-\mathrm{c})$ with sodium hydroxide as shown in Scheme IV. 6(a-c) were obtained in good yields, $80 \%, 49 \%$ and 89%, respectively. The $\mathrm{NH}_{2}{ }^{+}$signals in the acidic forms disappeared from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $6(\mathrm{a}-\mathrm{c}) . \mathrm{ArCH}_{2} \mathrm{~N}$ signals shifted noticeably to upfield region, from 4.63 (5a) to $3.83 \mathrm{ppm}(6 \mathrm{a}), 4.60(5 \mathrm{~b})$ to $3.82 \mathrm{ppm}(6 \mathrm{~b})$ and 4.69 (5c) to $3.82 \mathrm{ppm}(6 \mathrm{c})$. Methylene protons in the bridging caplalso moved in the same fashion. Mass spectrum of $(6 \mathrm{c})$, Figure A. 23 , and elencental analysis confirmed the proposed structure for $(6 \mathrm{c})$.

Two reactants, (6a) and (6 c) were selected in the preparation of methylammonium derivatives of fealix[4]arene for anion complexation study (Scheme V).

The difference in numbergofnitogen atoms in the bridge may provide a conclusion about anion complexang ability of the synthesized molecules. (7a) and (7b) were obtained by methriationg (6a) and (6c), respectively, first with methyl iodide and then with dimethylsulfate. OCH_{3} sugnals appear at 3.51 ppm for (7a) and 3.59 ppnr for (7b). $\mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)_{2}$ signals appear at 3.22 ppm for (7a) while (7b) gave two signals at $3.59 \mathrm{ppm}, \mathrm{CH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}$ and 3.29 ppm , $\mathrm{ArCH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3}$. ArOH2N signals. shifted notied ablypto uppfield region, from 3.83 (6a) to $4.84 \mathrm{ppm}(7 \mathrm{a})$ and 3.82 (6c) to 4.88 ppm (7b).

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (Figure A.19) is consistent with the proposed structure in Scheme V. $\mathrm{CH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}$ appeared at higher chemical Schiff (3.59 ppm) than $\mathrm{ArCH}_{2} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{2}(3.29 \mathrm{ppm})$ as was the case for $\mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+} \mathrm{CH}_{2}(9.99 \mathrm{ppm})$ and $\mathrm{ArCH}_{2} \mathrm{NH}_{2}{ }^{+}(9.56 \mathrm{ppm})$ in (5c). (7b) is believed to exist with $\mathrm{HSO}_{4}{ }^{-}$as
counter anions as in (7a) [44]. Mass spectrum of (7b), Figure A. 19 shows a peak at 1086.7, corresponding to its basic form i.e. a loss of three methyl groups from the diammonium derivative [44]. This observation is consistent with those observed in the mass spectra of (5a), (5c) and (7a), that is the second protons or methyl groups on the nitrogen atoms would be clipped off in the ionization chamber.

The anion complexation studs of (5a) has been studied in detail by Thammapatanajit [46]. The novel compounds (5c) and (7b), synthesized in this work, were brought to their anion complexing study along with (7a). The chosen compounds were of different number of nitrogen atoms (2 N and 3 N) and different ammonium salt rypes: $\mathrm{NH}_{2}{ }^{+}$and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}{ }^{+}$, on the bridge of p-tert-butylcalix[4]arenes of interest

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

3.2 Complexation Study

Ligand (5c) reacted heterogeneously with sodium nitrate in dichloromethane for 36 hours. In some reactions, the unreacted sodium nitrate was observed and filtered off. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the residue after filtration (Figures A. 27-35, Table 3.2.1) show up field shifts for $\mathrm{CH}_{2}-\mathrm{NH}_{2}{ }^{+}-\mathrm{CH}_{2}$ and $\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{NH}_{2}{ }^{+}-\mathrm{CH}_{2}$ signals. Typical mole ratio plots are presented in Figures A. 25 and A.26, respectively, suggesting a $1: 1$ inclusion complex. These upfield shifts indicated an incorporation of highly negative group onto ligand (5c), i.e, a rerpacement of Cl by $\mathrm{NO}_{3}{ }^{-}$[46]. The magnitude of the displacement of $\mathrm{CH}_{2}-\mathrm{VH}_{2}-\mathrm{CH}_{2}$ signal was considerably large, 40.9 Hz , as compared with 20.0 Hz of $\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{NH}_{2}-\mathrm{CH}_{2}$ signal displacement observed in the interaction between (5a) and niteate by Thammapatanagit and co-worker [46]. This could imply a stronger ifferaction in the triammonium derivative (5c) than the diammonium derivative $(5$ a) which was also observed by Motetaitis [47].

Interestingly, $A \mathrm{r}-\mathrm{CH}_{2}-\mathrm{NH}_{2}{ }^{+}$signal was not significantly disturbed by the nitrate inclusion, indicating that the nitate ion probably resided within the ammonium bridge, thus was too remote to signficantly affect the

The interaction between ligand (5 c) and sodium carbonate was similar to that observed with sodium nitrate. Typical mole ratio plots Figures A. 36 and A. 37 for $\mathrm{CH}_{2}-\mathrm{NH}_{2}{ }^{+}-\mathrm{CH}_{2}$ and $\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{NH}_{2}{ }^{+}-\mathrm{CH}_{2}$ signals, respectively, also suggest a 1:1 type for carbonate complex.

The interaction between $\mathrm{CO}_{3}{ }^{2-}$ and (5c) is stronger than that of $\mathrm{NO}_{3}{ }^{\text { }}$, as can be observed from the $\Delta \mathrm{Hz}$ magnitudes (studied on a 500 MHz instrument for the carbonate complex study and a 200 MHz instrument for the nitrate complex study). The stronger interaction could probably be due to a higher negative charge of $\mathrm{CO}_{3}{ }^{2-}$ than $\mathrm{NO}_{3}{ }^{-}$and a better fit for $\mathrm{CO}_{3}{ }^{2-}$ in the ammonium bridge than $\mathrm{NO}_{3}{ }^{-}$.

A competitive study (2.2.3,1) between nitrate and carbonate for (5c) showed the substitution of the included nitiate ion in (5c) by the carbonate ion. Figure A .47 shows a nomay upfield shift for $\mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+} \mathrm{CH}_{2}$ and $\mathrm{ArCH}_{2} \mathrm{NH}_{2}{ }^{+} \mathrm{CH}_{2}$ from 3.99 and 9.69 ppm to 3.78 and 3.56 ppm , respectively, for $\mathrm{NO}_{3}{ }^{-}$: (5c) ratio of $1: 1$ When the same number of equivalence of $\mathrm{CO}_{3}{ }^{2-}$ was added in this reaction mixture, (both signals shifted further to be at 2.91 and 2.89 ppm , respecively (Figure A.48). These final chemical shifts are in accordance with those observed jhe garbonate complexation study. When both anions were mixed with (3a) in the same reaction mixture (2.2.3.2), the same results of carbonate inchasion was/observed (Figure A.49). It can be concluded that (5 c)
(5a) changed to its basic form when interacted with carbonate ion [46]. This is nof the case for/(5c) since upfield shifts were observed in all carbonate complexation studies (vide supra). This implies lower K_{a} values of the ammoniog protonsing $(5 c)$ thanlin $(5 a)) ? \wedge 9 \& ?$ gel

One of the objectives of this study was to synthesize methyl ammonium salt derivatives of p-tert-butylcalix[4]arene which would not be affected by the basicity of the studied anions. When the methyl ammonium salt (7b) reacted with nitrate ion at $A: L$ ratios $1: 1$ and $4: 1$, the reaction
mixture turned yellow after the contact of the reactants. However, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (Figures A. 56 and A.57) are similar to that of (7b). The extent of the interaction between (7b) and nitrate ion may have been too weak to be detected by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic technique. A steric hindrance from the methyl groups around the bridging cap could have been a major contribution for the observed weak interaction. When the anion was changed to carbonate ion (A:L=1:1), a slight upfield displacement for $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ protons was observed ($\sim 0.1 \mathrm{ppm}$). This may signity a weak interaction between carbonate ion and (7b). The carbonate anion may have lied low from the positive charge of nitrogen sites, due to the steng effect mentioned above, resulting in the upfield shift of $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ sigrals. The stronger interaction of carbonate ion than nitrate to $(5 \mathrm{c})$ was also obscryed in this study (vide supra).

The anion complexation stidy between (7a) and nitrate or carbonate ion revealed similar results as in the ease of (7b). The reaction between (7a) and nitrate ion, $A: L=1:$ trand 4 , gave ill-defined ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, Figures A. 50 and A. 51 , with ecolor change from colorless to yellow as observed in the case of $(7 b)$ and nitrate ion. No signifeant change in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of reaction between (7a) and carbonate ion, $\mathrm{A}: \mathrm{L}=1: 1$ and $4: 1$, was observed. However, the study of (5a) with nitrate ion [46] showed $L_{2} A, L A$ and LA_{2} were formed during the cotrse of the sfudy. It is concluded, at this stage, that the interaction between (7a) and nitrate or carbonate ion is too weak to be detected by NMR spectroscopicotechnique./AP stronger Cinteraction of carbonate don than nitrate ion was not observed in this case.

Table $3.1{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (1)

Chemical Shift (ppm)	Multiplicity	Number of protons	Assignment
10.32	singlet	4 H	ArOH
7.17	singlet	8 H	HOArH
$4.20,3.44$	2 doublets	8 H	AB system ArCH $\mathrm{H}_{\mathrm{B}} \mathrm{Ar}$
1.19	$\mathrm{~J}=13.3 \mathrm{~Hz}$		
	singlet	36 H	$\mathrm{HOAr}-t-\mathrm{C}_{4} \mathbf{H}_{9}$

Table $3.2{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (2a)

Table $3.3 \quad{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (2b)

Chemical shift (ppm)	Multiplicity	Number of protons	Assignment
10.45	singlet	2 H	CHO
7.80	doublet	2 H	$\mathrm{Ha}_{\text {a }}$
7.59	riplet	$2 \mathrm{H}$	$\mathrm{H}_{\text {b }}$
7.10	iner		$\mathrm{H}_{\text {c }}$
7.07			$\mathrm{H}_{\text {d }}$
4.53			$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Table 3.4 ${ }^{1} \mathrm{H}$-NMR analysis of (3)

Table $3.5{ }^{1} \mathrm{H}$-NMR analysis of (4a)

Table $3.6{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (4b)

Table $3.7{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (4c)

Chemical shift (ppm)	Multiplicity	Number of protons	Assignment
$8.77,8.67$	2 singlet	2H	CHN
7.85-6.18	multiplet	18H	$\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{HOArH}$
			$\mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\text {d }}$
		,	ROArH and ArOH
4.80-3.30	multiplet	161	$\mathrm{ArCH}_{2} \mathrm{NH}$
			$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$
			$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$
4.41-3.33 2 doublets $\quad 8 \mathrm{H} \quad \mathrm{AB}$ system $\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ar}$			
1.50-0.70			$\mathrm{HOAr}-\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}$
			$\mathrm{ROAr}-t-\mathrm{C}_{4} \mathrm{H}_{9}$

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

Table $3.8{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (4d)

Chemical shift (ppm)	Multiplicity	Number of protons	Assignment
8.73	singlet	2 H	CHN
7.82-6.58	multiplet	18 H	$\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{HOArH}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{d}}$
			ROArH and ArOH
4.70-3.01	muitiplet	28	AB system $\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ar}$
			$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$
			$\mathrm{NCH}_{2} \mathrm{CH}_{2} \text { and } \mathrm{NH}$
1.30-0.82	tiplet	36	HOAr-t- $\mathrm{C}_{4} \mathrm{H}_{9}$
			ROAr-t-C $\mathrm{C}_{4} \mathrm{H}_{9}$

Table $3.9{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (5e)

Table $3.10{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (5a)

Chemical shift (ppm)	Multiplicity	Number of protons	Assignment
9.80	singlet (broad)	4H	NH
7.39-7.29	multiplet	8 H	$\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ and H_{d}
$\begin{gathered} \text { and } \\ 6.93-6.83 \end{gathered}$			
6.98	singlet	4 H	HOArH
6.76	singler		ArOH
6.71			ROArH
4.63	broa		$\mathrm{ArCH}_{2} \mathrm{NH}$
$4.36,3.22$ 2 doublets $\quad 8 \mathrm{H} \quad \mathrm{AB}$ system $\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ar}$			
4.22	singlet (broad)	, 8H	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$
3.69	singlet (broad)	4 H	$\mathrm{NCH}_{2} \mathrm{CH}_{2}$
2.83	singlet (broad)	2 H	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
1.24	singlet	18H	$\mathrm{HOAr}-t-\mathrm{C}_{4} \mathrm{H}_{9}$
0.86	singlet		ROAr-t-C $4_{4} \mathbf{H}_{9}$
ศูนย์วิทยทรัพยากร			
จหาลงกรณมหาวทยาลย			

Table $3.11{ }^{1} \mathrm{H}$-NMR analysis of (5b)

Chemical shift (ppm)	Multiplicity	Number of protons	Assignment
9.13	singlet (broad)	4H	NH
7.40	doublet	2 H	$\mathrm{Ha}_{\text {a }}$
7.23-7.17	multiplet	21	H_{b}
6.97	let	4 H	HOArH
6.87-6.74	plof		H_{c} and H_{d}
6.78			ArOH
6.68		4	ROArH
4.60	singlet (broad		$\mathrm{ArCH}_{2} \mathrm{NH}$
$4.32,3.15$	oub		AB system $\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ar}$
4.18	singlet (broad)	$8 \mathrm{H}$	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$
3.18	singlet	4H	($\mathrm{NCH}_{2} \mathrm{CH}_{2}$
2.26	singlet (broad)	4H	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
1.23	singlet	18 H	HOAr-t-C4 C_{4}
0.85	$\begin{aligned} & 6 \text { singlet } \\ & \hline \end{aligned}$	$\begin{gathered} 28 \mathrm{H} \\ \sim 9 \mathrm{Ne} \end{gathered}$	$\mathrm{BOAr}-t-\mathrm{C}_{4} \mathbf{H}_{9}$

Table $3.12{ }^{1} \mathrm{H}$-NMR analysis of (5c)

Table $3.13{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (5d)

Table $3.14{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (5e)

Table $3.15{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (6a)

Table $3.17{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (6c)

Chemical shift (ppm)	Multiplicity	Number of protons	Assignment
7.24-7.14	multiplet		$\mathrm{H}_{\mathrm{a}} \text { and } \mathrm{H}_{\mathrm{b}}$
7.03	singlet	1) 4 H	HOArH
6.91-6.78	multiplet singlet	164	$\mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\text {d }}$
6.70			ROArH
4.44, 3.24	$\frac{\text { singiet }}{2 \text { doublet }}$		2 doublet $\quad 8 \mathrm{H} \quad \mathrm{AB}$ system $\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ar}$
4.36, 4.29	2 singlet		$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$
3.82	singlet		$\mathrm{ArCH}_{2} \mathrm{NH}$
2.49	singlet (broad	4 H	
2.38	$\begin{array}{l\|r} \text { singlet } & 18 \mathrm{H} \\ \text { singlet } & 18 \mathrm{H} \end{array}$		
1.28			HOAr-t-C4 C_{4}
0.89			ROAr- t - $\mathrm{C}_{4} \mathrm{H}_{9}$
ศูนย์วิทยทรัพยากร			

Table $3.18{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (7a)

Table $3.19{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of (7b)

Scheme I

Scheme II

Scheme III

Scheme IV

Scheme V

