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CHAPTER I 

INTRODUCTION 

��� GENERAL 

Nowadays, nanotechnology plays an important role in various disciplines 

including biology, chemistry, physics, medicines and engineering (Booker and 

Boysen, 2005). For instance, nano-crystals are employed in household lightings to 

convert electricity into light instead of wasting away into heat. A newly invented 

device called nano-shell is used in the medical applications to destroy a tumor after 

activated by a laser beam without any harm to contiguous cells. Nano-crystalline 

silicon carbide is found in the hard protective coatings for cutting tools and computer 

hard disks. According to those various applications in nanotechnology, advanced 

researches on material properties of nano-scale or nano-structured materials are 

essential in order to profoundly understand their behaviors.   

Investigation of nano-mechanical properties can be achieved by either 

conducting experiments or performing mathematical simulations. Several 

experimental researches have been found in the literature; for instance, Wong et al. 

(1997) utilized an atomic-force microscopy to determine the mechanical properties of 

isolated silicon carbide (SiC) nano-rods (NRs) and multi-wall carbon nano-tubes 

(MWNTs), Mao et al. (2003) employed the atomic-force microscope to investigate 

the hardness of both ZnO and SnO2 nano-belts, and Poncharal et al. (1999) statically 

and dynamically measured the bending modulus of carbon nano-tubes in a 

transmission electron microscope. It is generally acknowledged that experimental 

methods yield results reflecting real behavior. However, it is still found highly 

dependent on experimental environments and, more importantly, expensive due to the 

requirement of sophisticated equipments and high-precision testing procedures. As a 

result, the latter approach using mathematical simulations has become an attractive 

alternative and been widely used to develop fundamental understanding and further 

predict complex phenomena. In addition, once integrating essential features and 

properly calibrated with data from basic experiments, mathematical models are found 



2 

capable of simulating responses under various conditions. Within the context of 

modeling nano-scale influence of solids, two predominant mathematical models, one 

known as the molecular or atomistic models and the other corresponding to the 

modified or enhanced continuum-based models, have been commonly employed in 

the literature. The molecular-based models, while providing more precise response 

prediction, are highly complex and generally consume tremendous computational 

resources because billions of atom at a nano-scale need to be modeled whereas the 

continuum-based models are less complicated and much more computationally 

efficient. 

Resulting from atomistic simulations, it was discovered that behaviors of 

atoms near the surface differ from those of the bulk. Hence, the solid cannot be 

treated as a homogeneous body but needs to be divided into two parts, i.e. the bulk 

and the surface. To utilize a continuum-based model instead of the molecular model, 

it must be modified properly by incorporating the influence of the surface free energy. 

There have been various studies carried out by using modified continuum-based 

techniques; for instance, He et al. (2004) studied the size-dependent mechanical 

responses of ultra-thin elastic films of nano-scale thickness and Wang et al. (2010) 

used a finite element method together with the Gurtin-Murdoch surface elasticity 

model to analyze the size-dependent deformation of two-dimensional nano-sized 

structures with surface effects. All of those researches verified that mathematical 

models properly enhanced to account for the surface energy effects and size-

dependency were able to simulate nano-scale influence and correctly predict 

responses of soft solids.  

Due to the rapid growth of interests and applications of nano-technology, the 

investigation of mechanical behaviors and responses at a nano-scale level has gained 

significant attention from many researchers and various sophisticated models have 

been proposed to study those phenomena. Problems of surface loadings and contacts 

are considered fundamental in nano-mechanics and have a wide range of applications 

including the investigation of mechanical properties such as hardness and elastic 

modulus. Work towards the modeling of near-surface fields under different surface 

loading conditions by using modified continuum-based models to characterize the 
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surface energy effects has started gaining attention from several researchers in the 

past two decades since it offers computationally efficient techniques capable of 

reasonably predicting the behavior of materials at a nano-scale level. 

��� BACKGROUND AND REVIEW

The concepts of surface energy and surface stress were originally introduced 

by Gibbs (1906). The quantity �  is defined to represent the excess free surface energy 

per unit area owing to the presence of the surface. Gibbs also remarked that to 

elastically stretch a pre-existing surface for solid, there is another type of fundamental 

parameter called the surface stress that are  involved in the behavior of the surface. In 

order to deform such a solid, excessive work is needed to stretch the surface before 

straining the bulk. For better understanding, Gibbsian thermodynamics, one of the 

most useful tools for studying various surface phenomena, can be found in several 

studies of surface stresses such as Camarata (1994, 1997) and Fischer et al (2008). 

Camarata (1994, 1997) derived the relationship between the surface stress and surface 

free energy as 

�� ��
��

�� ��
�
	

� 

	

                             (1.1) 

where ���  and ���  denote the surface stress and surface strain, respectively, and ���

is the two-dimensional Kronecker delta symbol. It should be noted that �  is a scalar 

quantity, while the surface stress is a second order tensor in the tangent plane of the 

surface and the strain normal to the surface is excluded in Eq. (1.1) and the Greek 

indices range from 1 to 2.  

 Fischer et al (2008) interpreted a surface as a layer attached by the excess 

energy where some of them are usually termed as the surface energy� . Due to the 

difference between the numbers of nearest neighbors of surface atoms and those of 

bulk atoms, it induces a corresponding redistribution of electronic charge resulting in 

lesser spacing of the surface layer which differs from the bulk value (Sander, 2003). 

Additionally, the energy at the free surface is generally different from that of the 
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atoms in the bulk (Dingreville et al., 2005). The ratio of the surface free energy �

(J/m2) and the Young’s modulus E (J/m3), denoted by ��� (m), is an inevitable 

material parameter (Yakobson, 2003). This intrinsic length scale ���  is usually 

small, less than one Angstrom, for metallic materials. Conversely, for soft solids such 

as polymer gels and biological materials, the intrinsic length scale is much larger in 

spite of having a little lesser surface energy� . This is because the elastic modulus of 

the soft solid is nearly 7-8 orders smaller than that of conventional solids. It is obvious 

that the surface energy plays an important role on the properties of materials in a 

nano-scale level. Thus, for this particular type of problems, the material properties 

become size-dependent (He and Lim, 2006). Overall, in order to obtain the correct 

behavior of soft-solid materials or nano-scale materials, the effect of surface stresses 

should be integrated into the classical continuum models. 

 Gurtin-Murdoch model, one of the models that include the surface energy 

effects into the continuum models, proposed by Gurtin and Murdoch (1975, 1978) and 

Gurtin et al. (1998) has been extensively employed. The surface which has its own 

properties is assumed to be very thin and modeled as a mathematical layer of zero 

thickness perfectly bonded to the bulk. For an isotropic elastic surface, a linearized 

surface constitutive relation is given by 

,2( ) ( )s s s s s s s s su�� �� �� �� �� � �� � � � � �  � � � �� 
 � 
 
 
                                      (1.2) 

where the superscript ‘s’ denotes quantities corresponding to the surface, s�  and s

are surface Lamé constants, and s�  is the residual surface tension under unstrained 

conditions. 

The validity of Gurtin-Murdoch model has been examined and verified in 

various investigations. For instance, Miller and Shenoy (2000) used the Gurtin-

Murdoch constitutive relation to investigate the behavior of bars, beams and plates 

under uniaxial tension and bending. Results from their study were compared with 

those from atomistic simulations and good agreement among those results was 

deduced. Shenoy (2002) further studied the work of Miller and Shenoy (2000) by 



5 

adding the torsional rigidities of nano-sized structural elements and applied to the case 

of nano-scale bars in torsion. The obtained results were compared with solutions from 

atomistic simulations for the torsion of various metal squared bar and found in good 

agreement by the assumption that the surface energy depends only on the surface 

strain. Dingreville et al. (2005) demonstrated size-dependency of elastic properties of 

nano-sized particles, wires and films by deriving analytical expressions. The effective 

Young’s modulus of thin films of various thicknesses in their analytical formulation 

was found in excellent agreement with their results by using molecular static (MS) 

simulations. Moreover, they also pointed out that their proposed formulation were 

much more computationally efficient than ones from MS simulations. This ensures 

the advantages of using continuum-based models. Consequently, Gurtin-Murdoch 

continuum-based model has been widely used in the study of nano-scale problems. 

For instance, He et al. (2004) and Huang (2008) utilized Gurtin-Murdoch constitutive 

relation to study the size dependence of the mechanical responses of ultra-thin elastic 

films. Sharma and Weeler (2007) and Sharma et al. (2003) employed the Gurtin-

Murdoch model in the study of size-dependent elastic fields of spherical and 

ellipsoidal nano-inclusion and Tian and Rajapakse (2007a, 2007b) used the same 

model to investigate the size-dependent elastic field of a nano-scale circular and 

elliptical inhomogeneities. Furthermore, for nano-indentation problems, Zhao (2009) 

used the Gurtin-Murdoch model to study the mechanical responses of a classical 

indentation problem on a half-space with the presence of the surface energy effects 

for various profiles of indenters. However, his formulation was based on an 

incomplete Gurtin-Murdoch model since the out-of-plane contribution of the surface 

tension was ignored. However, their results still indicated the size-dependent 

behavior. Later, Pinyochotiwong et al. (2010) investigated mechanical responses of 

frictionless, rigid indentations acting on an elastic half-space with consideration of 

surface energy effects by using a complete Gurtin-Murduch model. Their numerical 

results also showed the size-dependency and the presence of the out-of-plane term 

emphasized the significance of the surface energy effects. 

 For surface-loading problems, Wang and Feng (2007) studied the responses 

of a half-plane subjected to surface pressure by considering only the influence of a 
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constant surface tension and ignoring the surface elastic constants. Huang and Yu 

(2007) extended the work of Wang and Feng (2007) by incorporating the surface 

elastic constants. Recently, Zhao and Rajapakse (2009) studied the near-surface 

responses and size dependency of a two-dimensional and an axisymmetric three-

dimensional infinite elastic layers under surface loading by using Fourier and Hankel 

integral transform techniques. It is remarked that the Gurtin-Murdoch model used in 

their study was still not completed since the out-of-plane terms were ignored in their 

formulation. Intarit et al. (2010) studied the effect of surface stresses on the near-

surface responses of semi-infinite dislocations and buried loads in a half-plane. Again, 

the contribution of out-of-plane terms was still not considered. Most recently, Intarit 

et al. (2011) generalized the work of Intarit et al. (2010) by considering the out-of-

plane terms in the Gurtin-Murdoch model in the investigation of a two-dimensional 

elastic layer under buried loading.  

On the basis of an extensive literature survey, the study of near-surface 

responses of a three-dimensional elastic layer using a complete Gurtin-Murdoch 

model has not been recognized. An analytical solution of a three-dimensional elastic 

layer subjected to arbitrary axisymmetric surface loads by using a complete Gurtin-

Murdoch model is still not available in the literature and is the main focus of the 

current research. Results from this fundamental problem should be not only essential 

to gain insight into the nano-scale influence but also potentially useful in the 

investigation of more complex boundary value problems such as nano-indentations.  

��� RESEARCH OBJECTIVES 

The key objectives of this research are (i) to construct a complete analytical 

solution for elastic fields of an infinite, rigid-based elastic layer under the action of 

axisymmetric surface loadings and the surface energy effects, (ii) to investigate the 

influence of the surface energy effects on the elastic fields and the size-dependency, 

and (iii) obtain certain surface Green’s functions of the corresponding layer.  
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��� RESEARCH SCOPES 

The proposed investigation is to be carried out within the following context 

and assumptions: 

1) a layer is three-dimensional with its bottom surface rigidly fixed; 

2) both normal and tangential surface loads are axisymmetric; 

3) a bulk material is homogeneous, isotropic and linearly elastic; and 

4) surface energy effects are modeled by complete Gurtin-Murdoch surface 

elasticity 

��� RESEARCH METHODOLOGY 

An analytical procedure is proposed to solve a corresponding boundary value 

problem and the involved methodology can be briefly summarized as follows 

1) Governing equations are formulated as follows. The governing equation 

for a bulk is expressed in terms of Love’s strain potential whereas the 

governing equation of a surface is derived directly from the Gurtin-

Murdoch surface elasticity model. 

2) A general solution for the bulk is derived by using Hankel integral 

transform and its inversions and its final form is given in terms of 

arbitrary functions. 

3) The boundary conditions at the top and bottom surfaces of the bulk are 

enforced along with applying Hankel integral transform to determine all 

arbitrary functions. The elastic fields (i.e. displacement and stress fields) 

are left in terms of the Hankel integral inversion.

4) A selected numerical integration is adopted to evaluate all involved 

integrals. 

5) Results of elastic fields for general axisymmetric loading conditions are 

then specialized to construct fundamental solutions of a layer under 

special surface loadings. 
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��� RESEARCH SIGNIFICANCE 

This research proposes a complete analytical solution of a three-dimensional, 

infinite elastic layer under the action of axisymmetric normal and tangential surface 

loading by taking surface energy effects into account. The integration of surface 

elasticity in the mathematical model provides an alternative, computationally cheap, 

continuum-based approach for investigating the influence of nano-scale on various 

responses of interest. As a result of using a complete Gurtin Murdoch constitutive 

relation for modeling the surface energy effects, proposed formulation can 

demonstrate the influence of the out-of-plane term resulting from residual surface 

tension on material stiffness.  

Furthermore, the solution of elastic fields are also specialized to construct 

fundamental solutions of a layer under a unit normal concentrated force, a unit normal 

ring force and a unit tangential ring force. Such basic results constitute the essential 

basis for the development of boundary integral equations governing other related 

problems, e.g., nano-indentations.



CHAPTER II

THEORETICAL CONSIDERATIONS 

 In this chapter, an axisymmetric problem for an infinite, rigid-based elastic 

layer under the action of surface loads and the surface energy effects is presented. The 

corresponding boundary value problem is formulated based on a classical theory of 

linear elasticity for the bulk and a complete Gurtin-Murdoch constitutive relation for 

modeling the surface energy effects. Love’s strain potential technique and Hankel 

integral transform are adopted to obtain the general solution for the bulk whereas the 

surface equations and conditions at the rigid based supply sufficient boundary 

conditions to determine all arbitrary constants. 

2.1 PROBLEM DESCRIPTION 

Figure 2.1 A three-dimensional, infinite, rigid-based, elastic layer subjected to 

axisymmetric surface loading 

Consider a three-dimensional, infinite, rigid-based elastic layer of thickness h

under the action of arbitrary axisymmetric surface loads as shown schematically in 

Figure 2.1. The reference cylindrical coordinate system is chosen such that the origin 

is located at the free surface and the positive z-axis directs downward whereas other 

axes follow the right-hand rule. The normal surface load and the tangential surface 

load are denoted by p = p(r) and q = q(r), respectively. In the modeling, the entire 

domain is treated as a body consisting of two different parts, the bulk which is 

homogeneous and isotropic and occupies a region defined by 0 < z � h and the zero-

p(r) 

�� q(r) 

��

��
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thickness layer which occupying the plane z = 0 and is perfectly bonded to the bulk. 

In the present study, the medium is assumed to be free of the body force and remote 

loadings. 

The primary objective is to determine the complete responses (e.g. the 

displacement and stress fields) within the bulk due to the arbitrary (axisymmetric) 

applied surface loads and the presence of the surface energy effects.  

2.2 BASIC FIELD EQUATIONS 

For the bulk, the governing field equations follow directly the classical theory 

of linear isotropic elasticity (e.g. Barber, 1992; Timoshenko et al., 1951). In the 

absence of body forces and under axisymmetric deformation, the equilibrium 

equations, constitutive laws and strain-displacement relations expressed in terms of 

cylindrical coordinates are given by 

����� ��

� � �
��� �� � �	 	


 
 �
	 	

                                        (2.1a)  

��� �� ��

� � �
� � �	 	


 
 �
	 	

                        (2.1b) 

� � ��� �� �����  � � � �� 
 
 
                                 (2.2a) 

� � ��� ���� ��� �  � � �� 
 
 
                                (2.2b) 

� � ��� �� ����� � �  � �� 
 
 
                                 (2.2c) 

��� ��� ���                                                        (2.2d) 

�
��

�
�

�
	

�
	

                                (2.3a) 

��
���� �                                                             (2.3b) 
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�
��

�
�

�
	

�
	

                                                        (2.3c) 

�
� �
�

� �
��

� �
� �

�
	 	

� 

	 	

                                           (2.3d) 

where � 	 	 	 
�� �� ����� � � �  are non-zero stress components; � 	 	 	 
�� �� ����� � � �  are non-

zero strain components; � 	 
� �� �  are non-zero displacement components; and � and 

  are Lamé constants of the bulk material.  

For the surface, the equilibrium conditions on the surface in terms of the 

generalized Young-Laplace equation (Povestenko, 1993), a complete Gurtin-Murdoch 

constitutive relation (e.g. put some references) and strain displacement relation are 

given, for the case of axisymmetry and flat surface, by 

�
� � �

� ��
����

�� �

	

 �

	� �
��� ��

�
�

�

 
 
 �                     (2.4a) 

�
� � �

� �
�� ��

�� �

	
� �

	� �
� �

�
�


 
 
 �                                   (2.4b) 

�� � � �� � � � � � � �
�� �� ��� � �  �  � �� 
 
 
 
                    (2.5a) 

�� � � �� � � � � � � �
���� ��� � �  �  � �� 
 
 
 
                 (2.5b) 

�
� � �
��

	�
	�

� ��                                                   (2.5c) 

�
� �
��

	�
	�

� �                                   (2.6) 

�
� ��

���� �                    (2.7) 
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where the superscript ‘s’ is used to denote the quantities corresponding to the surface; 

��  and �  are surface Lamé constants; ��  is the residual surface tension under 

unstrained conditions. By combining equations (2.4)-(2.7), it leads to two governing 

field equations for the surface in terms of the surface displacement: 

�

� � � �


 
 
 � 
 
 
 �� � � �


� � � �

�

� � �

�� �� �
� �� �� � � �

�

� � � ��
� � � �

�� �

� 	 � 	� �	 
 �
	� � 	� � 	� �
�  �  �


           (2.8)

�

� �

 
 
 
 �� �

� � �
�� �� � � �

� ��
� � �

�� �

	� 	�	 � �
	� 	� � 	�

��  �                    (2.9) 

where various normalized quantities appearing in (2.8) and (2.9) are defined by 

� �� �� �� � � , � ��� �
� �� � , � ��� �

� �� � , � 
��� ��� ��� �  � , � 
��� ��� ��� �  � , 

� �  � , � ��� � , � ��� � , � �� � � , � �
 
 � , � � 
 
� � ��� � ���  � �  �  and 

��
� �� � � 
 . 

2.3 GENERAL SOLUTION FOR BULK

A general solution for the normalized displacement and normalized stress of a 

set of governing equations (2.1)-(2.3) can readily be obtained in terms of Love’s 

strain potential � as follows (e.g. Sneddon, 1951; Selvadurai, 2000): 

�

� ���� � �
 	 �

� � 

	 	

                  (2.10a) 

�
�

�
� �� � ���� �
  	 �

� 
 � � � 

	

                  (2.10b) 

�
�

��� ��
�� � � �

�


	� 	 �� �� � �� �
 	 	 	� �
               (2.10c) 

� �
�

� �

� � � � � ���
�


	� 	 �� �� � �� �	 	 	
 � �

                    (2.10d) 
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� �
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� �
�� � �
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 	� 	 �� �� � �� �	
 	� �
              (2.10e) 

� �
�

�

�

� ��
� �

� �
�� � � �

�


 	 	 �

� � � �
	
 	 	

                (2.10f) 

where 	 	 	
� � 
 


		 	

� �
�

� �

�

� �� �
 is the axisymmetric Laplace’s operator, � ��� �� � ,  

� ��� �� � , � 
��� ��� ��� �  � , and � 
��� ��� ��� �  � . For the above field to be 

an elastic state, the Love’s strain potential �  must be bi-harmonic or, equivalently, 

satisfy the following equation   

� �� � �                       (2.11) 

Applying Hankel integral transform to the bi-harmonic equation (2.11) leads to 

�
�

�

�
� 	 � �

	 � �
	�

� �
� �

� �� �� �
� �

                   (2.12) 

where 

�

�

� 	 � � 	 � � �� � � �  � �	�� �
�

� ��                                           (2.13) 

with � �� �  denoting the Bessel function of the first kind of order n. A general 

solution of the homogeneous ordinary differential equation (2.12) is given by 

� 	 � � � � �� �� � � �� � � �� �� �� �� 
 
 
              (2.14) 

where A, B, C, and D are arbitrary functions of �  and can be determined from 

boundary conditions. 

By employing Hankel integral transform inversion, equations (2.10a)-(2.10f) 

can be written as 
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�
�

�

� �� � ��
	��  � 	
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 � � �
�

� 
 �                           (2.15a) 

�
�

��
�

� �� � ��
	 �� �  � 	
	�

�  � � �
� �  

� � 
! "
! "# $

�            (2.15b) 

�
� �

� ��
� �

� �
� � � �

�� �� �� ��
��

	� 	 � 	� � 	  � 	
� � 	�	�

 � � � � � � � �
 

� �� ��  
� �� 
 �! "� �
 	 
! "# $� �
� �  (2.15c) 

� �
�

� �
� ��

� �

�
� � � �

� �

	 � 	� 	� � 	  � 	
	� � 	�	���

� � � � � � � �


� ��  
� � 
! "


 ! "# $
� �        (2.15d) 

� �
� � � �
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�

��
�

� �� �
� �

� � � �
��

	 � 	�  � 	
	�	�

 � � � � �
 

� �  
 

� ! � "


 
! "# $
�              (2.15e) 

� � � �
�

� �
��

�

� ��
� 	 � � �

� � � �
��

	 � � �  � 	
	�

 � � � � � �
 

� �  

� ! 
 "


 
! "# $
�             (2.15f) 

Finally, by inserting the general solution for the function G given by (2.14), the 

displacement and stress fields can finally be expressed in terms of the four arbitrary 

functions A, B, C, and D as 

% &�
�

�

� �� �� � �� � � �� �
�� � � � � � � � �  � 	� � � � � � � � �

�
��  �  � 
 � 
 � 
 
 
# $ # $�    (2.16a) 

�
�

�

� �
� �� � � � � � �

� �� � ��

� �
�� � � � � � � � �  � 	� � � � � � � � �

 

�
�' (�  �  

� � 
 
 
 
 � �) *! " ! "
 
# $ # $+ ,
�

                (2.16b) 
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        � ��
�

�

�
�� � �� � � �� �� � � � � � � �  � 	

�
� �� � � � � � �

�
��  �  � � 
 � 
 
 
# $ # $�        (2.16c) 
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 �

        
� ��
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�
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�
� �� � � � � � �
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��  �  
 � 
 � 
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   (2.16d)
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�
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 � 
 �) *! " ! "� � � �
 
� � � �- -# $ # $+ ,

�                      

                (2.16e) 
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�� � � � � � � � �  � 	� � � � � � � � � �

 

�
�' (�  �  � � � �- -� � � 
 
 
) *! " ! "� � � �
 
� � � �- -# $ # $+ ,

�   

                 (2.16f) 

2.4 SOLUTION OF PARTICULAR BOUNDARY VALUE PROBLEM  

To obtain the complete solution of a particular boundary value problem, the 

four arbitrary functions A, B, C and D must be determined. This can be achieved by 

enforcing the boundary conditions at the top and bottom surfaces of the bulk (i.e. at z

= 0 and z = h). By utilizing the surface equations (2.8) and (2.9) along with assuming 

that the residual surface tension ��  is constant throughout, the normal and shear stress 

components ���  and ���  on the top surface of the bulk must satisfy the following 

relations:  



16 

�

� �
� � 
 �� �


 
� �

�

��

� � �

�� �� �� ��

�
� �

�� �

	 � 	� � �
	� � 	�

���
 

                       (2.17) 
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                (2.18) 

where � is equal to 1 if the surface effect is not considered, otherwise it is zero and 

�  is equal to 1 if the out-of-plane term is taken into account in the mathematical 

model, otherwise it is zero. The continuity of the displacement across the interface of 

the bulk and surface has also been employed, i.e. � �
� �� �  and � �

� �� � . Due to the fully 

fixed rigid-based condition, all components of the displacement vanish at �� �

where � ��� � , i.e.  

�
� �� � �

�                       (2.19) 

�
� �� � �

�                       (2.20) 

By taking Hankel integral transform of all four boundary conditions (2.17)-(2.20) 

along with exploiting the relations (2.16a)-(2.16f), it leads to a system of four linear 

algebraic equations for A, B, C and D
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 �# $ # $             (2.23)
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          (2.24)

where the functions � �� �  and � �� �  are given in terms of the surface loads � �� �  and 

� �
 �  by 

� � �

�
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�

� ��                                            (2.25) 

� � �

�

� � � �� 
 �  � �	�� �
�

� ��                                        (2.26) 

Equations (2.21)-(2.24) are sufficient for uniquely determining A, B, C, and D as 

functions of the transform parameter�  and the applied surface loads � �� �  and � �� �

and the final explicit solution is given by 
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where 
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Once the functions A, B, C, and D are obtained from (2.27)-(2.28), both the 

displacement and stress at any point within the bulk can be computed from (2.16a)-

(2.16f). Numerical evaluation of all involved integral is briefly discussed in the next 

chapter. 

It is evident that by setting the parameters � and �  to zero, the solution 

obtained is identical to that of a classical problem of a three-dimensional, infinite 

elastic layer under surface loadings (Sneddon, 1951; Selvadurai, 2000). Furthermore, 

by setting �  to zero, the above results reduce to those presented by Zhao and 

Rajapakse (2009) and Zhao (2009). These two special benchmark solutions can be 

employed in the verification procedure. In addition, results for the special case of a 

half space can also be obtained by simply taking sufficiently large layer thickness h.  



CHAPTER III 

NUMERICAL IMPREMENTATION 

Although all functions A, B, C, and D are obtained in a closed form in terms of 

the transform parameter� , determination of the displacement and stress fields still 

requires the evaluation of integrals corresponding to Hankel transform inversion. It is 

apparent that all involved integrals contain relatively complex integrands and they 

cannot be directly integrated to obtain a closed form elastic field.  In this chapter, a 

selected numerical technique for efficiently and accurately integrating those integrals 

is outlined below. 

3.1 TRUNCATION 

It is evident that all integrals appearing in (2.16a)-(2.16f) are improper 

integrals with their lower and upper limits equal to zero and infinity, respectively. To 

evaluate such integrals numerically, it is common to truncate the domain of 

integration from [0,� ) to [0, �� ] where ��  is a finite real number. The approximate 

displacement and stress fields in terms of the truncated integrals are given by  
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While the convergence of the above approximate solution to an analytical solution is 

ensured as ��  approaches infinity, it is standard, in the numerical calculation, to 

choose a sufficiently large number ��  such that the error from the approximation is 

less than a specified tolerance.   

3.2 INTERVAL SUBDIVISION 

Due to the oscillating nature of their integrands, the numerical integration of 

involved integrals in (2.16a)-(2.16f) by using Gaussian quadrature over a single 

interval requires a large number of integrations points. To enhance the accuracy and 

computational efficiency, the interval [0, �� ] is first partitioned into N sub-intervals 

denoted by [ �� �� ,
�� ], [

�� ,
�� ], [

�� ,
�� ], …, [ ���� , �� �� � ] and the integral over the 

interval [0, �� ] is obtained from the sum of all sub-integrals over each sub-interval as 

follows:      
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where � �� � ��  denotes any integrand. As the number of sub-intervals increases, the 

oscillating behavior of the integrand in each sub-interval should disappear and they 

can accurately be integrated by using low-order Gaussian quadrature. 

3.3 NUMERICAL QUADRATURE 

By using the change of variable, the Gaussian quadrature formula for each 

sub-interval in (3.2) is given by  
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� �.� �               (3.3)

where �� � 
 
� �

��� � �� �� � ��� �� � � � � , �� �� ���� �� �  denotes the jacobian of 

transformation, �

��  is the location of an integration point, wi is the corresponding 

weight, and n is the number of integration points. 

3.4 CONVERGENCE STUDY 

In the present study, extensive numerical experiments are to be performed to 

investigate the influence of the truncation parameter �� , the number of sub-intervals 

N, and the number of integration points n on the accuracy of the numerical 

integration. Such three parameters must be chosen properly to ensure the accuracy of 

the numerical results while consuming reasonable computational time.  

Both the number of integration points and the number of sub-intervals have a 

direct impact on the accuracy of the numerical integration for a fixed truncation 

parameter �� . In general, by increasing the number of sub-intervals, each sub-integral 

over each sub-interval requires less number of integration points since the oscillating 

behavior of the integrand gradually disappear. In the present study, for a fixed 

truncation parameter �� , the number of sub-intervals N is increased until the integral 

can be integrated correctly (for a specified tolerance) by using a low order Gaussian 

quadrature over each sub-interval. The ratio �� ��  is then computed and used to 

indicate the size of the sub-interval over which the integrand is sufficiently well-
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behaved to be integrated using low order Gaussian quadrature. Finally, a proper 

choice of the truncation parameter ��  is obtained by increasing such upper limit until 

the value of the integral converges or remain unchanged (for a specified tolerance). It 

is important to remark that in such process, the number of sub-intervals must be 

increased accordingly in order to maintain the size of the sub-intervals ( �� �� ) to be 

sufficiently small to allow the integration by low-order Gaussian quadrature. 



CHAPTER IV 

NUMERICAL RESULTS 

In order to determine all elastic fields by the selected numerical technique 

mentioned in chapter 3, a computer code must be implemented and then verified by 

comparing with available benchmark solutions to assure its accuracy. After that, 

extensive studies for both cases of axisymmetric normal and axisymmetric tangential 

surface loads are investigated to understand the nano-scale influence through the 

surface stress effects (with/without the contribution of residual surface tension) and 

size dependent behaviors. Moreover, numerical results of a layer under a unit normal 

point load, a unit normal ring load and a unit tangential ring load which are benefit for 

solving nano-indentations problem are also demonstrated and fully discussed. 

4.1  VERIFICATIONS 

Numerical results obtained from the developed computer program are verified 

with various benchmark solutions. For examples, numerical solutions without surface 

energy effects of an elastic layer under normal concentrated load are compared with 

analytical solutions presented by Bumister (1943, 1945) and those of a half-space 

subjected to uniformly distributed vertical load are verified with solutions of Ahlvin 

and Ulery (1962). Furthermore, numerical results with no surface energy effects and 

numerical results accounted for surface energy effects without the contribution of the 

out-of-plane term of an elastic layer under uniformly normal distributed load are 

compared with those proposed by Zhao (2009). As evident from results presented 

further below, numerical solutions obtained from the present study exhibit excellent 

agreement with the benchmark solutions.  

4.1.1 Infinite Rigid-based Elastic Layer Under Normal Point Force 

Consider a normal point load �� ����� ��� �  acting to the surface of a rigid-

based layer with the normalized thickness ���� �  and the Poisson’s ratio ���/ � as 
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shown in figure 4.1. Without consideration of surface energy effects, the analytical 

solution derived by Bumister (1943, 1945) and tabulated by Poulos (1967b) are 

employed to verify the accuracy of the present study. Numerical solutions for this 

classical case can readily be obtained in the present study by setting �� �  and �� � . 

The radial and vertical displacements at the surface and non-zero stress components at 

���� �  along the radial direction are reported in Tables 4.1-4.3. It is obvious that 

numerical results from the present study show good agreement with the analytical 

solution of Bumister (1943, 1945).  

Figure 4.1 Three-dimensional, infinite, rigid-based, elastic layer subjected to a 

normal point load 

Table 4.1 Normalized vertical and radial displacements of a three-dimensional, 

infinite, rigid-based, elastic layer subjected to a normal point load   

r	
r pt2�hEu / P z pt2�hEu / P

Bumister 
(1943, 1945) Current study Bumister 

(1943, 1945) Current study 

0.05 -14.362 -14.344 35.921 35.310 
0.1 -7.124 -7.172 16.728 16.554 
0.2 -3.455 -3.477 7.162 7.195 
0.3 -2.184 -2.178 4.016 4.050 
0.4 -1.523 -1.512 2.478 2.473 
0.5 -1.064 -1.109 1.599 1.579 
0.6 -0.824 -0.830 1.048 1.048 
0.7 -0.62 -0.620 0.69 0.704 
0.8 -0.465 -0.461 0.45 0.458 

0.2/ �1.0h � �

z �

r �

( )( ) ,   ( 0)
2pt
rp r P

r
� � �

0
�

� 1 �
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Table 4.2 Normalized vertical and radial stress components of a three-dimensional, 

infinite, rigid-based, elastic layer subjected to a normal point load 

r	
2

zz pt4�h (� 1)� / P
 2
rr pt4�h (� 1)� / P


Bumister 
(1943, 1945) Current study Bumister 

(1943, 1945) 
Current 

study 
0 300 300 -30.71 -30.72 

0.1 53.08 53.06 34.75 34.75 
0.2 5.415 5.395 12.5 12.49 
0.3 0.994 0.974 3.347 3.344 
0.4 0.293 0.273 0.614 0.611 
0.5 0.124 0.103 -0.259 -0.262 
0.6 0.067 0.048 -0.528 -0.530 
0.7 0.041 0.025 -0.578 -0.579 
0.8 0.026 0.013 -0.544 -0.544 
0.9 0.016 0.006 -0.479 -0.478 

Table 4.3 Normalized shear and hoop stress components of a three-dimensional, 

infinite, rigid-based, elastic layer subjected to a normal point load 

r	
2

rz pt4�h (� 1)� / P
 2
�� pt4�h (� 1)� / P


Bumister 
(1943, 1945) Current study Bumister 

(1943, 1945) 
Current 

study 
0 0 0.000 -30.71 -30.720 

0.1 53 53.003 -4.342 -4.355 
0.2 10.68 10.676 2.237 2.224 
0.3 2.765 2.765 1.996 1.983 
0.4 0.909 0.908 1.349 1.337 
0.5 0.326 0.324 0.877 0.865 
0.6 0.102 0.099 0.566 0.554 
0.7 0.005 0.002 0.363 0.352 
0.8 -0.038 -0.043 0.231 0.221 
0.9 -0.056 -0.061 0.144 0.135 
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4.1.2 Elastic Half-space Under Uniformly Distributed Normal Traction 

A three-dimensional, elastic half-space with Poisson’s ratio ���/ �  under the 

action of a uniformly distributed normal traction p0 over a circular area of normalized 

radius � ��� �  shown in Figure 4.2 is considered (excluding the surface energy 

effects). In this case, the exact solution tabulated by Ahlvin and Ulery (1962) has been 

employed as a benchmark solution. Again, in the analysis, � and � are set to be zero 

in order to specialize the problem into the classical case and the normalized thickness 

� must be chosen to be sufficiently large to represent the elastic half-space. Results 

for non-zero displacement and stress components are reported in Table 4.4 along with 

those of Ahlvin and Ulery (1962). It is evident that solutions obtained from the 

current study are almost indistinguishable from the reference results.  

Figure 4.2 Three-dimensional, infinite, elastic half-space subjected to a uniformly 

distributed normal traction 

� �

� �

� �

/ ���� �

� �
� �

� � �� � � � � �
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Table 4.4 Normalized displacement and stress components of a three-dimensional, 

infinite, elastic half-space subjected to a uniformly distributed normal traction 

z	/a	

zz 02(� 1)� / p
 rr 02(� 1)� / p
 �� 02(� 1)� / p
 z 0u / p
Ahlvin 

and 
Ulery 
(1962) 

Current 
study 

Ahlvin 
and 

Ulery 
(1962) 

Current 
study 

Ahlvin 
and 

Ulery 
(1962) 

Current 
study 

Ahlvin 
and 

Ulery 
(1962) 

Current 
study 

0 1.000 0.993 0.700 0.695 0.700 0.695 0.800 0.800 
0.1 0.999 0.999 0.581 0.581 0.581 0.581 0.769 0.769 
0.2 0.992 0.992 0.468 0.468 0.468 0.468 0.736 0.736 
0.3 0.976 0.976 0.367 0.367 0.367 0.367 0.702 0.702 
0.4 0.949 0.949 0.280 0.280 0.280 0.280 0.667 0.667 
0.5 0.911 0.911 0.208 0.208 0.208 0.208 0.633 0.633 
0.6 0.864 0.864 0.151 0.151 0.151 0.151 0.599 0.599 
0.7 0.811 0.811 0.106 0.106 0.106 0.106 0.566 0.566 
0.8 0.756 0.756 0.072 0.072 0.072 0.072 0.535 0.535 
0.9 0.701 0.701 0.047 0.047 0.047 0.047 0.505 0.505 
1 0.646 0.646 0.028 0.028 0.028 0.028 0.478 0.478 

1.2 0.547 0.547 0.005 0.005 0.005 0.005 0.429 0.429 
1.5 0.424 0.424 -0.010 -0.010 -0.010 -0.010 0.368 0.368
2 0.284 0.284 -0.016 -0.016 -0.016 -0.016 0.294 0.294 

2.5 0.200 0.200 -0.014 -0.014 -0.014 -0.014 0.243 0.243
3 0.146 0.146 -0.012 -0.012 -0.012 -0.012 0.207 0.207 
4 0.087 0.087 -0.008 -0.008 -0.008 -0.008 0.158 0.158 
5 0.057 0.057 -0.005 -0.005 -0.005 -0.005 0.128 0.128 
6 0.040 0.040 -0.004 -0.004 -0.004 -0.004 0.107 0.107 
7 0.030 0.030 -0.003 -0.003 -0.003 -0.003 0.092 0.092 
8 0.023 0.023 -0.002 -0.002 -0.002 -0.002 0.081 0.081 
9 0.018 0.018 -0.002 -0.002 -0.002 -0.002 0.072 0.072 

Table 4.5 Material properties used in numerical study 

Model Parameter Value (unit) 

 58.17x109 (N/m2) 

� 26.13x109 (N/m2) 

s 6.8511 (N/m) 

� s -0.376 (N/m) 

� s 1 (N/m) 
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4.1.3 Infinite Rigid-based Elastic Layer Under Uniformly Distributed Normal 

Traction 

Consider an infinite rigid-based elastic layer under a uniformly distributed 

normal traction p0 acting over a circular area of normalized radius ����� �  and with 

the normalized layer thickness ��� �  as shown in Figure 4.3. To allow a direct 

comparison of available results proposed by Zhao (2009), the same set of material 

constants obtained from atomistic simulation (Miller and Shenoy, 2000; Shenoy, 

2005) is utilized and they are summarized in Table 4.5. Results for the classical case 

and the case accounting for the surface energy effects but ignoring the out-of-plane 

term can be obtained by simply setting �	 �� �� �  and �	 �� �� � , respectively. By 

comparing results for the surface displacement and stresses at ���� � along the radial 

direction with those presented by Zhao (2009) for �� �� � , it is found that solutions 

obtained from the present study are in excellent agreement with the benchmark 

solutions as shown in Figures 4.4-4.6. 

Figure 4.3 Three-dimensional, infinite, rigid-based, elastic layer subjected to a 

uniformly distributed normal traction 

� �

� �
� �

� � �� � � � � �

������ �

����� � �

� �
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    (a) 

       (b) 

Figure 4.4 Normalized displacement profiles of an elastic layer under a uniformly 

distrubuted normal traction: (a) radial displacement and (b) vertical displacement   

����� !!"#��
��������$������$���
����� !!"#��
����������$������$���
Current study  
no surface effects 
�����������	%��
����������$������$���

Zhao(2009)  
no surface effects 
Zhao(2009)  
with surface effects 
Current study  
no surface effects 
Current study  
with surface effects 

r / a

r

0

4�u
p

r / a

z

0

4�u
p



31 

(a) 

(b) 

Figure 4.5 Normalized stress profiles of an elastic layer under a uniformly 

distrubuted normal traction: (a) vertical stress and (b) radial stress  
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(a) 

(b) 

Figure 4.6 Normalized stress profiles of an elastic layer under a uniformly 

distrubuted normal traction: (a) shear stress and (b) hoop stress  
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4.2  NUMERICAL RESULTS AND DISCUSSION 

After the formulation and numerical implementation are verified for both the 

classical case and the case accounting for the surface stress effects but ignoring the 

out-of-plane term, the proposed model (including the out-of-plane term) is then 

utilized to investigate the influence of the surface stress effects on elastic fields and 

demonstrate the significant role of the out-of-plane term in Gurtin-Murdoch surface 

elasticity model. By using material properties summarized in Table 4.5, numerical 

results and size-dependent behaviors for both normal and tangential directions of 

axisymmetric surface loads are illustrated and discussed. 

4.2.1 Uniformly Distributed Normal Traction 

Figure 4.7 Three-dimensional, infinite, rigid-based, elastic layer subjected to a 

uniformly distributed normal traction 

Consider an infinite, rigid-based elastic layer under a uniformly distributed 

normal traction p0 (with �
� �

�� � � ) acting on a circular region of radius �  (with 

� ��� � ) as shown in Figure 4.7. Results for both radial and vertical displacements 

on the surface along the radial direction for ������  and various normalized 

thicknesses ( � ��� � ) are shown in Figure 4.8(a)-(b), respectively. It is apparent from 

this set of results that a model incorporating the out-of-plane term predicts much 

lower surface displacement or, equivalently, renders materials stiffer while the 

solution obtained from a model excluding the out-of-plane term exhibits significant 

influence of the surface energy effects only in the case of the radial displacement. 

Hence, the influence of the out-of-plane term is significant and, in general, cannot be 

neglected. In addition, results for all cases show similar trend for various� . In 

particular, magnitude of the displacement is higher as the layer thickness increases. 

� �

� �
� �

� � �� � � � � �

� �

� �

h �
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     (a) 

       (b) 

Figure 4.8 Normalized displacement profiles of an elastic layer under a uniformly 

distrubuted normal traction: (a) radial displacement and (b) vertical displacement   
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       (a) 

       (b) 

Figure 4.9 Normalized stress profiles of an elastic layer under a uniformly 

distrubuted normal traction: (a) vertical stress and (b) radial stress   
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       (a) 

       (b) 

Figure 4.10 Normalized stress profiles of an elastic layer under a uniformly 

distrubuted normal traction: (a) shear stress and (b) hoop stress   
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For non-zero stress components, results are reported for ����  and ���  at 

three different normalized depths ( 0.25,  0.5,  1.0z z z� � � ). The variation of the 

normalized vertical stress 04 ( 1) /
 zz� � � p in the radial direction is shown in Figure 

4.9(a). Clearly, the vertical stresses for all cases reach their maximum at 0r �  and 

rapidly decrease to zero when r is near the edge of the surface loading, i.e. / 1r a � . 

Regarding to the presence of surface energy effects, values of the vertical stress are 

lesser within the surface loading region / 1.0r a 2  and insignificantly higher in for 

/ 1.0r a 3 . Moreover, the influence of surface energy effects exhibits significant role 

in the region relatively close to the surface. It is interesting to point out that all such 

behaviors are more apparent in the current model which integrates the out-of-plane 

contribution of the residual surface tension into the analysis. 

Results for the normalized shear stress 04 ( 1) /rz� � � p
  are reported in Figure 

4.10(a) for various depths. Behavior of the shear stress for all three models along the 

radial direction exhibit the similar trend. In particular, the shear stress vanishes at 

0r �  due to the symmetry, rapidly increases to reach its peak at the edge of the 

surface loading (i.e., / 1r a � ), and promptly decreases after the peak. It is worth 

noting that, in the region very near the edge of surface loading, the surface energy 

effects especially in a model including the out-of-plane contribution of the residual 

surface tension significantly lower magnitude of the shear stress. As anticipated, the 

influence of surface stresses is quite large in a region near the surface and 

insignificant in a region far away from the surface. 

In addition, variation along the radial direction of the normalized radial stress 

04 ( 1) /rr� � � p
  and normalized hoop stress 04 ( 1) /��� � � p
  are also presented for 

various depths in Figure 4.9(b) and 4.10(b), respectively. Again, results obtained from 

all three models possess the similar trend, i.e., starting with their maximum value and 

gradually decreasing as r  increases. This observed behavior excludes the case of the 

radial stress at 1.0z �  since such stress starts at a certain value, gradually reaches its 

peak, and gradually decays. However, the surface energy effects on these two stress 

components are similar to those on the vertical stress; i.e., lower stress within a region 
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under the surface loading and slightly higher stress in the region outside. In addition, 

strong influence of the surface stresses is observed in the region near the surface. 

Through the proper normalization, solutions obtained by a model without the 

surface energy effects exhibit no size-dependency. However, this is not true for results 

predicted by models integrating the surface energy effects. The size-dependent 

behavior can be observed due to the presence of an intrinsic length scale associated 

with the presence of the surface stresses. In this study, the size-dependency of all 

normalized stresses is investigated by varying the radius of surface loading while 

maintaining the ratio /h a .  Results are reported in Figures 4.11-4.14 for / 3h a � . In 

particular, Figures 4.11(a), 4.12(a), 4.13(a) and 4.14(a) show the variation along the 

radial direction of non-zero stress components at / 0.1z a �  for three different radius 

whereas Figures 4.11(b), 4.12(b), 4.13(b) and 4.14(b) present the relationship between 

normalized stress components and the radius of surface loading for three various 

depths and / 0.5r a � . 

Unlike the classical solutions, results obtained from the two models 

accounting for surface energy effects depend strongly on the normalized radius a  for 

small a  and such dependence gradually decreases as a  increases. In particular, 

results predicted by the model taking the out-of-plane contribution of the residual 

surface tension exhibit much stronger size dependency than that excluding the out-of-

plane term. In addition, this set of results confirms the necessity to include the surface 

energy effects when responses in a region very near the surface are of interest. 
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       (a) 

(b) 

Figure 4.11 Normalized vertical stress of elastic layer under a uniformly distrubuted 

normal traction for 3h / a � : (a) profile along radial direction and (b) at  0 5r / a .�
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       (a) 

       (b) 

Figure 4.12 Normalized radial stress of an elastic layer under a uniformly distrubuted 

normal traction for 3h / a � : (a) profile along radial direction and (b) at  0 5r / a .�
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       (a) 

       (b) 

Figure 4.13 Normalized shear stress of an elastic layer under a uniformly distrubuted 

normal traction for 3h / a � : (a) profile along radial direction and (b) at  0 5r / a .�
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      (a) 

      (b) 

Figure 4.14 Normalized hoop stress of an elastic layer under a uniformly distrubuted 

normal traction for 3h / a � : (a) profile along radial direction and (b) at 0 5r / a .�   
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4.2.2 Linearly Distributed Tangential Traction 

Figure 4.15 Three-dimensional, infinite, rigid-based, elastic layer subjected to a 

linearly distributed tangential traction 

Consider an infinite, rigid-based elastic layer subjected to a linearly distributed 

tangential traction in a circular region of radius a as shown in Figure 4.15. This 

traction is normalized such that �
�

� � �
 � 
 � �  where �
� �

�
 
 � , � ��� � , and  
�

  is 

the maximum traction at the edge of surface loading. Results for radial and vertical 

displacements for different layer thicknesses are shown in Figures 4.16(a) and 

4.16(b), respectively. It is obvious from these results that presence of the surface 

energy effects significantly lowers the magnitude of the displacement. However, the 

out-of-plane contribution of residual surface tension has a strong influence only on the 

vertical displacement and becomes negligible for the radial displacement. Moreover, 

when varying the layer thickness, both radial and vertical displacements are higher as 

the layer thickness increases.  

For stress components, results are obtained for ���� , ��� , and three 

different normalized depths (i.e., 0.25,  0.5,  1.0z z z� � � ). Profiles of the normalized 

vertical stresses 04 1 zz�( � )� / q
 and the normalized radial stresses 04 1 rr�( � )� / q


along the radial direction are reported in Figure 4.17. At a small depth, the tensile 

stress is observed within a region of surface loading and it gradually changes to the 

compressive stress when passing the edge of a loading region. The vertical stress and 

radial stress profiles also show the strong influence of the surface energy effects for 

the region relatively near the surface. Moreover, the discrepancy of results predicted 

� �

� �

h

�
�

� �
�
 � 

�
�
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by the two models with and without the out-of-plane contribution of the residual 

surface tension is more apparent for the vertical stress but insignificant for the radial 

stress. 

Results for the normalized shear stress 04 1 rz�( � )� / q
  are shown in Figure 

4.18(a) for various depths. For this particular loading condition, the shear stress 

increases to reach its peak near the edge of loading region and then abruptly decreases 

to zero after passing the edge of loading region. Again, the influence of surface 

stresses on this shear stress component is more apparent for the region close to the 

surface.  

From the profile of normalized hoop stress 04 1 ���( � )� / q
  shown in Figure 

4.18(b), results obtained from the two models incorporating the surface energy effects 

are significantly different from the classical solution and such discrepancy increases 

when the depth decreases. It is worth noting that the contribution of the out-of-plane 

term is insignificant since the two models yield almost identical hoop stress.   

To demonstrate the size-dependent behavior of a layer subjected to a linearly 

distributed tangential load, a scheme similar to that used to study a layer subjected to 

uniformly distributed normal traction is employed. The layer thickness and the radius 

of loading region are varied while their ratios are fixed (i.e., 3h / a � ). The variation 

along the radial direction of non-zero stress components at / 0.1z a �  for three 

different radius are reported in Figures 4.19(a), 4.20(a), 4.21(a) and 4.22(a) whereas 

the relationship between normalized stress components and the radius of loading 

region for three various depths and / 0.5r a �  are shown in Figures 4.19(b), 4.20(b), 

4.21(b) and 4.22(b). Unlike the case of uniformly distributed normal load, the out-of-

plane contribution of the residual surface tension has significant influences only on 

the vertical stress. However, solutions obtained from the two models accounting for 

the surface energy effects still show the size-dependency. As the radius a  and the 

depth where the responses are determined decrease, the surface energy effects become 

more significant.  
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   (a) 

       (b) 

Figure 4.16 Normalized displacement profiles of an elastic layer under a linearly 

distrubuted tangential load: (a) radial displacement and (b) vertical displacement   
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       (a) 

       (b) 

Figure 4.17 Normalized stress profiles of an elastic layer under a linearly distrubuted 

tangential load: (a) vertical stress and (b) radial stress   
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       (a) 

       (b) 

Figure 4.18 Normalized stress profiles of an elastic layer under a linearly distrubuted 

tangential load: (a) shear stress and (b) hoop stress   
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       (a) 

     (b) 

Figure 4.19 Normalized vertical stress of an elastic layer under a linearly distrubuted 

tangential load for 3h / a � : (a) profile along radial direction and (b) at  0 5r / a .�
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       (a) 

       (b) 

Figure 4.20 Normalized radial stress of an elastic layer under a linearly distrubuted 

tangential load for 3h / a � : (a) profile along radial direction and (b) at  0 5r / a .�
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      (a) 

       (b) 

Figure 4.21 Normalized shear stress of an elastic layer under a linearly distrubuted 
tangential load for 3h / a � : (a) profile along radial direction and (b) at  0 5r / a .�
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     (a) 

    (b) 

Figure 4.22 Normalized hoop stress of an elastic layer under a linearly distrubuted 

tangential load for 3h / a � : (a) profile along radial direction and (b) at  0 5r / a .�

a = 1.0 
a = 5.0 
a = 10.0 
Classical solution  
No out-of-plane term 

Current study 

z / a 0.1�
z / a 0.3�
z / a 0.5�

Classical solution  
No out-of-plane term 
Current study 

��

0

4�( � 1)�
q



r / a

��

0

4�( � 1)�
q



a



52 

4.3 Fundamental Solutions 

Since the formulation has been established for arbitrary axisymmetric surface 

loading, general results can be further specialized to construct certain useful 

fundamental solutions. For instance, solutions associated with a layer subjected to a 

normal concentrated load at the origin, a normal ring load at any radius a  and a 

tangential ring load at any radius a  can readily be obtained. These fundamental 

solutions constitute the basis for solving other related boundary value problems such 

as nano-indentation problems. 

4.3.1 Layer under Normal Concentrated Load 

Figure 4.23 Three-dimensional, infinite, rigid-based, elastic layer subjected to a 

normal concentrated load 

Consider a three-dimensional, infinite, rigid-based, elastic layer subjected to a 

normal concentrated load ptP  as shown in figure 4.23. The concentrated load ptP  is 

normalized such that 2/pt ptP P �� � . Profiles of the normalized radial displacement

2 r pt�hEu / P and the normalized vertical displacement 2 r pt�hEu / P at the surface 

obtained by three different models are reported for four different layer thicknesses 

( 0.5h � , 1.0h � , 2.0h � , and 3.0h � ) in Figure 4.24(a) and 4.24(b), respectively. It is 

found that the normalized radial displacement is singular at 0r �  except the solution 

obtained from a model accounting for the out-of-plane contribution of residual surface 

h �

z �

r
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2pt
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stress. On the other hand, results of the normalized vertical displacement tend to be 

infinite under the concentrated load for all cases and reduce rapidly when r increases. 

In addition, the similar behavior is observed for all layer thicknesses examined and 

the magnitude of the displacement is higher as the layer thickness increases.  

In order to clearly demonstrate the influence of surface energy effects on the 

stress field, the layer thickness is chosen to be sufficiently large (i.e., 10h � ). 

Numerical results of all normalized non-zero stress components are reported along the 

radial direction for various depths in Figures 4.25-4.26. Clearly, the normalized 

vertical stress 24 1 zz pt�h ( � )� / P
  reaches its peak at 0r �  and then decrease 

monotonically to zero as r  increases. The normalized radial stress 
24 1 rr pt�h ( � )� / P
 decreases from a positive value to a negative value for small r

and, after it attains its maximum negative value, it magnitude gradually reduces to 

zero for the region far away from the concentrated load. Due to the symmetry, the 

normalized shear stress vanishes at 0r �  and it rapidly increases to reach its peak and 

then gradually decreases to zero for a large r . It is obvious that presence of surface 

energy effects generally reduce the magnitude of all stress components in comparison 

with the classical solution except the normalized hoop stress whose values predicted 

by the model accounting for surface energy effects but without the out-of-plane 

contribution of the residual surface stress are much larger than those obtained from 

the classical model.  
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  (a) 

       (b) 

Figure 4.24 Normalized displacement profiles of an elastic layer under a normal 

concentrated load: (a) radial displacement and (b) vertical displacement   

h / a 0.5�
h / a 1.0�
h / a 2.0�

/ .h a 3 0� �
Classical solution  
No out-of-plane term 
Current study 

r

r

pt

2�hEu
P

r

z

pt

2�hEu
P

h / a 0.5�
h / a 1.0�
h / a 2.0�

/ .h a 3 0� �
Classical solution  
No out-of-plane term 
Current study 



55 

       (a) 

       (b) 

Figure 4.25 Normalized stress profiles of an elastic layer under a normal concentrated 

load: (a) vertical stress and (b) radial stress   
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       (a) 

       (b) 

Figure 4.26 Normalized stress profiles of an elastic layer under a normal concentrated 

load: (a) shear stress and (b) hoop stress   
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4.3.2 Layer under Normal Ring Load 

Figure 4.27 Three-dimensional, infinite, rigid-based, elastic layer subjected to a 

normal ring load 

Consider a three-dimensional, infinite, rigid-based, elastic layer subjected to a 

normal ring load rp  at the radius a   as shown in figure 4.27. The ring load and the 

radius a are normalized such that /r rp p �� �  and /a a� � .  Results for the 

normalized radial displacement 4 r r�hu / p and the normalized vertical displacement 

4 z r�hu / p  at the surface are plotted along the radial direction as shown in Figure 4.28 

for four different thicknesses ( 0.5h � , 1.0h � , 2.0h � , and 3.0h � ) and 1a � . It is 

apparent from obtained results that the radial displacement for the classical case 

exhibit rapid variation at location of the applied ring load while those obtained from 

the other two models are finite and smooth and significantly different from the 

classical solution. In the contrary, the vertical displacements predicted by the classical 

model and a model accounting for the surface energy effect but without the out-of-

plane term are slightly different and singular at the location of applied load whereas 

that obtained from a model incorporating the out-of-plane term is finite and 

significantly different from the other two solutions.    
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    (a) 

       (b) 

Figure 4.28 Normalized displacement profiles of an elastic layer under a normal ring 

load: (a) radial displacement and (b) vertical displacement   
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       (a) 

       (b) 

Figure 4.29 Normalized stress profiles of an elastic layer under a normal ring load: 

(a) vertical stress and (b) radial stress   
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       (a) 

       (b) 

Figure 4.30 Normalized stress profiles of an elastic layer under a normal ring load: 

(a) shear stress and (b) hoop stress   
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Results for stress within the bulk obtained from all three models are also 

reported for various depths and 10h �  in Figures 4.29-4.30. Similar to the previous 

observation, the influence of the surface stresses on the stress field within the bulk is 

more significant when the location where the responses are determined is relatively 

close to the surface.  

4.3.3 Layer under Tangential Ring Load 

Figure 4.31 Three-dimensional, infinite, rigid-based, elastic layer subjected to a 

tangential ring load 

Consider a three-dimensional, infinite, rigid-based, elastic layer subjected to a 

unit tangential ring load rq  at the radius a  as shown in figure 4.31. The ring load and 

the radius are normalized such that /r rq q �� �  and /a a� � . Results for the 

normalized radial displacement 4 r r�hu / q and the normalized vertical displacement 

4 z r�hu / q  at the surface are plotted along the radial direction as shown in Figures 

4.32(a) and 4.32(b) for four different thicknesses ( 0.5h � , 1.0h � , 2.0h � , and 3.0h � ) 

and 1a � . For this particular loading condition, both the radial and vertical 

displacements obtained from the classical model are singular at the location of the 

applied ring load whereas those obtained from the two models accounting for the 

surface energy effects are finite everywhere. While results obtained from the two 

h

a

( ) ( )rq r q r a�� � �

x �

y �

z
�

r �
� �



62 

models exhibit huge discrepancy from the classical solution, the contribution of out-

of-plane term is insignificant especially for the radial displacement.  

Figures 4.33-4.34 demonstrate profiles of normalized stress components for a 

layer subjected to a tangential ring load for the layer thickness 10h �  and various 

depths. It is obviously seen that the presence of the surface energy effects reduces the 

magnitude of the stresses especially in the region closed to the surface. Moreover, for 

the normalized vertical stress and normalized shear stress, such behavior is more 

evident when the out-of-plane contribution of the residual surface stress is taken into 

account. 

4.3.4 Applications of Fundamental Solutions 

Results obtained above for three special loading conditions can be employed 

to construct Green functions useful for various boundary value problems. To 

demonstrate their vast applications, let us consider a three-dimensional, infinite, rigid-

based, elastic layer subjected to any axisymmetric normal traction p(r) and tangential 

traction q(r). Once solutions of all field quantities due to both unit normal and unit 

tangential ring loads are determined, they can be utilized along with a method of 

superposition to obtain integral relations for both the displacement and stress on the 

surface and within the bulk due to the tractions p(r) and q(r). For instance, the radial 

and tangential displacements at any distance r* on the surface are given by 

� �

� 
� �
� �

� �� � �	 � � � � �	 � � �� &
� � �� � ' � � � � 	� ' � � 
 � 	�                (4.1) 

� �

� 
� �
� �

� �� � �	 � � � � �	 � � �� &
� � �� � ' � � � � 	� ' � � 
 � 	�                (4.2) 

where � �	 ��
�' � �  and � �	 ��

�' � �  are radial and tangential displacements at any distance 

r* on the surface due to a unit normal ring load applied to the layer at the radius r and 

� �	 �&
�' � �  and � �	 �&

�' � �  are radial and tangential displacements at any distance r* on 

the surface due to a unit tangential ring load applied to the layer at the radius r. Other 
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field quantities at any point (r*, z*) within the bulk, denoted generically by � �	 ��� � � , 

can also be obtained in a similar fashion as  

� �

� 
� �
� �

� �	 �� � �	 �	 � � � � �	 �	 � � �� &� � � � � � � � � 	� � � � � 
 � 	�               (4.3) 

where, again, � �	 �	 ��� � � �  and � �	 �	 �&� � � �  are responses at any point (r*, z*) within 

the bulk due to a unit normal ring load and unit tangential ring load applied to the 

layer at the radius r, respectively. Clearly, for a problem where the surface tractions 

p(r) and q(r) are fully prescribed, the integral relations (4.1)-(4.3) can be directly 

employed to determine all field quantities.  

For nano-indentation problems, the tractions p(r) and q(r) under the indentor 

are unknown a priori and they must be determined before the integral relation (4.3) 

can be used. For a special case of axisymmetric, rigid, frictionless nano-indentation 

problems, the tangential traction q(r) vanishes and vertical displacement under the 

indentor is fully prescribed via its known profile �(  and the prescribed indentation 

depth d. The integral relation (4.2) for any r* under the indentor becomes   

� � 
 2�
�

� �� � �	 � � � � �����	���� �

�
� �

� �� � ' � � � � 	� 	 ( � � �               (4.4) 

where a denotes the contact radius. The integral equation (4.4) can be solved to obtain 

the unknown contact pressure p(r). Once p(r) is determined, all other field quantities 

can readily be obtained from the integral relation (4.3). 

For axisymmetric, rigid, fully bonded nano-indentation problems, the radial 

displacement under the indentor identically vanishes and the vertical displacement 

under the indentor is fully prescribed via its known profile �(  and the prescribed 

indentation depth d. The integral relations (4.1) and (4.2) for any r* under the 

indentor becomes   

� 
 � 2� �
� �

� �� � �	 � � � � �	 � � � ����	���� �

� �
� &

� � �� � ' � � � � 	� ' � � 
 � 	� � �              (4.5) 
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 � 	� 	 ( � � �             (4.6) 

The two integral equations (4.5)-(4.6) are sufficient for solving the unknown tractions 

p(r) and q(r). Once those tractions are obtained, all other field quantities can be 

computed from the integral relation (4.3). 

For axisymmetric, rigid, rough nano-indentation problems, the tangential 

traction q(r) can be related to the normal traction p(r) via an appropriate friction 

model and, again, the vertical displacement under the indentor is fully prescribed via 

its known profile �(  and the prescribed indentation depth d. The integral relation 

(4.2) for any r* under the indentor becomes   
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� & �
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where a function f denotes the relation between p and q. The integral equation (4.7) 

can be employed to solve for the unknown normal traction p(r). Once p(r) is 

determined, the tangential traction can readily be obtained and all other field 

quantities are computed from the integral relation (4.3). 

 By following the same strategy, solutions of all field quantities due to a unit 

normal concentrated load applied to the surface of a layer can be utilized as Green 

functions to establish integral relations for field quantities due to arbitrary normal 

traction on the surface. In addition, the integral relation for the vertical displacement 

on the surface can be employed to form the integral equation governed the unknown 

pressure under the rigid, frictionless indentor of arbitrary profiles. 
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      (a) 

       (b) 

Figure 4.32 Normalized displacement profiles of an elastic layer under tangential ring 

load: (a) radial displacement and (b) vertical displacement   
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       (a) 

       (b) 

Figure 4.33 Normalized stress profiles of an elastic layer under tangential ring load: 

(a) vertical stress and (b) radial stress   
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       (a) 

       (b) 

Figure 4.34 Normalized stress profiles of an elastic layer under tangential ring load: 

(a) shear stress and (b) hoop stress  
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CHAPTER V

CONCLUSIONS 

5.3 SUMMARY 

A complete analytical solution of a three-dimensional, infinite elastic layer 

under the action of axisymmetric normal and tangential surface loadings and with 

consideration of the surface energy effect has been derived. A novel feature of the 

present study is the use of a complete version of Gurtin-Murdoch constitutive relation 

to model the free surface of the layer. In solution procedure, Love’s strain potential 

technique along with Hankel integral transform are applied to obtain the general 

solution for the bulk whereas the surface equations and conditions at the rigid base 

supply sufficient boundary conditions to determine all arbitrary constants. The 

displacement and stress fields within the bulk have been obtained via a selected 

efficient numerical quadrature. Once the obtained general solutions were verified by 

comparing with available benchmark solutions, extensive parametric study has been 

carried out to gain insight into the nano-scale influence and investigate the size 

dependency. Moreover, the three fundamental solutions corresponding to normal 

concentrated load, normal ring load, and tangential ring load which constitute the 

basis for solving nano-indentations problems have been constructed. 

Results from extensive parametric studies have confirmed the significance of 

surface energy effects and the necessity to properly treat such influence in the 

continuum-based model. In the region close to the surface, the presence of the surface 

stresses exhibits very strong influence on both the displacement and stress fields. 

Magnitudes of field quantities obtained from models accounting for the surface 

energy effects are generally less than those obtained from the classical model. The 

presence of the surface energy renders the layer much stiffer than that of the classical 

case. This is due to that not the entire loadings that transfer directly into the bulk but 

part of them is carried by the surface through the equilibrium of the surface and the 

membrane-like action. Such influences also depend on the length scale of the 
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problem; the influence of surface stresses becomes significant when the length scale is 

comparable to the intrinsic length of the surface. Moreover, it is worth pointing out 

that such behavior of the out-of-plane responses due to the normal traction are more 

apparent in the model which integrates the out-of-plane contribution of the residual 

surface tension into the analysis. This additionally confirms the necessity to treat such 

crucial contribution in the modeling of soft elastic solids and nano-scale problems. 

In addition, the surface radial and vertical displacements of a layer under 

either a normal ring load or a tangential ring load predicted by a model employed in 

the present study (i.e., a complete Gurtin-Murdoch surface elasticity model including 

the out-of-plane contribution of the residual surface tension) are finite everywhere. If 

the out-of-plane term is neglected, the predicted vertical displacement due to the 

normal ring load is still singular at the location where the load is applied. For the case 

of a normal concentrated load acting to the origin, the vertical displacement obtained 

from both classical model and model incorporating the surface stress effects is 

singular at the applied load location whereas only the radial displacement obtained 

from a model accounting for the out-of-plane term is finite.  

5.4 SUGGESTIONS FOR FUTURE WORK 

Due to the three fundamental solutions derived in the present study, 

frictionless indentation problems with arbitrary indentor profiles, axisymmetric 

frictionless indentation problems, axisymmetric indentation problems with the 

presence of friction, and axisymmetric, fully-bonded indentation problems can now be 

fully investigated. In addition, the formulation can further be generalized to treat 

following two cases: multiple layers under axisymmetric surface loading and a single 

layer under non-axisymmetric surface loading.
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