CHAPTER 11’

REVIEW OF LITERATURE

The wide application of liquid dosage forms used in pharmaceu-
ticals is demqnstrable proof of the importance of solutions in formula-
tion. Therefore, studying the solubilities of pharmaceutical sub-
stances are very importamt in the .area of pharmaceuticals (12). As
reported previously (2 - 10, 14 — 26), there were many attempts to
predict solubilities of solﬁte in various solvents. These attempts
emphasize the fact thatiit would be very essential to identify
suitable approach(es) for prediction of solubilities of solute in
various individual untested solvents. (For this purpose, three
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approaches were used in this study, they are :

1. Regular Solutiom Theory (Scatchard-Hildebrand Equatiom)
2. The Extended Hildebrand Solubility Approach (EHS)

3. The Exteanded Hansen Solubility Approach

The detail of individual approach may be discussed as follows:

1. The Regular Solution Theory (1, 4 - 10)

(Scatchard-Hildebrand Equation)

ThHe activity of a sclute in a solution is directly proportional
to the concentration of solute (a a XZ)‘ When the concentration is

given in mole fraction (XZ)’ the activity is expressed in equation as

ay = X, (Eq.1)

in which «. 4s the rational activity coefficient and subscript 2

2

refers to the solute. Converting to logarithms, we have



log 2, = log X, + log @, (Eq.2)

In an ideal solution, a, = 1 , since an ideal solution is
one in which the presence of the solute molecules has no effect on the
forces existing between the solvent molecules, and vice versa.
Consequently, upon mixing there is no change in properties of the
components other than dilution. Whem £wo liquids dissolve to give an
jdeal solutionr, there is no heat effect, and other properties, e.g.,
dénsity, volume, refractive-index, viscosity and vapor pressure, can
be directly calculated'by averaging the properties of the components
of the solution (27)« The solubility of a solid in an ideal solution
depends on temperatupe, melting point of the solid and molar heat of

fusion. Ideal solubility is not affected by the nature of the solvent

& and the equation derived from thermodynami¢ consideration 1is :

1 it Tm -~ T
“log X, = 2303 RT‘i Tm J (Eq.3)

in which X; is the ideal-selubility-ef-the-solute expressed in mole

fraction, Tm is the melting point of solute in absolute degree, T is
the absolute temperature.of the solution, AHf is the molar heat of

fusion of the solute and.R is the molar gas constant.

From.Eq. 2. when 9 = 1, log a,®= 0, so in afiideal solution
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the relationship exists ‘as

i AHf Tm - T
-log ay = ~-logX, = 37303 RT[ Tm] (Eq.4)

But most solute-solvent mixtures do not behave ideally, and solute
mole fractional concentrations often differ greatly from their activities,.
Therefore, such solutions are called as nonideal solutions. The

solubility of a solute in a nonideal solutiom, expressed in logarithmic
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form, becomes

AHf Tm — T
-log X, =  37303.®R% ‘: T :l+ log a, (Eq.5)
or -log X, = -log X; + log ay (Eq.6)

Nonideal solutions are classified into two types; regular and
irregular solutions. The properties of wregular solutions are similar
to those of ideal solutions. The molecules exhibit complete freedom
of motion and randomness«of distribution in the solution as found in
ideal solutions. There is/mno change inlentropy but heat is absorbed
_when the components ofga gégular solution are mixed. Scatchard and
Hildebrand studied the solubility of crystalline solidé in regular
solutions and found that/ the activity coefficient term of the solubility
equation depends on temperature of solution, volume of the solute, the
fraction of total volume of solvent and the work that must be done in
removing a moleéule from the solute phase and depositing it in the
solvent. This work is cobtained by summation total energy required in
solubility processes which may be considered in three steps. The first
step involves the removal of a moiecule from the' solute phase at a
definite temperéture. The gain in potential energy for this step.is

is W,, indwhich subscript ,, tefers to thé interaction, between solute

22
molecules. The second step involves the creation of a hole in the
solvent just large enough to accept the solute molecule. The work
required for this step is Wll’ in which the subscript 11 refers to the
energy of interaction between solvent molecules. In the last step,

the solute molecule is placed in the hole in the solvent, and the total

energy decreased in this step is -2W,,. The subscript 12 stands. for



" the interaction energy of the solute with the solvent.

In summary, the activity coefficient term of solubility equation
reported by Scatchard and Hildebrand is

2
Vo4

log ay = 7303 rr M2zt V¥

- 2W12) (Eq.7)

in which v, is the molar volume of the solid solute taken as hypothe-
tical supercooled liquid and ¢l is the olume fractiﬁn of solvent.
Since van der Waals force between moleculés follow a geometric mean,
thus, the interaction between/different molecules is equal to the

square root of the preduck of 'the attractions among similar molecules

or W = yW., W 4 then Eq.7 can be rewritten as
12 11722
2
Vo b
- 271 ] L5, 2
log a, = > B03 BT {(Wll) - (wzz) j _ (Eq.8)

1
The (W)‘i terms are known as the solubility parameters and designated
by the symbols 61 and 62 for solvent and solute/ respectively. Hence

Eq.8 is written as

V2¢f 2
log o0 101 2 3R €19/ & oA (Eq.9)
. 2
or log = A(S, - @&,) (Eq.10)
2 1 2
V2¢i
in.which - A 57303 BT . (Eq.11}

and the volume fraction of solvent, ¢1 , can be obtained using the
relationship

Vl(l - XZ)

1 Vl(l - XZ) +-V2X2




in which V1 is the molar volume of the solvent. When Eq.9 is substituted
in Eq.5, the mole fraction solubility of a nonpolar or moderately polar

solute is obtained as

v, 42
_aHf [mm -7 2%1 2
-l Xy = 3303 RT [_ Tm ] * 3303 ' G178 (Ba1d)
or - log X, = = log ¥bals - 5,7 (Eq.14)

The predicted walue of X, is achieved by employing Eqs. 12, 11,
and 14, respectively; begining with a value of 1.0 for ¢1 and iterating
until X, or ¢, no longer chianges by more than some desired small value,

say 1 x 107>,

This refers to the Scatchard-Hildebrand method. It is used to
estimate solubility only for relatively nompolar drugs in nonpolar

solvents according to regular solution theory.

2. The Extended Hildebrand Solubility Approach (EHS) (1, 3-6, 10, 13-16)

This épproach is extended from the Scatchard-Hildebrand equation
(Eq.13 or 14) in regulaf solution theory. 7This is because several
investigators, inc¢ludingiHildebrand (1,4,17), have (found that expression
in. the. form of Eq.13 is not a good representation of nonideality
in solutions of polymers and)various polar and 'semipolar compounds in
polar and semipolar solvents. Since these solutions are quite irregular,
often involving self-association or solvation, Fot irregular solutioms,
the Scatchard-Hildebrand equation must be modified aﬁd is referred to
as the Extended Hildebrand Solubility Approach (EHS). The extended
method allows one to calculate the solubility of polar and nonpolar

solutes in solvents ranging from nonpolar hydrocarbons to highly polar



solvents such as alcohols, glycols and water. Hence, the modified

Scatchard-Hildebrand solubility equation becomes

) v ¢2
AHE Tm-T 2?1 2. .2 |
- log X3 = 37303 ®T | ijl + 57303 mr Ot (Bq.15)
log X. = - log X: + A2 + &2 - 2w) :
or - log 2 - = og 2 1 2 (Eq. 16)

in which W is the interaction energy between the solute and the solvent
in an irregular solutiom: This equation is used to predict drug

solubility in pure and/or" mixed solvent liquid solutions.

The interaction energy, W, will be calculated using Eq.15 from
knowing other terms obtained experimentally. The observed W, are
regreésed versus a polynomial expression in the solubility parameters

of each individual solvent (1,28,29) using an equation:

2
W o= a+bs + c61 (Eq.17)

in which a, b and ‘¢ -are coefficients. Then, back-calculating W and

substituting into Eq.16 allows calculation of X2 in term of A.

The final step’utilized in The Extended Hildebrand Solubility
Approach, the predicted value lof X2 is achieved by employing Egqs. 12,
11, and 16, respectively, begining with acwalue of 1.0 for ¢, and
iterating until Xy or' ¢, no lofigér changes by more than some desired

small value, say 1 x lOT5

3. The Extended Hansen Solubility Approach (1, 17 - 21 )

Hildebrand and Scott(1ll) designated the energy of vaporization
per cubic centimeter as the cohesive energy density (ced) which is the
energy required to break all intermolecular contacts within the mixture,

and its square root as the solubility parameter (8) (8, 11, 17),
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Thus, the solubility parameter of solvent (61) is obtained using the

relationship

‘s
BE_ % A - RT
8§, = |5 = | = (Eq.18)

in which AEV is the molar energy of vaporization, AHv is the molar

heat of vaporization, and ¥V, is the molar volume of the solvent.

1
As suggested by Crowley(11), the unit (cal/cms)ﬁ is named as

a "Hildebrand."

o The solubility parameter of the solid is difficult to obtain,
and few values are available in the dliterature (4,13,17). This is
because many organic cempounds decompose above their melting points
( 18, 20 ). Fedors (30) has proposed a method of group contributions
for estimating the total 'solubility parameters for compound such as
drug molecules that are diffieult to achieve. In this technique, the

atoms and chemical groups.contribution to AE and AV, as provided by

Fedors, are summed td yield

2 ¢ o EOE |
] = OTAV (Eq.19)

Hansen(l1,13) partitioned the cohesive energies/into a term
for nonpolar or dispersion’‘interactions, AED, a.second for permanent
dipole-permanent dipole interactions, AEP, and a third for hydrogen
bonding,AEﬁr The hydrogen-bonding term actually includes all varieties
of strong donor-acceptor interaction between solute and solvent and

is not restricted to the classical meaning of hydrogen bonding.

The summation of these energy terms divided by molar volume

gives the total cohesive energy density (1,11,13,17) :



11

AE D P H
v = v + v + v (Eq.20)
2 2 2 2
or 8 = 6]) + 6P + 51—1 (Eq721)

in which & is the total, essentially the Hildebrand, solubility
parameter, GD is the dispersion component of the total solubility
parameter, GP is the polar component ©f the Lotal solubility parameter,
and GH is the hydrogen bonding c0mponenf of the total solubility para
meter. Values for 65 were dérermined by reference to a corresponding
hydrocarbon called a homemorph, 6; and Sﬁ were obtained by empirical

method. The three partial solubility parameters, obtained by later

improved methods are reported elsewhere.

Hildebrand and Scott (i)included the solubility parameters for
a number of compounds in their books, A table of solubility parameters
has also been compiled by Hansen and Béerbowen(ll). They used a semi-
empirical method as well as nealy 10,000 expetimental observations of
solubility and pigmént suspensions to provide a self-consistent set
of three partial solubility parameters (BD, 8p3 SH} values in a three-~
dimensional syétem (13)  These]datasmay, be jused~with the relation

between X,, Xi and a, as shown in Eq.6 as :

i
- log XZ = - 108 X2 + 10g u—z (Eq.6)

“and the statistical method of multiple regression analysis and is
referred to as the Extended Hansen Solubility Approach. Hence, the

Extended Hansen Solubility equation may be expressed as (1,18-21,28,29):
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1 i = = 2 2
og [%Z/XZJ log a, Cy + CyA(8,=6,)" + C,A(8,,-6,.)

+C A(G )2 (Eq.22)

1H 2H

in which Ci (i = 0,1,2,3) are regression coefficients obtained using

regression analysis; GlD’ §,., and 61H are the three partial solubility

1P

parameters for the solvent; and 62 62P’ and GZH are the corresponding

D’
values for the solute. A is a term from.regular solution theory

obtained using Eqs.ll and l2 as mentioned above:

Jo by
. A & 5P wr (Eq.11)
6 A (Eq.12)
1 Vl(l e X2) + V2X2

The method starts withy first, the observed values of ¢1 and

A will be calculated using Eqs.12 and 11, respectively, from knowing

i

the observed values of X, obtained experimentally. The value of log X2

and the observed values of log [X;/x:] or log oy will be calculated
2
using Eqs.3 and 6, respectively. Then the observed values of

log [X;/X or-log a4y are regressed.versus a.multiple regression

- 2 2 2
expression against A(61D - 62D) . A((SlP - 62P) , and A(GIH - GZH)

using Eqs22pfrom knowing, partial rsolubility parameters, obtained from

the literature.

Results obtained from the computer output of multiple regres-
sion analysis are CO’ Cl’ CZ’ C3 which will be substituted into Eq.22,

Then, using the partial solubility parameters of each solvent (61D’

GIH) and solute (8 8 GZH) together with the value of log X;

6lP’ 2p’ "2p°

from Eq.3 allows back-calculation of X, in term of A, and the predicted
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value of A is calculated using Eq.ll. Owing to the predicted value
of ¢, is unknown since it depends on the value of X, which is sought
using Eq. 12, Thus, the predicted value of A is achieved by employing
Eqs.12, 11, and 22 begining with a value of 1.0 for ¢1 and iterating
until X, or ¢1 no longer changes by more than some desired small value,

say 1 x 107>,

The final step employed in the Extended Hansen Solubility
Approach, the predicted wvalue of ¢1 obtained using an iterating pro-
cedure will Be sqbstituted into Eq.ll for A wvalue. Using this iterated
value of A in.Eq.22 the' methed will allow calculation of predicted mole

fraction solubility of /the drug in various individual solvents.
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