การผลิต โฟมอะลูมิเนียมที่ทำให้เสถียรด้วยขึ้เถ้าแกลบ

นาย รัฐ ตันติศิริไพบูลย์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโลหการ ภาควิชาวิศวกรรมโลหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2551 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย PRODUCTION OF ALUMINIUM FOAM STABILIZED BY RICE HUSK ASH

Mr. Rath Tantisiriphaiboon

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Metallurgical Engineering

Department of Metallurgical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2008

Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การผลิตโฟมอะลูมิเนียมที่ทำให้เสถียรด้วยขึ้เถ้าแกลบ	
โดย	นายรัฐ ตันติศิริไพบูลย์	
สาขาวิชา	วิศวกรรมโลหการ	
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	อาจารย์ คร.เลกศักดิ์ อัสวะวิสิทธิ์ขัย	

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

คณบดีคณะวิศวกรรมศาสตร์

(รองศาสตราจารย์ ดร.บุญสม เลิศหิรัญวงศ์)

คณะกรรมการสอบวิทยานิพนธ์

noup alm ประธานกรรมการ

(รองศาสตราจารย์ ดร.กอบบุญ หล่อทองคำ)

Lant chant อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(อาจารย์ ดร.เลกศักดิ์ อัสวะวิสิทธิ์ขัย)

ไม่ว - กรรมการ

(ผู้ช่วยศาสตราจารย์ ดร.ไสว ด่านขัยวิจิตร)

ราพ ในวี่ออกมัน (อาจารย์ ดร.ธาซาย เหลืองวรานันท์)

รัฐ ตันดิสิริไพบูลย์ : การผลิตโฟมอะลูมิเนียมที่ทำให้เสลียรด้วยขี้เถ้าแกลบ. (PRODUCTION OF ALUMINIUM FOAM STABILIZED BY RICE HUSK ASH) ที่ปรึกษาวิทยานิพนธ์หลัก : อ.ดร. เสกศักดิ์ อัสวะวิสิทธิ์ชัย, 138 หน้า.

งานวิจัยนี้มีวัดอุประสงค์เพื่อศึกษาผลของปริมาณขี้เถ้าแกลบที่เดิมในโฟมอะลูมิเนียมต่อพฤติกรรม การขยายตัวของโฟมอะลูมิเนียม โครงสร้างมหภาคและโครงสร้างจุลภาคของโฟมอะลูมิเนียม รวมทั้งพฤติกรรม การรับแรงอัดของโฟมอะลูมิเนียม มีการแบ่งขี้เถ้าแกลบออกเป็นสี่ขนาดและมีปริมาณขี้เถ้าแกลบแปรผันอยู่ ในช่วง 1 ถึง 3 wt.% โดยผลิตโฟมอะลูมิเนียมจากกรรมวิธีโลหะผง ที่อุณหภูมิ 800°C และใช้ขี้เถ้าแกลบที่ผลิต จากแกลบข้าวที่ผ่านกระบวนการสกัดด้วยกรด HCI หรือกรด H,SO, เผาที่อุณหภูมิ 700°C นาน 3 h ด้วยอัตราการ ให้ความร้อน 5°C/min การทดสอบการรับแรงอัดของโฟมอะลูมิเนียมใช้ชิ้นงานที่มีความสูง 30 mm และมีอัตรา ความเร็วหัวกด 5 mm/min

จากผลการวิจัยพบว่าโฟมที่ผสมขี้เถ้าแกลบทุกขนาคมีการขยายตัวลดลงเมื่อเปรียบเทียบกับโฟม อะถูมิเนียมบริสุทธิ์ และเมื่อขี้เถ้าแกลบมีขนาคอนุภาคเล็กลงไฟมจะขยายตัวได้น้อยลง ไฟมที่เติมขี้เถ้าแกลบทุก ขนาดจะมีการขยายตัวลดลงเมื่อปริมาณของขี้เด้าแกลบเพิ่มขึ้น แต่โฟมที่ผสมขี้เด้าแกลบทุกส่วนผสมมื โครงสร้างที่มีความสม่ำเสมอมากกว่าโครงสร้างของโฟมอะลูมิเนียมบริสุทธิ์ นอกจากนั้นการเติมอนุภาคขี้เถ้า แกลบทุกส่วนผสมทำให้ผนังโพรงอากาศและบริเวณ Plateau border ภายในโครงสร้างโฟมมีความหนามากขึ้น เมื่อเปรียบเทียบกับโฟมอะลูมิเนียมบริสุทธิ์ สำหรับการทดสอบการรับแรงอัดของโฟมอะลูมิเนียม โฟมที่ผสม ขี้เถ้าแกลบทุกขนาคมีความแข็งแรงและการดูครับพลังงานมากกว่าไฟมอะลูมิเนียมบริสุทธิ์ ไฟมจะมีความ แข็งแรงและการดูคซับพลังงานมากขึ้นเมื่อขนาคของขี้เถ้าแกลบเล็กลงและมีปริมาณของขี้เถ้าแกลบเพิ่มขึ้น

ปีการศึกษา 2551

ภาควิชา....วิสวกรรมโลหการ......ลายมือชื่อนิสิค.....รัฐ เกมสีตรี/การ....สาขาวิชา...วิสวกรรมโลหการ.....ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก.....รั

##4870436321 : MAJOR METALLURGICAL ENGINEERING

KEY WORD: ALUMINIUM FOAM / RICE HUSK ASH / POWDER METALLURGY RATH TANTISIRIPHAIBOON : PRODUCTION OF ALUMINIUM FOAM STABILIZED BY RICE HUSK ASH. ADVISOR : SEKSAK ASAVAVISITHCHAI, Ph.D., 138 pp.

The objective of this work is to study the effects of rice husk ash (RHA) on the expansion, structure and mechanical properties of Al foams. The RHA was separated to four different sizes. Its contents added in Al foams were varied in the range of 1 - 3 wt.%. Al foams were produced through a powder metallurgical route at 800°C. The RHA was produced by the chemical treatment using HCl or H₂SO₄, followed by the heat in a furnace at 700°C for 3 h, using a heating rate of 5°C/min. The sectioned foam samples with the length of 30 mm were compressed at the cross head speed of 5 mm/min to 60% strain.

It is found that the addition of RHA, in all cases, resulted in a decrease in the foam expansion, compared with the pure Al foam. The expansion decreases more when RHA with smaller size was added. The expansion also decreases when more amounts of RHA were added. However, better uniform foam structure was obtained when RHA, in all cases, was added. The addition of RHA resulted in an increase in the cell wall thickness. The compressive strength and energy absorption of Al foams increase when RHA has smaller size and more amounts of RHA were added.

สุนย์วิทยทรัพยากร

กิดดีกรรมประกาศ

วิทยานิพบธ์ฉบับนี้สามารถสำเร็จอุล่วงไปได้ด้วยดีจากความช่วยเหลือ และความ อนุเคราะห์ของหลายๆฝ่าย ผู้กัดทำขอกรามขอบพระคุณอาจารย์ที่ปรึกษาวิทยานิพนธ์ อาจารย์ คร. เสกสักดิ์ อัสวะวิสิทธิ์ชัย สำหรับการอุทิสถนและสละเวลาให้คำปรึกทาแนะนำ ที่เอาไจไส่ทั้งด้าน การเรียนและการทำงานตลอดระยะเวลาที่ดำเนินงานวิชัยนี้ ขอขอบพระคุณ คณะกรรมการสอบ วิทยานิพนธ์ รองศาสตราจารย์ คร.กอบบุญ หล่อทองคำ. ผู้ช่วยศาสตราจารย์ คร. ไสว ล่านชัยวิจิตร และอาจารย์ คร. ธารณ เหลือง เรานันท์ ที่ให้ความรู้ คำแนะนำและข้อศิตเห็นที่เป็นประโยชน์ต่อ งานวิจัย ขอขอบพระทุณกณาการย์คลอดจนเจ้าหน้าที่ประจำกาศวิชาวิศวกรรมโลษการทุกท่านที่ให้ ธารสนับสนุนผู้จัดทำในทุกด้านด้วยดีตลอดมา และของอบคุณเพื่อนๆในภาศวิชาวิศวกรรม โลษการทุกท่านสำหรับการสร้างบรรยากาสที่ดีในการทำงาน

ขอขอบพระคุณสถาบันวิจัยโลหะและวัสดุ จุฬาลงกรณ์มหาวิทยากัย ที่ให้ความ อนุเกราะท์ในการใช้เกรื่องมือเครียมชิ้นงาน และขอบพระคุณสูนย์วิจัยเกรื่องมือวิทยาสาสตร์และ เทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย ที่ให้ควายอนุเคราะห์ในการใช้เครื่องมือวิเคราะห์คลอดบาจม เสร็จสิ้นงานวิจัยด้วยดี

สุดท้ายนี้ ผู้จัดทำขอขอบพระอุณสมาชิกทุกอนไมอรอบอรัวตันติชิริไหบูลย์ โดยเฉพาะปิดาของข้าพเก้า นายวรวุฒิตันติชิริไพบูลย์ ผู้ซึ่งเป็นหัวหน้าอรอบอรัวที่ทำงานอย่าง หนักมาตลอดชีวิณพื่ออวามสุขสบายของสมาชิกอรอบอรัวทุกอน รวมทั้งมารดาผู้ที่ออยให้กำลังใจ แก่ผู้กัดยำมาโดยตอด นอกขาดนั้นผู้กัดทำขอขอบพระอุพอาจารย์บุกท่านนี่อบรมสั่งสอนมาตั้งแต่ อดีตอนถึงปัจจุบัน และบุกอลอันเป็นที่รักที่ออยให้กำลังใจในการสนับสนุนและเป็นกำลังใจได้ ตอดมากนล้าเรือการซึกษา

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

สารบัญ

บทคัดย่อภาษาไทย
บทคัดย่อภาษาอังกฤษ
กิตติกรรมประกาศ
สารบัญ
สารบัญตาราง
สารบัญภาพ
บทที่ 1 บทนำ
1.1 ควา <mark>มสำคัญของงานวิจัย</mark>
1.2 วัตถุประสงค์ของงานวิจัย
1.3 ขอบเขตของงานวิจัย
1.4 ข้อจำกั <mark>คของงาน</mark> วิจั <mark>ย</mark>
1.5 คำจำ <mark>กัด</mark> คว <mark>าม</mark> ที่ใช้ในงานวิจัย
1.6 ประโยช <mark>น์</mark> ที่คา <mark>คว่</mark> าจะได้รับ
บทที่ 2 เอกสารและงานวิ <mark>จัยที่เ</mark> กี่ยว <mark>ข้อง</mark>
2.1 โฟมโลหะ
2.1.1 ลักษณะรูปร่างของโพรงอากาศในโฟมโลหะ
2.1.2 ความหนาแน่นสัมพัทธ์ของโฟมโลหะ
2.1.3 ปริมาณของโพรงอากาศในโฟมโลหะ
2.1.4 ขนาครูปร่างของโพรงอากาศ
2.1 <mark>.5 การนำไปใช้งานสำหรับโฟมโลหะ</mark>
2.2 โฟมอะลูมิเนียม
2.3 การผลิตโฟมอะลูมิเนียม
2.4 การผลิตโฟมอะลูมิเนียมจากกรรมวิธีโลหะผง
2.5 กลไกที่เกิดขึ้นในระหว่างกระบวนการผลิตโฟมอะลูมิเนียมด้วยวิธีโลหะผง
2.6 ปัจจัยที่มีผลในการผลิต โฟมอะลูมิเนียม โดยกรรมวิธี โลหะผง
2.6.1 ความหนาแน่นของ Precursor
2.6.2 ลักษณะและปริมาณของ TiH ₂
2.6.3 อุณหภูมิที่ใช้ในการผลิตโฟม
2.6.4 อัตราการให้ความร้อน

	หน้า
2.6.5 บรรยากาศและความ <mark>คันที่ใช้ในการ</mark> ผลิตโฟมอะลูมิเนียม	14
2.6.6 ธาตุผสม	16
2.7 การเพิ่มเสถีย <mark>รภาพของโฟมอะลูมิเนียม</mark>	17
2.8 สมบัติทางกลของ โฟมอะลูมิเนียม	20
2.8.1 ค <mark>วามสามารถในการ</mark> รับแร <mark>งอัคของโฟมอะลูมิเนียม.</mark>	21
2.8.2 การดูคซับพลังงานของโฟม <mark>อะลูมิเนียม</mark>	23
2.9 แกลบข้าว	25
2.9. <mark>1 ส่วนประกอบของแก</mark> ลบข <mark>้าว</mark>	25
2. <mark>9.</mark> 2 ซิลิกาในแกลบข้าว <mark></mark>	25
2.9.2.1 ซิลิกาผลึก	25
2.9. <mark>2</mark> .2 ซิ <mark>ลิกาอ</mark> สัญฐาน	26
2.9. <mark>3 ประโยชน์ของซิ</mark> ลิกา	27
2.9.4 กา <mark>รสะสม</mark> ของซิลิกาในพืช	27
2.9.5 ปัจจัยที่ <mark>ม</mark> ีอิทธิพล <mark>ต่อการผลิตขี้เถ้าแก</mark> ลบ	27
2.9.6 การเค <mark>รี</mark> ยมซิลิ <mark>กาจากแกลบข้าว</mark>	29
บทที่ 3 วิธีดำเนินการวิจัย	31
3.1 วัสดุที่ใช้ในการวิจัย	31
3.2 เครื่องมือที่ใช้ในการวิจัย	31
3.3 วิธีการคำเนินการวิจัย	32
3.3.1 การเตรียมและการตรวจสอบคุณลักษณะของขี้เถ้าแกลบ <mark>จา</mark> กแกลบข้าว	32
3.3. <mark>2 กา</mark> รตรวจสอบคุณลักษณะของขี้เถ้าแกลบ	33
3.3.3 การผลิต Precursor และ โฟมอะลูมิเนียม	33
3.3.4 การวัดความหนาแน่นของ Precursor และ โฟมอะลูมิเนียม	35
3.3.5 การทคสอบพฤติกรรมการรับแรงอัดของโฟมอะสูมิเนียม	36
3.3.6 การตรวจสอบโครงสร้างจุลภาคของ Precursor และโฟมอะลูมิเนียม	37
3.3.7 การตรวจสอบโครงสร้างมหภาคของโฟมอะลูมิเนียม	37
3.4 การวิเคราะห์ข้อมูล	38
ๆ บทที่ 4 ผลการทดลอง	39
4.1 คุณลักษณะเฉพาะของวัสคุผง	39

պ

	หน้า
4.2 คุณลักษณะของขี้เถ้าแกลบ	42
4.2.1 การวิเคราะห์โครง <mark>สร้างผลึกของขี้เถ้าแก</mark> ลบ	42
4.2.2 การหาส่วน <mark>ประกอบทางเก</mark> มีของ <mark>ขี้เถ้าแกลบ</mark>	44
4.3 ความหนาแน่ <mark>นของชิ้นงานหลั</mark> งอัดของผงโล <mark>หะ</mark>	45
4.4 การขยายตัวของโฟมอะลูมิเนียม	46
4.5 โครงสร้างมหภาคของโฟมอ <mark>ะ</mark> ลูมิเนียม	57
4.6 โครงสร้า <mark>งจุลภาคของโฟมอะลู</mark> มิเนียม	62
4.6.1 <mark>โครงสร้างจุลภาคขอ</mark> งชิ้นงา <mark>นห</mark> ลังอัค	62
4.6.2 โครงสร้างจุล <mark>ภาคบริเวณ</mark> ผนังโพรงอากาศ	64
4.6.3 โครงสร้างจุลภาคบริเวณ Plateau border	66
4.6. <mark>4</mark> พื้นผิวผนัง โพรงอากาศของ โฟมอะลูมิเนียม	68
4.7 ความส <mark>าม</mark> ารถ <mark>ในการ</mark> รับแรงอ <mark>ัดของโฟมอะ</mark> ลูมิเ <mark>นียม</mark>	71
บทที่ 5 วิจารณ์ผลการ <mark>ทุด</mark> ลอ <mark>ง</mark>	76
5.1 การขยาย <mark>ตัวขอ<mark>ง</mark>โฟม</mark>	76
5.1.1 ผลของ <mark>ป</mark> ริมาณ <mark>อนุภาคต่อการขยายตัวของ</mark> โฟม	76
5.1.2 ผลของขนาดอ <mark>นุภากต่อการขยายตัวของ</mark> โฟม	77
5.1.3 ผลของปร <mark>ะเภทของอนุภาคต่อการขยายตัวขอ</mark> งโฟม	78
5.2 โครงสร้างของโฟม	79
5.2.1 ผลของปริมาณของอนุภากต่อโครงสร้างโฟม	79
5.2.2 ผลของขนาคอนุภาคต่อโครงสร้างโฟม	80
5.2. <mark>3 ผล</mark> ของประเภทของอนุภาคต่อโครงสร้างโฟม	81
5.3 คุณสมบัติทางกลของโฟม	81
5.3.1 ผลของปริมาณอนุภาคต่อสมบัติทางกลของโฟม	81
5.3.2 ผลของขนาคอนุภาคต่อสมบัติทางกลของโฟม	84
5.3.3 ผลของประเภทอนุภาคต่อสมบัติทางกลของโฟม	85
บทที่ 6 สรุปผลการทดลองและ ข้อเสนอแนะ	87
6.1 สรุปผลการทคลอง	87
6.2 ข้อเสนอแนะ	88
รายการอ้างอิง	89

ภาคผนวก	92
ภาคผนวก ก	93
ภาคผนวก ข	101
ประวัติผู้เขียนวิทยานิพ <mark>นธ์</mark>	138

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

หน้า

สารบัญตาราง

หน้า

ตารางที่ 2.1 แสดงความสัมพันธ์ระหว่า <mark>งคุณสมบัติ การ</mark> นำไปใช้งานและรูปแบบของ	
ผลิตภัณฑ์โฟมโลหะ	6
ตารางที่ 2.2 ส่วนประกอบหล <mark>ักของแกลบ</mark>	25
ตารางที่ 2.3 ส่วนประก <mark>อบทางเคมีของข</mark> ึ้เถ้าแก <mark>ลบและขึ้เถ้าแกลบที่ได้จา</mark> กแกลบที่ผ่าน	
การสกั <mark>ดด้วยกรด HCl</mark>	26
ตารางที่ 4.1 การกระจายด้วของขนาคอนุภาคของวัสดุผง	42
ตารางที่ 4.2 ส่วนประก <mark>อบเคมีของขี้เถ้าแก</mark> ลบ	44
ตารางที่ 4.3 โคร <mark>งสร้างมหภาคของโฟมอ</mark> ะลูมิเนียม	59
ตารางที่ 4.4 ผลการวิเก <mark>ราะห์ขนาดของโพรงอากาศภายในโกรงสร้างโฟมอะลู</mark> มิเนียม	61
ตารางที่ 4.5 สมบัติ <mark>ท</mark> างก <mark>ลที่ได้จากการทดสอบการ</mark> รับแร <mark>งอัดของโฟมอะลูม</mark> ิเนียม	75
ตารางที่ 1ก แส <mark>ดงผลการวัดขนาดเส้นผ่านศูนย์กลางของโพรงอากาศและ</mark> สัดส่วนพื้นที่	
ระหว่ <mark>างโพรงอ</mark> ากา <mark>ศ</mark> กับเนื้อพื้นของโฟมอะลูมิเนียมที่มีส่วนผสมต่างๆ	95

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

สารบัญภาพ

	หน้า
รูปที่ 2.1 โพรงอากาศแบบปิดแล <mark>ะ โพรงอากาศแบบเปิด</mark>	4
รูปที่ 2.2 แผ่นแซนวิชที่บร <mark>ิเวณเนื้อ โลหะส่วนกลางทำจากโฟมอะ</mark> ลูมิเนียม	7
รูปที่ 2.3 ชิ้นส่วนที่ผลิตค้ว <mark>ยโฟมที่ใช้เป็นส่วนประกอบรถยนต์</mark>	7
รูปที่ 2.4 กรรมวิธีกา <mark>รผลิต โฟมอะลูมิเน</mark> ียมจา <mark>กส</mark> ถานะ <mark>ของเหลวและสถา</mark> นะของแข็ง	8
รูปที่ 2.5 ขั้นตอนกา <mark>รผลิตโฟมอะลูมิเนียมโดยใช้กรรมวิธีโลหะผง</mark>	9
รูปที่ 2.6 การขยายตัวและ โกรงสร้างของโฟมอะลูมิเนียมที่อุณหภูมิ 800°C ที่เวลาต่างๆ	10
รูปที่ 2.7 การขยายตัวของโฟมอะลูมิเนียม ที่ <mark>กว</mark> ามห <mark>นาแน่นของ Precursor ต่</mark> างๆ	11
รูปที่ 2.8 การขย <mark>าย</mark> ตัวขอ <mark>งอ</mark> ะลูมิเนียม 6061 ที่อัตราการให้กวามร้อนต่างๆกันที่อุณหภูมิเตา	
800°C	13
รูปที่ 2.9 ผลขอ <mark>ง</mark> บรรย <mark>ากาศที่ใช้ในการผลิต โฟมอะลูมิเนียมที่มีต่อการขยายตัวของ</mark>	
โฟมอะลูม <mark>ิเนียมภายใต้ภ</mark> าวการณ์ให้ความร้อนเดียว <mark>กัน</mark>	14
รูปที่ 2.10 ผลของ <mark>กวามคั้นภายนอกที่มีต่อการขยายตัวของโฟมอะลูมิเน</mark> ียม	15
รูปที่ 2.11 ผลของธา <mark>ตุผ</mark> สม <mark>ท</mark> ี่มีต่อแรง <mark>ดึงผิวของน้ำโลหะ</mark> อะลูมิเ <mark>นียม</mark>	15
รูปที่ 2.12 ผลของการเติม <mark>ธ</mark> าตุผ <mark>สมที่มีต่อความหนืดของน้ำโลหะอะ</mark> ลูมิเนียม	16
รูปที่ 2.13 บริเวณ Plateau border	17
รูปที่ 2.14 แสดงผลของอนุภา <mark>กของแข็งต่อการลคลงของ Cap</mark> illary pressure ระหว่าง	
บริเวณ Plateau border และ Film	18
รูปที่ 2.15 แสดงผลของความสามารถในการเปียกของอนุภาคของแข็งในน้ำโลหะเหลว	18
รูปที่ 2.16 ผลของขนาดและปริมาณของซิลิกา (SiO₂) ที่เติมเข้าไปต่อกวามเสถียร	
ของโมเคลน้ำ	19
รูปที่ 2.17 Stress-Strain curve ของโฟมโลหะในอุคมคติ และจากการทคสอบจริง	21
รูปที่ 2.18 เปรียบเทียบค่า Young's modulus และค่าความเค้นแรงอัดความแตกต่างระหว่าง	
โฟมที่ทำจากอะลูมิเนียมบริสุทธิ์และ โลหะผสม AlSi7Mg0.45	21
รูปที่ 2.19 (ก) ความสัมพันธ์ระหว่างความสามารถในการคูดซับพลังงานกับปริมาณรูพรุน	
ของโฟม	
(ข) ความสัมพันธ์ระหว่างความสามารถในการดูดซับพลังงานกับความเครียดของ	
โลหะผสม AlSi7Mg0.45	23

Ŋ

	หน้า
รูปที่ 2.20 แสดงความสัมพันธ์ระหว่างความหนาแน่นกับพฤติกรรมการรับแรงอัดของ	
โฟมต่างชนิดกัน	24
รูปที่ 2.21 แสดงความสัมพันธ์ระหว่างความหนาแน่นของโฟมกับความสามารถ	
ในการดูดซับ <mark>พลังงานของโฟ</mark> มอะลูมิ <mark>เนี</mark> ยม	24
รูปที่ 2.22 ผลการวิเ <mark>คราะห์ขี้เถ้าแกลบค้</mark> วยเทคนิค X-r <mark>ay diffraction</mark>	29
รูปที่ 3.1 แผนภาพ <mark>แสคงขั้นตอนการเตรียม</mark> ขี้เถ้าแ <mark>กลบจากแกลบข้าว</mark>	34
รูปที่ 3.2 ทิศทางที่ใช้ในการตัดโฟมอะลูมิเนียมด้วยเครื่อง Precision Cutting Machine	36
รูปที่ 3.3 ทิศทาง <mark>ที่ใช้ในการ</mark> ตัด Precursor	37
รูปที่ 3.4 ทิศทางที่ใช้ในการตัดโฟมอะลูมิเนียมด้วยเครื่อง Discharge Wire Cut Machine	38
รูปที่ 4.1 ลักษณ <mark>ะรูปร่างของวัสคุผง</mark>	40
รูปที่ 4.2 ผลการวิเคร <mark>าะ</mark> ห์ XRD <mark>ข</mark> ึ้เถ้าแกลบ	43
รูปที่ 4.3 ผลการวิเคราะ <mark>ห์ XRD</mark> ผงซิลิกา	43
รูปที่ 4.4 ความหนาแ <mark>น่นของชิ้นงานหลังอัคกับปริมาณอนุภาคเซรามิก</mark>	
(ก.) ขี้เถ้าแกลบ <mark>ที่ผ่</mark> านการสกัดด้วยกรด HCl	
(ข.) ขี้เถ้าแกลบที่ผ่านก <mark>ารสกัดด้วยกรด H₂SO4</mark>	
(ค.) ขี้เถ้าแกลบจากโร <mark>งไฟฟ้า ซิลิกาและซิลิกอนการ์</mark> ไบด์	45
รูปที่ 4.5 การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบ	
ที่ผ่านการสกัคด้วยกรค HCl ขนาดเฉลี่ย 364 µm	46
รูปที่ 4.6 การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบ	
ที่ผ่านก <mark>ารส</mark> กัคด้วยกรด HCl ขนาดเฉลี่ย 199 μm	47
รูปที่ 4.7 การขย <mark>ายตั</mark> วของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบ	
ที่ผ่านการสกัคด้วยกรค HCl ขนาดเฉลี่ย 80 µm	48
รูปที่ 4.8 การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบ	
ที่ผ่านการสกัคด้วยกรด HCl ขนาดเฉลี่ย 18 µm	49
รูปที่ 4.9 การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบ	
ที่ผ่านการสกัดด้วยกรด H₂SO₄ ขนาดเฉลี่ย 401 μm	50
รูปที่ 4.10 การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบ	
ที่ผ่านการสกัดด้วยกรด ${ m H_2SO_4}$ ขนาดเฉลี่ย 210 $\mu{ m m}$	51

	1	9	,	
ห	l	Ĵ	1	

รูปที่ 4.11 การขยายตัวของโฟมอะลูมิเน <mark>ียมกับเวลา ขอ</mark> งโฟมที่ผสมขี้เถ้าแกลบ	
ที่ผ่านการสกัดด้วยกรด H ₂ SO ₄ ขนาดเฉลี่ย 75 µm	52
รูปที่ 4.12 การขยายตัวของโฟ <mark>มอะลูมิเนียมกับเวลา ของโฟมที่ผ</mark> สมขี้เถ้าแกลบ	
ที่ผ่านการสกั <mark>ดด้วยกรด $m H_2SO_4$ ขนาดเฉลี่ย 16 $\mu m m$</mark>	53
รูปที่ 4.13 การขยาย <mark>ตัวของ โฟมอะลูมิเน</mark> ียมกับเวลา ข <mark>อง โฟมที่ผสมขี้เถ้าแ</mark> กลบ	
จากโรงงานไฟฟ้า ขนาดเฉลี่ย 180 µm	54
รูปที่ 4.14 การขย <mark>ายตัวของ โฟมอะลูมิเนียม</mark> กับ <mark>เวลา ของ โฟมที่ผสมซิลิกา ข</mark> นาดเฉลี่ย 5 μm	55
รูปที่ 4.15 การข <mark>ยายตัวของ โฟมอะลูมิเนี</mark> ยมกับ <mark>เว</mark> ลาของ โฟมที่ผสม	
ซิลิก <mark>อนการ์ไบด์ขนาดเฉลี่ย</mark> 7 µm	56
รูปที่ 4.16 โกรง <mark>สร้าง</mark> จุล <mark>ภาคบริเวณภาคตัดขวางชิ้</mark> นงานหลังอัด	63
รูปที่ 4.17 โกรงสร้า <mark>งจุลภาคบริเวณภาคตัดขวางผนังโพรงอากาศของโฟม</mark> อะสูมิเนียม	65
รูปที่ 4.18 โครงส <mark>ร้างจุลภา</mark> คบริเวณภาค <mark>ตัดขวาง Plate</mark> au border <mark>ของโฟมอ</mark> ะลูมิเนียม	67
รูปที่ 4.19 โครงสร้างจ <mark>ุด</mark> ภาค <mark>บ</mark> ริเวณพื้นผิวของผนังโพรงอากา <mark>ศของโฟ</mark> มอะลูมิเนียม	70
รูปที่ 4.20 ผลการทค <mark>สอบความสามารถในการรับแรงอัดของโฟมอ</mark> ะลูมิเนียมที่ผสม	
ขี้เถ้าแกลบที่ผ่านการ <mark>สกัคด้วยกรด HCl</mark>	72
รูปที่ 4.21 ผลการทคสอบความ <mark>สามารถในการรับแรงอัคของ</mark> โฟมอะลูมิเนียมที่ผสม	
ขี้เถ้าแกลบที่ผ่านการสกัคด้วยกรด H₂SO₄	72
รูปที่ 4.22 ผลการทคสอบความสามารถในการรับแรงอัคของโฟมอะลูมิเนียมที่ผสมขี้เถ้า	
แกลบจากโรงไฟฟ้า โฟมอะลูมิเนียมที่ผสมซิลิกาและโฟมอะลูมิเนียมที่ผสม	
ซิลิกอนคาร์ไบด์	73
รูปที่ 5.1 แบบจำลองการรับแรงของอนุภาคซิลิกอนการ์ไบค์ในเนื้ออะลูมิเนียม	83

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ົງ

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

ปัจจุบันโฟมอะลูมิเนียมเริ่มเป็นที่รู้จักและใช้กันแพร่หลายมากขึ้น เนื่องจากมีสมบัติ เฉพาะที่โคดเด่น เช่น มีความแข็งแรงต่อน้ำหนักสูง , มีสมบัติการนำความร้อนที่ดี และมีสมบัติการดูด ซับพลังงานระหว่างการอัดกระแทกที่ดี เป็นต้น

การผลิตโฟมอะลูมิเนียมสามารถผลิตได้หลายวิธี แต่วิธีที่นิยมใช้กันมากวิธีหนึ่งก็คือ กรรมวิธีโลหะผง เนื่องจากเป็นวิธีที่สามารถผลิตโฟมอะลูมิเนียมให้มีรูปร่างใกล้เคียงกับรูปทรงที่ ต้องการได้ ปฏิกิริยาการเกิดโฟมในกรรมวิธีโลหะผงนั้นเกิดขึ้นอย่างรวดเร็วในเวลาเพียงไม่กี่นาที ในขณะที่โฟมเกิดการขยายตัวนั้น จะเกิดการไหลของน้ำโลหะอะลูมิเนียมไปที่ฐานโฟมเนื่องจาก อิทธิพลของแรงโน้มถ่วงโลก และการรวมตัวกันของโพรงอากาศในโฟม ซึ่งปรากฏการณ์ที่เกิดขึ้นนี้จะ ส่งผลให้โครงสร้างโดยรวมไม่มีความสม่ำเสมอ เป็นผลทำให้สมบัติเชิงกลของโฟมอะลูมิเนียม เปลี่ยนไปด้วย

จากการศึกษาการเพิ่มเสถียรภาพให้ โฟมอะลูมิเนียมที่ผลิตจากกรรมวิธี โลหะผงสามารถทำ ใด้ โดยการเติมอนุภาคเซรามิก โดยอนุภาคเซรามิกจะขัดขวางการ ไหลของน้ำโลหะอะลูมิเนียมไปที่ฐาน โฟม เนื่องจากอนุภาคเซรามิกจะเพิ่มความหนืดของน้ำโลหะอะลูมิเนียมและยังช่วยลดการรวมตัวกัน ของโพรงอากาศในโฟม การเพิ่มเสถียรภาพของโฟมอะลูมิเนียมยังเกิด ได้จากการที่อนุภาคเซรามิกไป อยู่ที่บริเวณผิวสัมผัสระหว่างอากาศและน้ำโลหะ โดยจะทำให้ความโด้งของผิวสัมผัสเปลี่ยนไปและยัง ช่วยลดความแตกต่างของความคันระหว่าง Plateau border และผนังโพรงอากาศเป็นผลให้การไหลของ น้ำโลหะอะลูมิเนียมลดลง

อย่างไรก็ตามอนุภาคเซรามิกแต่ละชนิดที่เติมลงในโฟมอะลูมิเนียมจะส่งผลต่อการเพิ่ม เสถียรภาพของโฟมอะลูมิเนียมที่ต่างกัน ขี้เถ้าแกลบเป็นขี้เถ้าที่มีปริมาณออกไซค์สูง ซึ่งมีซิลิกา (SiO₂) อยู่ประมาณ 87-97 wt.% ขี้เถ้าแกลบสามารถผลิตได้จากแกลบข้าว ซึ่งเป็นวัตถุดิบที่หาได้ง่ายในประเทศ ไทยและมีราคาถูก ดังนั้นการทำวิจัยนี้จึงมีขึ้นเพื่อศึกษาผลของการเติมขี้เถ้าแกลบต่อการขยายตัว ลักษณะโครงสร้าง และพฤติกรรมการรับแรงอัดของโฟมอะลูมิเนียม

1.2 วัตถุประสงค์ของการวิจัย

 1.2.1 เพื่อศึกษาเปรียบเทียบผลของปริมาณ ขนาดและประเภทของอนุภาคขี้เถ้าแกลบต่อ พฤติกรรมการขยายตัว โครงสร้างมหภาค<mark>และโครงสร้า</mark>งจุลภาคของโฟมอะลูมิเนียม

 1.2.2 เพื่อศึกษาเปรียบเทียบผลของปริมาณ ขนาดและประเภทของอนุภาคขี้เถ้าแกลบต่อ พฤติกรรมการรับแรงอัดของโฟมอะลูมิเนียม

1.3 ขอบเขตของงานวิจั<mark>ย</mark>

 1.3.1 ขี้เถ้าแกลบที่ใช้ในการทดลอง เตรียมจากกระบวนการสกัดจากแกลบที่ต้มด้วยกรด HCl กรด H₂SO₄ และขี้เถ้าแกลบที่ได้มาจากโรงไฟฟ้า

 1.3.2 ตรวจสอบพฤติกรรมการขยายตัวของโฟมอะลูมิเนียม ที่อัตราส่วน 1, 2, 3 wt.% ของ อนุภาคขี้เถ้าแกลบ อนุภาคซิลิกา และอนุภาคซิลิกอนคาร์ไบค์

1.3.3 ตรวจสอบพฤติกรรมการรับแรงอัดของโฟมอะลูมิเนียม ที่อัตราส่วน 1, 2, 3 wt.% ของอนุภากขี้เถ้าแกลบ อนุภา<mark>ก</mark>ซิลิกา และอนุภากซิลิกอนการ์ไบด์

1.3.4 อุณหภูมิที่ใช้ในการผลิตโฟมอะลูมิเนียม ณ อุณหภูมิ 800°C ภายใต้บรรยากาศปกติ

1.4 ข้อจำกัดของงานวิจัย

แกลบข้าวที่มาจากแหล่งที่มาแต่ละแหล่ง เมื่อผลิตเป็นขึ้เถ้าแกลบจะได้ปริมาณซิลิกาไม่ เท่ากัน

1.5 คำจำกัดความที่ใช้ในการวิจัย

โฟมอะลูมิเนียม (Al foam), ไทเทเนียมไฮไดรด์ (TiH₂), กรรมวิธีโลหะผง (Powder - metallurgy), สมบัติทางกล (Mechanical properties), ขี้เถ้าแกลบ (Rice husk ash)

1.6 ประโยชน์ที่คาดว่าจะได้รับ

1.6.1 มีความรู้ความเข้าใจเกี่ยวกับการผลิตโฟมอะลูมิเนียมโดยใช้กรรมวิธีโลหะผง

1.6.2 มีความรู้ความเข้าใจเกี่ยวกับวิธีการเตรียมขึ้เถ้าแกลบจากกระบวนการสกัดจากแกลบ

 1.6.3 มีความรู้ความเข้าใจเกี่ยวกับผลของปริมาณ ขนาดและประเภทของอนุภาคขี้เถ้า แกลบต่อการขยายตัวและพฤติกรรมการรับแรงอัดของโฟมอะลูมิเนียม

 มีความรู้ความเข้าใจเกี่ยวกับความสัมพันธ์ระหว่างโครงสร้างมหภาคและโครงสร้าง จุลภาคต่อพฤติกรรมการรับแรงอัด<mark>ของโฟมอะลูมิเนียม</mark>

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 โฟมโลหะ

โฟมโลหะเป็นวัสดุทางวิศวกรรมที่มีความหนาแน่นค่ำ ทำให้มีน้ำหนักเบาเป็นพิเศษ เมื่อเปรียบเทียบกับโลหะชนิดเดียวกันในปริมาตรที่เท่ากัน มีความแข็งแรงต่อน้ำหนักสูง สามารถ ดูดซับพลังงานจากการกระแทกได้ดีและมีสมบัติเด่นอีกหลายประการ [1]

โดยทั่วไปสามารถจำแนกประเภทของโฟมโลหะได้จากรูปร่างของโพรงอากาศ นอกจากนี้ความแตกต่างระหว่างโฟมโลหะด้วยกันยังสามารถบอกได้จากค่าความหนาแน่นสัมพัทธ์ ปริมาณของโพรงอากาศ และขนาดรูปร่างของโพรงอากาศ [2]

2.1.1 <mark>ลักษณะรูปร่างขอ</mark>งโพรงอากาศในโฟมโลหะ

ลักษณะรูปร่างของโพรงอากาศหรืออาจเรียกอีกชื่อหนึ่งว่า เซล (Cell) ของโฟมโลหะ ซึ่งเป็นส่วนประกอบของความพรุน (Porosity) ในโฟมโลหะสามารถจำแนกได้เป็น โพรงอากาศ แบบปิด (Closed-cell) และโพรงอากาศแบบเปิด (Open-cell) โดยโพรงอากาศแบบปิดเป็น โครงสร้างที่มีลักษณะคล้ายกับมีเยื่อบุผิวปกคลุมรอบโพรงอากาศ ทำให้อากาศ แก๊ส หรือของเหลว ใม่สามารถไหลผ่านได้ ดังรูปที่ 2.1(ก) สำหรับโพรงอากาศแบบเปิดนั้นจะมีลักษณะโครงสร้าง กล้ายกับร่างแหต่อกันในด้านข้างของโพรงอากาศ ทำให้อากาศ แก๊ส หรือของเหลว สามารถไหลผ่านได้ ดังรูปที่ 2.1(ก) สำหรับโพรงอากาศ แก๊ส หรือของเหลว สามารถไหล ผ่านภายในโครงสร้างได้ ดังแสดงในรูปที่ 2.1(ข) โดยคุณสมบัติของโฟมโลหะจะขึ้นอยู่กับรูปแบบ และโครงสร้างโพรงอากาศของโฟม [2]

ร**ูปที่ 2.1** (ก) โพรงอากาศแบบปิด และ (ข) โพรงอากาศแบบเปิด ตามลำดับ [33]

ความหนาแน่นสัมพัทธ์ (Relative density) ของโฟมโลหะ (ρ^{*}) ซึ่งมีหน่วยเป็น % สามารถแสดงได้ในรูปของสัดส่วนโดยปริมาตร (Volume fraction) ของโลหะชนิดนั้นๆ ค่าความ หนาแน่นสัมพัทธ์มีผลต่อสมบัติทางกลของโฟมโลหะ โดยความหนาแน่นสัมพัทธ์สามารถแสดงได้ ในสมการ (1)

$$\%\rho^* = \frac{\rho_f}{\rho_s} \times 100\% \tag{1}$$

โดยที่ ρ_r คือ ค่าความหนาแน่นของโฟมโลหะและ ρ_s คือ ค่าความหนาแน่นของโลหะชนิดนั้นๆ ซึ่ง ความหนาแน่นของโฟมโลหะจะแตกต่างกันขึ้นอยู่กับกรรมวิธีการผลิตโฟมโลหะ ค่าความหนา-แน่นของโฟมโลหะที่แตกต่างกันจะนำไปสู่การประยุกต์ใช้งานที่ต่างกัน ทั้งนี้เนื่องมาจากสมบัติ ทางกลที่แตกต่างกัน [2]

2.1.3 <mark>ปริมาณของโพรงอากาศในโฟมโ</mark>ลหะ

ปริมาณของโพรงอากาศในโฟมโลหะ (P) ซึ่งมีหน่วยเป็น % สามารถแสดงได้ในรูป ของสัดส่วนโดยปริมาตรของโลหะชนิดนั้นๆ โดยปริมาณของโพรงอากาศแสดงได้ดังสมการ (2)

$$\% P = 100\% - \% \rho^*$$
 (2)

2.1.4 ขนาดรูปร่างของโพรงอากาศ

สมบัติทางกลของโฟมโลหะนั้นมีความสัมพันธ์กับขนาครูปร่างของโพรงอากาศ ความ แตกต่างของวิธีการผลิตนั้นส่งผลให้เกิดชนิดของโครงสร้างโพรงอากาศที่แตกต่างกัน เช่นเดียวกับ ค่าความหนาแน่นของโฟมโลหะ ขนาดของโพรงอากาศที่มีความแตกต่างกัน จะมีผลกระทบต่อ ขนาดของชิ้นงานทดสอบ (Size effect) ซึ่งจะมีอิทธิพลอย่างมากต่อการออกแบบและทดสอบวัสดุ

นอกจากนี้ขนาดและรูปร่างของโพรงอากาศที่แตกต่างกันนั้นยังส่งผลให้ก่ามอดุลัส ของยัง (Young's modulus) และความแข็งแรง (Strength) ของโฟมมีค่าแตกต่างกันไป มีการพบว่า ถ้าก่าความหนาแน่นของโฟมโลหะเป็นไปตามที่กำหนดไว้ รูปร่างของโพรงอากาศจะส่งผลกระทบ ต่อความแข็งแรงของโฟมโลหะมากกว่าขนาดของโพรงอากาศ อย่างไรก็ตามขนาดของโพรงอากาศ ก็ยังคงเป็นตัวแปรสำคัญและมีอิทธิพลต่อความแข็งแรงของโฟมโลหะอยู่ [2]

2.1.5 การนำไปใช้งานสำหรับโฟมโลหะ

การนำไปใช้งานของโฟมโลหะนั้น จะนำไปใช้ในงานด้านวิศวกรรมเป็นส่วนใหญ่ เนื่องจากโฟมโลหะมีความหนาแน่นต่ำและมีความแข็งแรงต่อน้ำหนักสูง จึงถูกนำไปใช้ในงาน ทางด้านโครงสร้างที่ต้องการให้มีน้ำหนักเบา และความแข็งแรงพอประมาณ

ส่วนการนำไปใช้งานค้านอื่นๆ สามารถยกตัวอย่างได้ เช่น ค้านการแพทย์ เนื่องจาก สามารถควบคุมความหนาแน่นได้ จึงนำไปอัดเป็นชั้นให้มีลักษณะคล้ายกับส่วนนอกของกระดูกได้ ตารางที่ 2.1 แสดงค<mark>วามสัมพันธ์ระหว่าง</mark>คุณสมบัติ การนำไปใช้งานและรูปแบบของผลิตภัณฑ์ [2]

คุณสมบัติ	ก <mark>าร</mark> นำไปใช้งาน	รูปแบบของผลิตภัณฑ์
High specific bending stiffness and strength	 แผ่นวัสดุที่ใช้เป็นโครงสร้างที่ ต้องการความแข็งแรงและมี น้ำหนักเบาในการขนส่งหรือทาง สถาปัตยกรรม 	 Shaped parts (Sandwich) panels 3d-shaped (Sandwich) panels
Isotropic absorption of impact energy at a nearly constant low stress level	 ชิ้นส่วนรองรับแรงในชิ้นส่วน รถยนต์ วัสดุห่อหุ้ม ป้องกันความเสียหาย จากการกระแทก 	 Shaped parts Large panels
Good sound absorption, electromagnetic shielding, and vibration damping High thermal stability and low	 กล่องบรรจุอุปกรณ์อิเล็กทรอนิก วัสดุป้องกันเสียงจากเครื่องยนต์ วัสดุดูดซับเสียงบริเวณถนนหรือ ทางรถไฟ ฉนวนป้องกันความร้อน 	 Large panels Sandwich panels Large panels
Thermal conductivity Decorative, non-combustible, weather resistant Light-weight	 เฟอร์นิเจอร์ ติดผนัง ใส้แบบหล่อทราย วัสดุลอยน้ำ 	 Large panels Shaped parts Complex shaped parts with a dense surface skin
High inner surface	- อุปกรณ์แลกเปลี่ยนความร้อน - ตัวรองรับตัวเร่งปฏิกริยา - ใช้ในงานด้านCyrogenic	- Complex open-cell parts

ตารางที่ 2.1 ความสัมพันธ์ระหว่างคุณสมบัติการใช้งาน และรูปแบบของผลิตภัณฑ์ของ โฟม โลหะ [2]

โดยรูปที่ 2.2 เป็นรูปของโฟมอะลูมิเนียมโครงสร้างแบบแซนวิชและรูปที่ 2.3 เป็นรูป ของโฟมที่ใช้เป็นภาชนะ ซึ่งเป็นตัวอย่างของการนำไปใช้งานของโฟมโลหะ

ร**ูปที่ 2.2 แผ่นแซนวิชที่บริเวณเนื้อโลหะส่วนกลางทำจากโฟมอะ**ลูมิเนียม [3]

ร**ูปที่ 2.3** ชิ้นส่วนที่ผลิตด้วยโฟมที่ใช้เป็นส่วนประกอบรถยนต์ [31]

2.2 โฟมอะลูมิเนียม

โฟมอะลูมิเนียม คือ โฟมที่ได้จากการใช้อะลูมิเนียมเป็นวัสดุตั้งต้นในการผลิตโฟม โดยโฟมอะลูมิเนียมเป็นวัสดุที่มีความพรุนสูง ประกอบไปด้วยโพรงอากาศที่กระจายตัวอยู่ในเนื้อ พื้นอะลูมิเนียม โฟมอะลูมิเนียมมีข้อดีคือ น้ำหนักเบา ความแข็งแรงสูงในขณะที่กวามหนาแน่นต่ำ มีกวามสามารถในการดูดซับพลังงานการอัดที่ดี ทนต่ออุณหภูมิสูงได้ดีเมื่อเปรียบเทียบกับโฟม พอลิเมอร์นอกจากนี้ยังสามารถใช้เป็นวัสดุสำหรับตกแต่งได้อีกด้วย สามารถนำมารีไซเกิลได้และ ไม่เป็นพิษต่อสิ่งแวดล้อม เนื่องจากสมบัติทางกลของโฟมอะลูมิเนียมสามารถควบคุมได้จากการ ควบ- คุมรูปร่างของโพรงอากาศภายในโฟมอะลูมิเนียม ดังนั้นจึงมีการศึกษาเพื่อหาวิธีการควบคุม รูปร่างของโพรงอากาศภายในโฟมอะลูมิเนียมเพื่อให้ได้สมบัติทางกลตามที่ต้องการ [4] การใช้งาน หลักๆของโฟมอะลูมิเนียม คือ ใช้เป็นอุปกรณ์ดูดซับแรงกระแทกในรถยนต์ ใช้เป็นอิเล็กโทรดใน แบตเตอรี่และใช้เป็นวัสดุดูดซับเสียงบนถนน [1, 5]

2.3 การผลิตโฟมอะลูมิเนียม

วิธีการผลิต โฟมอะลูมิเนียมสามารถทำได้หลายวิธี ซึ่งสามารถจำแนกได้ตามสถานะ ของอะลูมิเนียมในกระบวนการผลิต โดยวิธีที่นิยมในการผลิต โฟมอะลูมิเนียมมีอยู่ 2 วิธีหลักๆ ดัง แสดงในรูปที่ 2.4 วิธีการที่ใช้แบ่งเป็น การผลิต โฟมจากสถานะของเหลว และการผลิต โฟมจากสถา นะของแข็งโดยใช้กรรมวิธีโลหะผง [2]

2.4 การผลิตโฟมอะลูมิเนียมจากกรรมวิธีโลหะผง

กระบวนการผลิต โฟมอะลูมิเนียมวิธีนี้เริ่มจากการผสมผงอะลูมิเนียมเข้ากับสารที่เป็น ้ตัวสร้างแก๊ส หรือ Foaming agent เพื่อทำให้เกิดโฟมขึ้น โดยทั่วไป Foaming agent มีหลายชนิด เช่น ไทเทเนียมไฮไดรด์ (TiH,) เซ<mark>อร์โคเนียมไฮไดรด์ (ZrH,</mark>) แกลเซียมการ์บอเนต (CaCO,) เป็น ต้นแต่สำหรับการผลิตโฟมอ<mark>ะ ถูมิเนียมจะ นิยมใช้ Foaming agent</mark> เป็นไทเทเนียมไฮไดรด์ (TiH₂) และจะใช้ในปริมาณร<mark>ะหว่าง 0.6-1.0 wt</mark>.% ซึ่งเพียง<mark>พอต่อการสร้าง</mark>โพรงอากาศภายในโฟม [6,7,8] ้ผงที่ผ่านการผสมจน<mark>เป็นเนื้อเคียวกันอ</mark>ย่างดีแล้ว จะถูกนำไปอัดขึ้นรูป ชิ้นงานที่ผ่านการอัดขึ้นรูป แล้วจะเรียกว่า " Foamable precursor " หรืออาจเรียกสั้นๆว่า " Precursor " การอัดขึ้นรูปนั้น สามารถทำได้ทั้งแบบเย็นและแบบร้อน เช่น การอัดด้วยความดันแกนเดียว (Uniaxial pressing) , การอัดด้วยความดั<mark>นเท่า</mark>กันทุกทิศทางแบบเย็<mark>น (Cold-isostatic pressing)</mark> การอัดด้วยความดันเท่ากัน ทุกทิศทางแบบร้อน (Hot-isostatic pressing) , การอัดผ่านแบบที่อุณหภูมิสูง (Extrusion) การอัดขึ้น รูปที่ใช้ความร้อ<mark>นนั้</mark>นมีการใช้กันอย่างกว้างขวางมากกว่า เนื่องจากจะได้ความหนาแน่นของ Precursor ที่สูงใกล้เคียงกับความหนาแน่นทางทฤษฎีของโลหะ แต่สำหรับผงอะลูมิเนียมบริสุทธิ์ การอัดขึ้นรูปแบบ<mark>เย็นก็สามารถที่จะผลิต Precursor</mark> ที่มีค<mark>วามหนาแน่นสุง</mark>ได้ จากนั้นนำ Precursor ้ไปใส่ในแม่พิมพ์และ<mark>น</mark>ำไป<mark>เข้าเตาอบ เมื่อให้ความร้อนแก่ Precursor</mark> จนถึงอุณหภูมิที่สูงกว่าจุค หลอมเหลวของอะลู<mark>มิเนียม ไทเทเนียมไฮไครค์ (TiH,)</mark> ซึ่งมีอ<mark>ุณห</mark>ภูมิการสลายตัวที่ประมาณ 400-450°C จะปล่อยแก๊สไฮโครเจนซึ่งจะสร้างโพรงอากาศใน Precursor ที่หลอมเหลวทำให้เกิดการ ้งยายตัวขึ้นและจะได้โฟมอะลมิเนียมที่มีรพรนแบบปิด การผลิตโฟมอะลมิเนียมจากกรรมวิธีโลหะ ้ผงมีขั้นตอนการผลิตดังแสดงในรูปที่ 2.5 โฟมอะลูมิเนียมที่ผลิตได้จากวิธี โลหะผงจะมีโพรงอากาศ แบบปิดและมีขนาดโพรงอากาศ 1-8 mm โฟมมีความพรุน (Porosity) 63-89% [16]

วิธีการผลิตโฟมอะลูมิเนียมจากกรรมวิธีโลหะผงมีข้อดีคือ สามารถผลิตได้โฟม อะลูมิเนียมที่มีรูปร่างใกล้เคียงกับรูปร่างที่ต้องการ และมีสมบัติทางกลที่ดีกว่าโฟมอะลูมิเนียมที่ ผลิตจากกรรมวิธีโลหะเหลว ส่วนข้อเสียของวิธีการนี้คือ มีค่าใช้จ่ายในส่วนของผงโลหะที่สูง และ การผลิตชิ้นส่วนที่มีขนาดใหญ่ทำได้ยาก [9, 10]

จุฬาลงกรณ์มหาวิทยาลัย

ร**ูปที่ 2.5** ขั้นตอนการผลิ<mark>ต</mark>โฟม<mark>อะ</mark>ลูมิเนียมโดยใช้กรรมวิธีโลหะผง [38]

2.5 กลไกที่เกิดขึ้นในร<mark>ะ</mark>หว่าง<mark>กระบวนการผลิตโฟมอะลูมิเนียมด้วยกร</mark>รมวิธีโลหะผง

ระหว่างกระบวนการผลิตโฟมอะลูมิเนียมด้วยกรรมวิธีโลหะผงคำเนินไปนั้น Precursor จะมีการเปลี่ยนแปลงรูปร่างเกิดขึ้นเมื่อผ่านการให้ความร้อนที่อุณหภูมิและเวลาหนึ่ง ซึ่ง กลไกเหล่านี้จะส่งผลต่อรูปร่างของ Precursor เมื่อขยายตัวเป็นโฟมอะลูมิเนียม ซึ่งประกอบไปด้วย 3 ขั้นตอนหลัก [11] ดังรูปที่ 2.6 แสดงการขยายตัวและโครงสร้างของโฟมอะลูมิเนียมที่เวลาต่างๆ

ร**ูปที่ 2.6** การขยายตัวและ โครงสร้างของ โฟมอะลูมิเนียมที่อุณหภูมิ 800°C ที่เวลาต่างๆ [11]

กลไก a - เริ่มเกิดโพรงอากาศ (Initiation and evolution of porosity) ขึ้นภายใน Precursor ในขั้นตอนนี้จะเริ่มเกิดโพรงอากาศขนาดเล็กขึ้นเนื่องจาก Foaming agent เริ่มเกิดการ สถายตัวและให้แก๊สไฮโดรเจน (H₂) ออกมา โพรงอากาศนี้จะมีรูปร่างขึ้นอยู่กับวิธีการในการขึ้นรูป Precursor ในขั้นตอนนี้ขนาดของ Precursor จะมีการขยายขึ้นประมาณ 0-30%

กลไก b - การโตขึ้นของโพรงอากาศ (Pore growth) ในขั้นตอนนี้จะยังคงมีการเริ่มเกิด โพรงอากาศขนาดเล็กอยู่ และโพรงอากาศที่เกิดขึ้นก่อนหน้านี้จะมีขนาดใหญ่ขึ้น ส่วนหนึ่งเกิดจาก ปริมาณของแก๊สที่เกิดขึ้นจากการสลายตัวของ Foaming agent เพิ่มมากขึ้น และอีกส่วนหนึ่งเกิดจาก การรวมตัวกันของโพรงอากาศที่มีอยู่ก่อนหน้า รูปร่างของโพรงอากาศจะเริ่มเปลี่ยนจากแถบยาวใน ทิศทางตั้งฉากกับแนวแรงอัดไปเป็นโพรงอากาศที่มีลักษณะกลม เมื่อเวลาผ่านไป โพรงอากาศที่มี รูปร่างกลมจะขยายตัวขึ้นจนกระทั่งไม่มีพื้นที่เพียงพอที่จะเกิดเป็นโพรงอากาศที่มีรูปร่างกลมได้อีก และจะเปลี่ยนรูปร่างไปเป็นรูปทรงหลายเหลี่ยม ในขั้นตอนนี้ขนาดของ Precursor จะมีการขยายตัว ขึ้นประมาณ 50-400%

กลไก c - การพังตัวของโครงสร้างโฟม (Collapse) หลังจากที่โพรงอากาศขยายตัวมาก ที่สุดและการสลายตัวของ Foaming agent ใกล้หยุดลง จะเกิดการพังตัวของโฟมขึ้นทำให้ได้โพรงที่ มีรูปร่างผิดปกติ กลไกหลักในการเกิดการพังตัวของโฟม คือ Drainage และ Cell coalescence สำหรับกลไก Drainage เกิดขึ้นเนื่องจากผลของแรงโน้มถ่วงโลก และผลของแรงแคปิลลารี่ (Capillary force) ทำให้อะลูมิเนียมเหลวไหลจากที่สูงลงสู่ที่ต่ำส่งผลให้บริเวณฐานของโฟมมี ลักษณะเป็นชั้นหนาของอะลูมิเนียม การเกิด Cell coalescence เกิดจากการที่โพรงอากาศ 2 โพรง รวมตัวกันเกิดเป็นโพรงอากาศที่มีขนาดใหญ่ขึ้น การรวมตัวของโพรงอากาศนี้เป็นผลมาจากการถึก ขาดของผนังโพรงอากาศ [11]

2.6 ปัจจัยที่มีผลในการผลิตโฟมอะลูมิเนียมโดยกรรมวิธีโลหะผง

2.6.1 ความหนาแน่นของ Precursor

ในการอัดขึ้นรูป Precursor นั้น พบว่าความหนาแน่นของ Precursor จะต้องมีความ หนาแน่นทางทฤษฎี (Theoretical density) ไม่ต่ำกว่า 94% จึงจะทำให้เกิดการขยายตัวได้ [9,10] เนื่องจากที่ความหนาแน่นทางทฤษฎี 94% นั้นเป็นความหนาแน่นที่ช่องว่างในชิ้นงานที่เชื่อมต่อกัน (Interconnected porosities) เปลี่ยนไปเป็นช่องว่างที่ไม่เชื่อมต่อกัน (Closed porosities) อย่างไรก็ ตามพบว่าเพื่อให้เกิดการขยายตัวของโฟมอะลูมิเนียมที่ดีนั้น จำเป็นที่จะต้องขึ้นรูป Precursor ให้มี ความหนาแน่นทางทฤษฎีไม่น้อยกว่า 99% ดังแสดงไว้ในรูปที่ 2.7

รูปที่ 2.7 การขยายตัวของโฟมอะลูมิเนียม ที่ความหนาแน่นของ Precursor ต่างๆ [9]

ถ้าความหนาแน่นของ Precursor ไม่เพียงพอจะทำให้มีรูพรุนเชื่อมต่อกันอยู่ใน Precursor เป็นจำนวนมากส่งผลให้ในระหว่างการอบเพื่อให้เกิด โฟมนั้น แก๊สไฮโดรเจน (H₂) ที่เกิด จากการสลายตัวของไทเทเนียมไฮไดร์ สามารถแพร่ผ่านช่องว่างที่เชื่อมต่อกันออกไปได้ ส่งผลให้ ความสามารถในการเกิด โฟม (Foamability) ของ Precursor ลดลง เมื่อเพิ่มแรงดันที่ใช้ในการอัดขึ้น รูป Precursor มากขึ้นจะทำให้ความหนาแน่นของ Precursor สูงขึ้นส่งผลให้การขยายตัวของ Precursor ในขั้นตอนการอบเพิ่มมากขึ้น เนื่องจากเมื่อเพิ่มแรงดันในการอัดขึ้นรูป จะทำให้เกิดแรง เฉือนระหว่างผงโลหะเพิ่มมากขึ้นและเกิดการเชื่อมติดกันแบบเย็นของผงมากขึ้น (Cold welding) ส่งผลให้แก๊สไฮโดรเจนแพร่ผ่านได้ยากขึ้นซึ่งทำให้การสูญเสียแก๊สไฮโดรเจนที่เกิดขึ้นน้อยลง นอกจากนี้การเพิ่มแรงดันในการอัดขึ้นรูปยังช่วยเพิ่มความเสลียรของโฟม (Stability) มากขึ้น อัน เป็นผลมาจากการแตกออกของชั้นฟิล์มออกไซด์บนผิวของผงอะลูมิเนียม ซึ่งฟิล์มออกไซด์ที่แตก ออกนั้นจะมีส่วนช่วยในการป้องกันการยุบตัวของโฟม [12]

2.6.2 ลักษณะและปริมาณของ TiH₂

เนื่องจากอุณหภูมิที่เกิดการสลายตัวของผงไทเทเนียมไฮไดรด์ที่ยังไม่ผ่านการอัดขึ้นรูป อยู่ที่ประมาณ 380-570°C [11] อย่างไรก็ตามช่วงอุณหภูมินี้ใช้ได้เฉพาะกับผงไทเทเนียมไฮไดรด์ที่ ยังไม่ผ่านการอัดขึ้นรูปเท่านั้น นอกจากนี้อุณหภูมิที่เกิดการสลายตัวของไทเทเนียมไฮไดรด์ ยัง ขึ้นอยู่กับอัตราการให้ความร้อนอีกด้วย จากการศึกษาของ F. Von Zeppelin et al. [13] พบว่าการ สลายตัวของไทเทเนียมไฮไดรด์นั้นขึ้นอยู่กับบรรยากาศที่ให้ความร้อน ถ้าในบรรยากาศที่มี ออกซิเจนอยู่เพียงเล็กน้อยก็จะส่งผลให้อุณหภูมิการสลายตัวของไทเทเนียมไฮไดรด์เปลี่ยนไป เนื่องจากออกซิเจนจะทำปฏิกิริยากับไทเทเนียมไฮไครค์เกิดเป็นสารประกอบออกไซค์ขึ้น ซึ่งชั้น ฟิล์มออกไซค์ที่เกิดขึ้นนี้จะทำให้อุณหภูมิที่เกิดการสลายตัวของไทเทเนียมไฮไครค์ เพิ่มขึ้น [13, 14]

นอกจากนี้แรงดันที่ใช้ในการอัดขึ้นรูปก็มีผลต่ออุณหภูมิการสลายตัวของไทเทเนียมไฮ ใดรด์ด้วย เนื่องจากหากใช้แรงดันที่สูงเพียงพอที่จะทำให้ไทเทเนียมไฮไดรด์ที่มีลักษณะเปราะเกิด การแตกออก จะทำให้เกิดผิวใหม่ที่ไม่มีชั้นฟิล์มออกไซด์ปกคลุมส่งผลให้ความสามารถในการ สลายตัวเกิดได้ง่ายขึ้น จากการศึกษาของ S. W. Youn และ C. G. Kang [15] พบว่าปริมาณของ ไทเทเนียมไฮไดรด์มีผลต่อรูปร่างของโพรงอากาศภายในโครงสร้างโฟม โดยเมื่อปริมาณของ ไทเทเนียมไฮไดรด์เพิ่มขึ้นจะทำให้โพรงอากาศมีขนาดเส้นผ่านศูนย์กลางเพิ่มขึ้น

2.6.3 อุณหภูมิที่ใช้ในการผลิตโฟม

จากการศึกษาของ I. Duarte and J. Banhart [11] ถึงผลของอุณหภูมิภายในเตาที่ใช้ใน การผลิตโฟมที่ทำจาก AISi7 และ อะลูมิเนียมเกรด 6061 โดยมีการใช้อุณหภูมิในช่วง 600-800°C พบว่าอุณหภูมิที่ใช้ในการผลิตโฟมมีผลต่อกระบวนการผลิตโฟมเป็นอย่างมาก โดยที่ถ้าอุณหภูมิ สุดท้ายในการผลิตโฟมต่ำกว่าอุณหภูมิ Solidus ของโลหะผสมแล้ว การขยายตัวที่เกิดขึ้นจะเป็น เพียงการขยายตัวในสถานะของแข็งเพียงเล็กน้อยเท่านั้น เมื่ออุณหภูมิที่ใช้ในการผลิตโฟมอยู่ในช่วง ของอุณหภูมิ Solidus/Liquidus จึงพบการขยายตัวของโฟมเกิดขึ้น และเมื่ออุณหภูมิที่ใช้สูงมากขึ้น จะทำให้เกิดการสถายตัวของไทเทเนียมไฮไดรค์มากขึ้น และมีผลให้ความหนืดของโลหะเหลว ลดลงจึงส่งผลให้เกิดการขยายตัวของโฟมมากขึ้น จากการศึกษาของ S. W. Youn และ C. G. Kang [15] พบว่าการขยายตัวของโฟมในขั้นต้นนั้นจะมีลักษณะของโพรงอากาศที่สม่ำเสมอ เมื่ออุณหภูมิ สูงขึ้นจะทำให้การขยายตัวสูงมากขึ้น และที่อัตราการขยายตัวสูงจะเกิดกวามแตกต่างของความดัน ระหว่างโพรงอากาศมากขึ้นจึงทำให้ผนังโพรงอากาศแตกออก เกิดการรวมกันของโพรงอากาศและ ทำให้โพรงอากาศจะมีกวามหยาบเพิ่มขึ้น (Coarsening)

2.6.4 อัตราการให้ความร้อน

จากการศึกษาถึงผลของอัตราการให้ความร้อนต่อการผลิตโฟมที่ทำจากอะลูมิเนียม เกรด6061 ได้ผลเป็นไปดังรูปที่ 2.8 ที่อัตราการให้ความร้อนสูงขึ้น จะเกิดการขยายตัวของ Precursor เร็วกว่าที่อัตราการให้ความร้อนต่ำ เนื่องจากเกิดการหลอมเหลวของ Precursor ที่เร็วกว่า นั่นเอง และที่อัตราการให้ความร้อนไม่แตกต่างกันมากนักพบว่า อัตราการขยายตัวของ Precursor มี ค่าใกล้เกียงกัน ยกเว้นที่อัตราการให้ความร้อนที่ต่ำกว่ามากพบว่าอัตราการขยายตัวสูงสุดของ Precursor มีก่าต่ำกว่าที่อัตราการให้ความร้อนอื่นๆ ซึ่งเหตุผลที่อาจเป็นไปได้เนื่องมาจาก (1) แก๊สที่ เกิดจากการสลายตัวของไทเทเนียมไฮไดรด์ได้แพร่ออกไปจาก Precursor ในช่วงอุณหภูมิสูงกว่า 500°C เนื่องจากเป็นช่วงที่เกิดการสลายตัวของไทเทเนียมไฮไดรด์อย่างรวดเร็ว (2) เกิดปฏิกิริยา ออกซิเดชัน ทำให้เกิดชั้นฟิล์มของสารประกอบออกไซด์ขึ้นที่ผิวของผง Precursor และบริเวณ ภายในของ Precursor ที่อากาศสามารถผ่านเข้าไปได้ ซึ่งชั้นฟิล์มที่เกิดขึ้นมีจุดหลอมเหลวสูงมากจึง ทำให้อยู่ในสถานะของแข็งตลอดทั้งกระบวนการผลิตโฟม และมีส่วนในการยับยั้งการขยายตัวของ Precursor

ร**ูปที่ 2.8** การขยายตัวของ<mark>อะ</mark>ลูมิเนียม 6061 ที่อัตราการให้ความร้อนต่างๆที่อุณหภูมิเตา 800°C [11]

2.6.5 บรรยากาศและความดันที่ใช้ในการผลิตโฟมอะลูมิเนียม

เพื่อให้การขยายตัวของโฟมอะลูมิเนียมเกิดขึ้นมากที่สุด บรรยากาสและความดันที่ใช้ ในการผลิตโฟมอะลูมิเนียมเป็นปัจจัยสำคัญที่มีผลต่อการขยายตัวของโฟมอะลูมิเนียม บรรยากาสที่ ใช้ในการผลิตโฟมอะลูมิเนียมมีผลโดยตรงต่อการเกิดออกซิเดชันของโลหะผสมอะลูมิเนียม พบว่า บรรยากาสเฉื่อย (Inert atmosphere) จะมีผลทำให้การขยายตัวของโฟมที่ทำจากโลหะผสมที่มีส่วน ผสมของแมกนีเซียม (Mg) เพิ่มขึ้น สำหรับในโลหะผสมที่มีแนวโน้มการเกิดออกซิเดชันต่ำ ชนิด ของบรรยากาสที่ใช้ในการผลิตโฟมจะมีผลต่อการขยายตัวของโฟมเพียงเล็กน้อย ดังรูปที่ 2.9 สำหรับโฟมอะลูมิเนียมที่ไม่มีส่วนผสมของแมกนีเซียมจะมีการขยายตัวใกล้เกียงกันเมื่อชนิดของ บรรยากาสที่ใช้ในการผลิตต่างกัน

ร**ูปที่ 2.9** ผลของบรรยากาศที่ใช้ในการผลิตโฟมอะลูมิเนียมที่มีต่อการขยายตัวของโฟมอะลูมิเนียม ภายใต้สภาว<mark>ะการให้กวามร้อนเดียวกัน</mark> [19]

สำหรับความค้นบรรยากาศภายนอกที่ให้กับโฟมในขั้นตอนการผลิตก็มีผลต่อการ ขยายตัวของโฟมเช่นกัน โดยที่การลดลงของกวามค้นบรรยากาศภายนอกทำให้ความแตกต่างของ กวามค้นระหว่างผิวหน้าของโฟมและความค้นในโพรงอากาศในขณะที่กำลังขยายตัวมีค่าเพิ่มขึ้น ส่งผลให้เพิ่มความสามารถในการขยายตัวของผิวหน้าโฟมมากขึ้น คังรูปที่ 2.10 แสดงผลของกวาม ค้นภายนอกที่มีต่อการขยายตัวของโฟมอะลูมิเนียม

รูปที่ 2.10 ผลของความคันภายนอกที่มีต่อการขยายตัวของ โฟมอะลูมิเนียม [19]

2.6.6 ธาตุผสม

ธาตุผสมที่เติมเข้าไปในการผลิตโฟมอะลูมิเนียมจะมีผลต่อแรงตึงผิวและความหนืด ของน้ำโลหะอะลูมิเนียมในขณะทำการผลิตโฟม แรงดึงผิวของน้ำโลหะอะลูมิเนียมจะลดลงเมื่อเติม ธาตุผสม เช่น Bi, Ca, Li, Mg, Pb, Sb, หรือ Sn ในทางตรงกันข้าม การเติม Ag, Cu, Fe, Ge, Mn, Si หรือ Zn จะให้ผลที่แตกต่างกันออกไป ดังรูปที่ 2.11 แสดงผลของการเติมธาตุผสมที่มีผลต่อแรงตึง ผิวของน้ำโลหะอะลูมิเนียม

ร**ูปที่ 2.11** ผลของธาตุผสมที่มีต่อแรงตึงผิวของน้ำโลหะอะลูมิเนียม [20]

การเติม Cu, Fe และ Ti จะช่วยเพิ่มความหนืดของน้ำโลหะอะลูมิเนียม แต่ความหนืด จะลดลงเมื่อมีการเติม Mg และ Si ส่วนการเติม Zn จะมีผลต่อความหนืดของน้ำโลหะอะลูมิเนียม เพียงเล็กน้อย ดังรูปที่ 2.12 แสดงผลของการเติมธาตุผสมที่มีต่อความหนืดของน้ำโลหะอะลูมิเนียม

รูปที่ 2.12 ผลของการเติมธาตุผสมที่มีต่อกวามหนืดของน้ำโลหะอะลูมิเนียม [20]

2.7 การเพิ่มเสถียรภาพของโฟมอะลูมิเนียม (Stabilization of Al foam)

ในกระบวนการผลิต โฟมอะลูมิเนียมจะมีการถ่ายเทมวลสาร (Transport phenomena) ที่ ทำให้เกิดการกระจายตัวของวัสคุขึ้น ซึ่งปรากฏการณ์ที่เกิดขึ้นประกอบไปด้วย [16]

- Gravitational sedimentation (Drainage) คือ การใหลของน้ำโลหะเหลวไปที่ฐาน ของโฟมเนื่องจากอิทธิพ<mark>ลข</mark>องแรงโน้มถ่วงโลก

การบางลงของผนังโพรงอากาศเนื่องจากแรงแคปิลลารี (Capillarity-driven cell wall thinning) เกิดเนื่องจากการใหลของน้ำโลหะเหลวจากบริเวณผนังโพรงอากาศไปยังบริเวณ
 Plateau border เนื่องจากผลของความแตกต่างระหว่างแรงตึงผิวของทั้ง 2 บริเวณ ซึ่งทำให้เกิดความ
 แตกต่างของความดันระหว่างบริเวณทั้ง 2 ดังรูปที่ 2.13 แสดงภาพบริเวณ Plateau border

- Interbubble gas diffusion เกิดจากความแตกต่างของความดันแก๊สระหว่างโพรง อากาศที่มีขนาดต่างๆกัน

รูปที่ 2.13 บริเวณ Plateau border [24]

ปรากฏการณ์เหล่านี้จะมีผลทำให้โฟมที่ได้ไม่มีเสถียรภาพ เช่น เกิดการหยาบขึ้นของ โพรงอากาศ (Coarsening), การผสานรวมกันของโพรงอากาศ (Cell coalescence) และการฉีกขาด ของผนังโพรงอากาศ (Cell wall rupture) เป็นต้น

> จากการศึกษาพบว่าการสร้างเสถียรภาพให้กับโฟมอะลูมิเนียมสามารถทำได้โดย (I) เพิ่มความหนืดให้กับน้ำโลหะ

(II) เพิ่มความหนืดให้กับผนังโพรงอากาศ และผนังของ Plateau borders(III) การลดแรงตึงผิวของน้ำโลหะ

2.7.1 การเพิ่มเสถียรภาพของโฟมอะลูมิเนียมด้วยการผสมอนุภาคของแข็ง

การเติมอนุภาคของแข็งเข้าไปใน Precursor ถือเป็นการเพิ่มเสถียรภาพให้กับโฟม อะลูมิเนียมอย่างหนึ่ง โดยอนุภาคของแข็งจะขัดขวางการไหลของน้ำโลหะจึงส่งผลให้น้ำโลหะมี กวามหนืดเพิ่มขึ้น ซึ่งส่งผลให้เกิด Drainage น้อยลง นอกจากนั้น การที่อนุภาคของแข็งไปอยู่ที่ บริเวณรอยต่อระหว่างแก๊สกับของเหลวยังมีผลต่อความโค้ง (Curvature) ของรอยต่อในบริเวณนั้น ด้วย ดังรูปที่ 2.14 แสดงการเปลี่ยนไปของความโค้งของผนังโพรงอากาศเมื่ออนุภาคของแข็งไปอยู่ ระหว่างรอยต่อของแก๊สกับของเหลว สำหรับกรณีที่ไม่มีการเติมอนุภาคของแข็งพบว่า Capillary pressure บริเวณผนังโพรงอากาศ (P_{Film}) มีค่ามากกว่าบริเวณ Plateau border (P_{pb}) ส่งผลให้น้ำโลหะ ใหลจากบริเวณผนังโพรงอากาศ (D_{Film}) มีค่ามากกว่าบริเวณ Plateau border (P_{pb}) ส่งผลให้น้ำโลหะ ใหลจากบริเวณผนังโพรงอากาศไปบริเวณ Plateau border เป็นผลให้เกิด Drainage มากขึ้น แต่เมื่อมี อนุภาคของแข็งอยู่ที่รอยต่อระหว่างแก๊สกับของเหลว ทำให้ความโค้งของผนังโพรงอากาศบริเวณ นั้นเปลี่ยนไป ส่งผลทำให้ P_{Film} และ P_{pb} มีค่าใกล้เกียงกัน จึงทำให้การเกิด Drainage ภายใน โครงสร้างโฟมลดลง [24]

รูปที่ 2.14 แสดงผลของอนุภาคของแข็งต่อการลดลงของ Capillary pressure ระหว่างบริเวณ

Plateau border แถะ Film [24]

การเติมอนุภาคของแข็งลงในน้ำโลหะนั้นนอกจากจะช่วยเพิ่มความหนืดของน้ำโลหะ แล้ว ยังช่วยเพิ่มความหนืดให้กับผนังโพรงอากาศอีกด้วย ทั้งนี้ขึ้นอยู่กับความสามารถในการเปียก (Wettability) ของอนุภาคที่เติมลงไป อนุภาคที่มีการเปียกบางส่วนจะช่วยเพิ่มความหนืดผิว (Surface viscosity)ให้กับน้ำโลหะอะลูมิเนียม เนื่องจากอนุภาคที่มีการเปียกบางส่วนจะอยู่ที่บริเวณ รอยต่อระหว่างโลหะกับแก๊ส (Metal-gas interface) ส่วนการเพิ่มขึ้นของความหนืดผิวจะช่วยลดการ เกิด Drainage และลดการบางลงของผนังโพรงอากาศ ในกรณีที่ผนังโพรงอากาศบางลงจนมีความ หนาใกล้เคียงกับขนาดของอนุภาคของแข็ง ความสามารถในการเปียกของอนุภาคจะส่งผลต่อผนัง โพรงอากาศแตกต่างกัน ดังรูปที่ 2.15 แสดงผลของความสามารถในการเปียกของอนุภาคจะส่งผลต่อผนัง ในน้ำโลหะ สำหรับอนุภาคที่ไม่เปียก ดังรูปที่ 2.15(ก) น้ำโลหะจะเคลื่อนห่างออกจากผิวของ อนุภาคในบริเวณที่ลูกศรชี้ เป็นผลให้ผนังโพรงอากาศฉีกขาดอย่างรวดเร็ว ส่วนอนุภาคที่เปียกใน น้ำโลหะ ดังรูปที่ 2.15(ข) น้ำโลหะจะเกาะติดกับผิวของอนุภาค ส่งผลให้ผนังโพรงอากาศฉีกขาดได้ ยากขึ้น

ร**ูปที่ 2.15** แสดงผลของค<mark>วามสามารถในการเปียกของอ</mark>นุภาคของแข็งในน้ำโลหะเหลว (ก) อนุภาคที่ไม่เปียก (Non-wetting particle) (ข) อนุภาคที่เปียก (Wetting particle) [24]

นอกจากนี้ขนาด ปริมาณ และรูปร่างของอนุภาคของแข็งที่เติมลงในโฟมอะลูมิเนียมยัง มีผลต่อเสถียรภาพของโฟมอะลูมิเนียมด้วย [16,17] โดยส่งผลต่อกล ไกในการเพิ่มความหนืดเชิง ปริมาตร (Bulk viscosity) ของโฟม การเพิ่มขึ้นของ Bulk viscosity จะช่วยลดการเกิด Drainage และการบางลงของผนังโพรงอากาศ ด้วยเหตุนี้จึงทำให้สามารถยับยั้งการเกิดความแตกต่างของ ความหนาแน่นและการหยาบขึ้นของโพรงอากาศซึ่งเกิดจากการฉีกขาดของผนังโพรงอากาศที่บาง ลงได้ ดังรูปที่ 2.16 แสดงผลของขนาดและปริมาณของซิลิกา (SiO₂) ที่เติมเข้าไปต่อความเสถียร ของฟองอากาศในน้ำ โดยที่ใช้อัตราการพ่นอากาศ (Q) เท่ากับ 2.095 l/min กรณีที่อัตราส่วนโดย ปริมาตรของอนุภาคเท่ากัน ฟองอากาศน้ำจะสามารถอยู่ได้นานขึ้นเมื่อขนาดของอนุภาคซิลิกาเล็ก ลง เนื่องจากที่อัตราส่วนปริมาตรของอนุภาคซิลิกาเท่ากัน เมื่ออนุภาคมีขนาดเล็กลง ปริมาณและ พื้นที่ผิวของอนุภาคมีจำนวนมากขึ้น ทำให้จำนวนอนุภาคที่เกาะบริเวณรอยต่อระหว่างแก็สและน้ำ เพิ่มขึ้น ทำให้ผนังของฟองอากาศแข็งแรงมากขึ้น และอนุภาคที่เกาะอยู่ในบริเวณรอยต่อระหว่าง แก๊สและน้ำยังช่วยยับยั้งการไหลของน้ำให้น้อยลงอีกด้วย จึงทำให้ฟองอากาศสามารถอยู่ได้นานขึ้น จากรูปที่ 2.16 ยังแสดงให้เห็นอีกว่าที่ขนาดของอนุภาคซิลิกาเท่ากัน ฟองอากาศของน้ำ ยังอยู่ได้นานขึ้นเมื่อปริมาณของอนุภาคในน้ำมากขึ้น โดยจะเห็นได้ชัดเจนมากขึ้นเมื่ออนุภาคซิลิกา มีขนาดเล็กลง เนื่องจากอนุภาคมีขนาดเล็กลงทำให้มีพื้นที่ผิวที่อนุภาคสัมผัสกับฟองอากาศมีมาก ขึ้น ทำให้เพิ่มการยับยั้งการไหลของน้ำและยังมีผลทำให้น้ำมีความหนืดเพิ่มขึ้น จึงทำให้ฟองอากาศ สามารถอยู่ได้นานขึ้น

ร**ูปที่ 2.16** ผลของขนาดและปริมาณของซิลิกา (SiO₂) ที่เติมเข้าไปต่อความเสถียร ของโมเคลน้ำ [24]

2.8 สมบัติท<mark>างกลของโฟมอะลูมิเนียม</mark>

ปัจจัยที่มีผลต่อสมบัติทางกลของโฟมอะลูมิเนียมนั้นมีอยู่หลายปัจจัย เช่น ความ หนาแน่นสัมพัทธ์ (Relative density) ชนิดของธาตุผสม (Alloying elements) ลักษณะของโพรง อากาศ (Pore morphology) และขนาดของโพรงอากาศ (Pore size) เป็นต้น แต่การนำไปใช้งานส่วน ใหญ่มักนำไปใช้เป็นส่วนประกอบที่มีหน้าที่รับแรง ดังนั้นในการวิจัยจึงมักจะศึกษาเกี่ยวกับ พฤติกรรมการรับแรงอัด และการดูดซับแรงกระแทกของโฟมอะลูมิเนียมเป็นหลัก

2.8.1 ความสามารถในการรับแรงอัดของโฟมอะลูมิเนียม

สำหรับโฟมอะลูมิเนียมที่มีโครงสร้างแบบรูพรุนจะมีขั้นตอนการเปลี่ยนรูปแบบ ภายใต้แรงอัคอยู่ 3 ขั้นตอน คือ การเปลี่ยนรูปอิลาสติกแบบเส้นตรง (Linear elastic) บริเวณที่ราบ (Plateau regime) และ การอัดแน่น (Densification) ดังแสดงในรูปที่ 2.17(a) และเมื่อกวามหนาแน่น ของโฟมอะลูมิเนียมเพิ่มขึ้นก็จะส่งผลให้โฟมอะลูมิเนียมสามารถรับแรงอัคไค้มากขึ้น ดังแสดงใน รูปที่ 2.17(b)

ร**ูปที่ 2.17** (ก) Stress-Strain curve ของโฟมโลหะในอุดมคติ (ข) Stress-Strain curve ของโฟมโลหะ ที่ได้จากการทดสอบจริง [21]

เมื่อโฟมรับแรงอัดจะเกิดการเปลี่ยนรูปแบบอิลาสติก ซึ่งจะมีการเพิ่มขึ้นของความเด้น ต่อกวามเกรียดเป็นแบบเชิงเส้น ค่ามอดุลัสของความยืดหยุ่น และกวามเก้นแรงอัดจะลดลงเมื่อมี ปริมาณของรูพรุนเพิ่มมากขึ้น ดังรูปที่ 2.18 แสดงกวามสัมพันธ์ระหว่างปริมาณของรูพรุนที่มีต่อ ก่ามอดุลัสของกวามยึดหยุ่น และกวามสามารถในการรับแรงอัดของโฟมที่ทำจากอะลูมิเนียม บริสุทธิ์และโลหะผสม AISi7Mg0.45

บริเวณที่เส้นกราฟความเค้น-ความเครียดมีค่าคงที่ (Plateau regime) ความเค้นมีค่าคงที่ ในขณะที่ความเครียดมีค่าเพิ่มมากขึ้น สาเหตุเนื่องจากการเริ่มเกิดและขยายตัวของแถบการเปลี่ยน รูป (Deformation band) ภายในโฟม และจะเกิดการเปลี่ยนรูปจนกระทั่งเข้าสู่ช่วงการอัดแน่นของ โฟม (Densification) ในช่วงสุดท้ายของการเปลี่ยนรูป ความเก้นจะเพิ่มขึ้นอย่างรวคเร็วตามก่าความ เกรียดที่เพิ่มขึ้น โพรงอากาศที่เปลี่ยนรูปแบบพลาสติกจะส่งผลให้โพรงอากาศข้างเกียงรับแรงได้ น้อยลง นำไปสู่การพังของโพรงอากาศข้างเกียงในที่สุด

สำหรับพฤติกรรมการเปลี่ยนรูปของโฟมภายใต้แรงอัด มีทั้งการเปลี่ยนรูปของโพรง อากาศแบบอิลาสติก และแบบพลาสติก สำหรับการเปลี่ยนรูปแบบอิลาสติกนั้น L. J. Gibson [30] ได้แสดงกวามสัมพันธ์ระหว่าง ก่าสัดส่วนมอดุลัสของโฟมกับของแข็ง (E^{*}/E_s) กับก่าสัดส่วนกวาม หนาแน่นของโฟมกับของของแข็ง (p^{*}/p_s) ดังสมการที่ 2.1

$$\frac{\mathbf{E}^*}{\mathbf{E}_s} = C_1 \left(\frac{\boldsymbol{\rho}^*}{\boldsymbol{\rho}_s}\right)^2 + C_1 \left(\frac{\boldsymbol{\rho}^*}{\boldsymbol{\rho}_s}\right)$$
(2.1)

โดยที่

 E*
 คือ
 ค่า Young's modulus ของโฟม

 E_s
 คือ
 ค่า Young's modulus ของของแข็ง

 ρ*
 คือ
 ค่าความหนาแน่นของโฟม

 ρ
 คือ
 ค่าความหนาแน่นของของแข็ง

 C₁, C₁
 คือ
 ค่าคงที่ มีค่าประมาณ 0.32

้ส่วนการเปลี่ยนรู<mark>ปแบบพลาสติกของโฟมได้</mark>ถูกแสดงไว้ในรูปของความสัมพันธ์

ระหว่างค่าสัดส่วนความเค้นของการเปลี่ยนรูปแบบพลาสติกของโฟมกับของของแข็ง $\left(\frac{\rho_{pl}^{*}}{\rho_{ys}}\right)$ กับ ค่าสัดส่วนความหนาแน่นของโฟมกับของของแข็ง $\left(\frac{\rho^{*}}{\rho_{s}}\right)$ ดังสมการที่ 2.2 $\frac{\sigma_{pl}^{*}}{\sigma_{ys}} = C_{3}\left(\frac{\rho^{*}}{\rho_{s}}\right)^{3/2} + C_{3}\left(\frac{\rho^{*}}{\rho_{s}}\right)$ (2.2) โดยที่ σ_{pl}^{*} คือ ค่าความเค้นของการเปลี่ยนรูปแบบพลาสติกของโฟม σ_{ys} คือ ค่าความเค้นของการเปลี่ยนรูปแบบพลาสติกของโฟม σ_{3} , C_{3} คือ ค่าคงที่ มีค่า $C_{3} = 0.33$ และ $C_{3} = 0.44$ สำหรับอะลูมิเนียมทั่วไปจะมีค่า $E_{s} = 70$ GPa, $\sigma_{s} = 300$ MPa และ $\rho_{s} = 2.7$ g/cm³
2.8.2 การดูดซับพลังงานของโฟมอะลูมิเนียม

เนื่องจากโฟมอะลูมิเนียมมีช่วงที่กราฟความเก้น-ความเครียดมีค่าคงที่กว้าง ซึ่งแสดงถึง ความสามารถในการดูดซับพลังงาน (Energy absorption) ได้มากก่อนที่จะเกิดการแตกหักเสียหาย จึงเหมาะที่จะใช้เป็นอุปกรณ์ในการรับแรงกระแทก อย่างไรก็ตามความสามารถในการดูดซับ พลังงานขึ้นอยู่กับปัจจัยหลายอย่าง [23] ดังรูปที่ 2.19(ก) แสดงความสัมพันธ์ระหว่างความสามารถ ในการดูดซับพลังงานกับปริมาณรูพรุนของโฟมโลหะผสมที่ทำมาจาก AlSi7Mg0.45 พบว่าภายใต้ ความเครียดเดียวกันความสามารถในการดูดซับพลังงานมีค่าลดลงเมื่อปริมาณรูพรุนของโฟม เพิ่มขึ้น นอกจากนี้ประสิทธิภาพในการดูดซับพลังงานของโฟมยังเปลี่ยนแปลงตามระดับของ กวามเครียดอีกด้วย ดังแสดงไว้ในรูปที่ 2.19(ข) และพบว่าความสามารถในการดูดซับพลังงาน สูงสุดจะขึ้นกับระดับของความเครียดอีกด้วย

ร**ูปที่ 2.19** (ก) ความสัมพันธ์ระหว่างความสามารถในการดูดซับพลังงานกับปริมาณรูพรุนของโฟม และ (ข) ความสัมพันธ์ระหว่างความสามารถในการดูดซับพลังงานกับความเครียดของโลหะผสม AlSi7Mg0.45 [23]

ปัจจัยที่มีผลต่อพฤติกรรมการรับแรงอัดและความสามารถในการดูคซับพลังงานของ โฟมอะลูมิเนียม คือ ความหนาแน่นของโฟม ธาตุผสม และปัจจัยอื่นๆ รูปที่ 2.20 แสดง ความสัมพันธ์ระหว่างความหนาแน่นกับพฤติกรรมการรับแรงอัดของโฟมต่างชนิดกัน และ รูปที่ 2.21 แสดงความสัมพันธ์ระหว่างความหนาแน่นของโฟมกับความสามารถในการดูคซับพลังงาน ของโฟมอะลูมิเนียม พบว่า ความสามารถในการรับแรงอัดและความสามารถในการดูดซับพลังงาน ของโฟมอะลูมิเนียมเพิ่มขึ้นเมื่อความหนาแน่นของโฟมเพิ่มขึ้น

ร**ูปที่ 2.20** แส<mark>ดง</mark>ความสัมพันธ์ระหว่างความหนาแน่นกับพฤติกรรมการรับแรงอัดของโฟม ต่างชนิดกัน [32]

ซับพลังงานของโฟมอะลูมิเนียม [32]

2.9.1 ส่วนประกอบของแกลบข้าว

ส่วนประกอบที่สำคัญของแกลบขึ้นอยู่กับ วิธีการทางการเกษตร ลักษณะภูมิประเทศ และลักษณะทางภูมิอากาศ จากข้อมูลนี้มีผลต่อการเตรียมและศึกษาคุณลักษณะของขี้เถ้าแกลบ และ วิธีการในการวิเคราะห์ส่ว<mark>นประกอบที่สำคัญในแกลบข้าวแสดงใน</mark>ตารางที่ 2.2

ส่วนประกอบ	ร้อยละโดยน [้] ำหนัก
เซลลูโลส	34-44
ลิกนิน	19-47
น้ำตาล 🛪	17-26
<mark>เถ้าแกลบ</mark>	13-29
<mark>ค</mark> วาม <mark>ชื้น</mark>	<mark>8.5-1</mark> 1.0

* ดี-ไซโรส, แอล-อะราบิโนส, ดี-กาแลคโตส, กรดเมธิลกลูดูโรนิค ตารางที่ 2.2 ส่วนประกอบหลักของแกลบ [40]

ส่วนประกอบของแกลบที่เป็นสารอินทรีย์ เมื่อแยกสลายเป็นธาตุพื้นฐานจะประกอบ ด้วยการ์บอน (C) 51.2% ไฮโดรเจน (H) 6.9% และ ออกซิเจน (O) 41.9 wt.% ในแกลบจะ ประกอบด้วย ขี้เถ้าแกลบ 13.29 wt.% ซึ่งพบว่าในขี้เถ้าแกลบจะมีส่วนประกอบซิลิกา (SiO₂) อยู่สูง ถึง 87-97 wt.%โดยมีความแตกต่างกันบ้างตามแหล่งที่เพาะปลูก ส่วนประกอบทางเคมีของ ขี้เถ้าแกลบถูกแสดงไว้ในตารางที่ 2.3 จะเห็นได้ว่าในขี้เถ้าแกลบจะมีปริมาณของซิลิกาอยู่สูงถึง 92.95% และปริมาณของ ซิลิกาจะเพิ่มขึ้นเมื่อผ่านกระบวนการสกัดด้วยกรด HC1 [29]

2.9.2 ซิลิกาในแกลบข้าว

ซิลิกาเป็นสารประกอบที่มีโครงสร้างพื้นฐานทางเคมี คือ SiO₂ โดยซิลิกานั้นมีหลาย ชนิดแตกต่างกันตามลักษณะของอนุภาคของเนื้อสาร ซึ่งแบ่งเป็นกลุ่มใหญ่ได้ 2 กลุ่ม คือ

2.9.2.1 ซิลิกาผลึก (Crystalline silica) สามารถแบ่งย่อยออกเป็นหลายชนิดตามความ แตกต่างของรูปร่าง ลักษณะผลึกและความหนาแน่นของซิลิกา โดยรูปร่างของผลึกมีหลายแบบ เช่น สามเหลี่ยม สี่เหลี่ยม หกเหลี่ยม สี่เหลี่ยมลูกบาศก์และเส้นยาว ตัวอย่างของซิลิกาที่มีลักษณะเป็น ผลึก เช่น Low-temperature quartz มีรูปผลึกเป็นแบบสามเหลี่ยม, High-temperature quartz มีรูป ผลึกเป็นแบบหกเหลี่ยม, Low-temperature cristobalite มีรูปร่างผลึกเป็นแบบสี่เหลี่ยม, High-temperature cristobalite มีรูปร่างผลึกเป็นแบบทรงสี่เหลี่ยมลูกบาศก์, Low-temperature tridymite มีรูปร่างผลึกเป็นเส้นยาว เป็นค้น

2.9.2.2 ซิลิกาอสัณฐาน (Amorphous silica หรือ Non-crystalline silica) เป็นอนุภาค ที่มีส่วนประกอบรูปร่างไม่เป็นผลึก ซึ่งแบ่งออกเป็นกลุ่มใหญ่ๆ 3 กลุ่ม คือ

- Vitreous silica เป็นซิลิกาที่ใช้ทำแก้ว มีลักษณะที่เป็นเนื้อเดียวกันโดยตลอด มีรูขนาด เล็กเกิดจากการหลอมซิลิกาชนิดผลึก

- Silica gels เป็นซิลิกาที่มีรูขนาดเล็ก (Micro porous) อยู่เป็นจำนวนมาก มีพื้นที่ผิว อนุภาคสูง ตัวอย่างของซิลิกาชนิดนี้ ได้แก่ Aqua gels , Alco gel , Xero gels , Aero gels เป็นต้น

- Silica powder เป็นซิลิกาที่มีส่วนประกอบของโครงสร้าง ที่มีขนาดเล็กมากในระดับ 10⁻⁶ ถึง 10⁻⁹ m ตัวอย่างของซิลิกาชนิดนี้ เช่น ผงเอกวาเจนิก (Aquagenic powder) ซึ่งได้จากการ ตกตะกอนของสารละลาย, Aquagenic pyrogenic powders ได้จากการระเหยเอาส่วนทีเป็น น้ำใน ซิลิกาออกไปโดยการให้ความร้อนในสภาวะที่ปราศจากออกซิเจน ผงไบโอเจนิก (Biogenic powder) เป็นซิลิกาชนิดผงเอกวาเจนิกที่สร้างขึ้นในพืชหรือไดอะตอม

MAG	ເຄ້າແກລນ	เอ้าแกลบ ต้มกรดHCl
SiO ₂	92.95	96.94
TiO ₂	0.02	0.02
A12O3	0.31	0.13
Fe_2O_3	0.26	0.02
MnO	0.12	0.01
MgO	0.55	0.04
CaO	0.53	0.05
Na ₂ O	0.08	0.03
K_2O	2.06	0.49
Ig. Loss	1.97	n.d.
Total(%)	98.86	97.72

* Fe₂O₃: total iron as Fe₂O₃. n.d.: not determined.

ตารางที่ 2.3 ส่วนประกอบทางเกมีของขี้เถ้าแกลบและขี้เถ้าแกลบที่ได้จากแกลบที่ผ่านการสกัดด้วย

กรด HCl [29]

2.9.3 ประโยชน์ของซิลิกา

ซิลิกาได้ถูกนำมาใช้ประโยชน์อย่างมากในอุตสาหกรรมสำหรับผลิตสินด้าต่างๆ และใช้ในการผลิตวัสดุและอุปกรณ์ที่ใช้ในงานอุตสาหกรรมตลอดจนงานทางวิทยาศาสตร์ ทั้งนี้ ประโยชน์และการใช้งานของซิลิกาโดยทั่วไปพอสรุปได้ดังนี้

- เป็นสารเพิ่มความแข็งแรง และความหนาแน่นแก่สารอื่น เช่น ยาง พลาสติกและสาร พอลิเมอร์ อื่นๆ
- เป็นสารลดแรงยึดระหว่างผิวของแข็ง เช่น ป้องกันการแตกร้าว หรือ การอัดตัวอย่าง แน่นหนาของวัสดุ
- 3. เป็นสารเพิ่มแรงยึคติด โดยเฉพา<mark>ะ</mark>ในกาว
- เป็นสารเพิ่มความหนืดในของเหลว เช่นในสี หมึก จารบี และเครื่องสำอาง
- 5. เป็นสารเพิ่มความเงา (Optical effects)
- 6. เป็นสารช่วยเพิ่มการกันน้ำ (Hydrophobic หรือ Water-repellent)
- 7. เป็นสารดูคซึม (Absorbent) ใช้เฉพาะซิลิกาชนิด Silica gels
- 8. เป็นตัวเร่ง<mark>ป</mark>ฏิกิร<mark>ิยาใช้เฉพาะ ซิลิกาชนิด Reactive</mark>
- 9. เป็นสาร<mark>บรรจุในคอลัมน์เพื่อวิเคราะห์</mark> (Chromatographic column packing)
- 10. ใส่ในสีที่ฉ<mark>ีด</mark>พ่นเพื่<mark>อป้องกันการอุดตันของหัวฉี</mark>ด
- 11. ใช้เป็นส่วนผสมเพื่อเพิ่มความแข็งแรงวัสดุ ที่ใช้งานที่ความร้อนสูง

2.9.4 การสะสมของซิลิกาในพืช

การสะสมของซิลิกาในพืชเป็นกระบวนการที่ซับซ้อน โดยพืชจะดูดซิลิกาที่เป็น อนุภาคเล็กๆซึ่งละลายอยู่ในน้ำขึ้นสู่ลำค้น โดยผ่านทางรากแล้วจึงไปสะสมในส่วนต่างๆของพืช ทำให้ได้ซิลิกาที่มีความบริสุทธิ์อยู่ในส่วนต่างๆและจัดอยู่ในรูปของซิลิกาชนิดผง ซึ่งหากมีวิธีใด กำจัดส่วนสารอินทรีย์ สิ่งปนเปื้อนที่เป็นสารอนินทรีย์ ชนิดอนุมูลของประจุบวกออกไปโดยไม่ ทำลายความบริสุทธิ์และโครงสร้างของซิลิกาแล้วจะสามารถเตรียมซิลิกาที่มีคุณภาพสูงมากได้

2.9.5 ปัจจัยที่มีอิทธิพลต่อการผลิตขี้เถ้าแกลบ

 แหล่งที่มาของแกลบข้าว แหล่งที่มาของแกลบข้าวในแต่ละแหล่งจะให้แกลบข้าวที่ แตกต่างกัน ขึ้นอยู่กับลักษณะของสภาพอากาศและชนิดของดินที่ใช้ปลูก รวมทั้งพันธุ์ของด้นข้าว ดังนั้นแกลบข้าวที่มาจากแต่ละแหล่งได้เป็นขี้เถ้าแกลบที่แตกต่างกัน อุณหภูมิและเวลาที่ใช้ในการเผาแกลบ ถ้าอุณหภูมิที่ใช้ในการเผาแกลบต่ำเกินไป จะ ส่งผลให้การเกิดออกซิเดชันของการ์บอนในแกลบข้าวจะเกิดขึ้นช้ามากรวมไปถึงโครงสร้างของ ขี้เถ้าแกลบที่ได้ นอกจากนั้นเวลาที่ใช้ในการเผาแกลบก็มีผลต่อโครงสร้างของขี้เถ้าแกลบเช่นกัน โดยที่ขี้เถ้าแกลบจะแสดงโครงสร้างเป็นผลึกมากขึ้นถ้าเวลาที่ใช้ในการเผาแกลบนานขึ้น ดังในรูปที่
 2.22 พบว่าขี้เถ้าแกลบที่เริ่มมีโครงสร้างเป็นผลึกเมื่อเผาแกลบที่อุณหภูมิสูงกว่า 800°C [29]

3. อัตราการให้ความร้อน ในกระบวนการเผาแกลบ การให้ความร้อนจากอุณหภูมิห้อง จะมีผลให้สารอินทรีย์จำพวกเซลลูโลสหรือลิกนินที่อยู่ในแกลบข้าวสลายตัวเป็นคาร์บอนแล้ว คาร์บอนเกิดการออกซิเดชันเป็นแก๊ส ในขณะเดียวกันเมื่ออุณหภูมิสูงถึงจุดหลอมเหลวของธาตุ มลทินซึ่งส่วนใหญ่เป็น K₂O ธาตุมลทินเหล่านี้จะหลอมเคลือบอยู่บนผิวของขี้เถ้าแกลบ ถ้าอัตรา การให้ความร้อนเร็วเกินไป จะทำให้การ์บอนเกิดออกซิเดชันออกจากแกลบข้าวไม่หมด แล้วรวมตัว อยู่ใน K₂O ส่งผลให้ขี้เถ้าแกลบที่ผลิตออกมามีสีดำ [25]

4. ชนิดของกรดที่ใช้สกัดแกลบ กรดที่สามารถสกัดแกลบข้าวได้ดีที่สุดคือ กรดไฮโดร กลอลิก (HCI) เนื่องจากในแกลบข้าวมีส่วนประกอบหลักเป็นเซลลูโลสและโปรตีน เมื่อนำแกลบ ข้าวไปต้มในกรดเซลลูโลสที่มีโมเลกุลขนาดใหญ่จะมีขนาดเล็กลง ส่วนโปรตีนก็จะสลายกลายเป็น กรดอะมิโนอยู่ในสารละลายกรดใช้สกัดแกลบ และการที่แกลบข้าวมีสีเข้มขึ้นเนื่องจากการสูญเสีย ออกซิเจนไปในระหว่างการต้มกรดแล้วทำให้สารประกอบการ์บอเนต (Carbohydrate) เปลี่ยนสีเป็น สีดำ นอกจากนั้นกรดยังสามารถสกัดสารมลทินชนิดอื่นออกจากแกลบข้าวได้ด้วย เช่น โพแทสเซียม อะลูมิเนียม ฟอสฟอรัส แมงกานีส เป็นด้น [25]

5. บรรยากาศที่ใช้ในการเผาแกลบ บรรยากาศที่ใช้ในการเผาแกลบควรมีออกซิเจนมาก เพียงพอที่จะทำให้การ์บอนเกิดออกซิเดชันสลายออกจากแกลบข้าวให้หมด [25]

ร**ูปที่ 2.22** ผลการวิเคราะห์ขี้เถ้าแกลบด้วยเทคนิค X-ray diffraction โดยที่ Q : Quartz, C : Cristrobalite และ T : Tridymite [29]

2.9.6 การเตรียมซิลิกาจากเถ้าแกลบ

จากการศึกษาของ R.V.Krishnarao et al. [25] ได้ศึกษาการเกิดอนุภาคการ์บอนที่มีใน เถ้าซิลิกาจากขี้เถ้าแกลบ พบว่าปริมาณของอนุภาคการ์บอนที่อยู่ในเถ้าซิลิกาจากการเผาแกลบข้าวที่ ไม่ได้ผ่านการต้มด้วยกรด HCI เข้มข้น 3 N จะมีปริมาณสูงกว่าในแกลบข้าวที่ผ่านการต้มกรดและมี แนวโน้มของปริมาณอนุภาคการ์บอนเพิ่มขึ้นเมื่อเพิ่มอัตราการให้ความร้อนในการเผาแกลบข้าว ซึ่ง การต้มด้วยกรด HCI จะช่วยขจัดอนุภาคการ์บอนออกไป ในแกลบข้าวจะให้ปริมาณของขี้เถ้าแกลบ 13 – 29 wt.% และจะให้ซิลิกา 87 – 97 wt.% พบว่าการให้อัตราความร้อน 5°C/min ซึ่งเป็นการให้ ความร้อนที่ช้าและการเผาที่ 700°C จะให้ปริมาณซิลิกามากที่สุด ในขณะที่การให้ความร้อนแบบ ทันทีทันใดจะได้ขี้เถ้าแกลบที่มีปริมาณซิลิกาน้อยและอนุภาคการ์บอนจำนวนมาก

จากการศึกษาของ N. Yalcin et al. [26] ได้ศึกษาปริมาณซิลิกาจากแกลบข้าว โดยการ ด้ม ด้วยกรด HCl และกรด H₂SO₄ นาน 2 h และต้มในสารละลาย NaOH นาน 24 h หลังจากนั้นเผา ที่อุณหภูมิ 600° C ในอากาศ บรรยากาศอาร์กอนและออกซิเจน ทั้งแบบคงที่และแบบภายใต้การ ใหลของก๊าช ผลิตภัณฑ์ที่ได้ปริมาณซิลิกามากที่สุดได้จากการต้มแกลบในกรด HCl ก่อนเผา มี ขนาดอนุภาค 0.03 – 100 μm โครงสร้างอสัณฐาน พื้นที่ผิวจำเพาะ 321 m²/g เส้นผ่านศูนย์กลางรู พรุน 0.0045 μm ปริมาตรรูพรุน 4.7297 cm³/g และขี้เถ้าแกลบมีปริมาณซิลิกาสูงถึง 99.66 wt.%

จากการศึกษาของ Tzong – Horng Liou และคณะ [27] ได้ศึกษาการเตรียมและ กุณลักษณะของโครงสร้างระดับนาโนของซิลิกาจากแกลบข้าว โดยการตรวจสอบคุณสมบัติต่างๆ ซึ่งประกอบ ด้วยลักษณะผิวของอนุภาค ขนาดอนุภาค พื้นที่ผิว ปริมาตรและการกระจายของรูพรุน โดยใช้ TEM, SEM, XRD, FTIR, ICP – MS และ EA ใช้อัตราการให้ความร้อน 5°C/min พื้นที่ผิว จำเพาะของซิลิกา 235 m²/g เส้นผ่านศูนย์กลางเฉลี่ยของรูพรุน 5.4 nm และขนาดอนุภาคเฉลี่ย 60 nm ผลิตภัณฑ์ที่ได้มีโครงสร้างเป็นอสัณฐาน โดยใช้เทคนิค Differential thermal analysis (DTA) กลไกประกอบด้วย 2 สภาวะ โดยสังเกตจากการแตกตัวทางความร้อนของแกลบข้าวในอากาศ พลังงานกระตุ้น 166 ± 10 KJ/mol วิธีการนี้เหมาะสำหรับการเตรียมซิลิกาที่สามารถให้พื้นที่ผิวสูง

จากการศึกษาของ Concha Real และคณะ[28] ใด้ศึกษาถึงการเตรียมซิลิกาจากแกลบ ข้าวเริ่มต้นด้วยการนำแกลบข้าวไปต้มด้วยกรด HCl ก่อนที่จะนำไปเผาที่อุณหภูมิ 600° C จะได้ ปริมาณซิลิกาบริสุทธิ์ถึง 99.5 wt.% ด้วยพื้นที่ผิวจำเพาะสูงถึง 260 m²/g การตรวจสอบด้วยเครื่องจุล ทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) ชี้ให้เห็นว่าวัสดุมีการกระจายขนาดอนุภาคในระดับ 10° m อย่างไรก็ตามถ้าการต้มด้วยกรด HCl แสดงให้เห็นว่ามีปริมาณเถ้าสีขาวที่ได้จากการเผาไหม้แกลบ ข้าวที่ 600°C ซิลิกามีความบริสุทธิ์สูงแต่พื้นที่ผิวจำเพาะลดลง 1 m²/g เนื่องจากการเกิดปฏิกิริยา ระหว่างซิลิกาและโพแทสเซียมที่มีอยู่ในแกลบข้าวซึ่งทำให้พื้นที่ผิวจำเพาะลดลง ถ้าโพแทสเซียม แกทไอออนไม่ถูกกำจัดที่อุณหภูมิสูงกว่า 600°C โพแตสเซียมจะมีผลต่อลักษณะพื้นผิวของซิลิกา

บทที่ 3 วิชีดำเนินการวิจัย

3.1 วัสดุที่ใช้ในการวิจัย

- 3.1.1 ผงอะลูมิเนียม ความบริสุทธิ์ 99.7 % จาก Ecka Granules ประเทศออสเตรเลีย
- 3.1.2 ผงไทเทเนียมไฮไดรด์ (TiH₂) ความบริสุทธิ์ 99.6 % จาก Sigma Aldrich
- 3.1.3 ขี้เถ้าแกลบจากโรงสีข้าว จ<mark>.สร</mark>ะบุรี
- 3.1.4 ผงซิลิกอนไดออกไซด์ (SiO₂)
- 3.1<mark>.5 ผงซิ</mark>ลิกอนคาร์ไบด์ (SiC)

3.2 เครื่องมือที่ใช้ในการวิจัย

3.2.1 เครื่องชั่งน้ำหนัก

3.2.2 คร<mark>กบดสา</mark>ร

3.2.3 เครื่องเขย่าตะแกรงร่อน (Sieve shaker) ยี่ห้อ Retsch

3.2.4 เครื่องผสมผงโลหะ แบบเขย่า 2 แกน

3.2.5 แบบขึ้นรูป Precursor ทำจากเหล็กกล้าเครื่องมือ เส้นผ่านศูนย์กลาง 22 mm

3.2.6 แม่พิมพ์ที่ทำ<mark>งากเหล็กกล้าไร้สนิม ขนาดเส้นผ่าน</mark>สูนย์กลาง 25 mm

3.2.7 เตาอบไถ่ความชื้น

3.2.8 เตาสำหรับอบชิ้นงาน ยี่ห้อ Protherm รุ่น PLF 140/9B

3.2.9 เครื่องอัคไฮครอลิก

3.2.10 เครื่องทดสอบพฤติกรรมการรับแรงอัด ยี่ห้อ Shimadzu รุ่น AG-10TE

3.2.11 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกวาด (SEM) ยี่ห้อ JOEL รุ่น JSM-6400

3.2.12 เครื่องตัดชิ้นงาน (Precision cutting machine) ยี่ห้อ Buehler รุ่น ISOMET

3.2.13 เครื่องขัดชิ้นงาน กระดาษทราย และ ผงเพชร สำหรับขัดชิ้นงาน

3.2.14 เครื่องสแกนรูป ยี่ห้อ Hewlett Packard รุ่น PSC 1402

3.2.15 สีสเปรย์ สีดำด้าน

3.2.16 เรซินชนิดใส

3.2.17 โปรแกรม Image J ใช้ในการวิเคราะห์ภาพ

3.2.18 เครื่องตรวจสอบการกระจายและขนาคของอนุภาค ยี่ห้อ MastersizerS

3.2.19 เครื่องเอ็กซเรย์คิฟแฟรกชั่น (XRD) ยี่ห้อ JEOL รุ่น JDX-8030

3.2.20 เครื่องเอ็กซเรย์ฟลูออเรสเซนส์ (XRF) ยี่ห้อ WD-XRF รุ่น PW-2400

3.3 วิธีการดำเนินการวิจัย

3.3.1 การเตรียมและการต<mark>รวจสอบคุณลักษณะของข</mark>ึ้เถ้าแกลบจากแกลบข้าว

3.3.1.1 การช<mark>ะถ้างสิ่งสกปรก</mark>

ก่อนเริ่มการทดลองต้องทำการแยกอนุภาคใหญ่ๆที่ไม่ต้องการออกจากแกลบข้าว โดย ใช้ตะแกรงร่อนหรืออาจจะคัดแยกด้วยมือ ในกรณีที่ไม่สามารถชะถ้างให้ออกหมดได้ หลังจากนั้น จึงนำแกลบข้าวไปล้างกับน้ำสะอาคเพื่อขจัดสิ่งสกปรกออกไป เช่น เศษดิน แล้วเทน้ำออกให้หมด ก่อนที่จะนำไปอบแห้งที่อุณหภูมิ 110°C เป็นเวลา 8 h

3.3.1.2 การบำบัดด้วยสารเคมี

สารเคมีที่ใช้ในการบำบัด คือ กรด HCI เข้มข้น 3N และกรด H₂SO₄ เข้มข้น 10N ใน อัตราส่วนกรด 0.5 L ต่อ แกลบข้าว 200 g ใส่แกลบข้าวและสารเคมีลงในบีกเกอร์แล้วด้มที่อุณภูมิ 90°C เป็นเวลา 1 b แล้วนำไปล้างด้วยน้ำสะอาดก่อนที่จะนำไปอบให้แห้งที่อุณหภูมิ 110°C เป็น เวลา 8 b

3.3.1.3 การเผาแกลบข้าว

นำแกลบข้าวที่ได้จากการบำบัดด้วยสารเคมี ใส่ในถ้วยเหล็กกล้าปลอดสนิมขนาดเส้น ผ่านศูนย์กลาง 10 cm อย่างละ 200 g นำเข้าเตาเผาที่อุณหภูมิ 700°C ที่อัตราการให้ความร้อน 5 °C/min แล้วจึงรักษาระดับอุณหภูมิการเผาให้คงที่นาน 3 h จึงปล่อยให้เย็นตัวลงมาที่อุณหภูมิห้อง ภายในเตา จะได้ขี้เถ้าแกลบออกมา

3.3.1.4 การเตรียมผงอนุภาคขี้เถ้าแกลบ

นำขี้เถ้าแกลบมาบคค้วยครกให้ละเอียด จากนั้นจึงนำผงขี้เถ้าแกลบไปกัดขนาคด้วย ตะแกรง ร่อนกัดขนาด โดยใช้ตะแกรงเบอร์ 60 , 120 , 400 ตามถำคับ โดยขนาคของช่องว่าง ตะแกรงร่อนแต่ละเบอร์มีรายละเอียดดังนี้

ตะแกรงเบอร์ 60	โ
ตะแกรงเบอร์ 120	โ
ตะแกรงเบอร์ 400	โ

มีขนาดช่องว่าง 250 μm มีขนาดช่องว่าง 125 μm มีขนาดช่องว่าง 38 μm

3.3.2 การตรวจสอบคุณลักษณะของอนุภาค

3.3.2.1 ตรวจสอบลักษณะของอนุภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกวาด (scanning electron microscope, SEM) ยี่ห้อ JEOL รุ่น JSM-6400 ในการวิเคราะห์ใช้ทั้งโหมด SE และโหมด BSE กำลังขยายขึ้นอยู่กับความเหมาะสมของขนาดรูปภาพที่ได้ นอกจากนั้นยังมีการ ใช้โหมด Energy Dispersive X-ray Spectrometer (EDX) ในการตรวจสอบส่วนประกอบของ อนุภาคที่กำลังวิเคราะห์อยู่

3.3.2.2 วิเคราะห์โครงสร้างผลึกของอนุภาคด้วย X-Ray Diffractrometer (XRD) ใช้ เครื่องรุ่น JDX-8030 ซึ่งมี Target เป็น Copper (Cu) และมุมวิเคราะห์ช่วงระหว่าง 10-65 องศา ค่า ความต่างศักย์ไฟฟ้า 40 kV, กระแส 40 mA, ความเร็วในการสแกน 0.1 sec/step

3.3.2.3 ตรวจสอบส่วนประกอบทางเคมีของอนุภาคด้วยเครื่อง X-Ray Fluorescence (XRF) ใช้เครื่อง WD-XRF รุ่น PW-2400 ในการวิเคราะห์ใช้ H₃BO₃ เป็น Binder เพื่อช่วยเพิ่มการ ยึดเกาะของอนุภาค

3.3.2.4 การตรวจสอบการกระจายตัวและขนาดของอนุภาค ใช้เครื่อง Particle Size Laser Analyzer ยี่ห้อ MastersizerS ใช้น้ำช่วยในการกระจายตัวของอนุภาคในเครื่องตรวจสอบการ กระจายตัวและขนาดของอนุภาค ทำการทคสอบตัวอย่างละ 3 ครั้ง จากผลการตรวจสอบจะได้ก่า D₁₀, D₅₀, D₉₀ และ Mean diameter (µm) ออกมา

3.3.3 การผลิต Precursor และโฟมอะลูมิเนียม

3.3.3.1 การผลิต Precursor

ผสมผงอะลูมิเนียมเข้ากับ TiH₂ 0.6 wt.% และขี้เถ้าแกลบ 1 , 2 , 3 wt.% โดยใช้เครื่อง ผสมเป็นเวลา 30 min จากนั้นนำผงที่ผสมเรียบร้อยแล้วจำนวน 10 g ไปอัดขึ้นรูปโดยใส่ในแม่พิมพ์ อัดขึ้นรูป (die) ที่ทำจากเหล็กกล้าเครื่องมือเคลือบด้วยลิเทียมสเตียเรท (Lithium stearate) ใช้แรงดัน ในการอัดขึ้นรูป 650 MPa เพื่อให้ได้ Precursor ที่มีความหนาแน่นทางทฤษฎีสูงกว่า 99 %

3.3.3.2 การผลิตโฟมอะลูมิเนียม

นำ Precursor ที่ได้ใส่ลงในแม่พิมพ์หล่อที่เคลือบด้วยโบรอนไนไตรค์ (Boron nitride) แล้วนำไปให้กวามร้อนในเตาที่มีการตั้งอุณหภูมิ 800°C ไว้ล่วงหน้าโดยใช้เวลาในการให้ความร้อน ต่างกันช่วงละ 15 s โดยเริ่มนำชิ้นงานออกจากเตาชิ้นแรกที่เวลา 5 min และชิ้นสุดท้ายที่เวลา 7 min เมื่อนำชิ้นงานออกจากเตาแล้วปล่อยให้ชิ้นงานเย็นตัวในอากาศ จากนั้นจึงนำไปวัดความหนาแน่น ของโฟมอะลูมิเนียมที่ได้

3.3.4 การวัดความหนาแน่นของ Precursor และ โฟมอะลูมิเนียม

การวัดความหนาแน่นของ Precursor ทำใด้โดย ใช้เวอร์เนียร์กาลิปเปอร์วัดขนาดของ Precursor เพื่อกำนวณหาปริมาตรของ Precursor จากนั้นนำ Precursor ไปชั่งเพื่อหาน้ำหนัก นำ น้ำหนักและปริมาตรของ Precursor มากำนวณหาก่ากวามหนาแน่นตามสมการ (1)

$$D_{precursor} = \frac{m_{precursor}}{V_{precursor}}$$
(1)

โดยที่ $m_{precursor}$ = น้ำหนักของ Precursor (g) $V_{precursor}$ = ปริมาตรของ Precursor (cm³)

การวัดความหนาแน่นของโฟมอะลูมิเนียม จะใช้โฟม 1 ชิ้นงานเป็นตัวแทนของ ส่วนผสมนั้นๆ เนื่องจากความหนาแน่นของโฟมที่ผลิตใด้สามารถควบคุมได้ยาก การวัดความ หนาแน่นของโฟมจะใช้วิธี Archimedes'densitometry ดังสมการ (2)

$$D_{foam} = \frac{W_{air}}{W_{air} - W_{water}}$$
(2)

โดยที่

W_{air}

Wair

น้ำหนักของโฟมในอากาศ (g) น้ำหนักของโฟมในน้ำ (g)

การหาการขยายตัวของโฟมอะลูมิเนียมสามารถหาได้จากสมการ (3)

$$\% Expansion = \left[\frac{V_{foam} - V_{precursor}}{V_{precursor}}\right] \times 100$$
(3)
โดยที่ $V_{precursor} = ปริมาตรของ Precursor (cm3)$
 $V_{foam} = ปริมาตรของ โฟม (cm3)$

3.3.5 การทดสอบพฤติกรรมการรับแรงอัดของโฟมอะลูมิเนียม

เนื่องจากกระบวนการผลิตโฟมอะลูมิเนียมสามารถควบคุมความหนาแน่นของโฟมที่ ผลิตได้ยาก ในการทดสอบพฤติกรรมการรับแรงอัดจะควบคุมความหนาแน่นของโฟมให้อยู่ในช่วง 0.6±0.05 g/cm³ จึงใช้โฟม 1 ชิ้นงานเป็นตัวแทนของโฟมส่วนผสมนั้นๆ การเตรียมชิ้นงานทดสอบ เริ่มจากนำโฟมไปตัดด้วยเครื่อง Precision cutting machine ในทิศทางดังรูปที่ 3.1 นำโฟม อะลูมิเนียมที่ผ่านการตัดแล้วในส่วนที่ 2 ไปหาความหนาแน่นของโฟม ถ้าโฟ มมีความหนาแน่นอยู่ ในช่วงที่กำหนด นำไปทดสอบพฤติกรรมการรับแรงอัดโดยใช้อัตราการเพิ่มความเครียดเท่ากับ 5 mm/min ถึง 60% ของความเครียด

รูปที่ 3.2 ทิศทางที่ใช้ในการตัดโฟมอะลูมิเนียมด้วยเกรื่อง Precision Cutting Machine

เมื่อได้ผลการทดสอบการรับแรงอัดของโฟมแล้ว นำข้อมูลที่ได้ไปหาก่าสมบัติ ทางกลของโฟมอะลูมิเนียม คือ

• ค่าความแข็งแรง ณ จุดคราก (Yield strength) ซึ่งเป็นค่าความเค้นที่จุดตัดระหว่าง กราฟจากผลการทดสอบแรงอัดกับเส้นตรงขนานเส้นกราฟช่วงแรก โดยตัดแกนที่ 0.2% ของค่า ความเครียด มีหน่วยเป็น MPa

 ค่าความสามารถในการดูดซับพลังงาน (Energy absorption, E) หาได้จากพื้นที่ ใต้กราฟที่แสดงความสัมพันธ์ระหว่างความเค้นกับความเครียด สามารถหาได้จากสมการ (4) โดยที่ มีหน่วยเป็น MJ/cm³

 $E = \int_{0}^{\varepsilon_{a}} \sigma \cdot \varepsilon \cdot d\varepsilon$ (4) โดยที่ $\sigma = ความเค้น (MPa)$ $\varepsilon = ความเครียด$ ค่าประสิทธิภาพในการดูดซับพลังงาน (Energy absorption efficiency, η) เป็น
 ค่าที่หาได้จากสัดส่วนของพื้นที่ใต้กราฟความสัมพันธ์ระหว่างความเก้นกับความเครียดเทียบกับ
 พื้นที่สี่เหลี่ยมของกราฟ ณ จุดสิ้นสุดของเส้นกราฟ ดังสมการ (5)

$$\eta = \frac{E}{\sigma . \varepsilon}_{\varepsilon = \varepsilon_a}, \quad 0 < \varepsilon_a \le 1$$
(5)

โดยที่

E = ค่าความสามารถในการดูดซับพลังงาน (MJ/cm³)

3.3.6 การตรวจสอบโครงสร้างจุลภาคของ Precursor และโฟมอะลูมิเนียม

นำ Precursor ไปตัดด้วยเครื่อง Precision cutting machine ตามทิสทางในรูปที่ 3.2 จากนั้น นำ Precursor และ โฟมอะลูมิเนียมในส่วนที่ 1 และ 3 (ในรูปที่ 3.1) ไปทำการขึ้นรูปตัวเรือน แบบเย็น (Cold mounting) โดยใช้เรซินใส เพื่อเตรียมสำหรับขั้นตอนการตรวจสอบโครงสร้าง นำ Precursor และ โฟมอะลูมิเนียมที่ทำการ Mount แล้วไปขัดหยาบด้วยกระดาษทรายเบอร์ 200, 400, 600, 800, 1200 และขัดละเอียดด้วยผงเพชรขนาด 6, 3, 1 μm แล้วจึงนำชิ้นงานที่ผ่านการขัดแล้ว ไปตรวจสอบโครงสร้างด้วยกล้องจุลทรรศน์แสง และ SEM

3.3.7 การตรวจสอบโครงสร้างมหภาคของโฟมอะลูมิเนียม

สำหรับการตรวจสอบโครงสร้างมหภาคภายในของโฟมอะลูมิเนียม สามารถทำได้โดย การตัดโฟมอะลูมิเนียมในแนวตั้งฉากกับฐานของโฟมด้วยเครื่อง Discharge wire cut machine ดัง แสดงในรูปที่ 3.3 จากนั้นนำชิ้นส่วนโฟมอะลูมิเนียมที่ตัดแล้วไปพ่นสเปรย์สีดำ เมื่อรอให้สีแห้ง แล้ว นำไปขัดด้วยกระดาษทรายเพื่อให้เกิดความคมชัดของโครงสร้าง สแกนโครงสร้างโฟมด้วย เครื่องสแกนรูปที่ความละเอียด 1200 dpi

ร**ูปที่ 3.4** ทิศทางที่ใช้ในการตัดโฟมอะลูมิเนียมด้วยเครื่อง Discharge wire cut Machine

การวิเคราะห์รูปด้วยโปรแกรม Image J เป็นการวิเคราะห์ที่สามารถบอกค่าสมบัติ ต่างๆของโครงสร้างโฟมออกมาเป็นค่าเชิงปริมาณได้ เช่น ขนาดของโพรงอากาศ ค่าสัดส่วนพื้นที่ โพรงอากาศกับเนื้อพื้นของโฟมอะลูมิเนียม เป็นต้น

3.4 การวิเคราะห์ข้อมูล

นำข้อมูลที่ได้ทั้งหมดมาวิเคราะห์เปรียบเทียบผลของปริมาณ ขนาดและประเภทของ อนุภาคขี้เถ้าแกลบในโฟมอะลูมิเนียมต่อพฤติกรรมการขยายตัว โครงสร้างและพฤติกรรมการรับ แรงอัดของโฟมอะลูมิเนียม โดยมีการวิเคราะห์เปรียบเทียบผลต่างๆกับโฟมที่ผสมอนุภาคขี้เถ้า แกลบจากโรงไฟฟ้า โฟมที่ผสมอนุภาคซิลิกาและโฟมที่ผสมอนุภาคซิลิกอนคาร์ไบด์ ในการ วิเคราะห์โครงสร้างมหภาคของโฟม จะมีการใช้โปรแกรม Image J เพื่อวิเคราะห์ขนาดและปริมาณ ของโพรงอากาศภายในโครงสร้างของโฟม และมีการวิเคราะห์เปรียบเทียบโครงสร้างมหภาคและ โครงสร้างจุลภาคของโฟมกับพฤติกรรมการรับแรงอัดของโฟมอะลูมิเนียม

จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 4 ผลการทดลอง

4.1 คุณลักษณะเฉพาะของวัสดุผง

รูปที่ 4.1 แส<mark>คงลักษณะรูปร่างของวัสดุผง และตา</mark>รางที่ 4.1 แสดงการกระจายตัวของ ้งนาคอนุภากของวัสดุผ<mark>ง จากรูปที่</mark> 4.1(ก) ผงอะลูมิเนี<mark>ยมมีการกระจา</mark>ยของขนาคอนุภากใกล้เคียงกัน ี โดยมีขนาดเฉลี่ยประมาณ 108 μm และมีรูปร่างของผงไม่แน่นอน (Irregular) ส่วนในรูปที่ 4.1(ข) ้ผงไททาเนียมไฮไ<mark>ดรด์ มีรูปร่างของอนุภาคเป็นเหลี่ยมและมุม (Angula</mark>r) ในขณะที่อนุภาคของ ขี้เถ้าแกลบที่ผ่านการสกัคด้วยกรด HCl (รูปที่ 4.1(ค-ฉ)) ซึ่งมีขนาดเฉลี่ยประมาณ 364, 199, 80, 18 ุ่µm ตามลำดับ มีรูปร่างอนุภาคลักษณะเป็นเ<mark>กล็</mark>ด (Flake) โดยมีลักษณะพื้นผิวแตกต่างกันสองด้าน ซึ่งด้านในมีลักษณะเรียบ ส่วนด้านนอกมี<mark>ลักษณะขรุงระเป็นปุ่มหรือลอนที่</mark>สม่ำเสมอตลอดทั้งผิว รูปที่ 4.1(ช-ญ) ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ มีขนาดเฉลี่ยประมาณ 401, 210, 75, 16 ุµm ตามลำดับ รูปร่าง<mark>อ</mark>นุภา<mark>คเป็นเกล็ดที่มีลักษณ</mark>ะพื้นผิวแตกต่างกันสองด้าน ด้านในเรียบและด้าน ้นอกมีลักษณะขรุง<mark>ระ</mark>คล้<mark>าย</mark>ขี้เถ้าแกลบที่ผ่านกระบวนการส<mark>กัคด้วยกรด H</mark>Cl แต่มีความขรุงระน้อย กว่า ในรูปที่ 4.1(ฏ) <mark>ขี้เถ้าแกลบจากโรงไฟฟ้า มีการกระจาย</mark>ตัวของขนาดอนุภาคแตกต่างกันมาก ้งนาคเฉลี่ยประมาณ 180 µm มีรูปร่างอนุภาคเป็นเกล็ด มี<mark>ลักษณะพื้</mark>นผิวแตกต่างกันทั้งสองค้าน ้ด้านในมีลักษณะขรุขระน<mark>้</mark>อยกว่าผ<mark>ิวด้านนอก ซึ่งคล้ายค</mark>ลึงกับขี้เถ้าแกลบที่ผ่านกระบวนการสกัด ด้วยกรด HCl และกรด H2SO4 ส่วนรูปที่ 4.1(ฏ) ผงซิลิกา มีขนาดเฉลี่ยประมาณ 5 μm มีรูปร่าง อนุภาคเป็นเหลี่ยม และรูปที่ 4.1(ฐ) ผงซิลิกอนคาร์ไบด์ มีขนาดอนุภาคเฉลี่ย 7 μm มีรูปร่างอนุภาค เป็นเหลี่ยม

ร**ูปที่ 4.1** ลักษณะรูปร่างของวัสดุผง (ก) อะลูมิเนียม (ข) ไทเทเนียมไฮไดรด์ (ก) ขี้เถ้าแกลบที่ ผ่านการสกัดด้วยกรด HCl ขนาดเฉลี่ย 364 μm (ง) ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl ขนาด เฉลี่ย 199 μm (จ) ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl ขนาดเฉลี่ย 81 μm (ฉ) ขี้เถ้าแกลบที่ ผ่านการสกัดด้วยกรด HCl ขนาดเฉลี่ย 18 μm (ช) ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ ขนาดเฉลี่ย 401 μm (ซ) ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ ขนาดเฉลี่ย 210 μm

ร**ูปที่ 4.1** (ต่อ) ลักษณะรูปร่างของวัสดุผง (ฌ) ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ ขนาด เฉลี่ย 75 μm (ญ) ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ ขนาดเฉลี่ย 16 μm (ฏ) ขี้เถ้าแกลบ จากโรงไฟฟ้า (ฏ) ผงซิลิกา (ฐ) ผงซิลิกอนคาร์ไบด์

Powder	D ₁₀	D ₅₀	D ₉₀	Mean diameter
	(μm)	(μm)	(μm)	(μm)
Al	45.6	101.6	184.1	108.4
RHA [HCI] 1	154.42	355.00	603.78	364.34
RHA [HC1] 2	3.03	197.62	356.52	199.58
RHA [HC1] 3	0.08	74.36	162.38	80.91
RHA [HC1] 4	0.06	11.85	47.11	18.13
RHA [H ₂ SO ₄] 1	171.39	399.06	649.37	401.41
RHA [H ₂ SO ₄] 2	0.18	214.19	378.40	210.77
RHA [H ₂ SO ₄] 3	0.07	67.61	162.03	75.09
RHA [H ₂ SO ₄] 4	0.06	9.74	41.18	15.55
RHA [power plant]	0.10	131.93	424.14	179.56
SiO ₂	0.06	0.1	19.78	5.38
SiC	2.67	6.22	11.81	7.11

ตารางที่ 4.1 การกระจายตัวของขนาดอนุภาคของวัสดุผง

4.2 คุณลักษณะของขี้เถ้าแกลบ

4.2.1 การวิเคราะห์โครงสร้างผลึกของขี้เถ้าแกลบ

ผลการวิเคราะห์โครงสร้างผลึกด้วย XRD ของขี้เถ้าแกลบ (รูปที่ 4.2) ทั้งขี้เถ้าแกลบที่ สกัดด้วยกรด HCl และกรด H₂SO₄ แสดงให้เห็นลักษณะอสัญฐานของซิลิกา (Amorphous silica) ในช่วงมุม 2-Theta ตั้งแต่ 15 – 35 เป็นยอดกว้าง (Broad peak) และมียอดกราฟสูงสุดอยู่ที่ 22.5 องศา ส่วนขี้เถ้าแกลบจากโรงไฟฟ้าแสดงให้เห็นโครงสร้างผลึกของซิลิกา (Crystalline silica) แบบ Low-temperature cristobalite และ Quartz สำหรับขี้เถ้าแกลบที่สกัคด้วยกรด HCl ผ่านการเผาที่ อุณหภูมิ 1100°C เวลา 24 ชม. แสดงให้เห็นโครงผลึกของซิลิกาแบบ Low-temperature cristobalite และ Quartz เช่นกัน ส่วนในรูปที่ 4.3 แสดงผลการวิเคราะห์ XRD ของผงซิลิกา พบว่าผงซิลิกามี โครงสร้างผลึกแบบ Quartz

ร**ูปที่ 4.3** ผลการวิเคราะห์ XRD ผงซิลิกา

4.2.2 การหาส่วนประกอบทางเคมีของขี้เถ้าแกลบ

จากผลการวิเคราะห์หาปริมาณสารประกอบในขี้เถ้าแกลบด้วยเครื่อง X-Ray Fluorescence (XRF) พบว่าขี้เถ้าแกลบได้จากการสกัดด้วยกรด 3 mol HCl และเผาที่ 700°C ด้วย อัตราการให้ความร้อน 5°C/min ได้ปริมาณซิลิกา (SiO₂) บริสุทธิ์ ประมาณ 99.71 wt.% และมี สารเจือปน (Impurity) ได้แก่ Al₂O₃, SO₃, K₂O, CaO และ Fe₂O₃ ดังตารางที่ 4.2

ส่วนขี้เถ้าแกลบที่ได้จากการสกัดด้วยกรด H₂SO₄ เข้มข้น 10% โดยปริมาตร และเผาที่ 700°C ด้วยอัตราการให้ความร้อน 5°C/min ได้ปริมาณซิลิกา (SiO₂) บริสุทธิ์ ประมาณ 99.61 wt.% และมีสารเจือปน (Impurity) ได้แก่ MgO, Al₂O₃, P₂O₅, SO₃, K₂O, CaO และ Fe₂O₃ ดังตารางที่ 4.2

สำหรับขี้เถ้าแกลบจากโรงไฟฟ้า ได้ปริมาณซิลิกา (SiO₂) บริสุทธิ์ ประมาณ 94.88 wt.% และมีสารเจือปน (Impurity) ได้แก่ Na₂O, MgO, Al₂O₃, P₂O₅ SO₃, Cl, K₂O, CaO, TiO₂, MnO₂, Fe₂O₃, CuO และ ZnO ดังตารางที่ 4.2

ชนิดสารประก <mark>อบ</mark>	RHA [HCI]	RHA [H ₂ SO ₄]	RHA [Power plant]
Na ₂ O			0.097
MgO	Antolan	0.02	0.409
Al ₂ O ₃	0.174	0.064	0.266
SiO ₂	99.715	99.609	94.876
P ₂ O ₅		0.035	1.077
SO ₃	0.043	0.114	0.07
Cl	I	-	0.045
K ₂ O	0.011	0.015	1.952
CaO	0.045	0.107	0.744
TiO ₂	1000100	~ 91 PI C	0.017
MnO ₂		110	0.178
Fe ₂ O ₃	0.012	0.035	0.25
CuO	າຂອງຄ	ແລລິທ	0.005
ZnO	2991	VI I-0 VI	0.013

ตารางที่ 4.2 ส่วนประกอบทางเกมีของขี้เถ้าแกลบ

4.3 ความหนาแน่นของชิ้นงานหลังอัดของผงโลหะ (Precursor density)

ความหนาแน่นของชิ้นงานหลังอัดที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCI และ H₂SO₄ (รูปที่ 4.4(ก) และ 4.4(ข) ตามลำดับ) ความหนาแน่นของชิ้นงานหลังอัดที่ผสมขี้เถ้าแกลบที่มี ขนาดอนุภาคแตกต่างกันทั้ง 4 ขนาด มีแนวโน้มไปในทางเดียวกันคือ เมื่อปริมาณของขี้เถ้าแกลบ เพิ่มขึ้นจาก 1, 2, 3 wt.% ความหนาแน่นของชิ้นงานหลังอัดมีก่าลดลง โดยก่าความหนาแน่นยังคงมี ก่ามากกว่า 97% ส่วนในรูปที่ 4.4(ค) แสดงความหนาแน่นของชิ้นงานหลังอัดที่ผสมขี้เถ้าแกลบจาก โรงไฟฟ้า ซิลิกา และซิลิกอนการ์ไบด์ สำหรับชิ้นงานที่ผสมขี้เถ้าแกลบจากโรงไฟฟ้า เมื่อปริมาณ ขี้เถ้าแกลบเพิ่มขึ้นจาก 1, 2, 3 wt.% ความหนาแน่นของชิ้นงานหลังอัดมีแนวโน้มลดลง แต่การ ลดลงของก่าความหนาแน่นลดลงน้อยกว่าชิ้นงานที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCI และ H₂SO₄ ส่วนชิ้นงานที่ผสมซิลิกา เมื่อปริมาณของซิลิกาเพิ่มขึ้นจาก 1, 2, 3 wt.% ก่าความ หนาแน่นของชิ้นงานหลังอัดมีก่าลดลงเล็กน้อย และสำหรับชิ้นงานที่ผสมซิลิกอนการ์ไบด์พบว่าก่า กวามหนาแน่นของชิ้นงานหลังอัดลดลงเพียงเล็กน้อย แมะสำหรับชิ้นงานที่ผสมซิลิกอนการ์ไบด์พบว่าก่า

ร**ูปที่ 4.4** ความหนาแน่นของชิ้นงานหลังอัดกับปริมาณอนุภาคเซรามิก (ก.) ขี้เถ้าแกลบที่ผ่านการ สกัดด้วยกรด HCI (ข.) ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ (ก.) ขี้เถ้าแกลบจากโรงไฟฟ้า ซิลิกาและซิลิกอนคาร์ไบด์

4.4 การขยายตัวของโฟมอะลูมิเนียม (Foam expansion)

จากรูปที่ 4.5 แสดงการขยายตัวของโฟมอะลูมิเนียมกับเวลาที่ใช้ในการผลิตโฟม พบว่า เมื่อเวลาเพิ่มขึ้นอัตราการขยายตัวของโฟมอะลูมิเนียมบริสุทธิ์เพิ่มขึ้นและมีการขยายตัวสูงสุด เท่ากับ 393% เมื่อเวลาผ่านไป 330 s หลังจากนั้นโฟมเกิดการยุบตัวลง เพราะเกิดการพังตัวภายใน โกรงสร้างโฟมเนื่องจากการเกิดการไหลตัวของน้ำโลหะอะลูเนียมไปที่ฐานโฟมเนื่องจากแรงโน้ม ถ่วงของโลก

สำหรับโฟมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl มีขนาดเฉลี่ย 364 μm พบว่า เมื่อปริมาณของขี้เถ้าแกลบเพิ่มขึ้นจาก 1, 2, 3 wt.% การขยายตัวสูงสุดของโฟมลดลงตามลำดับ โดย โฟมที่ผสมขี้เถ้าแกลบ 1 wt.% มีการขยายตัวสูงที่สุด เท่ากับ 378% แต่ยังกงมีค่าน้อยกว่าการ ขยายตัวสูงสุดของโฟมอะลูมิเนียม และโฟมที่ผสมขี้เถ้าแกลบ 3 wt.% มีการขยายตัวต่ำที่สุด เท่ากับ 292% โดยโฟมทั้ง 3 ส่วนผสมมีอัตราการขยายตัวก่อนถึงจุดสูงสุดใกล้เคียงกัน เมื่อถึงจุดสูงสุดของ การขยายตัวแล้วเกิดการพังตัวของโครงสร้างโฟมขึ้นอย่างรวดเร็ว

ร**ูปที่ 4.6** การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด HCl ขนาดเฉลี่ย 199 μm

รูปที่ 4.6 แสดงการขยายตัวของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดกรด HCI โดยมีขนาดเฉลี่ย 199 μm กับเวลาที่ใช้ในการผลิตโฟม เมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้นจาก 1, 2, 3 wt.% การขยายตัวสูงสุดของโฟมลดลงตามลำดับ โดยโฟมที่ผสมขี้เถ้าแกลบ 1 wt.% มีอัตราการ ขยายตัวสูงที่สุด และมีการขยายตัวสูงสุดเท่ากับ 366% ที่เวลา 330 s ซึ่งยังมีก่าน้อยกว่าโฟม อะลูมิเนียม และสำหรับโฟมที่ผสมขี้เถ้าแกลบ 2 wt.% และ 3 wt.% โฟมมีการขยายตัวสูงสุดที่เวลา 345 s โดยโฟมที่ผสมขี้เถ้าแกลบ 3 wt.% มีการขยายตัวต่ำที่สุด เท่ากับ 202% และอัตราการขยายตัว ของโฟมมีแนวโน้มลดลงเมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้น ส่วนอัตราการพังตัวของโฟมยังกงใกล้เกียง กันและมีแนวโน้มลดลงเมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้น

ร**ูปที่ 4.7** การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด HCl ขนาดเฉลี่ย 80 μm

รูปที่ 4.7 แสดงการขยายตัวของโฟมอะลูมิเนียมผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl โดยมีขนาดเฉลี่ย 80 µm กับเวลาที่ใช้ในการผลิตโฟม พบว่าโฟมที่ผสมขี้เถ้าแกลบทั้ง 3 ส่วนผสมเกิดการขยายตัวสูงสุดเมื่อเวลาผ่านไป 330 s โดยโฟมที่ผสมขี้เถ้าแกลบ 1 wt.% มีการ ขยายตัวสูงที่สุด เท่ากับ 365% แต่ยังกงมีค่าน้อยกว่าการขยายตัวสูงสุดของโฟมอะลูมิเนียม ส่วน โฟมที่ผสมขี้เถ้าแกลบ 3 wt.% มีการขยายตัวต่ำที่สุด เท่ากับ 212% และการขยายตัวสูงสุดของโฟมมี แนวโน้มลดลงเมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้น

ร**ูปที่ 4.8** การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด HCl ขนาดเฉลี่ย 18 µm

รูปที่ 4.8 แสดงการขยายตัวของโฟมอะลูมิเนียมผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCI โดยมีขนาดเฉลี่ย 18 µm กับเวลาที่ใช้ในการผลิตโฟม พบว่าเมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้นการ ขยายตัวสูงสุดของโฟมมีแนวโน้มลดลงและพบว่าไม่เกิดการขยายตัวขึ้นในโฟมที่ผสมขี้เถ้าแกลบ 3 wt.% โดยโฟมที่ผสมขี้เถ้าแกลบทั้ง 1 wt.% และ 2 wt.% มีการขยายตัวสูงที่สุด เมื่อเวลาผ่านไป 315 s ซึ่งใช้เวลาในการขยายตัวถึงจุดสูงสุดน้อยกว่าโฟมอะลูมิเนียม โดยโฟมที่ผสมขี้เถ้าแกลบ 1 wt.% มีการขยายตัวสูงที่สุด เท่ากับ 349% แต่ยังกงมีก่าการขยายตัวสูงสุดน้อยกว่าโฟมอะลูมิเนียม ส่วนอัตราการขยายตัวก่อนถึงจุดสูงสุดของโฟมที่ผสมขี้เถ้าแกลบ 1 wt.% และ 2 wt.% มีอัตราการ ขยายตัวใกล้เกียงกันและอัตราการพังตัวของโฟมมีแนวโน้มลดลงเมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้น

ร**ูปที่ 4.9** การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด H₂SO₄ ขนาดเฉลี่ย 401 μm

รูปที่ 4.9 แสดงการขยายตัวของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด H₂SO₄ โดยมีขนาดเฉลี่ย 401 μm พบว่าเมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้นการขยายตัวสูงสุดของ โฟมมีแนวโน้มลดลง โดยที่โฟมผสมขี้เถ้าแกลบ 1 wt.% มีการขยายตัวสูงที่สุด เท่ากับ 363% ที่เวลา 315 s ซึ่งมีค่าน้อยกว่าการขยายตัวสูงสุดของโฟมอะลูมิเนียม ส่วนโฟมที่ผสมขี้เถ้าแกลบ 3 wt.% มี การขยายตัวต่ำที่สุด เท่ากับ 228% ที่เวลา 330 s ส่วนแนวโน้มของอัตราการขยายตัวและอัตราการ พังตัวของโฟมยังกงใกล้เกียงกันเมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้น

รูปที่ 4.10 การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด H₂SO₄ ขนาดเฉลี่ย 210 µm

รูปที่ 4.10 แสดงการขยายตัวของโฟมอะลูมิเนียมผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด H₂SO₄ มีขนาดเฉลี่ย 210 µm กับเวลาที่ใช้ในการผลิตโฟม พบว่าโฟมที่ผสมขี้เถ้าแกลบทุก ส่วนผสมมีการขยายตัวสูงที่สุดที่เวลา 330 s โดยโฟมที่ผสมขี้เถ้าแกลบ 1 wt.% มีการขยายตัวสูง ที่สุด เท่ากับ 354% ซึ่งมีก่าน้อยกว่าการขยายตัวสูงสุดของโฟมอะลูมิเนียม เมื่อปริมาณของขี้เถ้า แกลบเพิ่มขึ้นการขยายตัวสูงสุดของโฟมมีแนวโน้มลดลง โดยโฟมที่ผสมขี้เถ้าแกลบ 3 wt.% มีการ ขยายตัวต่ำที่สุด เท่ากับ 228% ส่วนอัตราการขยายตัวและอัตราการพังตัวของโฟมมีแนวโน้ม ใกล้เกียงกันเมื่อปริมาณของขี้เถ้าแกลบเพิ่มขึ้น

ร**ูปที่ 4.11** การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด H₂SO4 ขนาดเฉลี่ย 75 μm

รูปที่ 4.11 แสดงการขยายตัวของโฟมอะลูมิเนียมผสมขึ้เถ้าแกลบที่ผ่านการสกัดด้วย กรด H₂SO₄ มีขนาดเฉลี่ย 75 μm กับเวลาที่ใช้ในการผลิตโฟม พบว่าการขยายตัวสูงสุดของโฟมมีก่า ลดลง เมื่อปริมาณของขี้เถ้าแกลบเพิ่มขึ้น โดยโฟมที่ผสมขึ้เถ้าแกลบ 1 wt.% มีการขยายตัวสูงที่สุด เท่ากับ 354% ที่เวลา 315 s ส่วนโฟมที่ผสมขึ้เถ้าแกลบ 3 wt.% มีการขยายตัวต่ำที่สุด เท่ากับ 169% ที่เวลา 345 s ซึ่งเป็นโฟมที่ใช้เวลาในการขยายตัวมากกว่าโฟมอะลูมิเนียม ส่วนโฟมที่ผสมขึ้เถ้า แกลบ 2 wt.% มีทั้งอัตราการขยายตัวและอัตราการพังตัวต่ำที่สุดเมื่อเทียบกับโฟมส่วนผสมอื่น

รูปที่ 4.12 การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด H₂SO4 ขนาดเฉลี่ย 16 µm

รูปที่ 4.12 แสดงการขยายตัวของโฟมอะลูมิเนียมผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด H₂SO₄ ขนาดเฉลี่ย 16 μm กับเวลาที่ใช้ในการผลิตโฟม พบว่าเมื่อปริมาณของขี้เถ้าแกลบ เพิ่มขึ้น การขยายตัวสูงสุดของโฟมมีแนวโน้มลดลง โดยโฟมที่ผสมขี้เถ้าแกลบ 1 wt.% มีการ ขยายตัวสูงที่สุด เท่ากับ 345% ที่เวลา 315 s และไม่พบการขยายตัวขึ้นในโฟมที่ผสมขี้เถ้าแกลบ 3 wt.% สำหรับอัตราการขยายตัวและอัตราการพังตัวของโฟมที่ผสมขี้เถ้าแกลบนั้น มีแนวโน้ม ใกล้เกียงกันเมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้นแต่ยังคงมีค่าน้อยกว่าโฟมอะลูมิเนียม

ร**ูปที่ 4.13** การขยายตัวของโฟมอะลูมิเนียมกับเวลา ของโฟมที่ผสมขี้เถ้าแกลบจากโรงงานไฟฟ้า ขนาดเฉลี่ย 180 μm

ในรูปที่ 4.13 แสดงการขยายตัวของโฟมอะลูมิเนียมผสมขี้เถ้าแกลบที่ได้จากโรงงาน ไฟฟ้า มีขนาดเฉลี่ย 180 μm กับเวลาที่ใช้ในการผลิตโฟม พบว่าเมื่อปริมาณของขี้เถ้าแกลบเพิ่มขึ้น การขยายตัวสูงสุดของโฟมมีแนวโน้มลดลง โดยโฟมที่ผสมขี้เถ้าแกลบ 1 wt.% มีการขยายตัวสูง ที่สุด เท่ากับ 382% ที่เวลา 315 s แต่การขยายตัวสูงสุดยังกงมีค่าน้อยกว่าการขยายตัวสูงสุดของโฟม อะลูมิเนียม ส่วนโฟมที่ผสมขี้เถ้าแกลบ 3 wt.% มีการขยายตัวต่ำที่สุด เท่ากับ 256% ที่เวลา 330 s นอกจากนี้โฟมที่ผสมขี้เถ้าแกลบ 1 wt.% ยังมีอัตราการขยายตัวและอัตราการพังตัวต่ำกว่าโฟม อะลูมิเนียม ส่วนโฟมที่ผสมขี้เถ้าแกลบ 2 wt.% มีอัตราการขยายตัวและอัตราการพังตัวต่ำกว่าโฟม อะลูมิเนียม และสำหรับโฟมที่ผสมขี้เถ้าแกลบ 3 wt.% มีอัตราการขยายตัวและอัตราการพังตัวจองโฟมสูง กว่าโฟมอะลูมิเนียม และสำหรับโฟมที่ผสมขี้เถ้าแกลบ 3 wt.% มีอัตราการขยายตัวและอัตราการขยายตัวสูงกว่าโฟม อะลูมิเนียม แต่มีอัตราการพังตัวต่ำกว่าโฟมอะลูมิเนียม

ร**ูปที่ 4.14** ก<mark>ารขยายตัวของโฟมอ</mark>ะลูมิเ<mark>นียมกับเวลา ของโฟมที่ผสมซิลิก</mark>า ขนาดเฉลี่ย 5 μm

ในรูปที่ 4.14 แสดงการขยายตัวของโฟมอะลูมิเนียมผสมซิลิกา ขนาดเฉลี่ย 5 μm กับ เวลาที่ใช้ในการผลิตโฟม พบว่าโฟมทั้ง 3 ส่วนผสมมีการขยายตัวสูงสุดที่เวลา 315 s ซึ่งใช้เวลาใน การขยายตัวถึงจุดสูงสุดน้อยกว่าโฟมอะลูมิเนียม เมื่อปริมาณของซิลิกาเพิ่มขึ้นการขยายตัวสูงสุด ของโฟมมีแนวโน้มลดลง โดยที่โฟมผสมซิลิกา 1 wt.% มีการขยายตัวสูงที่สุด เท่ากับ 372% และโฟมที่ผสมซิลิกา 3 wt.% มีการขยายตัวต่ำที่สุด เท่ากับ 307% และสำหรับอัตราการขยายตัวของ โฟมที่ผสมซิลิกาทั้ง 3 ส่วนผสมมีค่าน้อยกว่าโฟมอะลูมิเนียม โดยโฟมที่ผสมซิลิกา 2 wt.% มีอัตรา การขยายตัวมากกว่า 1 wt.% และ 3 wt.% ส่วนอัตราการพังของโฟมที่ผสมซิลิกามีก่าใกล้เคียงกันทั้ง 3 ส่วนผสม แต่ยังคงมีก่าน้อยกว่าอัตราการพังตัวของโฟมอะลูมิเนียม

ร**ูปที่ 4.15 การขยายตัวของโฟมอะลูมิเนียมกับเวลาของโฟมที่ผสมซิลิกอนคาร์ไบค์** ขนาดเฉลี่ย 7 μm

รูปที่ 4.15 แสดงการขยายตัวของโฟมอะลูมิเนียมผสมซิลิกอนการ์ไบด์ มีขนาด เฉลี่ย 7 μm กับเวลาที่ใช้ในการผลิตโฟม พบว่าเมื่อปริมาณของซิลิกอนการ์ไบด์เพิ่มขึ้น การขยายตัว สูงสุดของโฟมมีแนวโน้มเพิ่มขึ้น ซึ่งเป็นแนวโน้มที่แตกต่างไปจากผลการขยายตัวของโฟมชนิดอื่น ที่แสดงผลไว้ก่อนหน้า และโฟมที่ผสมซิลิกอนการ์ไบด์ทั้ง 3 ส่วนผสม ใช้เวลาในการขยายตัวถึง จุดสูงสุดน้อยกว่าโฟมอะลูมิเนียมด้วย โดยโฟมที่ผสมซิลิกอนการ์ไบด์ 3 wt.% มีการขยายตัวสูง ที่สุด เท่ากับ 448% ที่เวลา 315 s และโฟมที่ผสมซิลิกอนการ์ไบด์ 1 wt.% มีการขยายตัวต่ำที่สุด เท่ากับ 409% ที่เวลา 300 s อย่างไรก็ตามการขยายตัวสูงสุดของโฟมที่ผสมซิลิกอนการ์ไบด์ 1 wt.% ยังกงมีก่ามากกว่าการขยายตัวสูงสุดของโฟมอะลูมิเนียม โดยที่อัตราการขยายตัวและอัตราการพัง ดัวของโฟมทั้ง 3 ส่วนผสม มีก่าใกล้เกียงกันแต่ยังกงมีอัตราการขยายตัวและอัตราการพังตัวน้อยกว่า โฟมอะลูมิเนียม

ลูหาลงกรณ์มหาวิทยาลัย

4.5 โครงสร้างมหภาคของโฟมอะลูมิเนียม (Macrostructure)

ตารางที่ 4.3 แสดงโครงสร้างมหภากและตารางที่ 4.4 แสดงผลที่ได้จากการวิเคราะห์ ขนาดเฉลี่ยของเส้นผ่านสูนย์กลางโพรงอากาศและสัดส่วนพื้นที่ระหว่างโพรงอากาศกับเนื้อพื้นของ โฟมอะลูมิเนียมบริสุทธิ์ (Pure Al foam) และโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วย กรด HCI และกรด H₂SO₄ รวมทั้งโฟมที่ผสมขี้เถ้าแกลบจากโรงไฟฟ้า ซิลิกาและซิลิกอนการ์ไบด์

จากตารางที่ 4.3 เมื่อพิจารณาโครงสร้างของโฟมอะลูมิเนียมบริสุทธิ์จะเห็นได้ชัดว่ามี การรวมตัวของเนื้อโลหะที่บริเวณฐานโฟมปริมาณมากซึ่งเป็นผลมาจากการเกิดการไหลของน้ำ โลหะอะลูมิเนียมไปที่ฐานเนื่องจากแรงโน้มถ่วงของโลก นอกจากนั้นภายในโครงสร้างยังพบโพรง อากาศขนาดใหญ่ซึ่งเกิดจากการรวมตัวกันของโพรงอากาศขนาดเล็ก จากการวิเคราะห์โครงสร้าง พบว่ามีจำนวนโพรงอากาศเท่ากับ 114 โพรง เส้นผ่านศูนย์กลางเฉลี่ยของโพรงอากาศภายใน โครงสร้างมีขนาดเท่ากับ 1.83 mm และมีสัดส่วนพื้นที่ระหว่างโพรงอากาศกับเนื้อพื้นเท่ากับ 77.18% ดังแสดงในตารางที่ 4.4 นอกจากนั้นภายในโครงสร้างโฟมยังพบการฉีกขาดของผนังโพรง อากาศที่บริเวณด้านบนของโครงสร้างโฟมด้วย

สำหรับโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl ทุกขนาด พบว่า ในโฟมที่ผสมขี้เถ้าแกลบทุกขนาด เมื่อปริมาณของขี้เถ้าแกลบเพิ่มขึ้นจาก 1, 2, 3 wt.% ความสูงของ โฟมมีแนวโน้มลดลง และเมื่อพิจารณาโพรงอากาศภายในโครงสร้างโฟม พบว่าโพรงอากาศภายใน โครงสร้างโฟมมีการกระจายตัวกันอย่างสม่ำเสมอ และไม่พบการรวมตัวกันของเนื้อโลหะที่บริเวณ ฐานโฟมในทุกส่วนผสม สำหรับโฟมที่ผสมขี้เถ้าแกลบที่มีขนาดเท่ากัน มีจำนวนโพรงอากาศและ สัดส่วนพื้นที่ระหว่างโพรงอากาศกับเนื้อพื้นน้อยลงเมื่อปริมาณขี้เถ้าแกลบเพิ่มขึ้น เมื่อพิจารณาโฟม ที่ผสมขี้เถ้าแกลบในปริมาณเท่ากัน พบว่าเมื่อขี้เถ้าแกลบมีขนาดลดลง จากขนาดเฉลี่ย 364, 199, 81, 18 μm ความสูงของโฟมมีขนาดลดลงตามลำดับ ดังรูปที่แสดงในตารางที่ 4.3 และมีขนาดของ โพรงอากาศใหญ่ขึ้นโดยพิจารณาจากขนาดเส้นผ่านศูนย์กลางเฉลี่ยของโพรงอากาศ นอกจากนั้นยัง พบว่าโฟมที่ผสมขี้เถ้าแกลบขนาดเฉลี่ย 18 μm ไม่มีการขยายตัวเกิดขึ้นที่ส่วนผสมขี้เถ้าแกลบ 3 wt.%

ส่วนโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ พบว่าโฟมที่ ผสมขี้เถ้าแกลบทุกขนาด (ขนาดเฉลี่ย 401, 210, 75, 15 μm) เมื่อโฟมมีปริมาณของขี้เถ้าแกลบ เพิ่มขึ้น ความสูงของโฟมมีขนาดลดลงตามลำดับ นอกจากนั้นยังพบว่าจำนวนโพรงอากาศภายใน โกรงสร้างและก่าสัดส่วนพื้นที่ระหว่างโพรงอากาศกับเนื้อพื้นมีก่าน้อยลงเมื่อปริมาณของขี้เถ้า-แกลบเพิ่มขึ้นเช่นกัน สำหรับการกระจายตัวของโพรงอากาศภายในโกรงสร้างโฟมนั้นยังคงมีการ กระจายตัวกันอย่างสม่ำเสมอ และที่บริเวณฐานของโฟมทุกส่วนผสมไม่พบการรวมตัวกันของเนื้อ โลหะ เมื่อพิจารณาโฟมที่ผสมขี้เถ้าแกลบในปริมาณเท่ากัน โฟมจะมีความสูงลดลงเมื่อขนาดของ ขี้เถ้าแกลบเล็กลง และยังพบว่าเมื่อขนาดของขี้เถ้าแกลบลดลงโพรงอากาศมีค่าขนาดเส้นผ่าน ศูนย์กลางเฉลี่ยเพิ่มขึ้น ส่วนโฟมที่ผสมขี้เถ้าแกลบขนาดเฉลี่ย 15 μm พบว่าที่ปริมาณขี้เถ้าแกลบ 3 wt.% ไม่มีการขยายตัวของโฟมเกิดขึ้น

โฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบจากโรงไฟฟ้า พบว่าโพรงอากาศยังคงมีการกระจาย ตัวกันอย่างสม่ำเสมอภายในโครงสร้างและไม่พบการรวมตัวกันของเนื้อโลหะที่บริเวณฐานโฟมใน ทั้ง 3 ส่วนผสม เมื่อโฟมมีปริมาณของขี้เถ้าแกลบเพิ่มขึ้น โฟมมีกวามสูงและจำนวนของโพรง อากาศภายในโครงสร้างน้อยลง โดยที่โฟมมีโพรงอากาศมีขนาดใหญ่ขึ้นเมื่อปริมาณของขี้เถ้าแกลบ เพิ่มขึ้น

ส่วนโฟมอะลูมิเนียมที่ผสมซิลิกา พบว่าภายในโครงสร้างของโฟมทั้ง 3 ส่วนผสมมี การกระจายตัวของโพรงอากาศที่สม่ำเสมอและไม่พบการรวมกันของเนื้อโลหะที่บริเวณฐานโฟม สำหรับความสูงของโฟมยังคงมีแนวโน้มไปในทางเดียวกัน คือเมื่อปริมาณของซิลิกาเพิ่มขึ้นความ สูงของโฟมมีขนาคลคลง แต่พบว่าโฟมผสมซิลิกาที่มีความสูงต่ำที่สุดยังคงมีความสูงมากกว่าโฟมที่ ผสมขี้เถ้าแกลบทั้ง 3 ชนิดที่กล่าวไว้ข้างต้น นอกจากนั้นภายในโครงสร้างโฟมผสมซิลิกายังมี จำนวนปริมาณโพรงอากาศมากกว่า โฟมผสมขี้เถ้าแกลบทั้ง 3 ชนิดที่ปริมาณเท่ากัน สำหรับโฟมที่ ผสมซิลิกาอัตราส่วน 1, 2, 3 wt.% มีขนาดเส้นผ่านศูนย์กลางเฉลี่ยเท่ากับ 1.54, 1.64, 1.59 mm ตามถำดับ และสัดส่วนพื้นที่ระหว่างโพรงอากาศและเนื้อพื้นเท่ากับ 78.98%, 77.62%, 78.19% ตามถำดับ

สำหรับโฟมอะลูมิเนียมที่ผสมซิลิกอนคาร์ไบด์ พบว่าแนวโน้มความสูงของโฟมไม่ เหมือนกับโฟมชนิดอื่นที่กล่าวไว้ข้างต้น โดยเมื่อปริมาณของซิลิกอนคาร์ไบด์เพิ่มขึ้นความสูงของ โฟมก็มีขนาดเพิ่มขึ้น เมื่อพิจารณาลักษณะของโครงสร้างโฟม พบว่าที่บริเวณฐานโฟมไม่มีการ รวมตัวกันของเนื้อโลหะและมีการกระจายตัวของโพรงอากาศอย่างสม่ำเสมอ เมื่อปริมาณซิลิกอน การ์ไบด์เพิ่มขึ้น โฟมมีจำนวนโพรงอากาศภายในโครงสร้างมากขึ้นโดยที่มีขนาดของโพรงอากาศ ลดลง สำหรับสัดส่วนพื้นที่ระหว่างโพรงอากาศกับเนื้อพื้นนั้น มีก่ามากขึ้นเมื่อโฟมมีปริมาณของ ซิลิกอนการ์ไบด์เพิ่มขึ้น

จุฬาลงกรณ่มหาวิทยาลัย

ตารางที่ 4.3 โครงสร้างมหภาคของโฟมอะลูมิเนียม

ตารางที่ 4.3 (ต่อ) โครงสร้างมหภาคของโฟมอะลูมิเนียม

Materials Pure Al		Ν	Mean diameter (mm)	SD (mm)	Area fraction (%) 77.18			
		114	1.83	2.09				
	1 wt.%	231	1.41	1.54	76.06			
RHA [HCl] 1	2 wt.%	215	1.42	1.27	76.56			
	3 wt.%	134	1.64	1.58	72.18			
	1 wt. <mark>%</mark>	207	1.62	1.41	81.47			
RHA [HCl] 2	2 wt.%	112	2.01	1.72	73.11			
	3 wt.%	110	1.72	1.48	72.39			
	1 wt.%	192	1.66	1.43	75.71			
RHA [HC1] 3	2 wt.%	109	1.71	1.76	68.38			
	3 wt.%	76	1.54	2.10	68.23			
	1 wt.%	160	1.86	1.59	77.18			
KHA [HCI] 4	2 wt.%	102	1.40	1.46	68.92			
	1 wt.%	1 <mark>8</mark> 9	1.71	1.37	79.01			
RHA [H ₂ SO ₄] 1	2 wt. <mark>%</mark>	145	1.70	1.57	77.33			
	3 <mark>wt.</mark> %	146	1.53	1.48	73.63			
	<mark>1</mark> wt.%	133	2.04	1.70	78.81			
RHA [H ₂ SO ₄] 2	2 wt <mark>.%</mark>	147	1.73	1.58	74.90			
	3 wt.%	45	2.52	2.51	71.11			
	1 wt.%	154	1.61	1.82	74.25			
RHA [H ₂ SO ₄] 3	2 wt.%	97	2.14	2.09	77.54			
	3 wt.%	42	2.45	2.07	71.78			
	1 wt.%	102	2.38	1.74	77.71			
KHA $[H_2 SO_4]$ 4	2 wt.%	80	1.96	2.08	76.99			
DIIA	1 wt.%	185	1.75	1.49	75.39			
	2 wt.%	127	1.93	1.84	80.89			
[Power plant]	3 wt.%	78	2.17	2.17	76.64			
LI MU	1 wt.%	231	1.54	1.60	78.98			
SiO ₂	2 wt.%	231	1.64	1.35	77.62			
	3 wt.%	218	1.59	1.45	78.19			
	1 wt.%	94	2.67	1.69	77.58			
SiC	2 wt.%	141	2.23	1.51	79.43			
	3 wt.%	168	1.65	1.92	80.38			

ตารางที่ 4.4 ผลการวิเคราะห์ขนาดของโพรงอากาศภายในโครงสร้างโฟมอะลูมิเนียม

4.6 โครงสร้างจุลภาคของโฟมอะลูมิเนียม (Microstructure)

4.6.1 โครงสร้างจุลภาคของชิ้นงานหลังอัด (Microstructure of precursor)

์ แส<mark>ดงรูปโครงสร้างจุ</mark>ลภาคบริเวณภาคตัดขวางของชิ้นงานหลังอัดที่ รปที่ 4.16 ้วิเคราะห์ลักษณะพื้นผิวด้วยกล้อ<mark>งจุลทรรศน์อิเล็กตรอนแบบส่อ</mark>งกวาด (SEM) ในโหมด Back scattering โดยรูปที่ 4.16(ก) เป็นชิ้นงานหลังอัดของอะลูมิเนียมบริสุทธิ์ พบว่าภายในเนื้อชิ้นงานมี อนุภาคไทเทเนียมไฮไ<mark>ครด์กระจายตัวอยู่</mark>ทั่วทั้งชิ้นงาน เมื่อใช้กำลังขย^ายสูงขึ้นพบว่า มีรูพรุนขนาค ประมาณ 1 µm อยู่จ<mark>ำนวนมาก สำหรับชิ้นงาน</mark>หลังอั<mark>ดที่ผสมขี้เถ้าแกลบ</mark>ที่ผ่านการสกัดด้วยกรด HCl (รูปที่ 4.16(ข) และรูปที่ 4.16(ค)) พบว่าอนุภาคไทเทเนียมไฮไครด์และอนุภาคขี้เถ้าแกลบมีการ กระจายตัวที่คือยู่ภายใ<mark>นเนื้</mark>ออะ<mark>ลูมิเนียม โดยอนุภาคขี้เถ้าแก</mark>ลบที่มี<mark>ขนา</mark>คใหญ่มีการแตกหักเป็นชิ้น เนื่องจา<mark>กอนภาคขี้เถ้าแกลบถกอั</mark>คจนเกิคการแตกหักใน เล็กๆรวมตัวกัน<mark>อ</mark>ย่ในเนื้อ<mark>อะ</mark>ลมิเนียม ระหว่างกระบวนการอัดขึ้นรูปผงโลหะ ส่วนรูปที่ 4.16(ง) และ 4.16(ง) เป็นชิ้นงานหลังอัดที่ผสม ้ขี้เถ้าแกลบที่ผ่า<mark>นการสกัดด้วยกรด H₂SO โดยที่ชิ้นงานทั้งสองนี้มีลักษณะการกระจายตัวของ</mark> ้อนุภาคขี้เถ้าแกลบแ<mark>ล</mark>ะไท<mark>เทเนียม</mark>ไฮไคร<mark>ค์เหมือนกับชิ้นงานในรูปที่</mark> 4.16(ข) และรูปที่ 4.16(ค) และ ้ยังคงพบการรวมตัวของ<mark>ชิ้นส่วนขี้เถ้าแกลบเล็กๆ ที่เกิดจากการแต</mark>กของขี้เถ้าแกลบขนาดใหญ่อยู่ ภายในเนื้ออะลูมิเนีย<mark>ม</mark>

รูปที่ 4.16(ฉ) แสดงโครงสร้างจุลภาคบริเวณภาคตัดขวางของชิ้นงานหลังอัดที่ผสม ขี้เถ้าแกลบจากโรงไฟฟ้า เนื่องจากขี้เถ้าแกลบจากโรงไฟฟ้ามีการกระจายตัวของขนาดอนุภาคเป็น ช่วงกว้าง ดังแสดงในตารางที่ 4.1 ซึ่งพบว่ามีทั้งอนุภาคขี้เถ้าแกลบขนาดเล็กและขนาดใหญ่กระจาย ตัวอยู่ภายในเนื้ออะลูมิเนียม นอกจากนั้นยังพบว่าอนุภาคขี้เถ้าแกลบมีการแตกหักเกิดขึ้นเหมือนกับ ชิ้นงานที่ผสมขี้เถ้าแกลบที่ได้กล่าวไว้ก่อนหน้านี้

รูปที่4.16(ช) แสดงโครงสร้างจุลภาคบริเวณภาคตัดขวางของชิ้นงานหลังอัดที่ผสม อนุภาคซิลิกา พบว่ามีทั้งอนุภาคไทเทเนียมไฮไครค์และซิลิกากระจายตัวอยู่ในเนื้ออะลูมิเนียมและ พบว่าอนุภาคซิลิกามีการแตกหักเกิดขึ้นเล็กน้อย เนื่องถูกแรงอัดจากกระบวนการอัดขึ้นรูปโลหะผง ส่วนในรูปที่ 4.16(ซ) แสดงโครงสร้างจุลภาคบริเวณภาคตัดขวางของชิ้นงานหลังอัดที่ผสมซิลิกอน การ์ไบด์ พบว่าภายในเนื้ออะลูมิเนียมมีอนุภาคไทเทเนียมไฮไครค์และซิลิกอนการ์ไบค์อยู่ โดยที่ อนุภาคซิลิกอนการ์ไบค์มีการกระจายตัวอยู่เป็นกลุ่มเล็กๆ และไม่พบการแตกหักของอนุภาคเกิดขึ้น

4.6.2 โครงสร้างจุลภาคบริเวณผนังโพรงอากาศ (Microstructure of cell wall)

จากรูปที่ 4.17 แสดงโครงสร้างจุลภาคบริเวณภาคตัดขวางผนังโพรงอากาศของโฟม อะลูมิเนียมบริสุทธิ์ โฟมอะลูมิเนียมผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl และกรด H₂SO₄ ที่ อัตราส่วนผสม 3 wt.% โฟมอะลูมิเนียมผสมขี้เถ้าแกลบจากโรงไฟฟ้าที่อัตราส่วนผสม 3 wt.% โฟม อะลูมิเนียมผสมซิลิกาที่อัตราส่วนผสม 3 wt.% และโฟมอะลูมิเนียมผสมซิลิกอนคาร์ไบด์ที่อัตรา ส่วนผสม 3 wt.% ซึ่งผ่านการวิเคราะห์ลักษณะพื้นผิวด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกวาด (SEM) ในโหมด Back scattering จากรูปที่ 4.17(ก) แสดงผนังโพรงอากาศของโฟมอะลูมิเนียม บริสุทธิ์ พบว่าภายในเนื้ออะลูมิเนียมมีแต่อนุภาคไทเทเนียมไฮไดรด์เพียงอย่างเดียว ซึ่งเป็นอนุภาค ที่เหลือจากการสลายตัวไม่หมด

ส่วนผนังโพรงอากาศของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบทั้งชนิดที่ผ่านการสกัดด้วย กรด HCl และขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ พบว่าอนุภาคขี้เถ้าแกลบที่เกิดการแตกหัก ในระหว่างกระบวนการอัดขึ้นรูปโลหะผงนั้น ยังคงรวมตัวกันอยู่เป็นกลุ่มและฝังตัวอยู่ภายในเนื้อ อะลูมิเนียม สำหรับในบริเวณที่มีอนุภาคขี้เถ้าแกลบขนาดใหญ่ฝังตัวอยู่ ผนังโพรงอากาศบริเวณนั้น จะมีขนาดเพิ่มขึ้นและมีอนุภาคขี้เถ้าแกลบบางส่วนโผล่ออกจากเนื้ออะลูมิเนียม ดังแสดงในรูปที่ 4.17(ข) และรูปที่ 4.17(ง) ส่วนผนังโพรงอากาศของโฟมที่ผสมอนุภาคขี้เถ้าแกลบขนาดเล็ก มีการ กระจายตัวของขี้เถ้าแกลบอยู่ในเนื้ออะลูมิเนียม โดยเฉพาะบริเวณขอบของผนังโพรงอากาศจะมี อนุภาคขี้เถ้าแกลบฝังตัวอยู่จำนวนมาก ดังแสดงในรูปที่ 4.17(ค)และรูปที่ 4.17(จ)

รูปที่ 4.17(ฉ) แสดงผนังโพรงอากาศของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบจาก โรงไฟฟ้า จากรูปพบว่าอนุภาคขี้เถ้าแกลบที่มีการแตกหักยังคงรวมตัวกันและฝังตัวภายในเนื้อ อะลูมิเนียม อนุภาคขี้เถ้าแกลบส่วนใหญ่ฝังตัวกระจายอยู่ตามขอบของผนังโพรงอากาศโดยที่มี บางส่วนของอนุภาคขี้เถ้าแกลบโผล่ออกจากเนื้ออะลูมิเนียม

รูปที่ 4.17(ช) แสดงผนังโพรงอากาศของโฟมอะลูมิเนียมที่ผสมซิลิกา พบว่า ทั้งบริเวณ ตรงกลางและบริเวณขอบของผนังโพรงอากาศมีอนุภาคซิลิกาฝังตัวอยู่ โดยที่อนุภาคซิลิกามีการ กระจายตัวที่คีอยู่ในเนื้ออะลูมิเนียม ไม่พบการรวมตัวกันของอนุภาคซิลิกาที่เกิดการแตกหัก และ สำหรับรูปที่ 4.17(ซ) แสดงผนังโพรงอากาศของโฟมอะลูมิเนียมที่ผสมซิลิกอนการ์ไบด์ จากรูป พบว่า อนุภาคซิลิกอนการ์ไบด์มีการกระจายตัวที่ดี และอนุภากส่วนใหญ่มีการฝังตัวอยู่ในบริเวณ ขอบของผนังโพรงอากาศ

ร**ูปที่ 4.17** โครงสร้างจุลภาคบริเวณภาคตัดขวางผนังโพรงอากาศของโฟมอะลูมิเนียม (ก) Pure Al (ข) 3 wt.%ash (RHA [HCl] 1) (ค) 3 wt.%ash (RHA [HCl]) 4 (ง) 3 wt.%ash (RHA [H₂SO₄] 1) (จ) 3 wt.%ash (RHA [H₂SO₄] 4) (ฉ) 3 wt.%ash (RHA [Power plant]) (ช) 3 wt.%SiO₂ (ซ) 3 wt.%SiC

4.6.3 โครงสร้างจุลภาคบริเวณ Plateau border (Microstructure of Plateau border)

รูปที่ 4.18 แสดงโครงสร้างจุลภาคบริเวณ Plateau border ของโฟมอะลูมิเนียมบริสุทธิ์ โฟมอะลูมิเนียมผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl และกรด H₂SO₄ ที่อัตราส่วนผสม 3 wt.% โฟมอะลูมิเนียมผสมขี้เถ้าแกลบจากโรงไฟฟ้าที่อัตราส่วนผสม 3 wt.% โฟมอะลูมิเนียมผสม ซิลิกาที่อัตราส่วนผสม 3 wt.% และโฟมอะลูมิเนียมผสมซิลิกอนการ์ไบด์ที่อัตราส่วนผสม 3 wt.% ที่ผ่านการวิเคราะห์ลักษณะพื้นผิวด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกวาด (SEM) ในโหมด Back scattering ในรูปที่ 4.18 (ก) แสดงบริเวณ Plateau border ของโฟมอะลูมิเนียมบริสุทธิ์ พบว่า ภายในเนื้ออะลูมิเนียมมีอนุภาคไทเทเนียมไฮไดรด์กระจายตัวอยู่เพียงอย่างเดียว

สำหรับโฟมที่ผสมอนุภาคขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl และกรด H₂SO₄ พบว่า บริเวณ Plateau border มีอนุภาคขี้เถ้าแกลบกระจายตัวอยู่ภายในเนื้ออะลูมิเนียม สำหรับโฟม ที่ผสมอนุภาคขี้เถ้าแกลบขนาดใหญ่ บริเวณที่มีอนุภาคขี้เถ้าแกลบฝังตัวอยู่ Plateau border ใน บริเวณนั้นจะมีขนาดใหญ่ขึ้น โดยที่มีอนุภาคขี้เถ้าแกลบบางส่วนโผล่ออกจากเนื้ออะลูมิเนียม ดัง แสดงในรูปที่ 4.18(ข)และรูปที่ 4.18(ง) ส่วนโฟมที่ผสมขี้เถ้าแกลบที่มีอนุภาคขนาดเล็ก พบว่า อนุภาคขี้เถ้าแกลบกระจายตัวอยู่ทั้งภายในเนื้ออะลูมิเนียมและบริเวณขอบของ Plateau border ดังรูป ที่ 4.18(ค)และรูปที่ 4.18(ง)

รูปที่ 4.18(ฉ) แสดงบริเวณ Plateau border ของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบจาก โรงงานไฟฟ้า พบว่าอนุภาคขี้เถ้าแกลบที่แตกหักยังคงจับตัวกันและกระจายตัวอยู่ในเนื้ออะลูมิเนียม โดยอนุภาคส่วนใหญ่กระจายตัวอยู่ในบริเวณขอบของ Plateau border

ส่วนบริเวณ Plateau border ของโฟมอะลูมิเนียมที่ผสมซิลิกา พบว่าอนุภาคซิลิกาส่วน ใหญ่ฝังตัวกระจายอยู่ในเนื้ออะลูมิเนียมบริเวณตรงกลางของ Plateau border ดังรูปที่ 4.18(ช) และ สำหรับบริเวณ Plateau border ของโฟมอะลูมิเนียมที่ผสมซิลิกอนการ์ไบด์ รูปที่ 4.18(ซ) พบว่า อนุภาคซิลิกอนการ์ไบด์ส่วนใหญ่กระจายตัวอยู่ในบริเวณขอบ และมีบางส่วนกระจายตัวอยู่ตรง กลางของ Plateau border

จุฬาลงกรณ์มหาวิทยาลัย

ร**รปที่ 4.18** โครงสร้างจุลภาคบริเวณภาคตัดขวาง Plateau border ของโฟมอะลูมิเนียม (ก) Pure Al (ข) 3 wt.%ash (RHA [HCl] 1) (ก) 3 wt.%ash (RHA [HCl]) 4 (ง) 3 wt.%ash (RHA [H₂SO₄] 1) (จ) 3 wt.%ash (RHA [H₂SO₄] 4) (ฉ) 3 wt.%ash (RHA [Power plant]) (ช) 3 wt.%SiO₂ (ซ) 3 wt.%SiC

4.6.4 พื้นผิวผนังโพรงอากาศของโฟมอะลูมิเนียม (Surface of cell wall)

พื้นผิวของผนังโพรงอากาศของโฟมอะลูมิเนียมบริสุทธิ์ โฟมอะลูมิเนียมผสมขี้เถ้า-แกลบที่ผ่านการสกัดด้วยกรด HCl และกรด H₂SO₄ ที่อัตราส่วนผสม 3 wt.% โฟมอะลูมิเนียมผสม ขี้เถ้าแกลบจากโรงไฟฟ้าที่อัตราส่วนผสม 3 wt.% โฟมอะลูมิเนียมผสมซิลิกาที่อัตราส่วนผสม 3 wt.%และโฟมอะลูมิเนียมผสมซิลิกอนคาร์ไบด์ที่อัตราส่วนผสม 3 wt.% ซึ่งถูกวิเคราะห์ลักษณะ พื้นผิวด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกวาด (SEM) ทั้งโหมด Secondary และ โหมด Back scattering ซึ่งผลการวิเคราะห์ถูกแสดงไว้ในรูปที่ 4.19 พื้นผิวของผนังโพรงอากาศของโฟม อะลูมิเนียมบริสุทธิ์ซึ่งถูกแสดงไว้ในรูปที่ 4.19(ก) พบว่า มีอนุภากเล็กๆกระจายตัวอยู่บนผิวของ ผนังโพรงอากาศ เมื่อวิเกราะห์ด้วยโหมด Back scattering พบว่ามีเพียงอนุภากไทเทเนียมไฮไดรด์ กระจายตัวอยู่บนพื้นผิวของผนังโพรงอากาศที่มีลักษณะผิวค่อนข้างเรียบ

สำหรับพื้นผิวของผนังโพรงอากาศของโฟมอะลูมิเนียมที่ผสมขึ้เถ้าแกลบที่ผ่านการ สกัดด้วยกรด HCI และกรด H₂SO₄ จะเห็นว่ามือนุภาคขึ้เถ้าแกลบฝังตัวกระจายอยู่บนผิวของผนัง โพรงอากาศ ซึ่งจะเห็นบางส่วนของอนุภาคขึ้เถ้าแกลบที่มีขนาดใหญ่โผล่ขึ้นมาจากเนื้ออะลูมิเนียม ดังในรูปที่ 4.19(ข) และรูปที่ 4.19(ง) ส่วนผนังโพรงอากาศของโฟมที่ผสมอนุภาคขึ้เถ้าแกลบขนาด เล็ก ในรูปที่ 4.19 (ค) และรูปที่ 4.19 (จ) อนุภาคขึ้เถ้าแกลบมีการจับตัวกันเป็นกลุ่มๆ กระจายอยู่บน พื้นผิวของผนังโพรงอากาศ และในบริเวณที่มีอนุภาคขึ้เถ้าแกลบจับตัวกันเป็นกลุ่มๆนั้น จะมี ลักษณะผิวของผนังโพรงอากาศขรุขระมากขึ้นกว่าบริเวณที่ไม่มีอนุภาคขึ้เถ้าแกลบฝังตัวอยู่

รูปที่ 4.19(ฉ) แสดงลักษณะพื้นผิวของผนัง โพรงอากาศของ โฟมอะลูมิเนียมที่ผสม ขี้เถ้าแกลบจาก โรง ไฟฟ้า พบว่าอนุภาคขี้เถ้าแกลบที่กระจายอยู่บนผิวของผนัง โพรงอากาศนั้นมีการ จับตัวกันเป็นกลุ่มเล็กๆ ซึ่งมีทั้งอนุภาคขี้เถ้าแกลบขนาดใหญ่และขนาดเล็ก ทำให้ผิวของผนัง โพรง อากาศส่วนใหญ่มีลักษณะพื้นผิวที่ขรุขระ

พื้นผิวของผนังโพรงอากาศของโฟมอะลูมิเนียมที่ผสมอนุภาคซิลิกาถูกแสดงไว้ในรูป ที่ 4.19(ช) พบว่าอนุภาคซิลิกามีการกระจายตัวคือยู่บนพื้นผิวของผนังโพรงอากาศ โดยที่ไม่มีการ จับตัวกันของอนุภาคซิลิกาบนพื้นผิวของผนังโพรงอากาศ และเห็นได้ชัดว่าผนังโพรงอากาศมี ลักษณะผิวขรุขระเพียงเล็กน้อย เช่นเดียวกันกับพื้นผิวผนังโพรงอากาศของโฟมอะลูมิเนียมที่ผสม ซิลิกอนการ์ไบด์ ซึ่งมีการกระจายตัวของอนุภาคซิลิกอนการ์ไบด์ที่คือยู่บนพื้นผิวโพรงอากาศ

ร**ูปที่ 4.19** โครงสร้างจุลภาคบริเวณพื้นผิวของผนังโพรงอากาศของโฟมอะลูมิเนียม (ก) Pure Al (ข) 3 wt.%ash (RHA [HCl] 1) (ก) 3 wt.%ash (RHA [HCl]) 4 (ง) 3 wt.%ash (RHA [H₂SO₄] 1)

ร**ูปที่ 4.19** (ต่อ) โครงสร้างจุลภาคบริเวณพื้นผิวของผนังโพรงอากาศของโฟมอะลูมิเนียม (จ) 3 wt.%ash (RHA [H₂SO₄] 4) (ฉ) 3 wt.%ash (RHA [Power plant]) (ช) 3 wt.%SiO₂ (ซ) 3 wt.%SiC

4.7 ความสามารถในการรับแรงอัดของโฟมอะลูมิเนียม (Compressive test)

การวัดความสามารถในการรับแรงอัดของโฟมอะลูมิเนียม จะใช้ชิ้นงานโฟม อะลูมิเนียมที่ผ่านการตัดบริเวณหัวและท้าย ขนาดความสูง 20 mm และมีความหนาแน่น 0.6±0.05 g/cm³ ในการทดสอบจะใช้อัตราความเครียด 5 mm/min และสิ้นสุดการทดสอบที่ความเครียด 60% ผลการทดสอบจะถูกแสดงไว้ในรูปแบบกราฟระหว่างความเด้น (Stress) และความเครียด (Strain) โดยจะแสดงเปรียบเทียบกับผลการทดสอบการรับแรงอัดของโฟมอะลูมิเนียมบริสุทธิ์ และมีการ แสดงค่าสมบัติทางกลของโฟมอะลูมิเนียมที่มีส่วนผสมต่างๆไว้ในตารางที่ 4.5

สำหรับการทดสอบการรับแรงอัดของโฟมอะลูมิเนียมบริสุทธิ์ พบว่าเส้นกราฟความ สัมพันธ์ระหว่างความเก้นกับความเครียดที่ได้จากการทดสอบมีรูปร่างคล้ายกับเส้นกราฟที่ได้จาก การทดสอบการรับแรงอัดของโฟมอะลูมิเนียมบริสุทธิ์ทั่วไปในงานวิจัยอื่นๆ [34] โดยเส้นกราฟจะ มีลักษณะการเพิ่มขึ้นของความเก้นอย่างรวดเร็วในความเครียดช่วงแรก จากนั้นเมื่อก่าความเครียด เพิ่มขึ้นก่าความเก้นจะมีการเปลี่ยนแปลงเพียงเล็กน้อยจนถึงความเครียดในช่วงสุดท้ายจะมีการ เพิ่มขึ้นจ่าความเก้นอย่างรวดเร็วจนสิ้นสุดการทดสอบที่ 60% ของความเครียด หลังจากนั้นเมื่อทำ การวิเคราะห์ก่าสมบัติทางกลของโฟมอะลูมิเนียมบริสุทธิ์จากกราฟที่ได้จากการทดสอบการรับ แรงอัดแล้ว พบว่ามีก่าความแข็งแรง ณ จุดกราก (Yield strength)เท่ากับ 1.23 MPa ส่วนค่า ความสามารถในการดูดซับพลังงาน (E₆₀)เท่ากับ 3.36 MJ/cm³ และก่าประสิทธิภาพในการดูดซับ พลังงาน (**1**)เท่ากับ 0.38

การทดสอบความสามารถในการรับแรงอัดของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ ผ่านการสกัดด้วยกรด HCl ดังรูปที่ 4.20 พบว่าโฟมที่มีส่วนผสมขี้เถ้าแกลบขนาดเฉลี่ย 199, 81 และ 18 μm ที่ปริมาณขี้เถ้าแกลบ 3 wt.% มีความสูงของโฟมไม่ถึงช่วงที่กำหนดไว้ คือ 30 mm จึงไม่ สามารถทำการทดสอบการรับแรงอัดได้ จากผลการทดสอบการรับแรงอัดของโฟมอะลูมิเนียมผสม ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl ในทุกส่วนผสมมีแนวโน้มผลการทดสอบไปในทาง เดียวกันคือ เมื่อผสมขี้เถ้าแกลบในโฟมอะลูมิเนียมแล้วโฟมจะมีสมบัติทางกลดีกว่าโฟมอะลูมิเนียม บริสุทธิ์ สำหรับโฟมที่ผสมขี้เถ้าแกลบขนาดเท่ากัน พบว่าเมื่อปริมาณของขี้เถ้าแกลบเพิ่มขึ้น ค่า ความแข็งแรง ณ จุดคราก ค่าความสามารถในการดูดซับพลังงาน และก่าประสิทธิภาพในการดูดซับ พลังงานของโฟมมีก่ามากขึ้นตามลำดับ และเมื่อพิจารณาโฟมที่มีปริมาณของขี้เถ้าแกลบเท่ากัน จะ พบว่าโฟมมีก่าสมบัติทางกลต่างๆน้อยลงเมื่อขนาดของขี้เถ้าแกลบเพิ่มขึ้น โดยสามารถดูก่าสมบัติ ทางกลต่างๆของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCl ได้จากตารางที่ 4.5

ร**ูปที่ 4.20** ผลการทดสอบกวามสามารถในการรับแรงอัดของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ ผ่านการสกัดด้วยกรุด HCI (ก) RHA[HCI] 1, (ข) RHA[HCI] 2, (ค) RHA[HCI] 3, (ง) RHA[HCI] 4

ร**ูปที่ 4.21** ผลการทดสอบความสามารถในการรับแรงอัดของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ ผ่านการสกัดด้วยกรด H₂SO₄(ก) RHA [H₂SO₄] 1, (ข) RHA [H₂SO₄] 2, (ก) RHA [H₂SO₄] 3 , (ง) RHA [H₂SO₄] 4

รูปที่ 4.22 ผลการทคสอบความสามารถในการรับแรงอัดของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบจาก โรงไฟฟ้า โฟมอะลูมิเนียมที่ผสมซิลิกาและโฟมอะลูมิเนียมที่ผสมซิลิกอนคาร์ไบด์ (ก) RHA [Power plant] , (ง) SiO₂, (ก) SiC

จากรูปที่ 4.21 แสดงผลของการทดสอบความสามารถในการรับแรงอัดของโฟม อะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ จากผลการทดสอบพบว่า โฟมที่มีการ ผสมขี้เถ้าแกลบชนิดนี้ยังคงมีค่าสมบัติทางกลดีกว่าโฟมอะลูมิเนียมบริสุทธิ์ และยังพบว่าโฟม อะลูมิเนียมที่ผสมขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด H₂SO₄ ที่มีขนาดเฉลี่ย 210, 75 และ 16 μm ที่ ปริมาณขี้เถ้าแกลบ 3 wt.% มีความสูงของโฟมไม่ถึงก่าความสูงที่กำหนด จึงไม่สามารถนำมา ทดสอบการรับแรงอัดได้ ส่วนแนวโน้มของการทดสอบการรับแรงอัดของโฟมส่วนผสมอื่นยังคง เหมือนเดิม คือ ค่าความแข็งแรง ณ จุดกราก ก่าความสามารถในการดูดซับพลังงาน และค่า ประสิทธิภาพในการดูดซับพลังงานมีค่าลดลงเมื่อปริมาณของขี้เถ้าแกลบเพิ่มขึ้น และค่าสมบัติทาง กลดังกล่าวยังมีค่าลดลงเมื่อขนาดเฉลี่ยของขี้เถ้าแกลบเพิ่มขึ้น ค่าสมบัติทางกลต่างๆของโฟมชนิดนี้ ได้ถูกแสดงไว้ในตารางที่ 4.5

การทดสอบความสามารถในการรับแรงอัดของโฟมอะลูมิเนียมที่ผสมขี้เถ้าแกลบจาก โรงไฟฟ้า ดังรูปที่ 4.22(ก) พบว่าเมื่อปริมาณของขี้เถ้าแกลบเพิ่มขึ้น โฟมมีค่าสมบัติทางกลมากขึ้น โดยเมื่อเปรียบเทียบค่าสมบัติทางกลของโฟมที่ผสมขี้เถ้าแกลบจากโรงไฟฟ้ากับโฟมที่ผสม ขี้เถ้าแกลบที่ผ่านการสกัดด้วยกรด HCI และกรด H₂SO₄ แล้ว พบว่าความแตกต่างที่เห็นได้ชัดเจนก็ กือ ค่าประสิทธิภาพในการดูดซับพลังงานของโฟมที่ผสมขี้เถ้าแกลบจากโรงไฟฟ้ามีค่ามากกว่า ส่วนโฟมที่ผสมซิลิกามีผลการทคสอบความสามารถในการรับแรงอัคคังแสคงไว้ใน รูปที่ 4.22(ข) เมื่อวิเคราะห์ค่าสมบัติทางกลของโฟมแล้ว พบว่าเมื่อโฟมมีการผสมอนุภาคซิลิกามาก ขึ้น ค่าสมบัติทางกลของโฟมก็มีค่ามากขึ้นตามลำคับ ซึ่งเช่นเดียวกันกับโฟมที่ผสมอนุภาคซิลิกอน การ์ไบค์ คังแสคงในรูปที่ 4.22(ค) เมื่อโฟมมีปริมาณของอนุภาคซิลิกอนการ์ไบค์มากขึ้น โฟมก็มีค่า สมบัติทางกลดีขึ้นเช่นกันกับโฟมที่ผสมอนุภาคชนิคอื่นดังที่กล่าวไปแล้ว สามารถดูก่าสมบัติทาง กลของโฟมที่ผสมขี้เถ้าแกลบจากโรงไฟฟ้า โฟมที่ผสมซิลิกาและโฟมที่ผสมซิลิกอนการ์ไบค์ได้ จากตารางที่ 4.5

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ส่วนผ	สม	ความ หนาแน่น (g/cm ³)	Yield strength (MPa)	E _{60%} (MJ/cm ³)	η	
Pure A	A1	0.58	1.23	3.36	0.38	
	1 wt.%	0.56	1.16	3.60	0.40	
RHA [HC1] 1	2 wt.%	0.62	1.87	4.56	0.44	
	3 wt.%	0.65	2.39	5.61	0.45	
	1 wt.%	0.57	1.68	4.02	0.43	
RHA [HCI] 2	2 wt.%	0.64	2.65	5.92	0.45	
	1 wt.%	0.61	3.16	5.58	0.43	
RHA [HCI] 3	2 wt.%	0.63	3.67	6.21	0.46	
	1 wt.%	0.61	3.03	5.96	0.48	
RHA [HCI] 4	2 wt.%	0.64	3.16	6.41	0.49	
	1 wt.%	0.61	1.35	3.58	0.40	
RHA [H ₂ SO ₄] 1	2 wt.%	0.65	2.77	5.72	0.42	
	3 wt.%	0.65	3.10	6.13	0.44	
	1 wt.%	0.54	1.29	3.74	0.42	
$RHA\left[H_{2}SO_{4}\right]^{2}$	2 wt.%	0.60	2.58	5.28	0.43	
	1 wt.%	0.61	3.74	5.69	0.45	
$RHA [H_2SO_4] 3$	2 wt.%	0.60	4.26	6.51	0.52	
	1 wt.%	0.58	2.71	5.71	0.45	
KHA [H ₂ SO ₄] 4	2 wt.%	0.63	4.00	5.90	0.47	
DUL	1 wt.%	0.63	2.58	4.83	0.49	
RHA	2 wt.%	0.64	3.34	6.59	0.50	
[Power plant]	3 wt.%	0.65	4.77	7.26	0.52	
01010	1 wt.%	0.63	2.18	4.25	0.49	
SiO ₂	2 wt.%	0.57	4.02	5.69	0.49	
	3 wt.%	0.60	4.71	6.54	0.51	
0.00	1 wt.%	0.55	2.19	3.66	0.43	
SiC	2 wt.%	0.56	3.67	5.08	0.49	
VI VI I	3 wt.%	0.65	4.00	5.38	0.52	

ตารางที่ 4.5 สมบัติทางกลที่ได้จากการทดสอบการรับแรงอัดของโฟมอะลูมิเนียม

บทที่ 5 วิจารณ์ผลการทดลอง

5.1 การขยายตัวของโฟม

5.1.1 ผลของปริมาณอนุภาคต่อการขยายตัวของโฟม

จากผลการตรวจสอบการขยายตัวของโฟม พบว่าโฟมที่ผสมอนุภาคขี้เถ้าแกลบทุก ส่วนผสม มีการขยายตัวได้น้อยกว่าโฟมอะลูมิเนียมบริสุทธิ์ โดยโฟมที่ผสมขี้เถ้าแกลบมีการ ขยายตัวลดลงเมื่อปริมาณอนุภาคขี้เถ้าแกลบเพิ่มขึ้นซึ่งเป็นผลโดยตรงมาจากความหนาแน่นของ Precursor ที่ลดลงและความหนืดของโลหะเหลวที่เพิ่มขึ้นในขณะที่โฟมเกิดการขยายตัว ถึงแม้ว่า ความหนาแน่นที่ลดลงนี้จะมีก่าเพียงเล็กน้อยและยังอยู่ในขอบเขตของความหนาแน่นสัมพัทธ์ที่ 98% ซึ่งเป็นความหนาแน่นที่ยอมรับได้สำหรับการผลิตโฟมอะลูมิเนียมโดยกรรมวิธีนี้ [9] แต่ก็มีผล อย่างมากต่อการขยายตัวของโฟม

้จากร<mark>ูปที่ 4.4 แสดงผลการตรวจสอบค่า</mark>ควา<mark>มหนาแน่นของ</mark> Precursor ที่ผสมอนุภาค ้ขี้เถ้าแกลบในปริมาณ<mark>ต่</mark>างๆ <mark>พบว่า Precursor ที่ผสมอนภาคขี้เถ้าแกล</mark>บมีความหนาแน่นลคลงเมื่อ ้ปริมาณของอนุภาคขี้เถ้าแก<mark>ล</mark>บเพิ่มขึ้น การลดลงของความหนา<mark>แน่</mark>นของ Precursor นั้นแสดงให้เห็น ้ว่าภายในเนื้อโลหะของ Precursor มีจำนวนช่องว่างขนาดเล็กเพิ่มขึ้น ซึ่งส่วนใหญ่เป็นช่องว่างที่ ้เกิดขึ้นที่ผิวสัมผัสระหว่างผิวของอนภาคอะถมิเนียมกับผิวของอนภาคขี้เถ้าแกลบ การที่อนภาคขี้เถ้า แกลบมีลักษณะรูปร่างอนุภ<mark>าคดังที่แสดงในรูปที่ 4.1 ซึ่งคล้ายเ</mark>ปลือกไม้ และมีลักษณะผิวแตกต่าง ้กันทั้งสองค้าน โคยที่ค้านหนึ่งมีลักษณะเป็นตุ่มนูนแต่อีกค้านหนึ่งเป็นผิวเรียบ ทำให้อนุภาคขี้เถ้า แกลบมีความสามารถในการยึดเกาะกับอนุภาคอะถูมิเนียมหลังการอัคขึ้นรูปได้ไม่ดี เกิดช่องว่าง ้เล็กๆขึ้นระหว่างผิวของอนุภาคทั้งสองชนิด การที่อนุภาคขึ้เถ้าแกลบมีรูปร่างที่ประกอบไปด้วยมุม ้ส่วนโค้ง ตุ่มนูน<mark>จำน</mark>วนมาก จึงทำให้เนื้ออะลูมิเนียมไม่สามารถแทรก<mark>ตัวอ</mark>ย่างสมบูรณ์เข้าไปใน ้ช่องว่างที่เกิดจากรูปร่างเหล่านี้ได้ นอกจากนั้นการที่อนุภาคขี้เถ้าแกลบมีลักษณะเปราะ เมื่อผ่าน ้กระบวนการอัดขึ้นรูปแล้ว อนุภาคขี้เถ้าแกลบจะแตกเป็นชิ้นเล็กๆ รวมตัวกันอยู่เป็นกลุ่มภายในเนื้อ ของ Precursor ดังแสดงในรูปที่ 4.18 ช่องว่างเล็กๆเหล่านี้จะส่งผลให้ความหนาแน่นโดยรวมของ Precursor มีค่าลดลง และลดลงมากขึ้นเมื่อปริมาณของอนุภาคขี้เถ้าแกลบเพิ่มขึ้น เมื่อนำ Precursor ้ไปผลิตเป็นโฟมอะลูมิเนียม ขณะที่อุณหภูมิสูงขึ้นประมาณ 400°C อนุภาค TiH, จะเริ่มเกิดการ สถายตัวให้แก๊ส H, ประกอบกับอนุภาคอะลูมิเนียมยังไม่เกิดการหลอมนั้น จะเกิดการสูญเสียแก๊ส H, บางส่วนออกทางช่องว่างเล็กๆที่อยู่ติดกันเป็นเครือข่ายในเนื้อของ Precursor [9] จึงส่งผลให้การ

งยายตัวของโฟมลคลง การที่ Precursor มีปริมาณอนุภาคขี้เถ้าแกลบเพิ่มขึ้นจึงทำให้โฟมที่เกิดจาก การขยายตัวของ Precursor นั้นขยายตัวได้ลดลงด้วย

นอกจากนั้นยังได้ศึกษากระบวนการเพิ่มความหนาแน่นของ Precursor โดยการทดลอง นำ Precursor ที่มีความหนาแน่นต่ำกว่า 98% ไปผ่านกระบวนการอัดแบบร้อนที่อุณหภูมิ 400°C ด้วยแรงอัดขนาด 650 MPa ในบรรยากาศปกติกีทำให้ความหนาแน่นของ Precursor เพิ่มขึ้นเพียง เล็กน้อย แต่ไม่สามารถนำมาผลิตเป็นโฟมที่มีการขยายตัวมากได้ เนื่องจาก Precursor ยังคงมีความ หนาแน่นไม่สูงมากนัก และยังพบปัญหาของการเกิดออกซิเดชันของอะลูมิเนียมกลายเป็นฟิล์ม ออกไซด์หนาที่ผิวนอกของ Precursor ซึ่งเป็นปัจจัยสำคัญที่มีผลต่อการขยายตัวของโฟมอะลูมิเนียม [19] เมื่อนำไปผลิตเป็นโฟมแล้วจึงพบว่า Precursor มีการขยายตัวเพียงเล็กน้อยเท่านั้น

การที่ในเนื้อโลหะมือนุภาคเซรามิกจำนวนมากขึ้น ส่งผลให้ความหนืดของโลหะ หลอมเหลวสูงขึ้น [36] การที่โลหะหลอมเหลวมีความหนืดเพิ่มขึ้นจะเป็นผลดีต่อการขยายตัวของ โฟม แต่ถ้าโลหะหลอมเหลวมีความหนืดเพิ่มขึ้นมากเกิน ไปจะส่งผลให้ โฟมสามารถเกิดการ ขยายตัวได้ยาก ซึ่งเป็นอีกเหตุผลที่ทำให้โฟมผสมอนุภาคขึ้เถ้าแกลบมีการขยายตัวได้น้อยลงเมื่อ ปริมาณของอนุภาคขึ้เถ้าแกลบมากขึ้น และพบว่าโฟมที่ผสมขึ้เถ้าแกลบชนิด RHA [HCI] 4 และ RHA [H₂SO₄] 4 ไม่สามารถขยายตัวได้เลย ซึ่งเกิดจากโลหะหลอมเหลวที่มีความหนืดมากเกินไป จนโฟมไม่สามารถขยายตัวได้

สำหรับโฟมที่ผสมอนุภาคซิลิกานั้น สามารถขยายตัวได้มากกว่าโฟมที่ผสมอนุภาค ขี้เถ้าแกลบทุกส่วนผสม แต่แนวโน้มการขยายตัวสูงสุดของโฟมที่ผสมอนุภาคซิลิกายังคงมี แนวโน้มคล้ายกับโฟมที่ผสมขี้เถ้าแกลบ คือสามารถขยายตัวได้น้อยลงเมื่อปริมาณอนุภาคเพิ่มขึ้น ทั้งๆที่ค่าความหนาแน่นของ Precursor ที่ผสมซิลิกามีค่าสูงกว่าค่าความหนาแน่นของ Precursor ที่ ผสมอนุภาคขี้เถ้าแกลบอยู่มาก ดังแสดงในรูปที่ 4.4 การที่โฟมสามารถขยายตัวได้น้อยลงเมื่อ ปริมาณอนุภาคซิลิกาเพิ่มขึ้นนั้น เป็นผลมาจากความหนืดของอะลูมิเนียมหลอมเหลวที่เพิ่มขึ้น เมื่อมี อนุภาคซิลิกาในโลหะหลอมเหลวปริมาณมากขึ้นนั่นเอง [36]

ส่วนผลการตรวจสอบความสามารถในการขยายตัวของโฟมที่ผสมอนุภาคซิลิกอนคาร์ ใบด์ ดังแสดงในรูปที่ 4.15 ซึ่งโฟมมีแนวโน้มการขยายตัวสูงสุดเพิ่มขึ้นเมื่อปริมาณของอนุภาคมาก ขึ้น และสามารถขยายตัวได้มากกว่าโฟมอะลูมิเนียมบริสุทธิ์ในทุกส่วนผสม การที่มีค่าความความ หนาแน่นของ Precursor ที่สูงมาก (> 99%) ดังรูปที่ 4.4 การสูญเสียแก๊ส H₂ ในระหว่างการผลิตโฟม จึงมีน้อยมาก ความหนืดของอะลูมิเนียมหลอมเหลวที่เพิ่มขึ้นเมื่อปริมาณอนุภาคมากขึ้น กลับส่ง ผลดีทำให้โฟมสามารถขยายตัวได้ดี ซึ่งเป็นผลมาจากความสามารถในการเปียกในอะลูมิเนียม หลอมเหลวที่ดีของอนุภาคซิลิกอนการ์ไบด์ ซึ่งจะอธิบายในหัวข้อ 5.1.3 ต่อไป

5.1.2 ผลของขนาดอนุภาคต่อการขยายตัวของโฟม

จากการตรวจสอบการขยายตัวของโฟมที่ผสมอนุภาคขี้เถ้าแกลบปริมาณเท่ากัน พบว่า โฟมที่ผสมอนุภาคขี้เถ้าแกลบทั้งสองชนิด (RHA [HCI], RHA [H₂SO₄]) มีความสามารถในการ ขยายตัวสูงสุดลดลง เมื่อขนาดของอนุภาคขี้เถ้าแกลบเล็กลง ที่อัตราส่วนการผสมขี้เถ้าแกลบเท่ากัน การใช้อนุภาคขนาดเล็กจะทำให้โฟมที่ผลิตได้มีจำนวนอนุภาคมากกว่าเมื่อเปรียบเทียบกับการใช้ อนุภาคขนาดใหญ่ในอัตราส่วนผสมของอนุภาคเดียวกัน ซึ่งแสดงถึงขนาดของพื้นที่ผิวของอนุภาค ที่สัมผัสกับน้ำโลหะอะลูมิเนียมที่มากขึ้น ในระหว่างผลิตโฟมอะลูมิเนียม โฟมที่ผสมอนุภาคขี้เถ้า แกลบขนาดเล็กจะมีความหนืดของอะลูมิเนียมหลอมเหลวมากกว่าโฟมที่ผสมอนุภาคขี้เถ้า แกลบขนาดเล็กจะมีความหนืดของอะลูมิเนียมหลอมเหลวมากกว่าโฟมที่ผสมอนุภาคขี้เถ้า แกลบ ขนาดใหญ่ ส่งผลให้โฟมมีกวามสามารถในการขยายตัวสูงสุดลดลงเมื่อโฟมผสมอนุภาคขี้เถ้าแกลบ ที่มีขนาดอนุภาคเล็กลงในอัตราส่วนผสมของขี้เถ้าแกลบ

5.1.3 ผ<mark>ล</mark>ของประเภทของอนุภาคต่อการขยายตัวของโฟม

เมื่อเปรียบเทียบการขยายตัวของโฟมที่ผสมอนุภาคขี้เถ้าแกลบทั้งสามชนิด (RHA[HCI], RHA [H₂SO₄], RHA [Power plant]) พบว่าโฟมที่ผสมอนุภาคขี้เถ้าแกลบทั้งสามชนิด มีความสามารถในการขยายตัวใกล้เกียงกันในทุกอัตราส่วนผสม เมื่อพิจารณาที่ขนาดอนุภาก ใกล้เกียงกัน แสดงว่าให้เห็นชนิดของอนุภาคขี้เถ้าแกลบมีผลน้อยมากหรือไม่ส่งผลอย่างมีนัยสำคัญ ต่อความสามารถในการขยายตัวของโฟม

อนุภาคซิลิกาและอนุภาคขี้เถ้าแกลบต่างก็มีส่วนประกอบหลักเป็น SiO₂ เหมือนกัน ถึงแม้ว่าอนุภาคทั้งสองชนิคมีขนาคแตกต่างกัน เมื่อผสมใน โฟมอะลูมิเนียมแล้ว ก็มีแนวโน้มการ ขยายตัวสูงสุดที่คล้ายคลึงกัน คือสามารถขยายตัวได้น้อยลงเมื่อปริมาณอนุภาคเพิ่มขึ้นนั้น แสดงว่า อนุภาคทั้งสองชนิคด้องมีคุณสมบัติบางอย่างที่ส่งผลต่อการขยายตัวของ โฟมเหมือนกัน เมื่อ พิจารณาการขยายตัวของโฟมที่ผสมอนุภาคซิลิกอนคาร์ไบด์แล้ว ขนาคอนุภาคของซิลิกาและ ซิลิกอนการ์ไบด์ที่มีขนาดอนุภาคใกล้เคียงกัน ดังแสดงในตารางที่ 4.1 แต่ส่งผลต่อการขยายตัวของ โฟมไม่เหมือนกัน กวามแตกต่างที่เด่นชัดของอนุภาคทั้งสองชนิคนี้คือ กวามสามารถในการเปียก ของอนุภาคในน้ำโลหะอะลูมิเนียมนั่นเอง สำหรับซิลิกามีมุมสัมผัส (Contact angle) ในน้ำโลหะ อะลูมิเนียมเท่ากับ 150° ที่อุณหภูมิ 800°C ที่เวลาน้อยกว่า 1 นาที ส่วนอนุภาคซิลิกอนการ์ไบค์มีมุม สัมผัสในน้ำโลหะอะลูมิเนียมประมาณ 97° ที่อุณหภูมิและเวลาเดียวกัน [41] ดังนั้นอนุภาคซิลิกา เป็นอนุภาคที่มีความสามารถในการเปียกในน้ำโลหะอะลูมิเนียมที่ไม่ดี เพราะมีมุมสัมผัสในน้ำ โลหะอะลูมิเนียมก่อนข้างกว้าง ส่วนอนุภาคซิลิกอนการ์ไบค์เป็นอนุภาคที่มีความสามารถในการ เป็นอกที่ดี เนื่องจากมีมุมสัมผัสในน้ำโลหะอะลูมิเนียมแคบกว่ามุมสัมผัสอนุภาคซิลิกา สำหรับ อนุภาคที่มีความสามารถในการเปียกที่ดีน้น โลหะอะลูมิเนียมแคบกว่ามุมสัมผัสอนุภาคซิลิกา สำหรับ อนุภาคที่มีความสามารถในการเปียกที่ดีน้้น โลหะเหลวจะสามารถยึงเกาะที่ผิวของอนุภาคได้ดี ดัง แสดงในรูปที่ 2.15 ดังนั้นอนุภาคซิลิกอนคาร์ไบด์จึงน่าจะมีการกระจายตัวภายในอะลูมิเนียม หลอมเหลวได้ดีกว่าอนุภาคซิลิกา ทำให้สามารถเพิ่มความหนืดของอะลูมิเนียมหลอมเหลวได้อย่าง สม่ำเสมอมากกว่า ดังนั้นโฟมอะลูมิเนียมที่ผสมอนุภาคซิลิกอนการ์ไบด์จึงสามารถขยายตัวได้ดีกว่า โฟมที่ผสมอนุภาคซิลิกา ที่อัตราส่วนอนุ<mark>ภาคเท่ากัน</mark>

5.2 โครงสร้างของโฟม

5.2.1 ผล<mark>ของปริมาณของอ</mark>นุภาค<mark>ต่</mark>อโครงสร้างโฟม

้จากตารางที่ 4.3 แสดงโครงสร้างมหภาคของโฟมอะลูมิเนียมที่ส่วนผสมต่างๆ จาก ้ โครงสร้างมหภา<mark>คของโฟมอะลูมิเนียมบริสุทธิ์ พบการรวมตัวของเนื้อโลหะ</mark>ที่บริเวณฐานของโฟม ซึ่งเกิดจากการเกิ<mark>ด Drainage ในระหว่างกระบวนการผลิต โฟม นอกจากนั้</mark>นภายในโครงสร้างโฟม ้อะลูมิเนียมบริสุทธิ์ยังพบโพรงอากาศขนาดใหญ่ที่เกิดจากการรวมตัวกันของโพรงอากาศขนาดเล็ก (Cell coalescence) และมีร่องรอยของการเกิดการพังตัวของผนังโพรงอากาศ (Cell wall rupture) ้สำหรับโฟมที่ผสมอนุ<mark>ภาคขี้เถ้าแก</mark>ลบ ในโ<mark>ครงสร้างของโฟมที่ผ</mark>สมอนุภาคขี้เถ้าแกลบทุกส่วนผสม ้มีโครงสร้างที่มีโ<mark>พ</mark>รงอ<mark>ากาศกระจายตัวอย่างสม่ำเสมอและมีจำนวนโ</mark>พรงอากาศมากกว่าเมื่อ ้เปรียบเทียบกับโครง<mark>สร้างขอ</mark>งโฟ<mark>มอะลูมิเนียมบริสุทธิ์ และไม่พบกา</mark>รรวมตัวกันของเนื้อโลหะที่ ้ฐานโฟม เมื่อวิเคราะห์รูปโครงสร้างโ<mark>ฟมด้วยโปรแกรม Image J แ</mark>ล้วพบว่า โฟมอะลูมิเนียมบริสุทธิ์ ้มีการกระจายของขนาด<mark>โพรงอากาศเป็นช่วงกว้าง ซึ่งดูได้จ</mark>ากค่าเบี่ยงเบนมาตรฐานของค่าขนาด ์ โพรงอากาศของโฟม (SD) ที่แส<mark>ดงไว้ในตารางที่ 4.4 ค่า SD</mark> ของโฟมที่ผสมอนุภาคขี้เถ้าแกลบทุก ้ส่วนผสมมีค่าน้อยกว่าค่า SD ของโฟมอะลูมิเนียมบริสุทธิ์ แสดงว่าเมื่อผสมอนุภาคขี้เถ้าแกลบ ในโฟมอะลูมิเนียมแล้ว ทำให้โครงสร้างโฟมมีความสม่ำเสมอมากขึ้น การเติมอนุภาคขี้เถ้าแกลบ ในโฟมอะลูมิเนียมมีผลต่อการเพิ่มเสลียรภาพของโครงสร้างโฟม โคยขณะที่โฟมเกิดการขยายตัว ภายในโครงสร้างโฟมจะเกิดการไหลของอะลมิเนียมหลอมเหลวไปที่บริเวณฐานโฟมเนื่องจากแรง ์ โน้มถ่วงของโลก ดังแสดงในรูปที่ 2.6 อนุภาคขี้เถ้าแกลบที่เติมลงไปจะคอยขัดขวางการไหลของ ้อะลูมิเนียมหลอมเหลว ทำให้การเสื่อมเสถียรภาพของโครงสร้างโฟมเกิดขึ้นช้าลง จึงทำให้ได้ ้โครงสร้างโฟมที่มีความสม่ำเสมอมากขึ้น

เมื่อพิจารณาโครงสร้างของโฟมที่ผสมอนุภาคขึ้เถ้าแกลบที่มีขนาดอนุภาคเท่ากัน พบว่าขนาคโพรงอากาศเฉลี่ยของโฟมมีแนวโน้มเพิ่มมากขึ้นเมื่อปริมาณของอนุภาคขึ้เถ้าแกลบ เพิ่มขึ้น แต่ขนาคโพรงอากาศเฉลี่ยยังคงเล็กกว่าขนาคโพรงอากาศของโฟมอะลูมิเนียมบริสุทธิ์ การ เพิ่มขึ้นของปริมาณอนุภาคขึ้เถ้าแกลบส่งผลให้อะลูมิเนียมหลอมเหลวมีความหนืดเพิ่มขึ้น โพรง อากาศแต่ละโพรงจึงสามารถกักเก็บแก๊ส H₂ ได้นานขึ้นก่อนเกิดการรวมตัวกันของโพรงอากาศ ส่งผลให้สุดท้ายแล้วได้โฟมที่มีโพรงอากาศที่มีขนาดเฉลี่ยใหญ่ขึ้น สำหรับโครงสร้างของโฟมที่ผสมอนุภาคซิลิกาไม่พบเนื้อโลหะรวมตัวกันที่บริเวณ ฐานโฟม และมีโพรงอากาศกระจายตัวอย่างสม่ำเสมอเช่นเดียวกับโครงสร้างของโฟมผสมอนุภาค ขี้เถ้าแกลบ นอกจากนั้นยังมีแนวโน้มของขนาคโพรงอากาศเฉลี่ยลคลงเมื่อปริมาณอนุภาคซิลิกา เพิ่มขึ้น โคยมีแนวโน้มเช่นเดียวกับโฟมที่ผสมอนุภาคขี้เถ้าแกลบ ซึ่งเป็นผลมาจากการเพิ่มขึ้นของ ความหนืดอะลูมิเนียมหลอมเหลวเมื่อปริมาณอนุภาคซิลิกาในอะลูมิเนียมหลอมเหลวเพิ่มขึ้น

โฟมที่ผสมอนุภาคซิลิกอนคาร์ไบค์ มีโครงสร้างโฟมที่มีความสม่ำเสมอและไม่พบเนื้อ โลหะรวมตัวกันที่บริเวณฐานโฟม ในโครงสร้างมีโพรงอากาศที่มีแนวโน้มของขนาดเล็กลงเมื่อ ปริมาณอนุภาคซิลิกอนคาร์ไบค์มากขึ้น ซึ่งแตกต่างจากโครงสร้างของโฟมที่ผสมอนุภาคขี้เถ้า แกลบทุกส่วนผสม ซึ่งน่าจะเป็นผลมาจากคุณสมบัติค้านการเปียกที่ดีของอนุภาคซิลิกอนคาร์ไบค์ ทำให้การเพิ่มขึ้นของความหนืดของอะลูมิเนียมหลอมเหลวเกิดขึ้นอย่างสม่ำเสมอ จึงทำให้มีการ รวมตัวกันของโพรงอากาศขนาดเล็กกลายเป็นโพรงอากาศขนาดใหญ่เพียงเล็กน้อย จึงพบว่าภายใน โครงสร้างโฟมมีจำนวนโพรงอากาศเพิ่มขึ้นเมื่อปริมาณของอนุภาคมากขึ้น

5.2.2 <mark>ผลของขนาดอ</mark>นุภาคต่อโครงสร้างโฟม

เมื่อพิจารณาโฟมที่ผสมอนุภาคขี้เถ้าแกลบทุกชนิด [RHA [HCI], RHA [H₂SO₄]) ที่ ปริมาณอนุภาคเท่ากัน พบว่าโครงสร้างโฟมมีแนวโน้มของขนาดโพรงอากาศเฉลี่ยเพิ่มขึ้นเมื่อ อนุภาคขี้เถ้าแกลบมีขนาดเล็กลง เนื่องจากที่อัตราส่วนผสมของอนุภาคขี้เถ้าแกลบที่เท่ากัน อนุภาค ขนาดเล็กจะมีจำนวนอนุภาคมากกว่าอนุภาคขนาดใหญ่ ซึ่งทำให้มีพื้นที่ผิวสัมผัสระหว่างอนุภาค ขี้เถ้าแกลบกับอะลูมิเนียมหลอมเหลวเพิ่มขึ้นดังได้กล่าวมาแล้ว จึงส่งผลให้ความหนืดของ อะลูมิเนียมหลอมเหลวเพิ่มขึ้นมาก ส่งผลให้โพรงอากาศเกิดการพังตัวของผนังโพรงอากาศได้ยาก ทำให้โฟมสามารถขยายตัวได้มากขึ้น

รูปที่ 4.21 แสดงให้เห็นบริเวณผิวของผนังโพรงอากาศของโฟม เมื่อมีการผสมอนุภาค ขี้เถ้าแกลบลงไปในโฟม ผนังโพรงอากาศจะมีลักษณะขรุขระมากขึ้นเมื่อเปรียบเทียบกับผนังโพรง อากาศของโฟมอะลูมิเนียมบริสุทธิ์ การที่ผิวของโพรงอากาศมีลักษณะขรุขระขึ้นเนื่องจากการ ปรากฎของอนุภาคขี้เถ้าแกลบบนผิว โดยมีบางส่วนของอนุภาคฝังอยู่ในเนื้อโลหะ แสดงให้เห็นถึง กวามสามารถในการเปียกที่ไม่ดีของอนุภาคขี้เถ้าแกลบ การยับยั้งการบางลงของผนังโพรงอากาศจะ มีมากขึ้นเมื่อขนาดของอนุภาคขี้เถ้าแกลบโตขึ้น สำหรับอนุภาคขี้เถ้าแกลบที่มีขนาดใหญ่จะส่งผล ให้เกิดการเปลี่ยนแปลงลักษณะของผนังโพรงอากาศและผนัง Plateau border ได้มากกว่าอนุภาค ขี้เถ้าแกลบที่มีขนาดเล็ก ซึ่งเห็นได้ชัดจากรูปโครงสร้างจุลภาคบริเวณภาคตัดขวางผนังโพรงอากาศ และบริเวณ Plateau border ในรูปที่ 4.19 และรูปที่ 4.20 ตามลำดับ จะเห็นว่าบริเวณที่มีอนุภาคขี้เถ้าแกลบ ขนาดเล็กฝังตัวอยู่ ดังนั้นการยับยั้งการบางลงของผนัง โพรงอากาศน่าจะเกิดขึ้นได้ดีเมื่อมีอนุภาค ขี้เถ้าแกลบขนาดใหญ่ฝังตัวอยู่ที่บริเวณผิวสัมผัสระหว่างโลหะกับแก๊ส ซึ่งอาจทำให้เกิดการรวมตัว กันของโพรงอากาศได้ยากขึ้น แต่เนื่องจากที่ปริมาณสัดส่วนการผสมอนุภาคของขี้เถ้าแกลบเท่ากัน ขี้เถ้าแกลบขนาดเล็กมีจำนวนอนุภาคมากกว่าขี้เถ้าแกลบขนาดใหญ่จึงทำให้เห็นความแตกต่างของ ขนาดโพรงอากาศในโกรงสร้างได้ไม่ชัดเจน

5.2.3 ผลของประเภทของอนุภาคต่อโครงสร้างโฟม

จากการศึกษาเปรียบเทียบ โครงสร้างของ โฟมที่ผสมอนุภาคขี้เถ้าแกลบทั้งสามชนิด (RHA [HCl], RHA[H₂SO₄], RHA [Power plant]) พบว่าที่ขนาดและปริมาณของอนุภาคขี้เถ้าแกลบ เท่ากัน โฟมจะมีโครงสร้างที่คล้ายกัน และ โครงสร้างที่ได้ก็มีความสม่ำเสมอกว่าโครงสร้างของ โฟมอะลูมิเนียมบริสุทธิ์ทั้งสิ้น

สำหรับโฟมที่ผสมอนุภาคซิลิกา พบว่ามีโครงสร้างโฟมที่มีขนาดโพรงอากาศเฉลี่ยเล็ก กว่าโฟมผสมอนุภาคขี้เถ้าแกลบ ที่ปริมาณของอนุภาคเท่ากัน การที่อนุภาคซิลิกามีขนาดเล็กกว่า อนุภาคขี้เถ้าแกลบมาก เมื่อเกิดการบางลงของผนังโพรงอากาศในขณะที่โฟมเกิดการขยายตัว ความ หนาของผนังโพรงอากาศก่อนเกิดการพังตัวของโฟมที่ผสมอนุภาคซิลิกาจะบางกว่าโฟมที่ผสม อนุภาคขี้เถ้าแกลบ โพรงอากาศขนาดเล็กจึงเกิดการรวมตัวกันได้ยากขึ้น ทำให้ได้โครงสร้างโฟมที่ มีขนาดโพรงอากาศเฉลี่ยเล็กกว่าโฟมที่ผสมอนุภาคขี้เถ้าแกลบ

สำหรับอนุภาคซิลิกอนการ์ไบด์นั้น เป็นอนุภาคที่มีคุณสมบัติด้านการเปียกใน อะลูมิเนียมหลอมเหลวที่ดีซึ่งแตกต่างจากอนุภาคขี้เถ้าแกลบและอนุภาคซิลิกา ทำให้มีความ แตกต่างกันในเรื่องความสามารถในการเพิ่มความหนืดของอะลูมิเนียมหลอมเหลว การเพิ่มความ หนืดของอะลูมิเนียมหลอมเหลวที่ดีนั้น จะต้องมีการกระจายตัวของอนุภากที่ดีด้วยจึงทำให้ อะลูมิเนียมหลอมเหลวมีความหนืดที่สม่ำเสมอ [24]

นอกจากนั้นความสามารถในการเปียกของอนุภาคแต่ละชนิดยังมีผลต่อการขับยั้งการ เกิดการเสื่อมเสถียรภาพของโครงสร้างโฟมไม่เหมือนกัน จากความสัมพันธ์ของสมการของยัง (Young's equation) สามารถนำมาใช้ในการพิจารณาคุณสมบัติการเปียกของอนุภาคได้โดยดูจากมุม สัมผัส (Contact angle) ระหว่างผิวของของแข็งกับของเหลว จากความสัมพันธ์

 $\gamma_s = \gamma_{s/l} + \gamma_s . \cos \theta$

จากทฤษฎีของ Liquid droplet entrainment [35] การลอยของอนุภาคในของเหลวจะ เกิดขึ้นได้เมื่อเป็นไปตามความสัมพันธ์

$$\gamma_l + \gamma_{s/l} \rangle \gamma_s \tag{2}$$

โดยที่

 $\gamma_s =$ แรงตึงผิวของของแข็ง (Surface tension of solid) $\gamma_l =$ แรงตึงผิวของของเหลว (Surface tension of liquid) $\gamma_{s/l} =$ แรงตึงผิวระหว่างของแข็งและของเหลว (Interfacial tension

between the solid and liquid)

เมื่อนำสมการที่ (1) แทนที่ในสมการที่ (2) จะได้

$$\gamma_l \rangle \gamma_s \cos\theta \quad (\theta \rangle 0)$$

จากความสัมพันธ์ในสมการ (3) แสดงว่า อนุภาคของแข็งจะสามารถเคลื่อนที่ไปอยู่ที่ บริเวณผิวสัมผัสระหว่างน้ำโลหะหลอมเหลวและแก๊สได้ อนุภาคนั้นต้องไม่แสดงคุณสมบัติการ เปียกโดยสมบูรณ์ในของเหลว จากรูปที่ 4.19 และรูปที่ 4.21 แสดงให้เห็นว่าอนุภาคขี้เถ้าแกลบส่วน ใหญ่เคลื่อนไปอยู่บริเวณขอบของผนังโพรงอากาศและขอบของ Plateau border จนอนุภาค ขี้เถ้าแกลบโผล่ออกจากเนื้ออะลูมิเนียมขึ้นมา อันเป็นผลมาจากคุณสมบัติด้านความสามารถในการ เปียกของอนุภาคขี้เถ้าแกลบในอะลูมิเนียมหลอมเหลวที่ไม่ดี อนุภาคขี้เถ้าแกลบจึงถูกผลักออกจาก เนื้อของอะลูมิเนียมไปในบริเวณผิวสัมผัสระหว่างโลหะกับแก๊ส [24] โดยจะเห็นได้ชัดเจนยิ่งขึ้น สำหรับขี้เถ้าแกลบที่มีอนุภาคขนาดใหญ่

5.3 คุณสมบัติทางกลของโฟม

5.3.1 ผลของปริมาณอนุภาคต่อสมบัติทางกลของโฟม

การทคสอบสมบัติทางกลของ โฟมอะลูมิเนียมนิยมทคสอบ โคยการทคสอบ กวามสามารถในการรับแรงอัค ดังที่ได้กล่าวไว้ข้างต้นว่าปัจจัยหลักที่ส่งผลโคยตรงต่อสมบัติทาง กลของโฟมคือ ความหนาแน่นของโฟม งานวิจัยนี้จึงมีการควบคุมค่าความหนาแน่นของโฟมที่ใช้ ทคสอบความสามารถในการรับแรงอัคให้อยู่ในช่วง 0.6±0.05 g/cm³ เนื่องจากในกระบวนการผลิต โฟมอะลูมิเนียมสามารถควบคุมค่าความหนาแน่นของโฟมที่ผลิตออกมาได้ยาก จึงทำให้มีจำนวน ชิ้นงานทคสอบในแต่ละส่วนผสมไม่มาก จากผลการทคสอบความสามารถในการรับแรงอัคของ โฟมอะลูมิเนียม ดังที่แสดงไว้ในรูปที่ 4.22 ถึงรูปที่ 4.24 พบว่าโฟมที่มีการเติมอนุภาคขี้เถ้าแกลบ ทุกส่วนผสมมีค่าความแข็งแรงอัคและค่าความสามารถในการดูคซับพลังงานมากกว่าโฟม อะลูมิเนียมบริสุทธิ์ จากตารางที่ 4.3 แสดงให้เห็นโครงสร้างของโฟมที่ผสมอนุภาคขี้เถ้าแกลบซึ่งมี

(3)

โพรงอากาศกระจายตัวอย่างความสม่ำเสมอมากกว่าโครงสร้างของโฟมอะลูมิเนียมบริสุทธิ์ทำให้ เมื่อโครงสร้างรับแรงจะมีการกระจายแรงไปบริเวณใกล้เคียงได้ดี โดยบริเวณที่มีการกระจายตัวของ โพรงอากาศไม่สม่ำเสมอจะเป็นจุดอ่อนของโครงสร้าง โดยโพรงอากาศที่มีขนาดใหญ่จะเกิดการ เปลี่ยนแปลงรูปร่างหรือเกิดความเสียหายก่อนโพรงอากาศขนาดเล็กกว่าที่อยู่บริเวณใกล้เคียง เนื่องจากมีการถ่ายเทแรงไปบริเวณใกล้เคียงได้ไม่ดี ดังนั้นโครงสร้างโฟมที่มีการกระจายตัวของ โพรงอากาศที่ดี โฟมก็จะมีความแข็งแรงมากขึ้น

สำหรับโฟมที่ผสมอนุภาคขี้เถ้าแกลบที่มีขนาดอนุภาคใกด้เคียงกัน แนวโน้มของค่า ความแข็งแรงอัดและค่าความสามารถในการดูคซับพลังงานมีค่าสูงขึ้น เมื่อปริมาณของอนุภาคขี้เถ้า แกลบเพิ่มขึ้น จากที่ได้กล่าวไว้ก่อนหน้านี้ว่าเมื่อเดิมอนุภาคเซรามิกปริมาณมากขึ้นทำให้โพรง อากาศภายในโครงสร้างโฟมมีขนาคโตขึ้น [35] สำหรับโฟมที่ผสมอนุภาคขี้เถ้าแกลบ เมื่อปริมาณ ของอนุภาคขี้เถ้าแกลบเพิ่มขึ้นโพรงอากาศจะมีขนาคใหญ่ขึ้นประกอบกับโฟมสามารถขยายตัวได้ น้อยลงนั้น ทำให้โฟมมีทั้งโพรงอากาศที่มีขนาคใหญ่และผนังโพรงอากาศที่หนาขึ้น จากตารางที่ 4.4 แสดงให้เห็นว่าโฟมมีจำนวนโพรงอากาศที่มีขนาคใหญ่และผนังโพรงอากาศที่หนาขึ้น จากตารางที่ 4.4 แสดงให้เห็นว่าโฟมมีจำนวนโพรงอากาศที่มีขนาคใหญ่และผนังโพรงอากาศที่หนาขึ้น จากตารางที่ น้อยลงนั้น ทำให้ไฟมมีข้านวนโพรงอากาศที่มีขนาคใหญ่และผนังโพรงอากาศที่หนาขึ้น จากตารางที่ 4.4 แสดงให้เห็นว่าโฟมมีจำนวนโพรงอากาศที่มีขนาคใหญ่และผนังโพรงอากาศที่หนาขึ้น จากตารางที่ 4.4 แสดงให้เห็นว่าโฟมมีจำนวนโพรงอากาศที่มีขนาคใหญ่ และผนังโพรงอากาศที่มีขนายในโครงสร้างลดลง โฟมจะมีความแข็งแรงเพิ่มขึ้น [23] เนื่องจากมีพื้นที่บริเวณที่เป็นเนื้อโลหะภายในผนังโพรงอากาศและบริเวณ Plateau border มีมากขึ้น จึงส่งผลให้ผนังโพรงอากาศและบริเวณ Plateau border สามารถรองรับแรงกระทำต่อพื้นที่ได้สูงขึ้น จึงทำให้โครงสร้างโดยรวมของโฟมมีความแข็งแรงเพิ่มขึ้น

สำหรับโฟมที่ผสมอนุภาคซิลิกาจะเห็นว่าโฟมมีการขยายตัวลดลงเมื่อปริมาณของ อนุภาคซิลิกาเพิ่มขึ้นและมีจำนวนโพรงอากาศกับค่า Area fraction ลดลงเมื่อปริมาณซิลิกาเพิ่มขึ้น แสดงว่าโฟมมีปริมาณรูพรุนภายในโครงสร้างน้อยลงเมื่อปริมาณซิลิกาเพิ่มขึ้น จึงส่งผลให้โฟม ผสมซิลิกามีความแข็งแรงเพิ่มขึ้นเมื่อผสมอนุภาคซิลิกามากขึ้น โฟมที่ผสมขี้เถ้าแกลบกับโฟมที่ ผสม ซิลิกามีแนวโน้มการเพิ่มขึ้นของความแข็งแรงเหมือนกันเมื่อผสมอนุภาคปริมาณมากขึ้น แต่ สัดส่วนการเพิ่มขึ้นของความแข็งแรงอัดและความสามารถในการดูดซับพลังงานของโฟมทั้งสอง ชนิดไม่เท่ากัน โดยที่โฟมผสมซิลิกามีสัดส่วนการเพิ่มขึ้นของความแข็งแรงน้อยกว่าโฟมที่ผสม ขี้เถ้าแกลบ ซึ่งจะเห็นได้ชัดเจนจากการลดลงของจำนวนโพรงอากาศและก่า Area fraction ที่แสดง ไว้ในตารางที่ 4.4 เป็นการแสดงถึงการลดลงของปริมาณรูพรูนภายในที่ต่างกัน ซึ่งเป็นผลมาจาก

การเพิ่มขึ้นของค่าความแข็งแรงอัคและค่าความสามารถในการดูคซับพลังงานของโฟม ที่ผสมซิลิกอนการ์ไบค์จะมีเหตุผลที่แตกต่างกับโฟมที่ผสมอนุภากขึ้เถ้าแกลบ ในขณะที่โฟมมีการ งยายตัวมากขึ้นเมื่อปริมาณอนุภาคเพิ่มขึ้น การมีความแข็งแรงเพิ่มขึ้นของโฟมผสมซิลิกอนคาร์ไบด์ เป็นผลมาจากภายในเนื้อพื้นอะลูมิเนียมมีการกระจายตัวของอนุภาคซิลิกอนคาร์ไบด์ที่ดีทั้งภายใน เนื้ออะลูมิเนียมและบริเวณผิวสัมผัสระหว่างโลหะกับแก๊ส เมื่อโครงสร้างได้รับแรง ความเค้นที่ เกิดขึ้นภายในเนื้อพื้นบริเวณผนังโพรงอากาศและบริเวณ Plateau border ส่วนใหญ่จะไปอยู่ใน บริเวณผิวสัมผัสระหว่างอนุภาคกับเนื้อพื้น ดังตัวอย่างแบบจำลองที่แสดงในรูปที่ 5.1 ด้วยสมบัติ ของอนุภาคซิลิกอนคาร์ไบด์ที่มีความสามารถในการเปียกที่ดีจึงทำให้ผิวสัมผัสระหว่างอนุภาค ซิลิกอนการ์ไบด์กับอะลูมิเนียมมีความแข็งแรงมากกว่าผิวสัมผัสระหว่างอนุภาคขี้เถ้าแกลบกับเนื้อ พื้นอะลูมิเนียม ประกอบกับอนุภาคซิลิกอนคาร์ไบด์ซึ่งเป็นอนุภาคที่มีความแข็งสูงกว่าอนุภาคขี้เถ้า แกลบ ส่งผลให้เนื้อพื้นอะลูมิเนียมที่มีอนุภาคซิลิกอนการ์ไบด์กระจายตัวอยู่สามารถรับความเค้นได้ มากกว่าโครงสร้างโดยรวมของโฟมที่ผสมซิลิกอนการ์ไบด์จึงสามารถรับแรงอัดได้มากขึ้นเมื่อ ปริมาณอนุภาคเพิ่มขึ้น

ร**ูปที่ 5.1** แบบจำลองการรับแรงของอนุภาคซิลิกอนคาร์ไบค์ในเนื้ออะลูมิเนียม [37]

5.3.2 ผลของขนาดอนุภาคต่อสมบัติทางกลของโฟม

จากการเปรียบเทียบโฟมผสมอนุภาคขี้เถ้าแกลบทุกส่วนผสมที่มีปริมาณอนุภาคเท่ากัน ค่าความแข็งแรงอัดและค่าความสามารถในการดูดซับพลังงานของโฟมมีแนวโน้มเพิ่มขึ้นเมื่อ อนุภาคขี้เถ้าแกลบมีขนาดเล็กลง เมื่อพิจารณาจากโครงสร้างจุลภาคของผนังโพรงอากาศและ บริเวณ Plateau border ของโฟมที่ผสมขี้เถ้าแกลบแล้วจะพบว่า ลักษณะการฝังตัวของอนุภาคขี้เถ้า แกลบภายในเนื้ออะลูมิเนียมมีบางส่วนของอนุภาคโผล่ออกจากเนื้ออะลูมิเนียม ดังแสดงในรูปที่ 4.19 และรูปที่ 4.20 เนื่องจากคุณสมบัติด้านความสามารถในการเปียกของขี้เถ้าแกลบในอะลูมิเนียม หลอมเหลวที่ไม่ดี อนุภาคขี้เถ้าแกลบส่วนใหญ่จึงเคลื่อนที่ไปอยู่ในบริเวณผิวสัมผัสระหว่างโลหะ กับแก๊ส เมื่ออะลูมิเนียมหลอมเหลวแข็งตัวจึงพบบางส่วนของอนุภาคขี้เถ้าแกลบโผล่ออกจากเนื้อ อะลูมิเนียม โดยจะเห็นได้ชัดเจนมากในโฟมที่ผสมขี้เถ้าแกลบที่มีอนุภาคขนาดใหญ่ การที่บริเวณ ผนังโพรงอากาศและบริเวณ Plateau border มีอนุภาคขี้เถ้าแกลบโผล่ออกจากเนื้อพื้นในลักษณะนี้ ทำให้ผนังโพรงอากาศและบริเวณ Plateau border มีอนุภาคขี้เถ้าแกลบโผล่ออกจากเนื้อพื้นในลักษณะนี้ ทำให้ผนังโพรงอากาศและบริเวณ Plateau border มีอนุภาคขี้เถ้าแกลบโผล่ออกจากเนื้อพื้นในลักษณะนี้ ทำให้ผนังโพรงอากาศและบริเวณ Plateau border ในบริเวณนั้นมีผิวที่ไม่สม่ำสมอประกอบกับ ความแข็งแรงของพันธะระหว่างเนื้อพื้นอะลูมิเนียมกับผิวอนุภาคขี้เถ้าแกลบที่ไม่ดี ทำให้บริเวณ ดังกล่าวสามารถรับแรงได้น้อของ ส่วนโฟมที่ผสมอนุภาคขี้เถ้าแกลบขนาดเล็กมิโครงสร้างที่มี อนุภาคจี้เถ้าแกลบขนาดใหญ่ ทำให้บริเวณผิวสัมผัสระหว่างโลหะกับแก๊ส และกระจายตัวได้ดีกว่า อนุภาคขี้เถ้าแกลบขนาดใหญ่ ทำให้บริเวณผนังโพรงอากาศและ Plateau border มีผิวที่สม่ำเสมอ มากกว่า ส่งผลต่อการกระจายแรงที่ดีในบริเวณผนังโพรงอากาศและ Plateau border เมื่อโดรงสร้าง โฟมได้รับแรง ดังนั้นโครงสร้างโดยรวมของโฟมที่ผสมอนุภาคขี้เถ้าแกลบขนาดเล็กจะมีความ แข็งแรงสูงกว่าโฟมที่ผสมอนุภาคขี้เถ้าแกลบขนาดใสกจะมีความ

5.3.3 ผล<mark>ข</mark>องประเภทอนุภาคต่อสมบัติทางกลของโฟม

โฟมที่ผสมอนุภาคขี้เถ้าแกลบที่ได้จากกระบวนการผลิตที่แตกต่างกัน (RHA [HCI], RHA [H₂SO₄], RHA [Power plant]) ที่ขนาดและปริมาณของอนุภาคใกล้เคียงกัน ความแข็งแรงของ โฟมจะมีความแตกต่างกัน ไม่มาก เนื่องจากโฟมทั้งสามชนิดต่างก็มีความสามารถในการขยายตัว และ โครงสร้างโฟมที่คล้ายคลึงกัน

สำหรับโฟมที่ผสมอนุภาคซิลิกานั้น โดยรวมแล้วโฟมผสมอนุภาคซิลิกาจะมีความ แข็งแรงสูงกว่าโฟมที่ผสมอนุภาคขี้เถ้าแกลบเล็กน้อย นอกเหนือจากโครงสร้างโฟมที่ใกล้เคียงกัน สาเหตุอื่นที่เป็นไปได้ ได้แก่ ลักษณะรูปร่างของอนุภาคซิลิกา ที่มีผิวเรียบ ทำให้การยึดติดกับเนื้อ อะลูมิเนียมนั้นดีกว่าในกรณีของขี้เถ้าแกลบ นอกจากนี้ความแข็งแรงของอนุภาคเองก็น่าจะมีผล เนื่องจากอนุภาคซิลิกามีความแข็งแรงสูงกว่าอนุภาคขี้เถ้าแกลบ โดยอาจเปรียบเทียบได้จากค่าความ หนาแน่นของอนุภาคแต่ละชนิด อนุภาคซิลิกามีความหนาแน่นประมาณ 2.20 g/cm³ และอนุภาค ขี้เถ้าแกลบมีความหนาแน่นประมาณ 1.938 g/cm³ [26] ความสามารถในการรับแรงของอนุภาคทั้ง สองแบบจึงแตกต่างกัน ดังนั้นเนื้อพื้นอะลูมิเนียมที่มีอนุภาคซิลิกากระจายตัวอยู่จะสามารถรับแรง ก่อนเกิดการพังตัวของโครงสร้างได้สูงกว่าโฟมที่ผสมอนุภาคขี้เถ้าแกลบ

ส่วนโฟมที่ผสมอนุภาคซิลิกอนคาร์ไบด์นั้นมีความแข็งแรงอัดและความสามารถใน การดูดซับพลังงานสูงกว่าโฟมที่ผสมอนุภาคขี้เถ้าแกลบทุกส่วนผสม เนื่องจากคุณสมบัติด้านการ เปียกในอะลูมิเนียมหลอมเหลวของซิลิกอนคาร์ไบค์ที่ดีนั้น ทำให้ความแข็งแรงระหว่างผิวสัมผัส ของอนุภาคซิลิกอนคาร์ไบค์กับเนื้อพื้นอะลูมิเนียมมีมากกว่าผิวสัมผัสระหว่างอนุภาคขี้เถ้าแกลบกับ เนื้อพื้นอะลูมิเนียม จึงส่งผลให้ความแข็งแรงของโครงสร้างโฟมทั้งสองชนิดแตกต่างกัน

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

สรุปผลการทดลองและข้อเสนอแนะ

งานวิจัยนี้ศึกษาผลของปริมาณ ขนาดและประเภทของอนุภาคขี้เถ้าแกลบต่อพฤติกรรม การขยายตัว โครงสร้างมหภาคและโครงสร้างจุลภาคของโฟมอะลูมิเนียม รวมทั้งพฤติกรรมการรับ แรงอัดของโฟมอะลูมิเนียม

6.1 สรุปผลการทดลอง

1. โฟมอะลูมิเนียมที่ผสมอนุภาคขี้เถ้าแกลบทุกส่วนผสมมีการขยายตัวสูงสุดน้อยกว่า
 โฟมอะลูมิเนียมบริสุทธิ์ และสามารถขยายตัวได้น้อยลงเมื่อปริมาณอนุภาคขี้เถ้าแกลบเพิ่มขึ้นจาก 1
 ถึง 3 wt.% ที่ขนาดอนุภาคขี้เถ้าแกลบเท่ากัน

 โฟมอะลูมิเนียมที่ผสมอนุภาคขี้เถ้าแกลบปริมาณเท่ากัน จะขยายตัวได้น้อยลงเมื่อ ผสมขี้เถ้าแกลบที่มีขนาดอนุภาคเล็กลง

 3. โครงสร้างของโฟมอะสูมิเนียมที่ผสมอนุภาคขี้เถ้าแกลบทุกส่วนผสม มีการกระจาย ตัวของโพรงอากาศที่สม่ำเสมอกว่าโครงสร้างของโฟมอะลูมิเนียมบริสุทธิ์

4. สำหรับโฟมที่ผสมอนุภาคขี้เถ้าแกลบขนาคใกล้เคียงกัน โฟมจะมีโพรงอากาศขนาค ใหญ่ขึ้น เมื่อปริมาณของอนุภาคขี้เถ้าแกลบเพิ่มขึ้นจาก 1 ถึง 3 wt.%

เมื่อปริมาณของอนุภาคขี้เถ้าแกลบเท่ากัน โฟมที่ผสมอนุภาคขี้เถ้าแกลบจะมีขนาด
 โพรงอากาศเฉลี่ยเพิ่มขึ้น เมื่อขนาดของอนุภาคขี้เถ้าแกลบใหญ่ขึ้น

 โฟมอะลูมิเนียมที่ผสมอนุภาคขี้เถ้าแกลบทุกส่วนผสมมีก่าความแข็งแรงอัดและ ความสามารถในการดูคซับพลังงานสูงกว่า โฟมอะลูมิเนียมบริสุทธิ์ และ โฟมจะมีความแข็งแรงมาก ขึ้นเมื่อปริมาณของอนุภาคเพิ่มขึ้น

7. ที่ปริมาณอนุภาคขี้เถ้าแกลบเท่ากัน โฟมจะมีความแข็งแรงอัดและค่าการดูดซับ พลังงานเพิ่มขึ้นเมื่ออนุภาคขี้เถ้าแกลบมีขนาดเล็กลง

8. ที่ขนาดและปริมาณของอนุภาคเท่ากัน การใช้อนุภาคขึ้เถ้าแกลบที่ได้จาก กระบวนการผลิตที่แตกต่างกัน ไม่ส่งผลที่มีนัยสำคัญต่อการเพิ่มเสถียรภาพของโฟมอะลูมิเนียม

บทที่ 6

6.2 ข้อเสนอแนะ

งานวิจัยนี้ได้ศึกษาการผลิตโฟมอะลูมิเนียมที่ผสมขึ้เถ้าแกลบ โดยมีการลดขนาดของ ขึ้เถ้าแกลบด้วยการบดขึ้เถ้าแกลบด้วยกรกบดสาร ทำให้ได้ขี้เถ้าแกลบที่มีขนาดเล็กในระดับหนึ่ง เมื่อทำการผลิตโฟมอะลูมิเนียมผสมขึ้เถ้าแกลบด้วยกรรมวิธีโลหะผงแล้วพบว่า ได้รับผลกระทบ จากรูปร่างของขึ้เถ้าแกลบที่แตกต่างไปจากอนุภาคเซรามิกชนิดอื่นที่นิยมใช้กันทั่วไปในการเพิ่ม เสถียรภาพของโฟม จึงทำให้มีกวามสามารถในการอัดตัวกับผงอะลูมิเนียมไม่ดี การลดขนาดของ ขึ้เถ้าแกลบให้มีขนาดเล็กมากกว่าขนาดที่ใช้ในงานวิจัยนี้ อาจช่วยลดเพิ่มกวามสามารถในการอัดตัว กับผงอะลูมิเนียมของอนุภาคขี้เถ้าแกลบให้ดีขึ้นได้

สำหรับการวิเคราะห์โครงสร้างโฟมด้วยโปรแกรม Image J มีข้อจำกัดอยู่ที่กุณภาพ ของรูปโครงสร้างโฟมที่ได้มาจากการสแกน ถ้ารูปมีความสว่างไม่เหมาะสมก็ไม่สามารถนำมา วิเคราะห์ด้วยโปรแกรมได้ ทำให้ต้องมีการปรับแต่งรูปภาพให้ชัดเจนยิ่งขึ้นทีละรูปก่อนนำไป วิเคราะห์ด้วยโปรแกรม ซึ่งทำให้ต้องใช้เวลาในการวิเคราะห์นาน ดังนั้นการเตรียมโฟมให้ โครงสร้างที่ชัดเจนและการสแกนโครงสร้างโฟมด้วยเครื่องสแกนที่มีคุณภาพสูงจะทำให้ได้รูป โครงสร้างที่มีคุณภาพสูงและสามารถนำรูปมาวิเคราะห์ด้วยโปรแกรมได้ทันทีโดยที่ไม่ต้องมีการ แต่งรูปก่อนจะสามารถลดเวลาการวิเคราะห์ได้มากขึ้น

การผลิต โฟมอะลูมิเนียมด้วยกรรมวิธีโลหะผงนั้น มีข้อจำกัดอยู่ในด้านการผลิตซ้ำ (Reproducibility) ของโฟมอะลูมิเนียมที่ทำได้ก่อนข้างยาก ในการศึกษากุณสมบัติต่างๆของโฟมจึง แสดงแนวโน้มที่ไม่ชัดเจน ถ้าสามารถกวบกุมการผลิตโฟมให้ได้โฟมที่มีกุณภาพใกล้เกียงกันได้ จะ ทำให้การศึกษาสมบัติต่างๆของโฟมมีกวามชัดเจนยิ่งขึ้น

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รายการอ้างอิง

- M.F.Ashby, A.Evans, N.A.Fleck, L.J.Gibson, J.W.Hutchinson and H.N.G.Wadley. <u>Metal Foams A Design Guide</u>. USA : Butterworth-Heinemann. 2000.
- S.Asavavisithchai. Production of Aluminium Foam by Powder Metallurgical Route. Nottingham. (2001). (Unpublished Manuscript).
- [3] J.Banhart. Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science 46 (2001) : 559-632.
- [4] F.Simansik, W.Rajner and R.Laag. Alulight-aluminium foam for lightweight construction. <u>SAE Technical Paper</u>. (2000-01): 337
- [5] L.Gibson and M.Ashby. <u>Cellular Solids, Structure and Properties</u>. 2nd edition. Cambridge University Press. 1997.
- [6] F.Baumgartner, I.Duarte and J.Banhart. Advanced Engineering Materials 2. (2000) : 168.
- [7] J.Baumeister. <u>German Patent</u> DE. 40. 18. (1990) : 360.
- [8] J.Banhart. <u>Europhys. News</u>. 30. (1999) : 17.
- [9] A.R.Kennedy and S.Asavavisithchai. Foaming of compacted Al-TiH₂ powder mixtures. <u>Materials Science</u> 396-402 (2002) : 251-258.
- [10] A.R.Kennedy. The effect of compaction on expansion and gas release in $Al-TiH_2$ powder compacts. <u>Materials Science</u> 416 (2003) : 299-304.
- [11] I.Duarte and J.Banhart. A study of aluminium foam formation-kinetics and Microstructure. Acta Materialia 48 (2000) : 2349-2362.
- [12] N.Babcsan, D.Leitlmeier and H.P.Degischer. Foamability of particle reinforced aluminium melt. <u>Mat.-wiss. U. Wekstofftech</u> 34 (2003) : 22-29.
- [13] F.Von Zeppelin, M.Hirscher, H.Stanzick and J.Banhart. Desorption of hydrogen from blowing agents used for foaming metals. <u>Composites Science and Technology</u> 63 (2003) : 2293-2300.
- [14] A.R.Kennedy. The effect of TiH_2 heat treatment on gas release and foaming in Al- TiH_2 preforms. <u>Scripta Materialia</u> 47 (2002) : 763-767.
- [15] S.W.Youn and C.G.Kang. The effect of process parameters on cell morphology in cellular aluminium alloy frabicated by powder compression and the induction heating process. <u>Professional Engineering Publishing 217 (2003) : 201-211.</u>

- [16] V.Gergely, H.P.Degischer and T.W.Clyne. Recycling of MMCs and production of metallic foams. <u>ComprehensivemComposite Materials</u> 3 (2000) : 1-24.
- [17] Th.Wubben, H.Stanzick, J.Banhart and S.Odenbach. Stability of metallic foams studied under microgravity. <u>Journal of Physics: Condensed Matter</u> 15 (2003) : 427-433.
- [18] http://en.wikipedia.org/wiki/Metal_foam
- [19] F.Simancik, K.Behulova, and L.Bors. Effect of ambient atmosphere on metal foam expansion. Proceeding of the 2nd International Conference on Cellular Metal and <u>Metal Foaming Technology</u> MIT-Verlag. Bremen. (2001) : 89-92.
- [20] K.R.Van Horn. Properties, Physical Metallurgy and Phase Diagrams Aluminium. American Society for Metals. 1 (1967).
- [21] B. Huko and L.Faria. Material model of metallic cellular solids. <u>Computers&Structures</u> 62 Issue 6 (1997): 1049-1057.
- [22] A.E.Makaki and T.W.Clyne. The effect of cell wall microstructure on the deformation and fracture of aluminium melt. Acta Materialia 49 Issue 9 (2001) : 1677-1686.
- [23] W.Bin, H.Deping, and S.Guangji. Compressive properties and energy absorption of foamed Al alloy. <u>Processing of the 2nd International Conference on Cellular Metals</u> and <u>Metal Foaming Technology MIT-Verlag. Bremen.</u> (2001) : 351-354.
- [24] S.W.Ip, Y.Wang and J.M.Toguri. Aluminium foam stabilization by solid particles. <u>Canadian Metallurgical Quarterly</u> 38 (1999) : 81-92.
- [25] R.V.Krishnarao, J.Subrahmanyam, T.Jagadish Kumar. Studies on the formation of black particles in rice husk silica ash. <u>Journal of the European Ceramic Society</u> 21 (2001) : 99-104.
- [26] N.Yalcin, V.Sevinc. Studies on Silica Obtained from Rice Husk. <u>Ceramic International</u> 27 (2001): 219-224.
- [27] T.H.Liou. Preparation and characterization of nano-structured silica from rice husk. <u>Material Science and Engineering A</u> 364 Issue 1-2 (2004) : 313-323.
- [28] C.Real, M.D.Alcala and J.M.Criado. Preparation of Silica from Rice Husks. J.Am.Ceram.Soc 79 Issue 8 (1990) : 2012-2016.
- [29] Y.Shinohara and N.Kohyama. Quantitative Analysis of Tridymite and Cristobalite Crystallized in Rice Husk Ash by Heating. <u>Industrial Health</u> 42 No.2 (2004) : 277-285.

- [30] L.J.Gibson. Mechanical Behavor of Metallic Foams. <u>Annu. Rev. Mater. Sci</u> 30 (2000) : 191-227.
- [31] F.Simancik, A.P.Philip, A.Parrish and H.N.G.Wadley. Porous and Cellular Materials for Structural Applications. <u>MRS</u>. San Francisco. CA. (1998) : 205-210.
- [32] F.Han, Z.Zhu and J.Gao. Compressive Deformation and Energy Absorbing Characteristic of Foamed Aluminium. <u>Metallurgical and Materials Transactions A</u> 29A 198-2497.
- [33] E.Andrews, W.Sanders and L.J.Gibson. Compressive and tensile behavior of aluminum foams. <u>Materials Science and Engineering A</u> 270 (1999) : 113–124.
- [34] A.R.Kennedy and S.Asavavisithchai. Effects of TiB₂ particle addition on the expansion, structure and mechanical properties of PM Al foams. <u>Scripta Materialia</u> 50 (2004) : 115-119.
- [35] W.Deqing and S.Ziyuan. Effect of ceramic particles on cell size and wall thickness of aluminum foam. <u>Materials Science and Engineering A</u> 361 (2003) : 45-49.
- [36] S.Esmaeelzadeh, A.Simchi and D.Lehmhus. Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam. <u>Materials Science and Engineering A</u> 424 (2006) 290-299.
- [37] Z.M.Boari, W.A.Monteiro and C.A.Jesus Miranda. Mathematical model predicts the elastic behavior of composite materials. <u>Materials Research</u> 8 (2005) : 99-103.
- [38] S.Elbir, S.Yilmaz, A.K.Toksoy, M.Guden and I.W.Hall. SiC-paticulate aluminum composite foams produced from powder compacts: foaming and compression behavior. <u>J Master Sci</u> 41 (2006) : 4075-4084.
- [39] P.Shen, H.Fujii, T.Matsumoto and K.Nogi. Reactive wetting of SiO₂ substrates by molten
 Al. <u>Metallurgical and Materials Transactions A</u>. 35A (2004) : 583-588.
- [40] S.Chandrasekhar, K.G.Satyanarayana, P.N.Pramada and P.Raghavan. Processing, properties and applications of reactive silica from rice husk. <u>Materials science</u> 38 (2003): 3159-3168.
- [41] V.Laurent, D. Chatain and N.Eustathopoulos. Wettability of SiO2 and oxidized SiC by aluminium. <u>Material science and Engineering</u> A135 (1991) : 89-94.

ภาคผนวก ก

การวิเคราะห์รูปโครงสร้างด้วยโปรแกรม Image J

รูปที่ 1ก แสดงผลวิเคราะห์รูปโครงสร้างโฟมอะลูมิเนียมด้วยโปรแกรม Image J

File	Edit	Ima	age	Pro	oces	s	Ana	lyze	Plu	ugine	5 1	Ninc	low	He	lp		
		\heartsuit	/	7	~	4	-ф-	*	А		9	EM)	N		0	a	\$
Straig	pht line	sele	ectic	ons			5.5 V.9	98. X			NC 88	58. X			2	2	s 7.5

รูปที่ 2ก แสดงลักษณะของหน้าต่างโปรแกรม Image J 1.36b

การวิเคราะห์รูปโครงสร้างโฟมอะลูมิเนียมในงานวิจัยนี้ จะทำการวิเคราะห์ด้วย โปรแกรม Image J เวอร์ชัน 1.36b โดยรูปที่จะทำการวิเคราะห์ต้องใช้รูปที่มีนามสกุล .BMP ดังรูปที่ 1ก(ก) การวิเคราะห์รูปมีขั้นตอนดังนี้

- เปิดโปรแกรม Image J 1.36b ขึ้นมา โดยโปรแกรมจะแสดงหน้าต่างดังรูปที่ 2ก
 - ทำการตั้งก่าสเกลในโปรแกรมให้ตรงกับสเกลในรูปเพื่อใช้ในการวิเคราะห์รูป โดย
 - เข้าไปที่ Analyze > Set scale
 - ทำการ Crop รูปเฉพาะบริเวณที่ต้องการทำการวิเคราะห์
 - เปลี่ยนชนิดของรูปจาก RGB เป็น 8-bit
 - ปรับความชัดของรูปภาพโดยใช้คำสั่ง Image > Adjust > Threshold

- ทำการวิเคราะห์รูปด้วยคำสั่ง Analyze > Analyze particle โดยกำหนดขนาดพื้นที่ที่ ต้องการวิเคราะห์ให้อยู่ในช่วง 0.0001 – Infinity cm² ผลการวิเคราะห์จะแสดง ออกเป็นค่าพื้นที่โดยแสดงขอบเขตของพื้นที่ที่วิเคราะห์เป็นเส้น ซึ่งแสดงทั้งพื้นที่ โครงสร้างโดยรวม (รูปที่ 1ก(ง)) และพื้นที่โพรงอากาศแต่ละโพรงอากาศ (รูปที่ 1ก (ก))
- ค่าพื้นที่โพรงอากาศแต่ละ โพรงสามารถคำนวณหาค่าเส้นผ่านศูนย์กลางเทียบเท่า ของโพรงอากาศได้ และถูกแสดงไว้ในรูปกราฟแท่งความสัมพันธ์ระหว่างขนาดเส้น ผ่านศูนย์กลางและจำนวนของโพรงอากาศ ดังแสดงในตารางที่ 1ก
- ค่าพื้นที่โพรงอากาศและพื้นที่โดยรวมของโครงสร้างโฟมสามารถคำนวนหา สัคส่วนพื้นที่โพรงอากาศกับเนื้อพื้นได้ ดังแสดงในตารางที่ 1ก

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ตารางที่ 1ก แสดงผลการวัดขนาดเส้นผ่านศูนย์กลางของโพรงอากาศและสัดส่วนพื้นที่ระหว่าง โพรงอากาศกับเนื้อพื้นของโฟมอะลูมิเนียมที่มีส่วนผสมต่างๆ

ตารางที่ 1ก (ต่อ) แสดงผลการ วัดขนาดเส้นผ่านศูนย์กลางของ โพรงอากาศและสัดส่วนพื้นที่ ระหว่าง โพรงอากาศกับเนื้อพื้นของ โฟมอะลูมิเนียมที่มีส่วนผสมต่างๆ

ตารางที่ 1ก (ต่อ) แสดงผลการวัดขนาดเส้นผ่านศูนย์กลางของโพรงอากาศและสัดส่วนพื้นที่ ระหว่างโพรงอากาศกับเนื้อพื้นของโฟมอะลูมิเนียมที่มีส่วนผสมต่างๆ

ระหว่างโพรงอากาศกับเนื้อพื้นของโฟมอะลูมิเนียมที่มีส่วนผสมต่างๆ

ตารางที่ 1ก (ต่อ) แสดงผลการวัดขนาดเส้นผ่านศูนย์กลางของโพรงอากาศและสัดส่วนพื้นที่ ระหว่างโพรงอากาศกับเนื้อพื้นของโฟมอะลูมิเนียมที่มีส่วนผสมต่างๆ

ระหว่างโพรงอากาศกับเนื้อพื้นของโฟมอะลูมิเนียมที่มีส่วนผสมต่างๆ

<mark>ภาคผนวก ข</mark>

<mark>ผล</mark>การวิเคราะห์การกระจายตัวและขนาดของอนุภาค

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Exemps 2540211

ศูนย์เครื่องมือวิจัตวิทธาศาสตร์และเทคโนโลซี จุฬาลงกรณ์มหาวิทยาลัย อาคาหลาปัน 2 จุฬาลงกรณ์ ขอย 62 อ.พญาไท ปนุมรัน กรุงเทพฯ 16300 โทร 2188828-32, 2188101 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Fax: 2540211

Sample ID: Aluminium powder Sample Details Measured: 3 May 2007 15 Sample Fle: CHULA4 Record Number: 28 Analysed: 3 May 2007 15 Sample Notes: Wet Analysis System Dispersing Medium : Water Record Number: 28 Measured: 3 May 2007 15 Sample Notes: Wet Analysis System Dispersing Medium : Water Record Number: 28 Measured: 3 May 2007 15 Range Lens: 300RF mm Dispersing Medium : Water System Details Sampler: MS17 Presentation: 300D Particle R.L = (1.6295, 1.0000); Dispersiont R L = 1.3300] . Modifications: Nore Polydisperse Presentation: Nore .	30PM 30PM
System Details Range Lens: 300RF mm Beam Length: 2.40 mm Sampler: MS17 Presentation: 3CUD [Particle R.I. = (1.5295, 1.0000): Dispersant R.I. = 1.3200] . Analysis Model: Polydisperse Modifications: None . . .	
Range Lens 300RF mm Beam Length: 2.40 mm Sampler: MS17 Presentation: 3OUD [Particle R.I. = (1.5295, 1.0000); Dispersant R.I. = 1.3300] Analysis Model: Polydisperse Modifications: None	
	Residual: 0.482 %
Result Statistics	
Distribution Type: Volume Concentration = 0.0081 % Vol Density = 1.000 g / cub. cm Specific Mean Diameters: D (v, 0.1) = 45.42 um D (v, 0.5) = 101.54 um D (v, 0.9) = 10 D [4, 3] = 108.36 um D [3, 2] = 2.42 um Span = 1.366E+00 Uniformity = 4.3	S.A. = 2,4808 sq. m / ; 4,16 um 80E-01
Size Low (um) In % Size High (um) Under% Size_Low (um) In % Size_High (i	m) Under%
0.05 1.04 0.06 1.03 6.63 0.23 7.72	3.64
0.06 0.76 0.67 1.79 7.72 0.30 9.00	3.94
0.07 0.37 0.09 2.16 9.00 0.39 10.48 0.41 12.21	4.71
0.09 0.08 0.11 2.41 12.21 0.41 14.22	5.13
0.11 0.05 0.13 2.45 14.22 0.36 16.57	5.49
0.13 0.03 0.15 2.49 16.57 0.28 19.31	5.77
0.15 0.00 0.17 2.49 19.31 0.22 22.49	5.99
0.17 0.00 0.20 2.49 22.49 0.24 26.20	6.23
0.20 0.00 0.23 2.49 26.20 0.42 30.53	7.42
0.27 0.00 0.11 2.49 35.56 1.35 41.43	8.77
0.31 0.00 0.38 2.49 41.43 2.27 40.27	11.04
0.36 0.00 0.42 2.49 48.27 3.68 56.23	14.72
0.42 0.00 0.49 2.49 56.23 5.73 65.51	20.45
0.49 0.00 0.55 2.49 65.51 8.26 76.32	28.71
0.58 0.02 0.67 2.51 76.32 10.67 88.91	39.38
0.57 0.02 0.78 2.53 0.91 12.29 103.58	51.67
C/8 0.03 0.91 2.57 10.56 12.59 12.05	75.91
106 0.05 124 2.65 140.58 8.91 153.77	84.81
124 0.05 144 2.70 153.77 6.50 190.80	91.31
144 0.05 1.68 2.75 190.80 4.40 222.28	95.72
1.68 0.05 1.95 2.00 222.28 2.71 258.95	98.43
1.95 0.05 2.28 2.85 258.95 1.43 301.88	99.85
2.28 0.05 2.65 2.90 301.68 0.15 351.46	100.00
2.85 0.05 3.09 2.94 351.46 0.00 409.45	100.00
3 UV 0.05 3.00 2.99 409.45 0.00 477.01 3 00 0.06 4.19 3.90 477.01 0.00 477.01	100.00
419 0.08 4.88 3.13 555.71 0.00 447.41	100.00
4 88 0.12 5.69 3.25 647.41 0.00 754.23	100.00
5.69 0.17 6.63 3.42 754.23 0.00 878.67	100.00
20 Volume (%)	100
	90
	80
	70
	60
10	50
หาลงกรอบแห่งาวทหา	
	30

p. 13 03 May 07 15:31

10

0

1000.0

100.0

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892455 Fax:+[44] (0)1684-892789

0.1

0.01

Particle Diameter (µm.) Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

10.0

1.0

<u>รูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคในโลยี</u>	จุฬาลงกรณ์มหาวิทยา	កើច	Terrane Autom
อาหารของบัน 2 - จุฬาลงกรณ์ ขอย 62 - อ.พญาไห	a maleran malanaka 12330	WW 2165029-32, 2168191	PRIAM LA TOWARD
Scientific and Technological Research	Equipment Centre	Chulalongkorn University	
Building 2-3 Chula Soi 62 Phaya-Thai Rd.	Phatumwan Bangkok	10330 Tel. 2188029-32, 2188101	Fax: 254021

			Anal	ysis Result				
Sample ID: Aluminiu Sample File: CHULA Sample Path: C:ISIZ Sample Notes: Wet, Disp Utra	m powder (4 ERSIDATA) Analysis Syster ersing Medium sonic : no	n Water	Sar un Number: ecord Numbe	nple Details 29 r. 28	Measur Analyse Result 3	ed: 3 May 2007 15:30PM d: 3 May 2007 15:30PM Source: Analysed		
Range Lens: 300RF mm Presentation: 30JD Analysis Model: Polydisperse Modifications: None		Beam Length: 2.40 m (Particle R.I = (1.6261	System Details Sampler: MS17 Obsc [Particle R.1 = (1.5295, 1.0000); Dispersant R.1 = 1.3300] . Res					
			Pee	ult Statistics				
Distribution Type: Volume Mean Diameters: D [4, 3] = 108.36 um		Concentration = 0.00 D (v, 0.1) = 45.42 un D [3, 2] = 2.42 un	Res Concentration = 0.0081 %/Vol D (y, 0.1) = 45.42 um D (3, 2) = 2.42 um), cm	Specific S.A. = D (v, 0.9) = 184.16 u Uniformity = 4.200E-0	2.4808 sq. m / g m 1	
Size Low (um)	10.95	Size High (um)	Linde 46	Site Low (um)	10.%	Size High (um)	Under%	
0.05 0.07 0.08 0.09 0.11	1,04 0,76 0.37 0,17 0,08 0,05	0.08 0.07 0.08 0.09 0.11 0.13	1.03 1.79 2.16 2.33 2.41 2.45	6.63 7.72 9.00 10.48 12.21 14.22	0.23 0.30 0.41 0.41 0.35	9.00 10.48 12.21 14.22 18.57	3.04 3.94 4.31 4.71 5.13 5.49	
0.13 0.15 0.17 0.20 0.23	0.03 0.00 0.00 0.00	0.15 0.17 0.20 0.23 0.27	2.49 2.49 2.49 2.49 2.49 2.49	16.57 19.31 22.49 26.20 30.53	0.28 0.22 0.24 0.42 0.77	19.31 22.49 26.20 30.53 35.66	5.77 5.00 6.23 6.65 7.42	
0.27 0.31 0.36 0.42 0.40	0.00 0.00 0.00 0.00	0.31 0.36 0.42 0.49 0.58	2.49 2.49 2.49 2.49 2.49 2.49	36.56 41.43 48.27 56.23 65.51	1.35 2.27 3.68 5.73 8.26	41,43 48,27 56,23 65,51 76,32	0.77 11.04 14.72 20.45 28.71	
0.58 0.67 0.78 0.91 1.06	0.02 0.03 0.04 0.05	0.57 0.78 0.91 1.06 1.24	2 53 2 57 2 61 2 65	76.32 88.01 103.58 129.67 149.58	12.29 12.95 11.28 8.91	103.58 120.67 140.58 163.77	51.55 51.67 64.62 75.91 84.81	
1.24 1.44 1.68 1.95 2.28	0.05 0.05 0.05 0.05	1,44 1,68 1,95 2,28 2,65	2.70 2.75 2.80 2.85 2.90	163,77 190,80 222,28 258,95 301,68	6.50 4.40 2.71 1.43 0.15	190.80 222.28 258.95 301.68 351.46	91.31 95.72 98.43 99.85 100.00	
2.65 3.09 3.60 4.19 4.88	0.05 0.05 0.06 0.08 0.12	3.09 3.60 4.19 4.88 5.69	2.94 2.99 3.05 3.13 3.25	351.45 409.45 477.01 555.71 647.41	0.00 0.00 0.00 0.00	409.45 477.01 565.71 647.41 754.23	100.00 100.00 100.00 100.00 100.00	
5.69	0.17	6.63	3.42	754.23	0.00	878.67	100.00	

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

p. 13 03 May 07 15:31

ศูนย์เครื่องมีขวิจัยวิทยาสาสตร์และเทคโนโลยี ๆสาลงกระนัมหาวิทยาดัย อาคารสถาบัน ๆสาลกระรัฐยาณ จะครุกโต ปลุ่มรับ กรุณทศา 10500 โทร 2100029-32 2108101 (การกระระระระ Scientific and Technological Research Equipment Centre Chulatomphoin University Building 2-3 Chula Soi 62 Phays Thei Rit. Phatamwan Bangkok 10330 Tel 21885029-32 2188101 (ก.ศ. 2540211)

Sample ID: Aluminium por Sample File: CHULA4 Sample Path: CHSZERSH Sample Notes: Wet Analy Dispensing Ultrasonic	eder DATA) Sis System Medium : Wate	R	Samp sun Number 3 accord Number	ple Detaits 4 33	Measur Analyse Result S	id: 3 May 2007 15:31PM d: 3 May 2007 15:31PM ource: Analysed		
Range Lens: 300RF mm Presentation: 30JD Analysis Model: Polydispe Modifications: None	Be IP	eam Length: 2.40 m article R.L. = (1.525	Systi in 5, 1.0000); 0	em Details Sar Sapersant R.L. = 1.3300)	npler: NIS17	Obscuration: 10.3 % Residual: 0.474 % Specific 5.A = 2.0690 sq m /g D (v, 0.9) = 183.83 um Undermity = 4.2415-01		
Distribution Type: Volume Mean Diameters D [4, 3] = 108.61 um	ű o o	oncentration = 0.00 (x, 0.1) = 48.34 ur (3, 2) = 2.90 um	Resul 195 %Vol 19	t Statistics Density = 1.000 g / cut D (v. 0.5) = 101.04 um Span = 1.353E+00	a. cm			
State Low (Limit) 0.05 0.06 0.07 0.08 0.09 0.11 0.15 0.15 0.17 0.20 0.27 0.31 0.36 0.42 0.42 0.49 0.58 0.67 0.78 0.91 1.06 1.24 1.44 1.68 1.55 2.25 2.56 3.09 3.60 4.19 4.58 5.69	In % 0.87 0.87 0.82 0.62 0.28 0.62 0.05 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.02	Size High (um) 0.00 0.00 0.00 0.00 0.11 0.13 0.15 0.17 0.20 0.23 0.27 0.31 0.36 0.42 0.49 0.58 0.67 0.78 0.91 1.06 1.24 1.44 1.68 1.95 2.28 2.85 3.09 3.60 4.19 4.88 5.69 4.59 5.63	Under% 0.87 1.47 1.88 1.95 1.96 1.96 1.96 1.96 2.07 2.07 2.17 2.15 2.17 2.15 2.27 2.20 2.24 2.27 2.30 2.34 2.39 2.43	Size Low (um) 6.63 7.72 9.00 10.46 12.21 14.22 16.21 14.22 16.21 14.22 16.21 14.22 16.3 31.22 9.31 22.49 20.53 35.56 41.43 48.27 56.23 65.51 70.32 88.91 103.38 120.67 140.58 163.77 160.50 222.28 224.95 301.68 351.46 405.45 477.01 555.71 647.41 75.423	In % 0 23 0 23 0 23 0 23 0 24 0 41 0 42 0 38 0 29 0 25 0 42 0 76 1 33 2 24 3 64 5 71 8 30 10 79 12 48 14 12 11 35 8 86 6 42 4 33 2 68 1 43 0 20 0 00 0 000 0 000 0000 0000 0000 000000	Size_High (um) 7.72 0.00 10.48 12.21 14.22 16.57 19.31 22.48 26.20 30.55 35.56 41.43 48.27 50.23 45.51 76.52 88.91 103.58 120.67 140.58 153.56 41.43 48.27 50.23 45.51 76.52 88.91 103.58 120.67 140.58 153.56 41.43 103.58 120.67 140.58 153.56 41.43 103.58 120.67 140.58 153.57 100.80 222.28 255.57 100.80 222.88 255.71 647.41 754.23 678.67	Underfis 3.32 3.51 3.97 4.28 4.80 5.18 5.47 5.70 5.95 6.37 7.13 8.46 10.71 14.35 20.08 28.36 28.36 28.36 28.36 31.15 51.61 64.73 76.08 84.95 81.25 85.70 98.38 95.81 100.00 100.00 100.00 100.00 100.00 100.00	
20 10 10			JN ,	รัพย			100 90 80 70 60 50	
หาลง	าก	รณ	มา	หาว	1) 2	มาล	20 30 20 10	
Instruments Ltd.	0,1		Particle I Mastersizer S Serial Nur	Diameter (µm.) S long bed Ver. 2.19 mber: 32734-89	100		03 May	

ศูนย์เครื่องมือวิจัย? จาดารสถาบัน 2 - รุ	วิทธาศาสตร์และเทคโนโลอี หาดเกรณ์ ชอช 62 - อ.พญาไท	 จุฬาลงกรณ์มหาวิทย ปฏุมวัน กรุงเทพฯ 1033 	ยาพัย >> โพร 2188029-32, 2188101	ใหร่สาร	2540211
Scientific and Te Building 2-3 Chu	echnological Research la Soi 62 Phaya-Thai Rd.	Equipment Centre Phatumwan Bangkok	Chulalongkorn University 10330 Tel. 2188029-32, 2188101	Fax.	2540211

Sample ID: Ash (HC Sample File: CHULA Sample Path: C:ISIZ Sample Notes: Wet Disp Ultra	I) No.50 ERS\DATA\ Analysis Syste ersing Medium isonic ; no	n : Water	Sa Run Number: Record Numb	mple Details	Measur Analyse Result (ed: 26 Sep 2006 15:42PM d: 26 Sep 2006 15:42PM Source: Analysed	1
Range Lens: 300RF mm Presentation: 30HD Analysis Model: Polydispense Modifications: None		Beam Length: 2 40 r [Particle R.I. = (1.52)	Sy nm 95, 0.1000);	stem Details Sispersant R.I. = 1.3300]	ampler: MS1	Cbs	curation: 13.9
			Ret	ult Statistics			
Distribution Type: Vi Mean Diameters: D [4, 3] = 367,77 ur	n alume	Concentration = 0.0 D (v, 0.1) = 160.39 c D [3, 2] = 2.06 um	582 %Vol um	Density = 1.000 g / cub. cm D (v, 0.5) = 358.71 um Span = 1.240E+00		Specific S.A. = 2,9092 sq. m / D (v, 0.9) = 605.16 um Uniformity = 3.912E-01	
Size_Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	ân 96	Size_High (um)	Under%
0.05	0.33	0.06	0.33	6.63	0.05	7.72	4.79
0.06	0.56	0.07	0.89	7.72	0.06	9.00	4.85
0.07	0.67	0.08	1.56	9.00	0.08	10.48	4.50
0.08	0.67	0.09	2.23	10.48	0.05	12.21	4.96
0.09	0.00	0.11	2.81	12.21	0.05	14.22	5.01
0.13	0.40	0.15	3.64	14.22	0.05	10.57	5.06
0.15	0.24	0.17	3.85	10.31	0.08	22.60	5.12
0.17	0.16	0.20	4.01	22.40	0.11	26.20	5.30
0.20	0.10	0.23	4.11	26.20	0.14	30.53	5.44
0.23	0.07	0.27	4.18	30.53	0.17	35.55	5.61
0.27	0.05	0.31	4.22	35 56	0.19	41.43	5.79
0.31	0.04	0.38	4.26	41.43	0.19	48.27	5.98
0.36	0.03	0.42	4.29	48.27	0.15	56.23	6.14
0.42	0.02	0.40	4.32	56.23	0.12	65.51	6.26
0.49	0.02	0.58	4.33	65.51	0.09	76.32	6.36
0.58	0.02	0.67	4.35	76.32	0.12	88.91	6.48
0.67	0.01	0.78	4.36	88.91	0.26	103.58	6.74
0.78	0.01	0.91	4.38	103.58	0.56	120.67	7.30
0.91	0.02	1.06	4.40	120.67	1.09	140.58	8.39
1.06	0.02	1.24	4.42	140.58	1.94	163.77	10.33
1.24	0.02	1.44	4.44	163.77	3.24	190.80	13.57
1.64	0.02	1.68	4,46	190.80	5.11	222.28	18.68
1.06	0.02	1.90	4,49	222.28	7.49	258.95	26.17
2.28	0.02	2.45	4.67	200.00	9.90	301.00	20.14
2.65	0.02	3.09	4.55	351.46	13.62	409.45	40.22
3.09	0.03	3.60	4.58	409.45	12.75	477.01	74.59
3.60	0.03	4.19	4.61	477.01	10.68	555.71	85.27
4.19	0.03	4.88	4.65	555.71	7.85	647.41	93.12
4.88	0.04	5.69	4.60	647,41	4.91	754.23	98.03
5.69	0.05	6.63	4.74	754.23	1.97	878.67	100.00
20			v	olume (%)			100

80 70 60 10 50 40 30 20 10 0.01 0 0.1 10.0 100.0 1.0 1000.0 Particle Diameter (µm.) Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89 Malvern Instruments Ltd.

Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789 p. 35 26 Sep 06 15:45

สูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโดซี จุฬาลงกรณ์มหาวิทยาลัย อาการสถาปัน 2 จุฬาลงกรณ์ รอย 62 ล.พญาโท ปหุ่มรับ กรุงเทพฯ 10300 โทร 2188029-32, 2188101 โทรสาร 2-46211 Scientific and Technological Research Equipment Centre Chulatongkorn University Building 2-3 Chula Soi 62 Phays-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Fax, 2540211 THERY 2540211*

Sample ID: Ash (HC) Sample File: CHULA Sample Path: C \SiZI Sample Notes: Wet A Dispe Ultras) No.50 ERS/DATA) Analysis System Insing Medium : 1 Iomic : no	Water	Sampl tun Number: 4 tecord Number: 1	te Details	Measure Analyse Result S	d: 26 Sep 2006 15:42P 5: 26 Sep 2006 15:42P ource: Analysed	M M	
Range Lens: 300RF r Presentation: 30HD Analysis Model: Poly Modifications: None	mm disperse	Beam Length: 2.40 r [Particle R.I. = (1.52)	System nm 95. 0.1000): Di	m Details San apersant R.I. = 1.3300]	npier: MS1	Ct R	ecuration: 13.7 lesidual: 1.135	
Distribution Type: Vo Mean Diameters: D [4, 3] = 359.20 um	lume	Result Statistics Concentration = 0.0535 %/oil Density = 1.000 g / cub. ci D(y, 0.1) = 150.68 um D (y, 0.5) = 348.80 um D(2, 21) = 1.000 g / cub. ci 0.000 g / cub. ci			. 05	Specific S.A. = 3.1891 sq. r D (v, 0.9) = 598.41 um Uniformity = 4.030E-01		
Size Low (um)	10.55	Size High (um)	Under%	Size Low (um)	in %	Size_High (um)	Under%	
0.05	0.38	0.06	0.38	6.63	0.07	7.72	5.20	
0.06	0.65	0.07	1.03	7.72	0.08	9.00	5.28	
0.07	0.76	0.08	1.79	9.00	0.08	10,48	5.37	
80.0	0.74	0.09	2.53	10.48	0.08	14.99	5,62	
0.09	0.62	0.13	3.62	14.22	0.07	16.57	5.59	
0.13	0.34	0.15	3.96	16.57	0.07	19.31	5.66	
0.15	0.23	0.17	4.18	19.31	0.08	22.49	5.75	
0.17	0.15	0.20	4.33	22.49	0.10	26.20	5.85	
0.20	0.09	0.23	4.42	26.20	0.13	30.53	5.97	
0.23	0.06	0.27	4.48	30.53	0.15	35.55	6.12	
0.21	0.04	0.36	4.55	41.43	0.16	48.27	6.45	
0.36	0.03	0.42	4.58	48.27	0.14	56.23	6.59	
0.42	0.02	0.49	4.60	56.23	0.11	65.51	6.70	
0.49	0.02	0.58	4.62	65.51	0.10	76.32	6.80	
0.58	0.02	0.67	4.64	76.32	0.15	58.91	6.95 7.27	
0.87	0.02	0.78	4.67	103.58	0.66	120.67	7.93	
0.91	0.02	1.05	4.70	120.67	1.24	140.58	9.17	
1,06	0.03	1.24	4.73	140.58	2.12	163.77	11.29	
1.24	0.03	1.44	4.76	163.77	3.47	190.80	14.76	
1,44	0.03	1.68	4.79	190.80	5.42	222.28	20.19	
1.65	0.03	1.95	4.82	222.28	10.33	301.68	38.39	
2.28	0.03	2.65	4.86	301.68	12.23	351.45	50.62	
2.65	0.03	3.09	4.91	351.46	13.40	409.45	64.02	
3.09	0.03	3.60	4.94	409.45	12.14	477.01	76.16	
3.60	0.03	4.19	4.98	477.01	9.97	565.71	86.13	
4.85	0.05	5.69	5.02	647.41	4.62	754.23	\$8.05	
5.69	0.08	6.63	5.13	754.23	1.95	878.67	100.00	
20			Volu	ime (%)			1	
ŧ.							9	
1 de							8	
ΞP						f l d	7	
<u>i</u> 9							6	
							4	
							3	
-							2	
0							1	
0.01	0.1		1.0 Particle D	10.0 iameter (µm.)	100	0.0	1000.0	
struments Ltd. K			Mastersizer S Serial Num	long bed Ver. 2.19 ber: 32734-89			26 \$	

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

p. 36 26 Sep 06 15:45

สูนย์เครื่องมือวิจัยวิทธาศาสตร์และเทคโนโดยี จุฬาลงกรณ์มหาวิทยาลัย อาณาสถาบัน 2 จุฬาลงกรณ์ รอย 62 ล.คณูรโท ปรุ่มรัน กรุงเทพฯ 10300 โทร 2188029-32 2188101 โทรสาร 25-80211 Scientific and Technological Research Equipment Centre Chulaiongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Fax, 2540211 Eventry 2640211*

Sample ID: Ash (H Sample File: CHUL Sample Path: C/S Sample Notes: We Dis Uh	CI) No.60 A IZERS'DATA). It Analysis System pensing Medium : rasonic : no	Water	Analy Sam Run Number: 1 Record Number:	ple Details	Measured Analysed: Result So	1: 26 Sep 2006 15:43P) : 26 Sep 2006 15:43PN wroe: Analysed	и 4
Range Lens: 300R Presentation: 30H Analysis Model: Pr	F mm D olydisperse	Beam Length: 2.40 [Particle R.I. = (1.52	Syst 95. 0.1000); 1	em Details Signersant R.I. = 1.3300]	ampier: MS1	Obi	souration: 14.1 esidual: 1.042
Modifications: Non	0						
Distribution Type: Mean Diameters: D [4, 3] = 366.05	Volume	Concentration = 0.0 D (v, 0.1) = 152.20 D (3, 2) = 1.01 um	Resu 0539 %Vol um	It Statistics Density = 1.000 g / cu D (v, 0.5) = 357.40 un Span = 1.275E+00	ib. om	Specific S.A. = D (v, 0.9) = 607.76 u Uniformity = 3.997E-0	3.3064 sq. m m 1
Size Low (um) 0.66 0.66 0.07 0.68 0.09 0.11 0.13 0.15 0.17 0.20 0.23 0.27 0.31 0.36 0.42 0.49 0.58 0.67 0.78 0.91 1.05 1.24 1.44 1.63 1.95 2.28 2.65 3.09 3.60 4.19 4.88 5.69	In % 0.41 0.89 0.76 0.63 0.47 0.33 0.22 0.14 0.69 0.66 0.64 0.63 0.64 0.63 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.63 0.63 0.63 0.63 0.64 0.63 0.63 0.64 0.63 0.62 0.62 0.62 0.62 0.62 0.63 0.64 0.63 0.64 0.65 0	Size_High (um) 0.66 0.07 0.09 0.11 0.13 0.15 0.17 0.20 0.23 0.27 0.27 0.31 0.36 0.42 0.49 0.58 0.67 0.78 0.91 1.06 1.24 1.44 1.65 2.28 2.65 3.09 3.60 4.19 4.88 5.69 6.63	Under% 0.41 1.0 1.09 2.06 3.29 3.76 4.09 4.31 4.45 4.54 4.54 4.54 4.54 4.54 4.54 4.5	Size_Low (um) 8.63 7.72 9.00 10.48 12.21 14.22 16.57 19.31 22.49 26.20 30.63 35.56 41.43 48.27 56.23 65.51 76.32 88.91 103.88 120.67 140.58 163.77 190.80 22.28 250.85 301.68 351.40 409.45 477.91 555.71 647.41 754.23	in % 0.08 0.09 0.10 0.10 0.10 0.09 0.09 0.09 0.10 0.12 0.12 0.14 0.15 0.16 0.14 0.15 0.16 0.14 0.11 0.19 0.13 0.28 0.58 1.10 1.91 3.17 5.01 7.40 5.92 12.01 13.45 12.53 10.54 7.83 4.97 2.12	Size_High (um) 7.72 9.00 10.48 12.21 14.22 16.57 19.31 22.49 26.20 30.53 35.56 41.43 48.27 56.23 65.51 76.32 88.91 103.58 120.67 140.58 103.77 190.80 222.28 258.95 301.68 301.68 409.45 409.45 477.01 647.41 754.23 878.67	Under/6 5.36 5.46 5.55 5.85 5.85 5.85 5.93 6.22 6.13 8.25 6.39 6.39 6.54 6.70 6.84 8.84 7.03 7.16 7.44 8.93 9.13 11.04 14.21 19.22 26.63 36.54 6.20 7.45 85.08 85.08 85.09 11.04 14.21 19.22 26.63 36.54 85.02 74.55 85.08 10.00 10
20 10 10	นะ ลง	์เวิท กรถ	ยง น์เ	ารัพ เหาวิ	ยา วิทร	กร ยุกล์	90 80 70 60 50 80 80 80 80 80 80 80 80 80 80 80 80 80
0 0.01	0.1		1.0 Particle	10.0 Diameter (um.)	100		1000.0
instruments Ltd. UK			Mastersizer Serial Nu	S long bed Ver. 2.19 mber: 32734-89			26 5

Malve Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

ศูนข์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี 	จุฬาตงกรณ์มหาวิทยา ประวัน กรุงเทพฯ 15330	ตั้ย โทร 2188029-32, 2188101	Sections	2540211
Scientific and Technological Research Building 2-3 Chula Soi 62 Phaya-Thai Rd	Equipment Centre Phatumwan Bangkok 1	Chulalongkorn University 0330 Tel. 2188029-32, 2188101	Fax.	2540211

Sample ID: Ash (HCI Sample File: CHULA Sample Path: C:\SIZ Sample Notes: Wet Disp Ultra) No. 120 ERS1DATA\ Analysis System ensing Medium : senic : no	n Water	Analy: Samp Run Number 3 Record Number	sis Result ple Details 530	Measure Analysion Result S	d; 26 Sep 2006 15:23PM d: 28 Sep 2006 15:23PM curce: Analysed	1
Range Lens: 300RF Presentation: 3OHD Analysis Model: Poly Modifications: None	mm ydisperse	Beam Length: 2.40 r [Particle R.I. = (1.52	Syste nm 95, 0.1000); (em Details Sa Napersont R.I. = 1.3300]	mpler: M\$1	Obs Re	curation: 15.1% esidual: 0,434%
			Dogui	+ Ctatistics			
Distribution Type: Ve Mean Diameters: D [4, 3] = 199,57 ur	n	Concentration = 0.0 D (v. 0, 1) = 3.57 u D [3, 2] = 0.85 um	1303 %//ol	Density = 1.000 g/cu D (v, 0.5) = 197.18 um Span = 1.787E+00	b. cm	Specific S.A. = D (v. 0.9) = 355.92 u Uniformity = 4.779E-0	7.0261 sq. m / g m 1
Con Low (upp)	10.3%	Size High (um)	Under%	Size Low (um)	an %	Size_High (um)	Under%
3/20 LOW (JIII)	1.17	0.06	1.17	6.63	0.20	7.72	10.93
0.08	1.77	0.07	2.94	7,72	0.20	9.00	11.13
0.07	1.83	0.08	4.77	9.00	0.20	10.48	11.33
0.08	1.51	0.09	6.28	10.48	0.21	12.21	11.53
0.09	1.07	0.11	7.35	12.21	0.22	14.22	11.75
0.11	0.68	0.13	8.04	14.22	0.24	16.57	12.00
0.13	0.41	0.15	8.45	18.67	0.27	19.31	12.27
0.15	0.25	0.17	8.70	19.31	0.29	26.90	12.85
0.17	0.15	0.20	8.85	22.49	0.30	26.20	13.13
0.20	0.09	0.23	8.95	28.20	0.27	30.63	13.15
0.23	0.06	0.27	9.01	30.63	0.23	30.00	13.00
0.27	0.04	0.31	9.05	35.56	0.18	41,43	13.03
0.31	0.03	0.36	9.08	41,43	0.17	40.27	13.65
0.36	0.03	0.42	9.11	48.27	0.26	00.23	14.64
0.42	0.02	0.49	9.13	56.23	0.40	60.01	15.32
0.49	0.02	0.58	9.16	65.51	0.67	76.32	16.84
0.58	0.02	0.67	9.10	76.32	1,49	60.91	10.01
0.67	0.03	0.78	9.21	16.30	2.47	103,50	23.24
0.78	0.04	0.91	9.24	103.58	3.99	120.07	29.25
0.91	0.05	1.05	9.29	120.67	0.02	163.77	37.52
1.05	0.06	1.24	9.35	140.50	10.14	190.80	47.65
1.24	0.07	1.44	9.42	103.77	11.27	222.28	58.92
1,44	0.07	1.68	9.49	190.00	11.82	258.95	70.75
1,68	0.05	1.95	0.07	268.05	10.41	301.68	81.16
1.95	0.09	2.28	9.00	301.68	8.28	351.45	89.43
2.28	0.10	2.00	9.87	351.46	5.85	409.45	65.28
2.65	0.11	3.60	10.01	409.45	3.52	477.01	18.80
3.09	0.15	A 10	10.16	477.01	1.20	555.71	100.00
3.60	0.15	4.10	10.33	555.71	0.00	647.41	100.00
4.19	0.19	5.69	10.53	847.41	0.00	754.23	100.00
5.69	0.20	6.63	10.73	754.23	0.00	878.67	100.00
20			Vo	olume (%)			10
1							90

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

ศนย์เครื่องมือวิจ	<i>โอวิทอาศ</i> าสตจ์แล	ะเทคโนโลปี	จุฬาลง	กรณ์มหาวิทย	าดัย				
อาศารสถาบัน 2	จุฬาตงกรณ์ ชอย 6	≥ ถ.พญาไท	ปญตรีน	ngalwwn 1033) T ana 21	66029-32	2158101	PARAL A	2546211
Scientific and	Technological	Research	Equipment	Centre	Chulalor	ngkorn	University 29-32, 2188101	Fax	2540211

			Analy	ysis Result			
Sample ID: Ash (HC) Sample File: CHULA Sample Path: C1SIZ Sample Notes: Wet Disp Ultra) No.120 ERS/DATA). Analysis Syste ensing Medium sonic : no	n : Water	San In Number: Icord Number	nple Details	Measur Analyse Result :	red: 26 Sep 2008 15:24P ed: 26 Sep 2006 15:24P Source: Analysed	M 4
Range Lens: 300RF mm Presentation: 30HD Analysis Model: Polydisperse Modifications: None		Beam Length: 2.40 mi [Particle R.I. = (1.5265	Sys 0.1000):	npier: MS1	51 Obsouration: 15.0 % Residual: 0.475 %		
			Dee	de Cantingian	_		
Distribution Type: Volume Mean Diameters: D [4, 3] = 199.14 um		Concentration = 0.021 D (v. 0.1) = 2.85 cm D [3, 2] = 0.84 cm	POPSI 94 %/Vol	Density = 1.000 g / out D (v, 0.5) = 197.37 um Span = 1.767E+00), om	Specific S.A. = D (v, 0.9) = 355.63 u Uniformity = 4.791E-0	7.1755 sq. m /g m 1
Size Low (um)	In %	Size Hich (um)	Under%	Size Low (um)	In %	Size_High (um)	Under%
5.02 _ 2.06 (2m) 0.05 0.06 0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.20 0.23 0.27 0.31 0.35 0.42 0.49 0.58	1.20 1.82 1.87 1.85 1.69 0.49 0.42 0.25 0.15 0.69 0.64 0.64 0.64 0.63 0.64 0.63 0.62 0.62 0.62	0.08 0.07 0.08 0.07 0.08 0.09 0.11 0.13 0.15 0.15 0.17 0.20 0.23 0.27 0.31 0.36 0.42 0.49 0.58 0.58 0.57	0.1.20 3.01 4.89 6.44 7.53 8.22 8.63 8.28 9.03 9.12 9.12 9.22 9.25 9.27 9.30 9.32 9.34	6.63 7.72 9.00 10.48 12.21 14.22 16.57 19.31 22.49 26.20 30.53 35.56 41.43 48.27 56.23 65.51 76.32 9.55	0.21 0.21 0.22 0.22 0.24 0.27 0.29 0.31 0.31 0.28 0.23 0.18 0.18 0.16 0.24 0.45 0.45	7,72 9,00 10,48 12,21 14,22 16,57 19,31 22,49 26,20 36,53 35,56 41,43 48,27 56,23 65,23 75,25 75,2	11,14 11,36 11,57 11,80 12,04 12,04 12,01 12,01 12,01 13,22 13,51 13,74 13,74 13,91 14,07 14,31 14,37 15,61 17,07 19,50
0.67 0.91 1.05 1.24 1.68 1.95 2.65 3.09 3.60 4.19 4.68	0.03 0.04 0.05 0.07 0.07 0.09 0.09 0.10 0.12 0.14 0.16 0.18 0.19	0 78 0 91 1.06 1.24 1.44 1.68 1.95 2.28 2.65 3.09 3.60 4.19 4.88 5.60	9.37 9.41 9.46 9.52 9.67 9.75 9.84 9.95 10.06 10.20 10.38 10.53 10.73	88.91 103 58 120 67 140 58 183.77 190 80 222 28 258.95 301 58 351.46 409.45 477.01 555.71 647.41 26.22	2.43 3.91 5.94 8.16 10.07 11.28 11.88 10.44 8.32 5.88 3.51 1.14 0.00 0.00 0.00	103.58 120.67 140.56 163.77 190.60 222.28 258.96 301.68 351.46 409.45 477.01 555.71 647.41 754.23 979.67	19.50 29.34 29.36 37.52 47.59 58.85 70,70 81.15 89.47 95.35 98.86 100.00 100.00

Malvern Instruments Ltd. Malvern, UK Tet:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

ศูนย์เครื่องมือวิจัอวิทธาศาสตร์และเทคโนโลยี ๆหาลงกรณ์มหาวิทธาลัย อำควรสถาปัน 2 จุฬาลงกรณ์ รอย 62 ก.ศ.ผู่ปไท ปทุมวัน กรุงเทพฯ 10330 โทร 2168029-32, 2168101 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thei Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 INTERNA 2540211 Fax. 2540211

Sample ID: Ash (HC Sample File: CHUL/ Sample Path: C1SI2 Sample Notes: Wet Disp Ultra	I) No. 120 ERSIDATA: Analysis System ersing Medium isonic : no	n : Water	Sai Run Number: Record Numbe	mple Details 7 m: 534	Measun Analyse Result S	ed: 26 Sep 2008 15:24PA d: 26 Sep 2008 15:24PM Source: Analysed	a 1
Range Lens: 300RF mm Presentation: 30HD Analysis Model: Polydisperse Modifications: None		Beam Length: 2,40 n [Particle R.I. = (1.525	Sy: 7m 95, 0.1000);	mpler: MS1	Obs Re	ouration: 15.2 Isidual: 0.453	
			Res	ult Statistics			
Distribution Type: Volume Mean Diameters: D [4, 3] = 200.04 um		Concentration = 0.0298 %Vel D (v, 0.1) = 2.67 um D [3, 2] = 0.63 um		Density = 1.000 g / cut D (v. 0.5) = 198.31 um Span = 1.792E+00	a, em	Specific S.A. = 7.2262 sq. m / D (v, 0.9) = 358.01 um Uniformity = 4.811E-01	
Size Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	In %	Size_High (um)	Under%
0.05	1.22	0.08	1.22	6.63	0.21	7.72	11.17
0.06	1.84	0.07	3.06	7.72	0.21	9.00	11.38
0.07	1.89	0.08	4.95	9.00	0.22	10.48	11.00
0.08	1.55	0.09	6.50	10.48	0.23	12.21	11.03
0.09	1.09	0.11	7.59	12.21	0.25	14.22	12.00
0.11	0.69	0.13	8.27	14.22	0.28	16.57	12.30
0.13	0,41	0.15	8.69	10.57	0.31	10.31	12.07
0.15	0.24	0.17	6.93	19.31	0.33	22.99	13.34
0.17	0.15	0.20	9.07	22.49	0.33	20.20	13.64
0.20	0.09	0.25	9.10	20.20	0.30	35.55	13.89
0.23	0.05	0.27	9.22	30,93	0.25	41.43	14.08
0.27	0.04	0.31	0.20	41.43	0.17	48.27	14.24
0.31	0.03	0.50	0.20	48.97	0.24	56.23	14.48
0.39	0.03	0.40	0.31	40.27	0.45	85.51	14.93
0.42	0.02	0.49	9.35	65.61	0.83	76.32	15.76
0.49	0.02	0.50	9.36	76.32	1.43	88.91	17.19
0.05	0.02	0.07	9.41	83.91	2.39	103.58	19.58
0.67	0.03	0.01	9.45	103.58	3.85	120.67	23.42
0.70	0.04	1.06	9.50	120.67	5.85	140.58	29.28
1.05	0.06	1.24	9.57	140.58	8.05	163.77	37.33
1.24	0.07	144	9.64	163.77	9.95	190.80	47.28
1.44	0.08	1.68	9.71	190.80	11.17	222.28	58.45
1.68	0.09	1.95	9.80	222.28	11.82	258.95	70.26
1.95	0.09	2.28	9.89	258.95	10.48	301.68	80.75
2.28	0.10	2.65	10.00	301.68	8.41	351.46	89.15
2.65	0.12	3.09	10.11	351.46	5.99	409.45	95.14
3.09	0.13	3.60	10.25	409.45	3.62	477.01	98.75
3.60	0.15	4.10	10.40	477.01	1.25	555.71	100.00
4.19	0.17	4.88	10.57	555.71	0.00	647.41	100.00
4.88	0.19	5.69	10.76	647.41	0.00	754.23	100.00
5.69	0.20	6.63	10.96	754.23	0.00	878.67	100.00
20			V	/olume (%)			10

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

p. 28 26 Sep 06 15:25

Terentra 2540211 *

ศูนข์เครื่องมีอวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย อาคารสถาบัน 2 จุฬาลงกรณ์ รอย 62 ณฑญาโท ปฐมริน กรุงเทตฯ 16330 โทร 2108029-32, 2188101 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok, 10330 Tel. 2188029-32, 2188101 Fax. 2540211

Str. Adv. HCD; No. AG more File. CHULA. more File. CHULA. Dispension SCRESCATAI Dispension SCRESCATAI Dispension Screen File. Networks 235 Sop 2006 12.39PM Analysed: 23 Sep 2008 12.39PM Analysed: 24 Sep 20				Analy	sis Result			
System Otlog System Otlog Sumplex Mill Discussion Concentration Imper Lenz Dollar (1,1) Discussion Discu	Sample ID: Ash (H Sample File: CHUL Sample Path: C1/S/ Sample Notes: We Dis	CI) No.400 ,A (ZERS/DATA) tr Analysis System persing Medium teaching teaching	m :Water	Sam Run Number Record Number	ple Details 3 509	Measur Analyse Result	red: 25 Sep 2006 12 39Pt ed: 25 Sep 2006 12 39Pt Source: Analysed	M
System Details Sampler: Motion 10100 Basen Longh: 2:40 nm Sampler: Motion 10100 Classorial (11)	08	rasonic : no						
Result Statistics Specific 5.A = 12,801 sq. D(x, 5) = 0,151 Wold D(x, 5) =	Range Lens: 300R Presentation: 30H Knalysis Model: Pr Modifications: Non	F mm D clydisperse e	Beam Length: 2.40 r [Particle R.I. = (1.52)	Syst nm 95, 0.1000); 1	em Details S Dispersant R.I. = 1.3300]	ampler: MS1	Ob Ri	souration: 16.1 esidual: 0.445
Results Type: Volume in Gim Cooperations = 0.916/15000 D(x, 0) = 1.444 run D(x, 0) = 1				Page	In Ctatistics			
Des Des (env) 15 % Szez Hujt (un) Underfa 0.05 3.76 0.67 0.56 0.34 9.20 186.6 0.08 2.36 0.66 9.55 9.00 0.33 9.20 186.6 0.08 2.36 0.66 12.32 0.33 9.20 189.2 0.08 2.36 0.61 12.32 0.17 14.42 19.33 0.15 0.22 0.17 14.42 19.31 19.36 19.24 19.31 19.36 0.17 0.14 0.22 0.17 14.42 19.31 19.35 19.56 22.49 20.17 14.52 19.31 19.35 19.56 22.49 20.17 14.52 19.31 19.55 19.57 19.55 19.57 19.55 19.57 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55	Distribution Type: Mean Diameters: D [4, 3] = 81.19 c	Volume	Concentration = 0.0 D (v, 0.1) = 0.08 w D (3, 2] = 0.47 wm	Density 1.000 g / cub. cm (v, 0.1) = 0.08 um D (v, 0.5) = 74.47 um (3, 2) = 0.47 um Span = 2.191E+00		ub. cm n	Specific S.A. = D (v, 0.9) = 163.26 u Uniformity = 6.467E-0	12.8691 sq. m m 1
0.55 2.77 0.66 2.77 0.63 9.43 7.42 0.33 9.40 885 0.07 3.35 0.63 0.64 9.55 9.06 0.33 9.40 885 0.08 2.26 0.63 1.22 1.34 1.42 1.35 1.95 0.09 1.37 0.13 14.43 1.42 1.42 1.57 1.95 0.13 0.22 0.13 14.43 1.42 1.42 1.57 1.95 0.13 0.23 1.51 1.62 1.42 1.53 1.95 0.17 0.44 0.23 1.51 1.52 2.49 2.06 0.33 0.64 0.23 1.54 3.053 1.52 3.558 2.358 <	Size_Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	In %	Size_High (um)	Under%
0.88 3.78 0.07 8.82 7.62 0.33 19.98 19.24 0.09 2.36 0.01 11370 12.21 0.17 14.22 1953 0.09 1.36 0.15 14.42 19.57 19.44 19.57 0.15 0.15 14.42 19.57 19.14 19.31 19.36 0.15 0.12 15.67 0.13 19.31 19.31 19.31 0.17 0.14 0.25 15.17 22.60 0.46 20.20 20.17 0.17 0.14 0.25 15.17 22.60 0.46 20.20 20.60 0.22 0.17 15.46 19.31 30.53 15.22 35.56 23.0 0.23 0.63 0.64 0.35 15.43 36.56 2.54 41.43 3.59 48.27 29.30 0.23 0.63 0.64 0.35 15.45 89.51 42.77 29.56 15.33 15.32 15.33<	0.05	2.77	0.06	2.77	6.63	0.34	7.72	18,65
0.00 2.36 0.00 12.22 15.00 0.22 12.21 15.31 0.00 1.38 0.113 113.62 12.42 0.17 14.52 19.33 0.13 0.13 113.62 12.42 0.13 14.52 19.31 19.31 0.13 0.13 14.62 19.31 0.13 12.24 0.23 12.34 0.33 12.34 0.33 12.34 0.33 12.34 0.33 12.34 0.33 12.34 0.33 12.34 0.33 12.34 0.33 12.35 13.34 14.34 12.35 13.34 13.34 14.34 13.34 14.34 12.35 13.34 14.34 13.35 13.34 14.34 13.35 13.34 14.34 13.35 <td>0.06</td> <td>3.79</td> <td>0.07</td> <td>0.95</td> <td>9.00</td> <td>0.33</td> <td>10.48</td> <td>19.29</td>	0.06	3.79	0.07	0.95	9.00	0.33	10.48	19.29
0.00 0.13 1442 0.12 1422 0.12 1422 0.13 1442 1933 1933 1933 0.15 0.15 1442 1657 0.13 1831 1963 0.15 0.22 0.17 1564 1931 023 2249 2010 0.20 0.69 0.23 15.77 28.80 0.67 30.33 15.80 22.49 0.64 20.20 20.60 20.33 15.87 22.49 0.64 20.20 20.60 20.33 15.87 22.49 0.64 20.20 20.60 20.33 15.87 22.49 20.61 22.49 20.63 20.63 22.49 20.63 20.63 20.63 20.63 20.63 20.63 22.49 20.63	0.07	3.39	0.08	12.32	10.48	0.24	12.21	19.53
0.13 0.13 14.43 14.43 14.43 14.24 0.13 18.31 19.83 0.15 0.22 0.17 15.64 19.31 0.13 12.31 22.49 20.16 0.17 0.14 0.22 15.18 22.49 20.46 22.30 22.49 20.06 0.23 0.67 0.23 15.34 30.53 15.22 35.56 23.40 41.43 25.69 0.23 0.67 0.23 15.34 30.53 15.42 35.56 23.40 41.43 25.69 0.31 0.64 0.33 15.44 42.27 5.75 66.33 35.33 0.42 0.63 0.42 15.46 42.27 5.75 66.33 23.93 0.44 0.03 0.65 15.54 42.37 5.75 66.33 25.93 22.23 54.47 0.45 0.63 0.78 0.65.44 76.32 84.47 76.13 76.93 77.47 66.51	0.00	1.38	0.11	13.70	12.21	0.17	14.22	19.70
0 13 0 15 0 17 0 14 0 10 0 17 0 14 0 29 0 07 0 20 0 09 0 20 0 20 0 09 0 20 0 20	0.11	0.73	0.13	14.43	14.22	0.12	16.57	19.83
0.19 0.17 0.17 0.09 0.22 0.09 0.27 0.09 0.27 0.05 0.07 0.05 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00	0.13	0.39	0.15	14.82	16.57	0.13	19.31	19.96
0.17 0.20 0.20 0.22 0.27 0.66 0.31 0.64 0.65 0.31 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.45 0.44 0.45	0.15	0.22	0.17	15.04	19.31	0.23	22.49	20.19
0 220 0 27 0 20 0 27 1 534 0 42 0 4	0.17	0.14	0.20	15.18	22.49	0.46	20.20	20.65
0.22 0.31 0.24 0.35 0.42 0.44 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.44	0.20	0.09	0.23	15.27	26.20	1.62	35.55	23.04
0.31 0.04 0.38 13.46 41.43 3.69 48.27 5.75 56.23 13.43 0.42 0.03 0.49 15.46 48.27 5.75 56.23 13.33 0.44 0.03 0.49 15.46 48.27 5.75 56.23 14.23 0.46 0.03 0.67 15.54 48.91 9.35 16.47 76.22 51.43 0.46 0.03 0.67 15.54 48.91 9.35 10.358 66.92 7.47 66.51 44.47 51.43 42.7 57.5 56.23 42.7 57.5 51.54 49.91 9.35 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.57 10.55 10.57 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55	0.23	0.05	0.31	15.39	35.56	2.54	41.43	25.58
0.36 0.03 0.49 15.49 66.23 7.47 65.51 45.23 0.42 0.03 0.58 15.51 65.51 76.32 9.15 88.91 00.59 0.57 0.03 0.58 15.51 76.53 9.53 9.15 88.91 00.59 0.57 0.03 0.76 15.54 76.53 9.53 9.15 88.91 00.55 0.51 15.55 10.58 8.21 120.67 76.13 0.58 0.59 10.58 8.21 120.67 16.77 10.58 84.51 10.68 0.113 1.24 15.52 140.55 5.22 163.77 90.59 12.24 0.13 1.24 15.55 145.77 3.54 190.50 93.91 1.44 0.15 1.06 15.51 145.55 145.77 3.54 190.50 93.91 1.44 0.15 1.04 15.51 140.55 5.22 163.77 90.59 12.24 0.13 1.44 15.55 145.77 3.54 190.50 93.91 1.44 0.15 1.06 13.51 140.55 15.22 163.77 90.59 12.24 0.13 1.95 15.29 222.28 1.52 235.55 95.44 190.50 13.54 0.42 3.51.64 100.5 0.64 100.5 0.42 3.51.64 100.5 0.44 4.5 0.00 47.41 100.5 0.42 3.51.64 0.00 47.41 100.5 0.44 4.5 0.00 47.41 100.5 0.55.71 10	0.31	0.04	0.35	15.43	41.43	3.99	48.27	29.58
0.42 0.49 0.55 0.42 0.00 0.49 0.55 0.42 0.00 0.49 0.55 0.42 0.00 0.49 0.55 0.42 0.00 0.49 0.55 0.42 0.00 0.49 0.55 0.42 0.00 0.49 0.55 0.42 0.00 0.49 0.55 0.42 0.00 0.49 0.55 0.42 0.00 0.49 0.55 0.42 0.00 0.10	0.36	0.03	0.42	15.46	48.27	5.75	56.23	35.32
0.49 0.68 0.67 0.67 0.63 0.67 0.63 0.67 0.63 0.67 0.63 0.67 0.63 0.67 0.63 0.67 0.63 0.68 0.67 0.63 0.19 2.28 0.00 0.27 1.20 0.00	0.42	0.03	0.49	15.49	56.23	7.47	65.51	42.79
0.68 0.67 0.67 0.63 0.75 0.65 0.75 0.65 0.75 0.65 0.75 0.65 0.75 0.65 0.75 0.65 0.75 0.65 0.11 1.66 1.77 1.26 0.11 1.24 1.65 1.24 0.13 1.44 1.55 1.24 0.13 1.44 1.55 1.24 0.13 1.44 1.55 1.24 0.13 1.44 1.55 1.24 0.13 1.44 1.55 1.24 0.13 1.44 1.55 1.24 0.13 1.44 1.55 1.24 1.65 0.13 1.44 1.55 1.24 1.65 0.13 1.44 1.55 1.24 1.65 0.13 1.44 1.55 1.24 1.65 0.13 1.44 1.55 1.24 1.65 0.13 1.44 1.55 1.22 1.24 1.44 1.55 1.24 1.55 1.24 1.55 1.24 1.55 1.24 1.55 1.24 1.55 1.24 1.55 1.24 1.55 1.24 1.55 1.52 1.50 1.52	0.49	0.03	0.58	15.51	65.51	8.64	76.32	51.43
0.00 0.078 0.053 0.055 0.054 0.055 0.0	0.68	0.03	0.67	15.54	76.32	9.16	58.91	60.59
0.58 0.68 1.06 1.06 0.11 1.06 0.11 1.24 0.13 1.44 1.555 1.255 1.255 1.22 1.44 0.15 1.44 1.44 0.15 1.84 1.44 0.15 1.85 0.19 0.22 2.85 0.21 2.85 0.21 2.85 0.22 2.85 0.21 2.85 0.22 2.85 0.20 0.23 0.00 0.74 4.83 0.00 0.74 4.23 0.00 0.74 4.23 0.00 0.74 4.23 0.00 0.74 4.23 0.00 0.74 4.23 0.00 0.74 4.23 0.00 0.74 0.75 0.00 0.74 0.75 0.00 0.75 0.75 0.75 0.00 0.75 0.7	0.67	0.03	0.78	15.55	103.68	\$.30	103.50	78.11
1.00 0.11 1.22 15.02 140.63 5.22 160.77 3.34 163.77 3.34 163.77 3.34 163.77 3.34 10.00 97.94 1.44 0.15 1.68 1.63.10 198.60 2.71 222.33 98.64 1.68 0.18 1.95 16.28 222.28 1.12 226.85 98.64 1.68 0.18 1.95 16.60 3.01,68 0.42 351.44 100.00 469.45 100.00 2.65 0.22 3.99 15.60 351.46 0.00 469.45 100.00 3.69 0.24 3.60 17.13 409.45 0.00 467.45 100.00 3.69 0.24 3.60 17.13 409.45 0.00 467.45 100.00 3.69 0.24 3.80 17.89 655.71 0.00 647.41 100.00 4.68 0.33 6.63 17.89 655.71 0.00 674.23 100.00 <	0.76	0.05	1.05	15.63	120.67	6.77	140.58	84.87
134 0.13 1.44 15.50 193.77 3.84 190.80 90.94 1.44 0.15 1.06 1.95 1.08 190.80 271 222.23 96.64 1.85 0.18 2.28 16.47 258.95 1.82 258.95 96.64 1.95 0.18 2.28 16.47 258.95 1.82 258.95 96.64 1.95 0.21 2.65 16.64 301.64 0.42 351.46 100.00 2.65 0.22 3.09 16.90 251.44 0.00 440.45 100.00 3.63 0.25 4.19 17.39 477.91 0.00 555.71 100.00 4.19 0.23 5.69 0.33 6.63 18.32 0.00 474.41 130.00 4.19 0.23 6.63 18.32 0.00 274.42 100.00 754.23 0.00 274.41 130.00 4.19 0.23 6.63 18.32 0.00 274.41 130.00 5.69 0.33 6.63 18.32 0.00 274.42 100.00 Volume (%)	1.05	0.11	1.24	15.82	140.58	5.22	163.77	90.09
1.44 0.15 1.66 15.10 190.60 2.71 222.23 96.40 1.65 0.16 2.28 18.47 226.95 1.12 266.56 96.46 2.28 0.21 2.26 16.60 251.46 0.00 469.45 150.00 2.65 0.22 3.09 16.90 251.45 0.00 477.01 150.00 3.09 0.24 3.40 17.13 499.45 0.00 477.01 150.00 3.09 0.28 4.18 17.68 555.71 0.00 647.41 150.00 4.19 0.28 4.18 17.68 555.71 0.00 647.41 150.00 5.69 0.33 6.69 17.19 647.41 0.00 673.42 100.00 5.69 0.33 6.69 17.99 647.41 0.00 673.67 100.00 10 Volume (%)	1.24	0.13	1.44	15.95	163.77	3.84	190.80	93.94
165 0.18 1.92 10.28 122 220.95 1.12 220.163 99.56 233 0.21 226 16.69 301.63 0.42 351.46 100.00 265 0.22 3.09 15.60 351.46 0.00 477.01 100.00 3.69 0.24 3.80 17.13 409.45 0.00 477.01 100.00 3.60 0.28 4.19 17.38 477.91 0.00 647.41 100.00 4.85 0.31 5.59 17.86 647.41 0.00 647.41 100.00 4.85 0.33 6.63 18.32 0.00 754.23 0.00 879.67 100.00 10 Volume (%)	1,44	0.15	1.68	16.10	190,80	2.71	222.28	96.64
138 0.21 2.26 18.60 131.60 0.42 351.46 100.0 2.65 0.22 3.09 17.13 439.45 0.00 449.45 100.0 3.09 0.26 4.19 17.39 477.01 0.00 449.45 100.0 3.09 0.28 4.88 17.89 647.41 0.00 555.71 100.0 4.19 0.28 4.88 17.89 647.41 0.00 555.71 100.0 4.19 0.28 4.88 17.89 647.41 0.00 647.41 100.0 4.19 0.28 4.88 17.89 647.41 0.00 647.41 100.0 6.69 0.33 6.63 18.32 647.41 0.00 678.67 100.0 10 Volume (%)	1.68	0.18	1.95	16.28	222.28	1.82	205.90	00.40
265 0.22 3.09 16.60 351.43 0.00 409.45 15000 3.69 0.24 3.60 17.13 409.45 0.00 477.01 1000 3.69 0.26 4.19 17.38 477.01 0.00 455.71 100.00 4.19 0.28 4.18 17.88 555.71 0.00 647.41 150.00 4.88 0.31 5.69 17.90 647.41 0.00 647.41 150.00 5.69 0.33 663 18.32 0.00 678.67 100.00 Volume (%)	1.95	0.19	2.28	15,47	220.99	0.42	351.46	100.00
3.09 0.24 3.60 17.13 4.09.45 0.00 4.77.01 100.00 3.60 0.28 4.18 17.38 655.71 0.00 647.41 100.00 4.88 0.31 5.69 17.50 647.41 0.00 647.41 100.00 5.69 0.33 6.63 18.32 647.41 0.00 647.41 100.00 10 0.33 6.63 18.32 100.00 754.23 100.00 Volume (%)	2.65	0.22	3.09	16.90	351.48	0.00	409.45	100.00
3.60 0.28 4.19 17.38 477.01 0.00 555.71 100.00 4.85 0.31 5.69 0.33 5.69 17.80 17.90 647.41 100.00 647.41 100.00 647.41 100.00 647.41 100.00 647.41 100.00 754.23 750.20 756.71 100.00 756.71 100.00 756.71 750.20 756.71 750.20 756.71 750.20 <td>3.09</td> <td>0.24</td> <td>3.60</td> <td>17.13</td> <td>409.45</td> <td>0.00</td> <td>477.01</td> <td>100.00</td>	3.09	0.24	3.60	17.13	409.45	0.00	477.01	100.00
4.19 4.69 0.31 5.69 0.33 0.33 0.63 17.59 0.33 0.63 18.52 Volume (%) Volume (%) 10 Volume (%) 10 Volume (%) 10 10 10 10 10 10 10 10 10 10	3.60	0.26	4.19	17.39	477.01	0.00	555.71	100.00
4.85 0.31 5.69 17.99 647.41 0.00 754.23 100.00 Volume (%) Volume (%)	4.19	0.28	4.88	17.68	555.71	0.00	647.41	100.00
	4.88	0.31	5.69	17.99	647.41	0.00	754.23	100.00
พายากราย พาลงกรณ์มหาวิทยาลัย	5.69	0.33	6.03	18.32	/54.23	0.00	670.67	100.00
ศูนย์วิทยทรัพยากร หาลงกรณ์มหาวิทยาลัย	10			Vo	lume (%)			1
ศูนย์วิทยทรัพยากร หาลงกรณ์มหาวิทย _์ าลัย	10							
ศูนย์วิทยทรัพยากร หาลงกรณ์มหาวิทย _์ าลัย						1	1	9
ุ คุนยวทยทรพยากร หาล _ุ งกรณ์มหาวิ/ทย _ุ าลัย						16		8
ฬาลงกรณ์มหาวิทยาลัย	16							7
หาลงกรณ์มหาวิทย่าลัย	1.10							6
ฬาลงุกรณ์มหาวิ/ทย่าลัย	1.3							5
A INTIGUES IN THE INE INE	nor h					260		4
						JAI	51.19	3
	1					11		2
T /	1							1

0.1

0 0.01

Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

Particle Diameter (µm.)

1.0

10.0

0

1000.0

100.0

สูนข์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโดบี จุฬาลงกรณ์มหาวิทยาลัย อาคาหลอบใน 2 จุฬาละกรณ์ ธรย 62 อ.คภูรไท ปรุมวัน กรุงเทพฯ 10330 โทร 2100029-32 2188161 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2180029-32, 2188101 Eventry 2540211* Fax: 2540211

stem um : Water Beam Longth: 2.40 [Particle R.L. = (1.52 D (v, 0.1) = 0.05 u D [3, 2] = 0.46 um Suse_High (um) 0.06 0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.20	Sam Run Number Record Number Sys mm 95, 0,1000); Res 2181 5/Vol m Under% 2,90 6,79 10,21 12,53 13,85 14,55 14,55 14,55 14,55 14,55	nple Details 5 5 5 5 5 5 5 5 5 5 5 5 5	Measure Analyse Result S ampler: MS1 ub. cm n 1 1 6 35 0.34 0.35 0.34 0.30 0.25 0.34 0.30 0.25 0.18 0.13 0.13 0.23	ed: 26 Sep 2006 12:39Ph d: 26 Sep 2006 12:39Ph Source: Analysed Cbs Re D (v. 0.9) = 162:19 u Uniformity = 6.453E-0 Size_High (un) 7.72 9.00 10:48 12:21 14:22 16:57 19:31 22:49	M souration: 15.4 % nsidual: 0.395 % 13.0263 sq. m / m 13.0263 sq. m / m 13.0263 sq. m / 19.65 19.55 10.55 10.
Beam Longth: 2.40 [Particle R I. = (1.52 Concentration = 0.0 D (v, 0.1) = 0.05 u D [3, 2] = 0.46 um Suss_High (um) 0.05 0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.20	Sys mm 95, 0,1000); Res 2181 %/vel m Under% 2,90 6,79 10,21 12,53 13,85 14,55 14,55 14,55 14,55 14,55	Intern Details Dispersant R.L. = 1.3300] ult Statistics Density = 1.000 g / cr D (v. 0.5) = 74.36 un Span = 2.180E+00 Size Low (um) 6.63 7.72 9.00 10.48 12.21 14.22 16.57 19.31	ampler: MS1 bb, cm n 0.35 0.35 0.34 0.30 0.25 0.18 0.13 0.13 0.23	Obs Re Specific S.A. = D (v. 0.9) = 162.19 u Uniformity = 6.453E-0 Uniformity = 6.453E-0 10.48 12.21 14.22 16.57 19.31 22.49	souration: 15.4 % estidual: 0.395 % 13.0263 sq. m / m 1 Under% 19.12 19.43 19.67 19.85 19.85 19.85 19.85 19.85
Concentration = 0.0 D (v, 0.1) = 0.08 u D [3, 2] = 0.46 um 0.08 0.07 0.08 0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.17 0.20	Res m Under% 2.90 6.79 10.21 12.53 13.85 14.55 14.51 15.11	ult Statistics Density = 1.000 g / cr D (v. 0.5) = 74.36 un Span = 2.180E+00 Size_Low (um) 6.63 7.72 9.00 10.48 12.21 14.22 16.57 19.31	In % 0.35 0.34 0.30 0.25 0.18 0.13 0.13 0.23	Specific S.A. = D (v. 0.9) = 162.19 u Uniformity = 6.453E-0 Size_High (um) 7.72 9.00 10.48 12.21 14.22 16.57 19.31 22.49	13.0263 sq. m / m 11 18.78 19.12 19.43 19.67 19.65 19.65 19.65 19.58 20.11 20.34
Concentration = 0.0 D (v, 0.1) = 0.05 u D [3, 2] = 0.46 um 0.06 0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.20	Under% 2.90 6.79 10.21 12.53 13.85 14.55 14.51 15.11	Density = 1.000 g / ci D(v, 0.5) = 74.36 un Span = 2.180E+00 Size_Low (um) 6.63 7.72 9.00 10.48 12.21 14.22 16.57 19.31	In % 0.35 0.34 0.30 0.25 0.18 0.13 0.13 0.23	Specific S.A. = D (v. 0.9) = 182.19 u Uniformity = 6.453E-0 Size_High (um) 7.72 9.00 10.48 12.21 14.22 16.57 19.31 22.49	13.0263 sq. m / m 11 18.78 19.12 19.43 19.67 19.65 19.65 19.65 19.58 20.11 20.34
Suze_High (um)	Under% 2.90 6.79 10.21 12.53 13.86 14.55 14.91 15.11	Size_Low (um) 6.63 7.72 9.00 10.48 12.21 14.22 16.67 19.31	In % 0.35 0.34 0.30 0.25 0.18 0.13 0.13 0.13 0.23	Size_High (um) 7.72 9.00 10.48 12.21 14.22 16.57 19.31 22.49	Under% 18.78 19.12 19.43 19.67 19.95 19.98 20.11 20.34
0.06 0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.20	2.90 6.79 10.21 12.53 13.86 14.55 14.91 15.11	6.63 7.72 9.00 10.48 12.21 14.22 16.57 19.31	0.35 0.34 0.30 0.25 0.18 0.13 0.13 0.23	7.72 9.00 10.48 12.21 14.22 16.57 19.31 22.49	18.78 19.12 19.43 19.67 19.85 19.98 20.11 20.34
0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.20	6.79 10.21 12.53 13.85 14.55 14.91 15.11	7.72 9.00 10.48 12.21 14.22 16.57 19.31	0.34 0.30 0.25 0.18 0.13 0.13 0.23	9.00 10.48 12.21 14.22 16.57 19.31 22.49	19.12 19.43 19.67 19.85 19.98 20.11 20.34
0.08 0.09 0.11 0.13 0.15 0.17 0.20	10 21 12 53 13 85 14 55 14 91 15 11	9.00 10.48 12.21 14.22 16.57 19.31	0.30 0.25 0.18 0.13 0.13 0.23	10.48 12.21 14.22 16.57 19.31 22.49	19.43 19.67 19.85 19.98 20.11 20.34
0.09 0.11 0.13 0.15 0.17 0.20	12.53 13.86 14.55 14.91 15.11	10.48 12.21 14.22 16.57 19.31	0.25 0.18 0.13 0.13 0.23	12.21 14.22 16.57 19.31 22.49	19.67 19.85 19.98 20.11 20.34
0.11 0.13 0.15 0.17 0.20	13.85 14.55 14.91 15.11	12.21 14.22 16.57 19.31	0.18 0.13 0.13 0.23	14.22 16.57 19.31 22.49	19.85 19.98 20.11 20.34
0.13 0.15 0.17 0.20	14.55 14.91 15.11	14.22 16.57 19.31	0.13 0.13 0.23	16.57 19.31 22.49	19.98 20.11 20.34
0.15 0.17 0.20	14.91 15.11	16.57	0.13	19.31 22.49	20.11 20.34
0.17	15.11	19.31	0.23	22.49	20.34
0.20	10 Mill 10 Mill 10		and the second sec		
	15.24	22,49	0.46	26.20	23.80
0.23	15.33	28.20	0.85	30.53	21.65
0.27	15.40	30.53	1.50	35.56	23.15
0.31	15.45	35.56	2.50	41.43	25.05
0.36	15.49	41,43	3.96	48.27	29.61
0.42	15.52	48.27	5.73	56.23	35.34
0.49	15.55	56.23	7.48	65.51	42.82
0.58	15 58	65.51	8.69	76.32	51.51
0.67	15.60	76.32	9.21	83.91	60.72
0.78	15.64	88.91	9.36	103.58	70.08
0.91	15.69	103.58	8.24	120.67	78.32
1.06	15.78	120.67	6.77	140.58	85.09
1.24	15.89	140.58	5.20	163.77	90.29
1.44	16.02	163.77	3.79	190,80	94.08
1.60	16.17	190.80	2.64	222.20	90.72
1.90	16.35	222.26	1.74	200.90	90.45
2.28	16.55	258.95	1.04	301.00	100.00
2.65	10.70	301.00	0.50	400.45	100.00
3.09	10,36	409.45	0.00	477.01	100.00
4.10	17.45	477.01	0.00	555.71	100.00
4,19	17.40	665.71	0.00	647.41	100.00
9.00	18.00	647.41	0.00	754.23	100.00
0.07	18.09	764.03	0.00	878.67	100.00
	0.58 0.67 0.78 0.91 1.06 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24	0.58 15.58 0.67 15.60 0.78 15.54 0.91 15.54 0.91 15.59 1.24 15.89 1.44 15.89 1.44 16.02 1.66 16.17 1.95 16.35 2.28 16.55 2.65 16.76 3.09 16.99 3.60 17.22 4.19 17.49 4.88 17.78 5.69 18.09 6.63 18.43	0.58 15.58 65.51 0.67 15.60 78.32 0.78 15.54 88.91 0.91 15.69 103.58 1.06 15.78 120.67 1.24 15.59 140.58 1.44 16.02 163.77 1.66 16.17 190.80 1.95 16.35 222.28 2.28 16.55 258.95 2.65 16.76 301.68 3.60 17.22 409.45 4.19 17.49 477.01 4.88 17.78 655.71 5.69 18.09 647.41 6.63 18.43 754.23	0.58 15.58 65.51 8.69 0.67 15.80 78.32 9.31 0.78 15.54 88.91 9.36 0.91 15.64 88.91 9.36 1.06 15.78 120.67 6.77 1.24 15.89 140.58 5.20 1.44 16.02 163.77 3.79 1.64 16.17 190.80 2.64 1.95 16.35 222.28 1.74 2.28 16.55 258.95 1.64 2.65 16.76 301.66 0.50 3.60 17.22 408.45 0.00 3.60 17.22 408.45 0.00 4.19 17.49 477.01 0.00 4.88 17.78 655.71 0.00 4.88 17.78 655.71 0.00 6.63 18.43 754.23 0.00	0.58 15.58 65.51 8.69 76.32 0.67 15.60 78.32 9.21 88.91 0.78 15.84 88.91 9.36 103.58 0.91 15.69 103.58 8.24 120.67 1.06 15.78 120.67 6.77 140.58 1.24 15.89 140.58 5.20 163.77 1.44 16.02 163.77 3.79 190.80 1.64 16.17 190.80 264 222.28 1.85 16.35 222.28 1.64 301.68 2.65 16.76 301.68 0.60 409.45 3.60 17.22 408.45 0.00 409.45 3.60 17.22 408.45 0.00 409.45 3.60 17.22 408.45 0.00 409.45 3.60 17.22 408.45 0.00 409.45 3.60 17.23 305.71 0.00 647.41 3.69 <

Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

ศูนข์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโดบี จุฬาลงกรณ์มหาวิทยาลัย อาคาของบัน 2 จุฬาตกรณ์ ขอย 62 ล.พญาโท ปรุมวัน กรุงเทพฯ 10300 โทร 2188028-32, 2188101	Swame	2040211
Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-92. 2188101	Føx.	2840211
Analysis Result		

			San	nple Details						
Sample ID: Ash (HC) Sample File: CHULA Sample Path: C \SIZ Sample Notes: Wet Disp Ultra) No.400 ERS/DATA\ Analysis Syster ersing Medium sonic : no	ni : Water	bun Number: becord Number	6 512	Measur Analyse Result	ed. 26 Sep 2005 12:39Ph d: 26 Sep 2006 12:36PM Source: Analysed	1: 26 Sep 2005 12:39PM 26 Sep 2006 12:35PM N/de: Analysed			
Range Lens: 300RF Presentation: 30HD Analysis Model: Pol Modifications: None	mm ydisperse	Beam Length: 2.40 n [Particle R I. = (1.52)	Sys 5, 0.1000);	tem Details Sar Dispersant R.I. = 1.3300]	mpler: MS1	Obs Re	ouration: 15.3 % Isidual: 0.404 %			
			Res	ult Statistics						
Distribution Type: Vi Mean Diameters: D [4, 3] = 80.64 un	olume n	Concentration = 0.0 D (v. 0.1) = 0.08 ur D [3, 2] = 0.46 um	179 %Vel n	Density = 1.000 g / cut D (v. 0.5) = 74.24 um Span = 2.177E+00	o. cm	Specific S.A. = D (v, 0.9) = 161.70 u Uniformity = 6.437E-0	13.0323 sq. m / g m 1			
Cine Louistant	In %	Era Hich (um)	Linterth	Size Low (um)	in %	Size High (um)	Under%			
0.05	2.80	0.08	2.89	6.63	0.35	7.72	18.82			
0.06	3.90	0.07	6.79	7.72	0.34	9.00	19.16			
0.07	3.42	0.08	10.21	9.00	0.31	10.48	19.47			
0.08	2.33	0.09	12.64	10.48	0.25	12.21	19.72			
0.09	1.33	0.11	13.85	12.21	0.18	14.22	19.90			
0.11	0.69	0.13	14.58	14.22	0.13	16.57	20.03			
0.13	0.36	0.15	14.92	16.57	0.13	19.31	20.16			
0.15	0.21	0.17	15.13	19.31	0.23	22.49	20.30			
0.17	0.13	0.20	15.26	22.49	0.45	26.20	20.84			
0.20	0.09	0.23	15.35	26.20	0.85	30.53	21.69			
0.23	0.07	0.27	15.42	30.53	1.49	35.56	23.18			
0.27	0.05	0.31	15.47	35.56	2.50	41.43	25.67			
0.31	0.04	0.36	15.51	41.43	3.96	48.27	29.64			
0.35	0.03	0.42	15.54	48.27	5.75	56.23	35.38			
0.42	0.03	0.49	15.56	56.23	7.52	65.51	42.90			
0.49	0.03	0.58	15.59	65.51	8.73	76.32	51.63			
0.58	0.03	0.67	15.62	76.32	9.24	88.91	60.87			
0.67	0.04	0.78	15.65	88.91	9.37	103.58	70.24			
0.78	0.06	0.91	15 71	103.58	8.23	120.67	78.47			
0.91	0.08	1.06	15.79	120.67	6.75	140.58	85.21			
1.05	0.11	1.24	15.90	140.58	5.16	163.77	90.30			
1.24	0.13	1.44	16.04	163.77	3.77	190.80	94,14			
1.44	0.16	1.68	16.19	190.80	2.63	222.28	95.77			
1.68	0.18	1.95	16.38	222.28	1.76	258.95	95.5Z			
1.95	0.20	2.28	16.57	258.95	1.00	301.68	99.60			
2.28	0.21	2.65	16.78	301.68	0.40	351.46	100.00			
2.65	0.23	3.00	17.01	351.46	0.00	479.45	100.00			
3.09	0.24	3.60	17.25	409.45	0.00	477.01	100,00			
3.60	0.26	4.19	17.52	477.01	0.00	000.71	100.00			
4.19	0.29	4,88	17.81	555.71	0.00	764.23	100.00			
4.88	0.32	5.69	18.12	547.41	0.00	134.23	100.00			
6 5 5 1				78.4 774			100000000000000000000000000000000000000			

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789 Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

ศูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลอี อาคารสถาปัน 2 จุษาลงกรณ์ ขอย 62 0.ทญปร	จุฬาลงกรณ์มหาวิทยาลัย ปลุมรับ กรุงเพพฯ 10000 ให	//\$ 2168029-32, 2188101	โพรสาร 2540211
Scientific and Technological Research	Equipment Centre Chu	lalongkorn University	Fax: 2540211
Building 2-3 Chula Soi 62 Phaya-Thai Rd.	Phatumwen Bangkok 10330) Tel. 2188029-32, 2188101	

			Analy	sis Result			
Sample ID: Ash (HC Sample File: CHUL/ Sample Path: C:1512 Sample Notes: Wet Disp Ultra	1) Pan 5, 12ERSIDATA), 1Analysis System tensing Medium : asonic : no	Water	San Run Number Record Number	nple Details 5 471	Measure Analyse Result S	ed: 26 Sep 2006 10:55PM d: 26 Sep 2006 10:55PM kource: Analysed	1
Recent Lands State		Beam Lepath: 2.43	Sys	tem Details	ler MS1	Obi	ouration: 20.7 9
Presentation: 3OHD Analysis Model: Pol Modifications: None	lydisperse	[Particle R.L = (1.52)	45, 0.1000);	Dispersant R.I. = 1.3300]		Re	esidual: 0.898 %
	_		Resi	ult Statistics			
Distribution Type: V Mean Diameters: D [4, 3] = 18.05 ur	olume m	Concentration = 0.0 D (v, 0.1) = 0.06 un D [3, 2] = 0.21 um	116 % Vol	Density = 1.000 g / cub. c D (v, 0.5) = 11.71 um Span = 4.015E+00	m	Specific S.A. = D (v. 0.9) = 47.06 un Uniformity = 1.349E+0	28.3049 sq. m / n)0
Size Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	In %	Size_High (um)	Under%
0.05	6.13	0.06	6.14	6.63	1.86	7.72	43.37
0.05	8.48	0.07	14.62	7.72	2.15	9.00	40.02
0.07	7.64	0.08	22.25	10.48	2.47	12.21	50.82
0.08	2.97	0.11	30.49	12.21	3.22	14.22	54.04
0.11	1.47	0.13	31.96	14.22	3.65	16.57	57.69
0.13	0.69	0.15	32.65	16.57	4.09	19.31	61.77
0.15	0.33	0.17	32.99	19.31	4.49	22.49	66.27
0.17	0.18	0.20	33.16	22.49	4.83	26.20	71.10
0.20	0.10	0.23	33 26	26.20	5.08	30.53	70.18
0.23	0.06	0.27	33.32	30.53	4.92	41.43	84.36
0.27	0.04	0.35	33.39	41.43	4 30	48.27	\$0.66
0.36	0.02	0.42	33.41	48.27	3.47	56.23	94.13
0.42	0.02	0.49	33.42	56.23	2.55	65.51	\$5.68
0.49	0.01	0.58	33.44	65.51	1.68	76.32	\$3.36
0.58	0.02	0.67	33.45	76.32	0.96	88.91	\$9.32
0.67	0.02	0.78	33.48	88.91	0.47	103.58	99.79
0.78	0.04	0.91	33.52	103.58	0.21	120.67	100.00
0.91	0.08	1.00	33.60	140.58	0.00	163.77	100.00
1.24	0.16	1.44	33.87	163.77	0.00	190.80	100.00
1.44	0.22	1.68	34.09	190.80	0.00	222.28	100.00
1.68	0.29	1.95	34.38	222.28	0.00	258.95	100.00
1.95	0.37	2.28	34.74	258.95	0.00	301.68	100.00
2.28	0.46	2.65	35.21	301.68	0.00	351.46	100.00
2.65	0.58	3.09	30.78	301.40	0.00	477.01	100.00
3.09	0.91	4.10	37.44	477.01	0.00	555.71	100.00
0.00	1.12	4.88	38.55	555.71	0.00	647.41	100.00
4.19		5.44	39.91	647.41	0.00	754.23	100.00
4.19	1.35	0.07					100.00
4.19 4.88 5.69	1.35	6.63	41.51	764.23	0.00	878.67	100.00
4.19 4.88 5.69	1.35	6,63	41.51 Vo	754.23 plume (%)	0.00	878.67	100.00
4.19 4.88 5.69	1.35 1.60	6.63	41.51 Vo		0.00	878.67	100.00
4.19 4.88 5.69	1.35		41.51 Ve	254.23	0.00	878.67	100.00
4.19 4.88 5.69	1.35	<u>์วิ</u> ท	41.51 Ve	olume (%)	0.00	878.67	100.00 100.00 90 80 70
4.19 4.88 5.69	1.35	มั ว ิท	41.51 Ve	olume (%)		178.67	100.00 100.00 90 80 70 60
4.19 4.88 5.69	135	1 <u>0</u> 1	41.51 V	olume (%)	J	15	100.00 100.00 90 80 70 60 50
4.19 4.80 5.69	135	ม้วิท กรถ	41.51 V V Q	19823		กร ยาล้	100 00 100 00 90 80 70 60 50 50 40 30
4.19 4.80 5.69	135	์ เวิท กระ	41.51 V V V V	19973		กร ยาล	100 00 100 00 90 80 70 60 50 50 40 30 20
4.19 4.80 5.69	135	มัจท กรร		15982		กร ยาล	100 00 100 00 90 80 70 60 50 40 30 20 10
4.19 4.88 5.99	135	ม้จิท กรถ		100		กร ยาล	100 00 100 00 90 80 70 60 50 40 30 20 10

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892458 Fax:+[44] (0)1684-892789 Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

สูนข์เคงื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี	จุฬาลงกรณ์มหาวิทยาดัย	Sec. and	1640211*
อำคารสถาบัน 2 🧃 ฟาตสกรณ์ ช่วย 62 ก.พญาไท	ปพุษรับ กรุงเพพฯ 10330 เพร 2166029-32, 2188101	1,011,001,11	2.7401111
Scientific and Technological Research E Building 2-3 Chula Soi 62 Phaya-Thai Rd.	Phatumwan Bangkok 10330 Tel. 2188029-32, 2185101	Fax.	2540211

Sample ID: Ash (HC Sample File: CHULA Sample Path: C \SI2 Sample Notes: Wet Disp Ultra	I) Pan ERS/DATA\ Analysis Syste ersing Medium sonic : no	m : Water	Anal San Run Number: Record Number	ysis Result nple Details 7 473	Measur Analyse Result S	ed: 26 Sep 2006 10:55P1 d: 26 Sep 2006 10:55PN Source: Analysed	и ,	
Range Lens: 300RF mm Presentation: 30HD Analysis Model: Polydisperse Wodfications: None		Beam Length: 2.40 r [Particle R.I. = (1.52)	System Details Beam Length: 2.40 mm Sampler: MS1 [Particle R.I. = (1.5205, 0.1000); Dispersant R.I. = 1.3300]				curation: 20.2 9 esidual: 0.797 9	
			Poe	ult Statistics				
Distribution Type: V Mean Diameters: D [4, 3] = 18.22 un	olume r	Concentration = 0.0 D (v. 0.1) = 0.08 ur D [3, 2] = 0.22 um	Nesult Statistics oncentration = 0.0114 %Vol Density = 1.000 g / (y, 0.1) = 0.05 um D (y, 0.5) = 11.97 ((3, 2) = 0.22 um (3, 2) = 0.22 um Span = 3.942 ± +00		cub. cm	cm Specific S.A. = 27.5239 sq. m D (v, 0.6) = 47.25 um Uniformity = 1.323E+00		
Size Low (um)	In %	Size High (um)	Under%	Size Low (um)	In %	Size_High (um)	Under%	
0.05	5.86	0.08	5.86	6.63	1.88	7.72	42.87	
0.06	8.18	0.07	14.04	7.72	2.17	9.00	45.04	
0.07	7.46	0.08	21.50	9.00	2.50	10.45	47.54	
80.0	5.23	0.09	26.73	10.48	2.85	12.21	50.39	
0.09	3.01	0.11	29.74	12.21	3.26	14.22	53.65	
0.11	1.52	0.13	31.26	14.22	3.69	16.57	57.34	
0.13	0.73	0.15	31.99	16.57	4.13	19.31	01.47	
0.15	0.36	0.17	32.34	19.31	4.54	22.49	00.01	
0.17	0.19	0.20	32.53	22.49	4,87	26.20	76.55	
0.20	0.11	0.23	32.63	20.20	5.12	30.00	81.29	
0.23	0.06	0.27	32.70	30.53	0.20	61.63	86.24	
0.27	0.04	0.31	32.74	35.56	4.33	48.27	90.56	
0.31	0.03	0.30	32.75	48.97	3.49	56.23	94.05	
0.36	0.02	0.42	32.83	66.00	2.57	05.51	96.62	
0.42	0.02	0.49	12.63	00.23	1.70	76.32	98.32	
0.49	0.02	0.58	32.82	76.32	0.98	88.91	99.30	
0.00	0.02	0.78	32.88	86.91	0.49	103.58	99.79	
0.67	0.02	0.91	32.60	103.58	0.21	120.67	100.00	
0.78	0,00	1.05	32.90	120.67	0.00	140.58	100.00	
1.05	0.12	1.24	33.10	140.58	0.00	163.77	100.00	
1.24	0.16	144	33.26	163.77	0.00	190.80	100.00	
1.44	0.22	1.68	33.48	190.80	0.00	222.28	100.00	
1.68	0.29	1.95	33.78	222.28	0.00	258.95	100.00	
1.95	0.37	2.28	34.15	258.95	0.00	301.68	100.00	
2.28	0.47	2.85	34.62	301.68	0.00	351.45	100.00	
2.65	0.59	3.09	35.21	351.46	0.00	409.45	100.00	
3.09	0.74	3.60	35.95	409.45	0.00	477.01	100.00	
3.60	0.92	4.19	36.88	477.01	0.00	\$55.71	100.00	
4.19	1.13	4.88	38.01	555.71	0.00	647.41	100.00	
4.88	1.36	5.69	39.37	647.41	0.00	764.23	100.00	
5.69	1.61	6.63	40.99	754.23	0.00	8/8.6/	100.00	
10			V	olume (%)			100	
							90	
							80	

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

p. 11 26 Sep 06 10:57

ศูนย์เครื่องมือวิจัยวิ อาคาสถาบัน 2 - จุ	วิทยาศาสตร์และ ฟาลเกรณ์ ชะย 62	เทคโนโลซี อ.พญาไท	- จุฬาตง: ปหุมวัน	กรณ์มหาวิทย กรุงเพพฯ 1033	าพัย 0 โทร	2166029-32	2188101	โหลสาร	2546211
Scientific and Te Building 2-3 Chul	echnological F la Soi 62 Phay	a-Thai Rd.	Equipment Phatumwa	Centre an Bangkok	Chula 10330	Tel. 21880	University (29-32, 2188101	Fax.	2846211

			Anal	ysis Result			
Sample ID: Ash (H0 Sample File: CHUL Sample Path: C160 Sample Notes: We Dis Utr	CI) Pan A ZERS/DATA) t Analysis Syster persing Medium asonic : no	n : Water	San Run Number: Record Number	nple Details 9 7: 474	Measu Analys Result	red: 26 Sep 2006 10:55P ed: 26 Sep 2006 10:55P Source: Analysed	M A
Range Lens: 300RF mm Bee Presentation: 30HD [Pa Analysis Model: Polydispense Modifications: None		Beam Longth: 2.40 n [Particle R.I. = (1.52)	System Details Sampler: MS1 [Particle R.I. = (1.5295, 0.1000); Dispersant R.I. = 1.3300]				scuration: 20.2 esidual: 0.816
Distribution Type: 3	Volume	Concentration = 0.0	Resi	ult Statistics Density = 1.000 g / cu	b. om	Specific S.A. =	27.7173 sq. m
Mean Diameters: D [4, 3] = 18.11 u	m	D (v. 0.1) = 0.06 um D [3, 2] = 0.22 um		D (v, 0.5) = 11.87 um Span = 3.956E+00		D (v, 0.9) = 47.02 um Uniformity = 1.325E+00	
Size Low(um)	In %	Size Hich (um)	Under%	Size Low (um)	In %	Size_High (um)	Under%
0.05	5.89	0.06	5.89	6.63	1.89	7.72	43.02
0.06	8.21	0.07	14.10	7.72	2.18	9.00	45.20
0.07	7.48	0.08	21.58	9.00	2.50	10.48	47.70
0.08	5.24	0.09	26.83	10.48	2.86	12.21	50.56
0.09	3,01	0,11	29.84	12.21	3.26	14.22	53.62
0.11	1.52	0.13	31.35	14.22	3,69	16.57	57.51
0.13	0.73	0.15	32.08	16.57	4.13	19.31	01.04
0.15	0.36	0.17	32.44	19.31	4.54	22.99	71.04
0.17	0.19	0.20	32.63	22.49	4.07	20.20	76.56
0.20	0.11	0.23	32.73	20.20	5.12	36.55	81.44
0.23	0.07	0.27	32.00	30.55	4.04	61.63	86.38
0.27	0.04	0.31	32.04	30.90	4.30	48.27	90.58
0.31	0.03	0.55	32.07	48.92	3.47	56.23	94.15
0.20	0.02	0.42	32.05	66.23	2.55	65.51	96.70
0.42	0.02	0.50	12.03	85.51	1.67	76.32	98.37
0.49	0.02	0.55	32.04	76.33	0.96	88.91	99.33
0.00	0.02	0.07	22.07	88.91	0.47	103.58	99.80
0.78	0.02	0.70	33.01	103.58	0.20	120.67	100.00
0.61	0.03	1.05	33.09	120.67	0.00	140.58	100.00
1.08	0.12	1.24	33.21	140.58	0.00	163.77	100.00
1.24	0.17	1.44	33.38	163.77	0.00	190.80	100.00
1.44	0.22	1.68	33.60	190.00	0.00	222.28	100.00
1.68	0.30	1.95	33.90	222.28	0.00	258.95	100.00
1.95	0.37	2.28	34.27	258.95	0.00	301.68	100.00
2.28	0.47	2.65	34.74	301.68	0.00	351.46	100.00
2.65	0.59	3.09	35.34	351.46	0.00	409.45	100.00
3.09	0.75	3.60	36.09	409.45	0.00	477.01	100.00
3.60	0.93	4.19	37.01	477.01	0.00	555.71	100.00
4.19	1.13	4.88	38.15	555.71	0.00	647.41	100.00
4.88	1.37	5.69	39.51	647.41	0.00	754.23	100.00
5.69	1.62	6.63	41.13	754.23	0.00	878.67	100.00
10			V	olume (%)			10
10							
-							90
1. 1.	A 6						8
	4.1.6						

70 60 50 40 30 20 10 0 0 100.0 1000.0 0.1 1.0 10.0 Particle Diameter (µm.) Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89 Malvern Instruments Ltd.

Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

p. 12 26 Sep 06 10:57

สูนอัเครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลบี จุฬาลงกรณ์มหาวิทยาลัย อาศาสตรปัย 2 จุฬาลงกรณ์ ขอย 62 ณพญาโท ปนุษรัน กรุงเทพฯ 15050 โทศ 2188629-32, 2188101 โทรตาร 2545211 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Sol 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Fax. 2540211

Sample ID: Ash (H2			Analys	sis result			
Sample File: CHUL Sample Path: C /Si2 Sample Notes: Wet Disp Ultr	ISO4) No.60 A ZERS/DATA) LAnalysis System persing Medium : asonic : no	Water	Samp Run Number: 3 Record Number:	Ne Details	Measure Analyse Result S	d: 26 Sep 2005 15:36P d: 26 Sep 2006 15:37P jource: Analysed	M
			_				
Range Lens: 300RF Presentation: 30HD Analysis Model: Po Modifications: None	F mm Dydisperse	Beam Length: 2.40 r [Particle R.I. = (1.52)	Syste 95, 0.1000); D	em Details Se ispersant R.I. = 1.3300)	mpior: MS1	Ob R	souration: 12.6 souration: 12.6 souration: 12.6 souration
			Result	t Statistics			
Distribution Type: V Mean Diameters: D [4, 3] = 404.01 u	/olume am	Concentration = 0.0 D (v, 0.1) = 174.76 D [3, 2] = 2.18 um	9557 %Vol um	Density = 1.000 g / out D (v, 0.5) = 401.75 um Span = 1.187E+00	a, cm	Specific S.A. = D (v, 0.9) = 651.56 c Uniformity = 3.722E-0	2.7546 sq. m / um J1
Size_Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	in %	Size_High (um)	Under%
0.05	0.33	0.06	0.33	6.63	0.06	7.72	4.56
0.06	0.65	0.07	0.88	9.00	0.07	10.48	4.69
0.08	0.63	0.09	2.16	10.48	0.05	12.21	4.76
0.09	0.54	0.11	2.69	12.21	0.05	14.22	4.81
0.11	0.41	0.13	3.11	14.22	0.05	16.57	4.86
0.13	0.30	0.15	3.40	16.57	0.05	19.31	4.91
0.15	0.21	0.17	3.51	22.40	0.08	26.20	5.05
0.20	0.09	0.23	3.84	26.20	0.12	30.53	5.18
0.23	0.06	0.27	3.90	30.53	0.17	35.58	5.35
0.27	0.04	0.31	3.94	35.56	0.22	41.43	5.57
0.31	0.03	0.36	3.98	41.43	0.27	48.27	0.04
0.26	0.03	0.42	4.00	40.27	0.28	85.51	6.41
0.49	0.02	0.58	4.04	65.51	0.23	76.32	6.64
0.58	0.01	0.67	4.06	76.32	0.18	88.91	6.82
0.67	0.01	0.78	4.07	88.91	0.20	103.58	7.02
0.78	0.01	0.91	4.09	103.58	0.34	120.67	7.35
0.91	0.02	1.06	4.10	140.58	1.22	163.77	9.24
1.24	0.02	1.44	4.14	163 77	2.08	190.80	11.32
1.44	0.02	1.68	4.17	190.80	3.41	222.28	14.73
1.68	0.03	1.95	4.19	222.28	5.38	258.95	20.11
	0.03	2.28	4.22	200.90	10.69	351.45	38.76
1.95	C (C)	3.09	4.28	351.46	12.95	409.45	51.71
1.95 2.28 2.65	0.03		4.31	409.45	14.41	477.01	66.12
1.95 2.28 2.65 3.09	0.03	3.60			13.12	555.71	79.24
1.95 2.28 2.65 3.09 3.60	0.03 0.03 0.04	3.60 4.19	4.35	477.01		647.44	80.04
1.95 2.28 2.65 3.09 3.60 4.19	0.03 0.03 0.04 0.04	3.60 4.19 4.88	4.35	477.01 555.71	10.40	647,41 754,23	83.64
195 228 265 3.09 3.60 4.19 4.88 5.60	0.03 0.03 0.03 0.04 0.04 0.05 0.05	3.60 4.19 4.88 5.69 6.63	4.35 4.39 4.44 4.50	6477.01 555.71 647.41 754.23	10.40 6.96 3.39	647.41 754.23 878.67	89.64 96.61 100.00
195 2.28 2.65 3.09 3.60 4.19 4.88 5.69	0.03 0.03 0.04 0.04 0.05 0.06	3.60 4.19 4.88 5.69 6.63	4.35 4.39 4.44 4.50 Vol	477.01 555.71 647.41 754.23 ume (%)	10.40 6.96 3.39	647.41 754.23 878.67	80.64 96.61 100.00
195 228 265 3.09 3.60 4.19 4.88 5.60	0.03 0.03 0.04 0.04 0.05 0.05	3.80 4.19 4.88 5.89 6.83	4.35 4.39 4.44 4.50 Vol	477.01 555.71 647.41 754.23 ume (%)	10.40 6.96 3.39	647.41 754.23 878.67	89.64 96.61 100.00
195 228 265 3.09 3.60 4.19 4.88 5.69 20	0.03 0.03 0.04 0.04 0.04 0.05 0.08	3.80 4.19 4.88 5.89 6.63	4.35 4.29 4.44 4.50 Vol	477.01 555.71 647.41 754.23 ume (%)	10.40 6.96 3.39	647.41 754.23 878.67	83.64 156.61 100.00 100 90
195 228 265 309 360 419 488 560 20	0.03 0.03 0.04 0.04 0.05 0.08	3.80 4.19 4.88 5.69 6.63	4.35 4.29 4.44 4.50 Vol	477.01 556.71 647.41 754.23 ume (%)	10.40 6.96 3.39	647.41 754.23 878.67	83.64 98.61 100.00 10 90 80
1.95 2.28 2.65 3.09 3.60 4.19 4.88 5.60 20	0.03 0.03 0.04 0.04 0.05 0.06	3.80 4.19 4.88 5.69 6.63	4.35 4.39 4.44 4.50 Vol	477,01 555,71 647,41 754,23 ume (%)	10.43	647.41 754.23 878.67	89.64 56.61 100.00 90 80 70
195 228 265 309 360 419 488 560 20	0.03 0.03 0.04 0.04 0.05 0.08	3.80 4.19 4.88 5.69 6.63	4.35 4.39 4.44 4.50 Vol	477.01 956.71 647.41 754.23 ume (%)	10.43	647.41 754.23 878.67	89.64 56.61 100.00 90 80 70 60 50
195 228 265 309 360 419 488 560 20	0.03 0.03 0.04 0.05 0.08	3.80 4.19 4.88 5.69 6.63	4.35 4.39 4.44 4.50 Vol	477.01 956.71 647.41 754.23 ume (%)		647.41 754.23 878.67	89.64 56.61 100.00 90 80 70 60 50 50 40
195 228 265 309 360 419 488 560 20		380 4.19 4.88 5.69 6.63	4.35 4.39 4.44 4.50 Vol	477.01 955.71 647.41 794.23 ume (%)		647.41 754.23 878.67	89.64 56.61 100.00 90 80 70 60 50 50 40 30
195 223 265 309 360 419 4.85 569 20		380 4.19 4.88 5.69 6.63	4.35 4.39 4.44 4.50 Vol	477.01 955.71 647.41 794.23 ume (%)			89.64 56.61 100.00 80 70 60 50 50 20 20
195 228 265 309 360 419 488 560 20		380 419 488 569 683	4.35 4.39 4.44 4.50 Vol	477.01 955.71 647.41 794.23 ume (%)		647.41 754.23 878.67	89.64 56.61 100.00 80 70 60 50 50 20 10 20
195 228 265 309 360 419 488 569 20 20 10		380 419 488 569 663	4.35 4.39 4.44 4.50 Vol	477.01 555.71 647.41 754.23 ume (%)	10.43 6.96 3.39		83.64 55.61 100 00 10 90 80 70 60 50 40 30 20 10 0 1000.0

Malvern Instruments Ltd. Malvern, UK Tet:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789 Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

ศูนท์เครื่องมีขวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกระน์มหาวิทยาลัย อำเภาสถาปัน 2 จุฬาลงกรณ์ ขอย 62 a กลุ่งโท ปทุ่มวัน กรุงเทคา 10300 โทร 2168028-32, 2168161 (พรสาร 2540211) Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Sai 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Fax. 2540211

			Anal	ysis Result				
Sample ID: Ash () Sample File: CHU Sample Path: C-V Sample Notes: W D U	H2SO4) No.80 LA SIZERS\DATA\ let Analysis Syste spersing Medium trasonic : no	m : Winter	San Run Number: Record Number	nple Details 6 2 553	Measure Analyse Result S	td: 26 Sep 2036 15:37Pt d: 26 Sep 2005 15:37Ph iource: Analysed	u A	
Range Lens: 3007 Presentation: 309 Analysis Model: 7 Modifications: Nor	RFmm ID Polydisperse	Beam Length: 2.40 r [Particle R.I. = (1.52)	5ys 95, 0,1000);	Disporsant R I. = 1.3300]	npler: MS1	Obi Re	souration: 13.1 % tesidual: 1.554 %	
			Res	ult Statistics				
Distribution Type: Mean Diameters: D [4, 3] = 402.04	Volume um	Concentration = 0.0 D (v, 0.1) = 176.43 D [3, 2] = 2.23 um	585 %Vel µm	Density = 1.000 g / cub D (v. 0.5) = 399.29 um Span = 1.185E+00), em	Specific S.A. = D (v. 0.9) = 648.59 u Uniformity = 3.729E-0	2.5870 sq. m /g m 1	
Size Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	in %	Size_High (um)	Under%	
0.05	0.30	0.08	0.30	6.63	0.06	7.72	4.52	
0.06	0.62	0.07	0.82	7.72	0.07	9.00	4.59	
0.07	0.62	0.08	2.06	10.48	0.07	12.21	4.73	
0.09	0,54	0.11	2.60	12.21	0.06	14.22	4.79	
0.11	0.42	0.13	3.03	14.22	0.05	16.57	4.84	
0.13	0.31	0.15	3.34	16.57	0.05	19.31	4.89	
0.15	0.21	0.17	3.55	22.49	0.08	26.20	5.02	
0.20	0.09	0.23	3.79	26.20	0.11	30.53	5.13	
0.23	0.05	0.27	3.85	30.53	0.16	35.56	5.29	
0.27	0.04	0.31	3.89	35.56	0.20	41.43	5.49	
0.35	0.03	0.42	3.95	48.27	0.26	56.23	6.00	
0.42	0.02	0.49	3.97	56.23	0.25	85.51	6.24	
0.49	0.02	0.58	3.99	65.51	0.21	76.32	6.45	
0.58	0.02	0.67	4.00	76.32	0.17	103.58	6.62	
0.78	0.02	0.91	4.03	103.58	0.35	120.67	7.15	
0.91	0.02	1.06	4.05	120.67	0.70	140.58	7.85	
1.05	0.02	1.24	4.07	140.58	1.29	163.77	9.14	
1.24	0.02	1.44	4.09	163.77	2.21	190,80	11.35	
1.68	0.02	1.95	4,14	222.28	5.58	258.95	20.53	
1.95	0.03	2.28	4.17	258.95	8.10	301.68	28.63	
2.28	0.03	2.65	4.20	301.68	10.72	351.46	39.35	
2.65	0.03	3.00	4.23	351.46	12.91	477.01	65.60	
3.60	0.04	4.19	4.31	477.01	13.04	555.71	79.64	
4.19	0.04	4.88	4.35	555.71	10.26	647.41	89.90	
4.88	0.05	5.69	4.40	647.41	6.79	754.23	100.00	
0.09	0.00	0.03	4,40	104.25	0.01	010/01		
20			V	olume (%)			100	
-							90	
10							80	
E							70	
1 9							60	
10							50	
1410						ยกล	40	
1							20	
-							10	
0						/	0	
0.01	0	.1	1.0	10.0	10	J.U 1	000.0	

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789 Particle Diameter (µm.) Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

			Sa	mple Details				
Sample ID: Ash (H Sample File: CHUL Sample Path: C:(S Sample Notes: We Dis Ultr	2SO4) No.60 ,A IZERSIDATA) It Analysis System persing Medium rasonic : no	Water	tun Number: Record Numb	9 m: 566	Measur Analyse Result	ed: 25 Sep 2006 15:37PM id: 25 Sep 2006 15:37PM Source: Analysed		
	E mm	Beam Leasth: 240 a	Sy	stem Details	mpler: MS1	Obs	curation: 12.6 %	
resentation: 30H Instysis Model: Pr Indifications: Non-	P mm D olydisperse e	[Particle R.I. = (1.52)	5, 0.1000):	Dispersant R.I. = 1.3300]		Re	sidual: 1.187 %	
			Re	ult Statistics				
Distribution Type: Volume Mean Diamotens: D [4, 3] = 398.17 um		Concentration = 0.0 D (v, 0.1) = 183.97 v D [3, 2] = 2.05 um	528 %\Vol	Density = 1.000 g / ou D (v, 0.5) = 396.09 un Span = 1.222E+00	b. cm	Specific S.A. = 2.9287 sq. m D (v, 0.9) = 647.95 um Uniformity = 3.806E-01		
Size Low (um)	in %	Size High (um)	Under%	Size_Low (um)	In %	Size_High (um)	Under%	
0.05	0.36	0.06	0.38	6.63	0.08	7.72	4.85	
0.06	0.60	0.07	0.96	9.00	0.05	10.48	5.02	
0.07	0.67	0.09	2 33	10.48	0.08	12.21	5.10	
0.09	0.56	0.11	2 89	12.21	0.07	14.22	5.17	
0.11	0.42	0.13	3.31	14.22	0.06	16.57	5.24	
0.13	0.30	0.15	3.61	16.57	0.06	19.31	5.30	
0.15	0.20	0.17	3.82	19.31	0.07	22.49	5.36	
0.17	0.13	0.20	3.95	22.49	0.09	26.20	5.45	
0.20	0.09	0.23	4.04	26.20	0.12	30.53	5.57	
0.23	0.05	0.27	4.09	30.53	0.17	35.56	5.74	
0.27	0.04	0.31	4.14	35.56	0.22	48.97	6.95	
0.31	0.03	0.36	4.17	41.43	0.27	40.27 56.23	6.52	
0.36	0.03	0.42	4,19	66.03	0.28	65.51	6.80	
0.42	0.02	0.58	4.24	65.51	0.24	76.32	7.04	
0.58	0.02	0.67	4.25	76.32	0.20	88.91	7.25	
0.67	0.02	0.78	4.27	88.91	0.23	103.58	7.48	
0.78	0.02	0.91	4.28	103.58	0.40	120.67	7.88	
0.91	0.02	1.06	4.31	120.67	0.76	140.58	8.64	
1.05	0.02	1.24	4.33	140.58	1.35	163.77	9.99	
1.24	0.03	1.44	4.36	163.77	2.24	190.80	12.20	
1.44	0.03	1.68	4.38	190.00	5.50	222.20	21.41	
1.68	0.03	1.95	4.42	244.40	8.07	301.68	29.48	
2.28	0.03	2.65	4.48	301.68	10.67	351.46	40.15	
2.85	0.04	3.09	4.52	351.46	12.79	409.45	52.94	
3.09	0.04	3.60	4.56	409.45	14.15	477.01	67.09	
3.60	0.04	4.19	4.60	477.01	12.79	\$55.71	79.88	
4.19	0.05	4.88	4.65	555.71	10.07	647.41	89.95	
4.88	0.06	5.69	4.71	647.41	6.74	154.23 878.67	100.00	
5.08	0.07	0.00	4.70					
20		0.00	1	Volume (%)				

Lynamic 2540211

ศูนย์เครื่องมือวิจัยวิทยาสาสตร์และเทคโนโลยี จุฬาลงกระน์มหาริทยาลัย ขาดระสถาปัน 2 จุฬาละกรณ์ รรย 62 ล.พญาโท ปทุมวัน กรุงเทพา 10330 โทร 2166029-32, 2166101 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2168029-32, 2168101 Fax. 2540211

			Ana	lysis Result				
Sample ID: Ash (H Sample File: CHUI Sample Path: C \S Sample Notes: Wi Dis UH	(2SO4) No.120 LA IZERS/DATA\ et Analysis Syster spersing Medium trasonic : no	Sample Details Run Number: 3 Record Number: 540 Water Water						
Range Lens: 300R Presentation: 30H Analysis Model: P Modifications: Non	UF mm D olydisperse	Beam Length: 2.40 n [Particle R.I. = (1.525	Sy nm i5, 0.1000);	rstern Details Ser Dispersant R.I. = 1.3300]	mpler: MS1	Ob	scuration: 16.2 osidual: 0.381	
modifications. Hor		-	Pa	ault Statistics				
Distribution Type: Mean Diameters: D [4, 3] = 211.43	Volume um	Concentration = 0.0 D (v, 0.1) = 0.24 ur D [3, 2] = 0.75 um	294 %Vol	Density = 1.000 g / cut D (v, 0.5) = 214.38 um Span = 1.761E+00	b. cm	Specific S.A. = 8.0239 sq D (v, 0.9) = 377.80 um Uniformity = 4.765E-01		
Size Low (um)	in %	Size High (um)	Under%	Size_Low (um)	in %	Size_High (um)	Under%	
0.05	1.46	0.06	1.45	6.63	0.30	7.72	12.61	
0.06	2.14	0.07	3.60	7.72	0.29	9.00	12.90	
0.07	2.11	0.08	5.71	9.00	0.28	10.45	13.18	
0.06	1.00	0.09	8.40	12.21	0.27	14.22	13,72	
0.11	0.67	0.13	9.12	14.22	0.29	16.57	14.01	
0.13	0.39	0.15	9.51	16.57	0.31	19.31	14.32	
0.15	0.23	0.17	9,74	19.31	0.34	22.49	14.68	
0.17	0.14	0.20	9.89	22.49	0.35	26.20	15.01	
0.20	0.09	0.23	9.98	26.20	0.35	30.53	15.55	
0.20	0.06	0.31	10.09	35.55	0.24	41.43	15.91	
0.31	0.03	0.36	10.12	41.43	0.17	48.27	15.08	
0.36	0.03	0.42	10.15	48.27	0.15	58.23	16.23	
0.42	0.02	0.49	10.17	56.23	0.24	65.51	16.48	
0.49	0.02	0.58	10.19	65.51	0.47	76.32	15.94	
0.58	0.02	0.67	10.21	76.32	0.86	00.91	17.80	
0.07	0.02	0.01	10.24	103.58	2.59	120.67	21.90	
0.91	0.05	1.06	10.32	120.67	4.30	140.58	26.20	
1.06	0.06	1.24	10.38	140.58	6.58	163.77	32.78	
1.24	0.07	1.44	10.46	163.77	9.01	190.80	41.79	
1.44	0.08	1.68	10.54	190,80	10.96	222.28	52.76	
1.68	0.10	1.90	10.64	222.28	12.29	200.90	36.57	
2.28	0.14	2.65	10.90	301.68	9.69	351.46	86.25	
2.65	0.16	3.09	11.06	351.46	7.21	409.45	93.47	
3.09	0.19	3.60	11.25	409.45	4.58	477.01	98.05	
3.60	0.22	4.19	11.48	477.01	1.95	555.71	100.00	
4.19	0.26	4.88	11.73	555.71	0.00	647.41	100.00	
5.69	0.30	6.63	12.02	754.23	0.00	878.67	100.00	
20			1	/olume (%)			10	
-							90	
1 20							80	
‡ (P)							70	
Ξģ							60	
10							50	
หาา						7/17\ล	40	
1						101	30	
t							20	

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

0.1

0.01

Particle Diameter (µm.) Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

1.0

10.0

100.0

10

0

1000.0

สูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย ขาดาทสถาบัน 2 จุฬาลงกรณ์ รอย 62 กระถานีก ปฏะวัน กรุงกระ 16300 โกร 2188629-32, 2188101 โทรสาร 2540211 Scientific and Technological Research Equipment Centre Chulaiongkorn University Building 2-3 Chula Soi 62 Phaya-Thei Rd. Phatumwan Bangkok 10330 Tel. 21888029-32, 2188101 Fax. 2540211 Deemoy 2540211*

			Analy	sis Result			
Sample ID: Ash (H2 Sample File: CHULA Sample Path: C1St2 Sample Notes: Wet Disp Ultra	SC4) No. 120 ERSIDATA\ Analysis System ersing Medium : isonic : no	Water	Sam Run Number 6 Record Number	pie Details 543	Measure Analysed Result S	d: 26 Sep 2006 15:30 I: 26 Sep 2006 15:30 Durce: Analysed	PM PM
Range Lens: 300RF Presentation: 30HD Analysis Model: Pol Modifications: None	mm ydisperse	Beam Length: 2.40 r [Particle R.I. = (1.52)	Syst 16, 0.1000); 0	em Details Sa Dispersant R.I. = 1.3300]	mpler: MS1	c	bscuration: 16.5 Residual: 0.436
			Resul	It Statistics			
Distribution Type: W Jean Diameters: D [4, 3] = 210.27 ur	olume m	Concentration = 0.0 D (v, 0.1) = 0.15 ur D [3, 2] = 0.71 um	288 % Vol	Density = 1.000 g / cu D (v, 0.5) = 213.89 um Span = 1.770E+00	b. cm	Specific S.A. D (v. 0.9) = 378.82 Uniformity = 4.853E-	= 8.4058 sq. m. um -01
Sibe_Low (um) 0.05 0.05 0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.20 0.23 0.27 0.31 0.36 0.42 0.49 0.58 0.5	In % 1.55 2.27 2.22 1.72 1.13 0.68 0.39 0.22 0.13 0.08 0.04 0.03 0.02 0.03 0.04 0.09 0.02 0.03 0.11 0.13 0.15 0.23 0.29 0.29 0.23 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.31 0.25	Size High (um) 0.06 0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.20 0.23 0.27 0.27 0.31 0.36 0.42 0.49 0.58 0.67 0.78 0.91 1.06 1.24 1.44 1.65 1.25 2.28 2.65 3.09 3.60 4.19 4.85 5.69 6.63	Under% 1.55 3.82 6.04 7.77 8.90 9.58 9.56 10.19 10.32 10.40 10.40 10.40 10.40 10.40 10.40 10.55 10.57 10.57 10.55 10.57 10.55 10.57 10.63 10.63 10.63 10.85 10.97 11.08 11.21 11.36 11.53 11.73 11.96 12.22 12.51 12.82	Size Low (orm) 6.63 7.72 9,00 10.43 12.21 14.22 18.57 19.31 22.49 28.20 30.53 35.56 41.43 48.27 56.23 65.51 76.32 88.91 103.58 129.67 140.58 163.77 190.80 222.28 258.95 301.66 351.46 409.45 477.01 555.71 647.41 784.23	h1 % 0.31 0.31 0.31 0.31 0.31 0.33 0.35 0.35 0.36 0.37 0.38 0.36 0.31 0.23 0.16 0.15 0.23 0.46 0.86 1.53 2.61 4.27 6.44 8.76 10.70 12.11 11.44 9.69 7.25 4.63 2.01 0.00 0.00	Size High (um) 7,72 9,00 10,48 12,21 14,22 16,57 19,31 22,49 26,20 30,53 35,56 41,43 48,27 56,623 65,51 76,32 88,91 103,58 120,67 140,58 133,77 190,80 222,28 28 351,46 351,46 477,01 555,71 555,71 764,741 74,23 876,67	Underse 13.13 13.44 13.75 14.08 14.37 14.70 15.06 15.43 15.89 16.16 18.47 15.70 16.86 17.01 17.25 17.71 18.57 22.70 28.97 33.41 42.17 52.87 64.98 78.42 86.11 93.36 97.99 100.00 100.00 100.00
20		์กิท	219	ารัญ	210		10 90 80 70
9							60
997							1014
Par II							20
-	\sim						10
0 0.01	0.	1	1.0 Particle I	10.0 Diameter (µm.)	100	0.0	1000.0
nstruments Ltd. UK			Mastersizer S Serial Nur	S long bed Ver. 2.19 mber: 32734-89			26 S

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

p. 30 26 Sep 06 15:31

ศูนย์เครื่องมือวิจั	โบวิทยาศาสตร์และเทคโนโลยี	จุฬาลงกรณ์มหาวิทร	ราพัย	Inewsy 2540211*
อาการสถาบัน 2	จุษาละกรณ์ รอย 62 – อ.ทญาไร	ปลุมรับ กรุงเทพฯ 103	30 โทร 2168029-32, 2188101	
Scientific and	Technological Research	Equipment Centre	Chulalongkorn University	Fax. 2540211
Building 2-3 C	hula Soi 62 Phaya-Thei Rd.	Phatumwan Bangkok	10330 Tel. 2188029-32, 2188101	

			Anal	ysis Result			
Sample ID: Ash (H Sample File: CHU Sample Path: C/S Sample Notes: W Di Uit	(2SO4) No.120 LA (ZERSIDATA) et Analysis System spensing Medium : trasonic : no	n Water	Sa Run Number: Record Numbe	mple Details 7 sr: \$44	Measure Analyse: Result S	d: 26 Sep 2006 15:30 f: 26 Sep 2005 15:30 f: 26 Sep 2005 15:30 ource: Analysed	PM PM
			Sv	stem Details			
Range Lens: 300R Presentation: 30H Analysis Model: P Modifications: Non	tFmm ID lolydisperse ie	Beam Length: 2.40 m [Particle R.I. = (1.52)	rm 95. 0.1000);	Dispersant R I. = 1.3300)	pier: MS1	0	bsouration: 15.9 % Residual: 0.423 %
			Res	ult Statistics			
Distribution Type: Mean Diameters: D [4, 3] = 210.61	Volume	Concentration = 0.0 D (v, 0.1) = 0.14 ur D [3, 2] = 0.71 um	296 %Vol n	Density = 1.000 g / cub. D (v, 0.5) = 214.30 um Span = 1.766E+00	cm	Specific S.A. D (v. 0.9) = 378.59 Uniformity = 4.819E-	= 8.4919 sq.m /g um -01
Size_Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	In %	Size_High (um)	Under%
0.05	1.60	0.06	1.60	6.63	0.31	7.72	13.13
0.06	2.32	0.07	3.92	7.72	0.31	10.48	13.75
0.05	1.72	0.09	7.88	10.48	0.31	12.21	14.07
0.09	1,11	0.11	9.00	12.21	0.32	14.22	14.39
0.11	0.65	0.13	9.65	14.22	0.34	16.57	14.73
0.13	0.37	0.15	10.03	16.57	0.37	22.49	15.48
0.15	0.21	0.20	10.24	22.49	0.38	26.20	15.87
0.20	0.08	0.23	10.45	26.20	0.36	30.53	16.22
0.23	0.05	0.27	10.50	30.53	0.30	35.56	16.53
0.27	0.04	0.31	10.54	35.56	0.23	41.43	10.75
0.35	0.02	0.42	10.59	48.27	0.13	56.23	17.04
0.42	0.02	0.49	10.61	\$6.23	0.21	65.51	17.25
0.49	0.02	0.58	10.63	65.51	0.42	76.32	17.66
0.58	0.02	0.67	10.66	76.32	0.79	103.58	10.40
0.67	0.04	0.91	10.55	103.58	2.47	120.67	22.34
0.91	0.06	1.06	10.78	120.67	4.14	140.58	26.48
1.06	0.07	1.24	10.85	140.58	6.42	163.77	32.90
1.24	0.08	1.44	10.93	163.77	8.93	190.00	41.02
1.68	0.11	1.95	11.14	222.28	12.29	258.95	65.08
1.95	0.13	2.28	11.20	258.95	11.46	301.68	75.54
2.28	0.14	2.65	11.41	301.68	9.63	351.46	85.17
2.65	0.17	3.09	11.57	351.46	4.61	477.01	97.98
3.60	0.22	4.19	11,99	477.01	2.02	555.71	100.00
4.19	0.25	4.88	12.24	555.71	0.00	647.41	100.00
4.88	0.28	5.69	12.52	647.41	0.00	754.23	100.00
5.55	0.30	6.63	12.62	(aluma (%))	0.00	070.07	100.00
20			```	volume (%)			100
-							90
- Field							80
1 19							70
- 0							.60
10							50
211						2/17/2	0 40
14							30
Ţ							20
+	\sim						10
0							0
0.01	0.	.1	1.0	10.0	100	0.0	1000.0

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892458 Fax:+[44] (0)1684-892789

Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

1.0 10.0 Particle Diameter (µm.)

	สูนย์เครื่องมีขวิจัยวิทยาศาสตร์และเทคโนโดบี จุฬาสงกรณ์มหาวิทยาลัย การสารสารใน 2 มหามหารณ์ ขอย 62 ยุคมาโท ปนุมรับ กรุงเพพา 10330 โทร 2188029-22, 2188101	โหรสาร	2540211
	Scientific and Technological Research Equipment Centre Chutalongkorn University Building 2-3 Chuta Soi 52 Phaya-Thoi Rd. Phatumwan Bangkok 10330 Tel. 2188929-32, 2188101	Fax.	2540211
	Analysis Result		
-	Sample Details		

Measured: 20 Sep 2006 12:17PM Run Number: 3 Sample ID: Ash (H2SO4) No.400 Analysed: 26 Sep 2006 12:17PM Result Source: Analysed Record Number: 496 Sample File: CHULA Sample Path: C:\SIZERS\DATA\ Sample Notes: Wet Analysis System Dispersing Medium : Water Ultrasonic : no System Details Obsouration: 16.9 % Sampler: M\$1 Beam Length: 2.40 mm Range Lens: 300RF mm Dispersant R.I. = 1.3300) [Particle R.I. = (1.5295. 0.1000); Presentation: 3OHD Residual: 0.481 % Analysis Model: Polycisperse Modifications: None **Result Statistics** Specific S.A. = 15.5111 sq. m/g Density = 1.000 g / cub. cm D (v, 0.5) = 67.82 um Concentration = 0.0167 %Vol D (v. 0.9) = 163.78 um Uniformity = 7.578E-01 Distribution Type: Volume D(v, 0.1) = 0.07 um D[3, 2] = 0.39 um Mean Diameters: D [4, 3] = 75.68 um Span = 2.414E+00 Under% 23.38 Size_High (um) 7.72 Size_Low (um) 6.63 In 2 Size_High (um) in % Under% Size_Low (um) 0.61 3.26 3.26 0.05 24.00 7.72 0.61 9.00 7.78 4.63 0.07 0.06 10.48 24.57 9.00 0.58 11.91 0.07 4.12 0.08 12.21 25.09 0.51 14.83 10.48 0.09 0.08 2.92 25.52 0.44 14.22 12.21 0.11 16.55 1,73 0.09 25.90 16.57 17.49 14.22 0.37 0.92 0.13 0.11 19.31 26.27 0.37 0.15 17.97 18.57 0.13 0.48 28.73 0.46 22.49 19.31 0.26 0.17 18.23 0.15 26.20 27.43 22.49 0.70 0.17 0.16 0.20 18.39 28.53 1.11 30.53 0.23 18.50 26.20 0.20 30.27 30.53 1.74 2.64 35.56 18.57 0.07 0.27 0.23 41.43 32.92 35.56 18.62 0.31 0.27 0.05 36.75 3.83 48.27 41.43 0.04 0.35 18.65 0.31 41.93 48.27 5.18 55.23 18.68 0.03 0.42 0.36 65.51 48.39 18.71 56.23 5.45 0.49 0.42 0.03 7.38 76.32 55.77 0.58 18.73 85.51 0.02 0.49 63.63 7.85 88.91 76.32 0.03 0.67 18.76 0.58 71.70 103.58 88.91 8.07 18.79 0.67 0.03 0.78 7.27 120.67 0.91 18.85 103 58 0.06 0.78 85.12 140.58 120.67 6.15 18.93 0.91 0.09 1.06 163.77 90.00 4.88 1.24 19.05 140.58 1.06 0.12 93.71 163.77 3.71 190.80 0.15 1.44 19.20 1.24 222.28 96.41 19.37 190.80 2.70 1.68 1.44 0.17 258.95 98.29 1,88 19.58 222.28 1.95 1.68 0.21 \$9.49 1.20 301.68 258.95 0.24 2.28 19.82 1.95 351.46 100.00 20.10 301.68 0.51 2.65 2.28 0.27 0.00 409.45 100.00 351.46 3.09 20.41 0.31 2.65 100.00 477.01 409.45 0.00 0.36 3.60 20.77 3.09 555.71 100.00 21.18 477.01 0.00 4,19 3.60 0.41 0.00 647.41 100.00 \$55.71 0.47 4,88 21.66 4.19 100.00 754.23 647.41 0.00 22.19 4.88 0.53 5.69

22.77

6.63

Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

5.69

0.58

100.00

878.67

0.00

754.23

Lysmix 2540211*

ศูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย อาการสถาปัน 2 จุฬาลยารณ์ รอย 62 ณหญาโท ปศูมร์น กรุณหลา 10300 โทร 2188029-32, 2188101 Scientific and Technological Research Equipment Centre Chulatongkorn University Building 2-3 Chula Sol 62 Phays-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Fax: 2540211

			Analys	sis Result			
Sample ID: Ash (H2 Sample File: CHUL Sample Path: C\SI Sample Notes: We Dis Utr	2SO4) No.400 A (ZERS/DATA) Analysis System persing Medium : rasonic : no	Water	Samp tun Number: 6 tecord Number:	le Details 499	Measure Analysed Result Sc	d: 26 Sep 2006 12:18P : 26 Sep 2006 12:18P : surce: Analysed	M
Range Lens: 300R Presentation: 30H0 Analysis Model: Po Modifications: None	F mm D olydisperse	System Details Sampler: MS1 Obscur [Particle R.I. = (1.5295, 0.1000); Dispersant R.I. = 1.3300] Reaid					
			Result	t Statistics			
Distribution Type: V Mean Diameters: D [4, 3] = 74.62 u	Volume	Concentration = 0.0 D (v, 0.1) = 0.07 un D [3, 2] = 0.38 um	164 %Vol	Density = 1.000 g / oub D (v. 0.5) = 67.49 um Span = 2.379E+00	cm	Specific S.A. = D (v. 0.9) = 160.62 c Uniformity = 7.490E-0	15.8118 sq. m /g µm)1
Size_Low (um)	in %	Size_High (um)	Uncer%	Size_Low (um)	In %	Size_High (um)	Under%
0.05	3.47	0.06	3.47	6.63	0.62	7.72	23.58
0.06	4.18	0.07	12.35	9.00	0.59	10.48	24.79
0.08	2.87	0.09	15.23	10.48	0.53	12.21	25.32
0.09	1.65	0.11	16.88	12.21	0.45	14.22	25.76
0.11	0.86	0.13	17.73	14.22	0.38	16.57	26.14
0.15	0.24	0.17	18.41	19.31	0.45	22.49	26.96
0.17	0.15	0.20	18.56	22.49	0.68	26.20	27.64
0.20	0.10	0.23	18.65	26.20	1.07	30.53	28.71
0.23	0.07	0.31	18.77	35.56	2.59	41.43	33.00
0.31	0.04	0.36	18.81	41.43	3.81	48.27	36.80
0.36	0.03	0.42	18.84	48.27	5.21	56.23	42.01
0.42	0.03	0.49	18.87	65.51	7.54	76.32	56.13
0.58	0.03	0.07	18.92	76.32	8.02	88.91	64.15
0.67	0.04	0.78	18.95	88.91	8.19	103.58	72.33
0.78	0.06	0.91	19.01	103.58	7.30	120.67	79.63
1.05	0.12	1.06	19.22	140.58	4.80	163.77	90.54
1.24	0.15	1.44	19.37	163.77	3.60	190.80	94.14
1.44	0.18	1.68	19.55	190.80	2.58	222.28	55.72 68.47
1.95	0.24	2.28	20.01	258.95	1.09	301.68	99.56
2.28	0.27	2.65	20.28	301.68	0.44	351.46	100.00
2.65	0.31	3.00	20.59	351.46	0.00	409,45	100.00
3.09	0.36	4.19	20.95	477.01	0.00	555.71	100.00
4.19	0.47	4.88	21.84	555.71	0.00	647,41	100.00
4.88	0.53	5.69	22.37	647.41	0.00	754.23	100.00
5.69	0.59	6.63	22.90	754.23	0.00	878.67	100.00
10			Vol	ume (%)			100
_							90
					100		80
							70
- + Î9Ĵ							60
-					1.1		50
						หาล	40
หา	GN						.30
หา	ตุ่ง				/		20
หา	ด่ง				/		30 20 10
M 1	สม	11 9 9	K CN		/		20 10 0

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789 Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

Sweather 2640211*

Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

ศูนษ์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย อาการสถาบัน 2 จุฬาลเกรณ์ รอย 62 อ.พญาโท ปรุมรัน กรุงเทศฯ 15350 โทร 2188029-32, 2188101 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Fax. 2840211

			Analy	sis Result			
Sample ID: Ash (H22 Sample File: CHULA Sample Path: C VSIZ Sample Notes: Wet Disp Ultra	SO4) No.400 ERS/DATA) Analysis System ersing Medium : 1 sonic : no	Water	Samı tun Number: S tecord Number:	502	Measured: 26 Sep 2006 12:18PM Analysed: 26 Sep 2006 12:18PM Result Source: Analysed		
Prove i seri sonde		Dana Langtha 2.40 m	Syste	em Details	melar MS1	Ob	ouration: 16.4
Presentation: 30HD Analysis Model: Pol Modifications: None	ydisperse	[Particle R.I. = (1.520	5, 0,1000); E	Dispersant R.I. = 1.3300]	input, and t	R	esidual: 0,414
			Resul	t Statistics	_		
Distribution Type: Vi Mean Diameters: D [4, 3] = 74.96 un	olume n	Concentration = 0.01 D (v. 0.1) = 0.07 un D [3, 2] = 0.39 um	161 %Vel	Density = 1.000 g / ou D (v, 0.5) = 67.51 um Span = 2.394E+00	b. cm	Specific S.A. = D (v, 0.9) = 161.70 u Uniformity = 7.538E-0	15.5844 sq. m. m 1
Size Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	In %	Size_High (um)	Under%
0.05	3.33	0.06	3.33	6.63	0.62	7.72	23.50
0.06	4.55	0.07	12.04	9.00	0.59	10.48	24.71
0.08	2.09	0.09	14.93	10.48	0.53	12.21	25.24
0.09	1.69	0,11	16.63	12.21	0.45	14.22	25.68
0.11	0.90	0.13	17.62	14.22	0.38	16.57	26.07
0.13	0.47	0.15	18.25	19.31	0.47	22.49	26.92
0.17	0.15	0.20	18.40	22.49	0.70	26.20	27.61
0.20	0.10	0.23	18.50	26.20	1.10	30.53	28.71
0.23	0.07	0.27	18.57	30.53	2.62	41.43	33.06
0.31	0.04	0.38	18.65	41.43	3.82	48.27	36.88
0.36	0.03	0.42	18.70	48.27	5.19	56.23	42.07
0.42	0.03	0.49	18.72	56.23	6.52	65.51 76.32	48.59
0.49	0.03	0.67	18.78	76.32	7.93	88.91	63.98
0.67	0.04	0.78	18.81	88.91	8.12	103.58	72.10
0.78	0.05	0.91	18.67	103.58	7.28	120.67	79.38
0.91	0.09	1.06	18.96	120.67	6.13	140.58	85.51
1.09	0.12	1.44	19.09	163.77	3.66	190.80	\$4.02
1.44	0.18	1.68	19.42	190.80	2.62	222.28	\$6.64
1.68	0.22	1.95	19.64	222.28	1.77	258.95	\$5.41
2.28	0.28	2.65	20.17	301.68	0.52	351.46	100.00
2.65	0.32	3.09	20.49	351.46	0.00	409.45	100.00
3.09	0.37	3.60	20.85	409.45	0.00	477.01	100.00
3.60	0.42	4.19	21.27	555.71	0.00	647.41	100.00
4.88	0.54	5.69	22.29	647.41	0.00	754.23	100.00
5.69	0.59	6.63	22.88	754.23	0.00	878.67	100.00
10			VO	ume (%)			10
							90
16					2177		80
							60
1.1							50
981	219					ย่าล้	0 4
141							- 30
							10
0				/			0
0.01	0.1		1.0 Particle I	10.0 Diameter (µm.)	10	0.0	1000.0
Instruments Ltd. UK			Mastersizer S Serial Nur	S long bed Ver. 2.19 mber: 32734-89			26 S

ศูนย์เครื่องมีขวิจัยวิทธาศาสตร์และเทคโนโลยี ๆหาดงกระม์มหาวิทธาลัย ต่างาหลุงบไป 2 จหาดงกรณ์ ขอย 62 ณ หญ่าไท่ ปรุ่มวัน กรุงเทพฯ 10830 โทร 2188029-32 2188101	Lynwny 2540211 ·
Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thei Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 218310	01 Fax. 2540211

ample ID: Ash (H2) ample File: CHULA ample Path: C:/SI2 ample Notes: Wet Disp Ultra	SO4) Pan ERS/DATA\ Analysis System ersing Medium :1 Isonic : no	Water	Sampl un Number: 14 becord Number: 4	e Details	Measure Analyse Result S	d: 25 Sep 2006 11:07PN 2: 25 Sep 2006 11:07PN ource: Analysed	n r
ange Lons: 300RF resentation: 30HD natysis Model: Po fodifications: None	mm ydisperse	Beam Length: 2.40 m (Particle R.I. = (1.620	System 5. 0.1000); De	m Details Sar spersant R.I. = 1,3300)	npler: MS1	Obs	icuration: 17.6 Islidual: 0.764
Natribution Type: V Aaan Diameters:) [4, 3] = 15,64 ur	olume n	Concentration = 0.0 D (v, 0.1) = 0.05 ur D [3, 2] = 0.21 um	Result 093 tvVol	Statistics Density = 1.000 g / cub D (v, 0.5) = 9.85 um Span = 4.185E+00	. cm	Specific S.A. = D (v, 0.9) = 41.30 ur Uniformity = 1.392E+0	28.4457 sq. m : n 10
Size_Low (um) 9.05 0.08 0.07 0.11 0.13 0.15 0.17 0.20 0.23 0.27 0.31 0.36 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.58 0.67 0.78 0.91 1.06 1.24 1.44 1.68 1.95 2.28 3.69 3.69 3.69	In % 5.95 8.39 7.73 5.45 3.15 1.58 0.74 0.35 0.17 0.09 0.05 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.02 0.05 0.17 0.35 0.17 0.35 0.74 0.35 0.74 0.35 0.75 0	Size High (um) 0.06 0.07 0.08 0.09 0.11 0.13 0.15 0.17 0.20 0.27 0.31 0.36 0.49 0.65 0.67 0.78 0.81 1.66 1.24 1.44 1.88 1.55 2.28 2.65 3.00 3.60 4.19 4.88 6.63 0.63	Under% 6 96 14.34 22.07 27.53 30.60 32.27 33.01 33.35 33.52 33.61 33.05 33.65 33.65 33.71 33.71 33.71 33.71 33.71 33.72 33.74 33.76 33.81 33.90 34.64 34.24 34.51 34.67 35.32 35.89 36.60 37.50 38.60 39.95 41.58 43.50	Size Low (um) 0.63 7.72 9.00 10.48 12.21 14.22 18.57 19.31 22.49 26.20 30.53 35.55 41.43 48.27 56.23 65.51 76.32 88.91 103.58 120.67 140.58 163.77 190.80 222.28 258.95 301.65 351.46 409.45 477.01 555.71 647.41 754.23	In Th 2.24 2.57 2.92 3.28 3.06 4.03 4.85 4.86 4.85 4.85 4.85 4.85 4.85 4.75 2.67 1.83 1.81 1.11 0.57 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3:22 (19) 7,72 9,00 10,48 12,21 14,22 16,57 19,31 22,49 26,20 30,53 35,56 41,43 48,27 56,23 65,51 76,32 88,91 103,58 120,67 140,58 163,77 190,80 222,28 253,95 301,68 351,46 409,45 477,01 565,71 647,41 754,23 878,67	48,74 48,30 51,22 54,50 68,57 71,23 76,09 81,10 85,85 90,68 93,58 90,68 93,58 90,25 99,20 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00
10 P	นใย	์เวิท กระ	ยท	5W2 15W2		กร ยาล้	11 9 8 7 6 5 4 3 2

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

ศูนย์เคร็จงมีขวิจัยวิทยาศาสตร์และเทคโนโลซี จุฬาลงกระมัมหาวิทยาลัย อาการสถาปัน 2 จุฬาละกรณ์ รอย 62 อ.ครูปไท ปรุมวัน กรุมเพพา 10330 โทร 2168029-32, 2188101 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Servery 2540211* Fax. 2540211

Sample Details Sample Details Run Number: 15 Record Number: 489 Result Source: Analysed Result Source: Result Result Result Source: Result Result Result Result Re										
Range Lens: 300/RF Presentation: 30HD Analysis Model: Poly Modifications: None	mm disperse	Beam Length: 2.40 [Particle R.I. = (1.52	Sy: 95. 0.1000);	stem Details S Dispersant R I. = 1 3300]	ampler: MS1	Ob	souration: 17.6 9 esiduat: 0.795 9			
			Pag	ult Statistics						
Distribution Type: Vo Mean Diameters: D [4, 3] = 15.55 um	slume	Concentration = 0.0 D (v. 0.1) = 0.06 c D [3, 2] = 0.21 um	2093 % Vol	Density = 1.000 g / c D (v, 0.5) = 9.56 un Span = 4.268E+00	ub. cm	Specific S.A. = D (v, 0.9) = 41.28 ur Uniformity = 1.421E+0	29.2238 sq. m / j n)0			
Cine Low (um)	In M.	Sin Honour	Unterth	Size Low (um)	10.56	Size High (um)	Under%			
0.05	6.37	0.06	6.38	6.63	2.21	7.72	46.16			
0.06	8.81	0.07	15,18	7.72	2.54	9.00	48.70			
0.07	7.91	0.08	23.09	9.00	2.88	10.48	51.58			
0.08	5.42	0.09	28.51	10.48	3.25	12.21	54.83			
0.09	3.02	0.11	31.53	12.21	3.62	14.22	58.45			
0.11	1.46	0.13	32.99	14.22	3.99	16.57	62.44			
0.13	0.67	0.15	33.66	16.57	4.33	19.31	66.77			
0.15	0.31	0.17	33.97	19.31	4.61	22.49	71.38			
0.17	0.15	0.20	34.11	22.49	4.82	26.20	76.20			
0.20	0.08	0.23	34.19	26.20	4.98	30.53	81.18			
0.23	0.04	0.27	34.23	30.53	4.71	35.56	85.89			
0.27	0.02	0.31	34.25	35.56	4.20	41.43	90.09			
0.31	0.01	0.36	34.27	41,43	3.49	48.27	93.58			
0.36	0.01	0.42	34.28	48.27	2.66	56.23	96.24			
0.42	0.01	0.49	34.28	\$6.23	1.84	65.51	\$8.07			
0.49	0.01	0.58	34.29	65.51	1.11	76.32	\$9.19			
0.58	0.01	0.67	34.30	76.32	0.57	88.91	\$9.76			
0.67	0.02	0.78	34.32	88.91	0.24	103.58	100.00			
0.78	0.05	0.91	34.37	103.58	0.00	120.67	100.00			
0.91	0.09	1.06	34.46	120.67	0.00	140.58	100.00			
1.08	0.14	1.24	34.60	140.58	0.00	163.77	100.00			
1.24	0.20	1.44	34.79	163.77	0.00	190.80	100.00			
1.44	0.26	1.68	35.00	190.80	0.00	222.28	100.00			
1.65	0.35	1.90	30.41	262.00	0.00	101.68	100.00			
1.95	0.45	2.28	30.00	200.90	0.00	351.46	100.00			
2.28	0.71	3.00	37.13	351.48	0.00	439.45	100.00			
3.09	0.85	3.60	38.01	409.45	0.00	477.01	100.00			
3.60	1.00	4.10	39.11	477.01	0.00	555.71	100.00			
4.19	1.34	4.88	40.44	555.71	0.00	647.41	100.00			
4.88	1.61	5.69	42.05	847.41	0.00	754.23	100.00			
5.69	1.90	6.63	43.95	754.23	0.00	878.67	100.00			
10			V	'olume (%)			100			

Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

p. 14 26 Sep 06 11:10

ศูนข์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย อาคารสอบปน 2 จุฬาลงกรณ์ ขอย 62 ณหญาโต ปญนวัน กรุงเทลฯ 10300 โทร 3166025-32, 2166101 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Sol 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Seems 2540211* Fax. 2540211

Sample ID: Ash (H Sample File: CHUI Sample Path: C1S Sample Notes: We Dis Un	2504) Pan A IZERSIDATA\ IzERSIDATA\ IZERSI	Analysis Result Sample Details Run Number: 17 Record Number: 490				Measured: 26 Sep 2006 11:06PM Analysed: 26 Sep 2006 11:06PM Result Source: Analysed		
Range Lens: 300RF mm Presentation: 3CHD Analysis Model: Polydisperse Modifications: None Distribution Type: Volume Mean Diameters: D[4, 3] = 15.47 um		Beam Length: 2.40 n (Particle R.I. = (1.525	Sy 15, 0.1000):	stem Details Sampler: MS1 Dispersent R.I. = 1.3300]		Obscuration: 17.7 9 Residual: 0.828		
		Res Concentration = 0.0093 %Vol D (v, 0.1) = 0.06 um D (3, 2) = 0.21 um		Density = 1,000 g / cub. cm D (v, 0.5) = 9,70 um Span = 4.218E+00		Specific S A = 28.8588 sq. m / g D (v, 0.9) = 40.98 um Uniformity = 1.404E+00		
Size_Low (um)	in %	Size_High (um)	Underfié	Size_Low (um)	in %.	Size_High (um)	Under%	
0.05	6.08	0.06	6.08	6.63	2.22	7.72	46.08	
0.06	8.54	0.07	14.62	7.72	2.55	9.00	48.62	
0.07	7.84	0.08	22.46	9.00	2.90	10,48	51.52	
0.08	5.52	0.09	27.98	10.48	3.27	12.21	59.79	
0.09	3.17	0.11	31.15	12.21	3.65	19.22	62.47	
0.11	1.58	0.13	32.72	14.22	4.03	10.07	05.84	
0.13	0.73	0.15	33.46	10.07	4.65	22.49	71.49	
0.15	0.34	0.20	33.66	22.49	4.85	26.20	76.34	
0.20	0.08	0.23	34.05	26.20	5.01	30.53	81.35	
0.23	0.05	0.27	34.09	30.53	4.74	35.55	86.09	
0.27	0.03	0.31	34.12	35.56	4.21	41.43	90.29	
0.31	0.02	0.36	34.13	41.43	3.47	48.27	93.76	
0.36	0.01	0.42	34.14	48.27	2.63	56.23	96.40	
0.42	0.01	0.49	34.15	56.23	1.80	65.51	98.19	
0.49	0.01	0.58	34.16	65.51	1.07	76.32	99.26	
0.58	0.01	0.67	34.17	76.32	0.53	88.91	99.90	
0.67	0.02	0.78	24.19	88.91	0.20	103.55	100.00	
0.78	0.05	0.91	34.24	103.58	0.00	120.07	100.00	
0.91	0.09	1.00	34.33	140.67	0.00	163.77	100.00	
1.00	0.20	144	34.67	163.77	0.00	190.80	100.00	
1.44	0.27	1.68	34.94	190.80	0.00	222.28	100.00	
1.68	0.35	1.95	35.29	222.28	0.00	258.95	100.00	
1.95	0.45	2.28	35.74	258.95	0.00	301.68	100.00	
2.28	0.57	2.65	36.31	301.68	0.00	351.46	100.00	
2.65	0.71	3.09	37.02	351.46	0.00	409.45	100.00	
3.09	0.89	3.60	37.91	409.45	0.00	477.01	100.00	
3.60	1.10	4.19	39.00	477.01	0.00	565.71	100.00	
4.19	1,24	4.58	40.34	555.71	0.00	047.41	100.00	
4.65	1,01	5.09	41.95	764.23	0.00	878.67	100.00	
5.09	1.7	0.03	40.00	(1) (1)	0.00	010.01	100.00	
10				volume (%)			100	
-							90	
1 20							80	
1 [0]							70	
							60	
							50	
				1000	No.		40	
	711							

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

0.1

0.01

Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

Particle Diameter (µm.)

10.0

1.0

p. 15 26 Sep 06 11:10

20 10

0

1000.0

100.0

สนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี

ฐฬาลงกรณ์มหาวิทยาลัย กระบรศ 16300 โทร 218862⊁32, 2188101 Wears 2540211* อาคารสถาบัน2 จุฬาลงกรณ์รถกร2 ยาสญาโท ปรุ่มวัน กรุงทพา Scientific and Technological Research Equipment Centre ปทุษวัน กรุงเทพฯ 10330 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 52 Phaya-Thoi Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Fax. 2540211

Analysis Result Sample Details Sample ID: Ash (Power Station) Run Number: Measured: 26 Sep 2006 15:50PM Record Number: 574 Analysed: 26 Sep 2006 15:50PM Sample File: CHULA Result Source: Analysed Sample Path: C:\SIZERS\DATA\ Sample Notes: Wet Analysis System Dispersing Medium : Water Ultrasonic : no System Details Range Lens: 300RF mm Obscuration: 21.2 % Beam Length: 2,40 mm Sampler: MS1 [Particle R.I. = (1.5295, 0.1000); Dispersant R.I. = 1.3300] Prese ntation: 3OHD Residual: 0.260 % Analysis Model: Polydisperse Modifications: None **Result Statistics** Concentration = 0.0326 %Vol Density = 1.000 g / cub. cm D (v, 0.5) = 132.75 um Distribution Type: Volume Specific S.A. = 9.9288 sq. m / g D (v. 0.9) = 429.05 um Uniformity = 9.842E-01 D (v, 0.1) = 0.10 um D [3, 2] = 0.60 um Mean Diameters Span = 3.231E+00 D [4, 3] = 181.31 um 0.19 Size_High (um) Under% 14.02 Size_Low (um) 6.63 Size_Low (um) 0.05 In % Size_High (um) 0.06 Under 1.55 14.26 0.08 2.42 0.07 3.97 7.72 0.24 9.00 9.00 0.29 10.48 14.56 6.55 0.08 0.07 2.59 2.22 0.09 8.78 10.48 0.35 12.21 14.91 0.08 15.33 0.42 14.22 0.09 1.63 0.11 10.41 12.21 16.57 15.82 11.47 0.50 14.22 0.13 0.11 1.08 0.65 0.15 12.12 16.57 0.60 10.31 16.42 0.13 0.74 22.49 17.16 0.15 0.39 0.17 12.51 19.31 0.93 26.20 18.09 22.49 0.20 12.75 0.17 0.24 0.20 0.14 0.23 12.80 28.20 1.17 30.53 19.26 20.75 1.48 35.56 0.23 0.09 0.27 12.98 30.53 0.31 13.04 35.58 1.86 41.43 22.61 0.27 0.06 0.04 0.36 13.08 41.43 2.29 48.27 24.89 0.31 2.74 56.23 27.64 48.27 0.35 0.03 0.42 13.12 0.49 13.14 55.23 3.18 65.51 30.82 0.03 0.42 0.49 0.02 0.58 13.16 65.51 3.58 76.32 34.39 38.31 88.91 13.18 76.32 3.92 0.58 0.02 0.67 0.01 13.19 88.91 4.23 103.58 42.64 0.67 0.78 47.05 0.78 0.02 0.91 13.21 103.58 4.51 120.67 140.58 51.81 4.76 120.67 0.91 0.02 1.06 13.23 0.02 1.24 13.24 140.58 4.97 163.77 55.78 1.06 61.97 1.24 0.02 1.44 13.26 163.77 5.18 190.80 190.80 5.40 222.28 67.37 1.68 13.28 1.44 0.02 1.68 0.02 1.95 13.31 222.28 5.61 258.95 72.98 1.95 0.02 2.28 13.33 258.95 5.58 301.68 78.55 351.46 83.88 5.32 2.28 0.03 2.65 13.35 301.68 409.45 0.03 3.09 13.39 351.46 4.80 88.67 2.65 4.05 92.73 3.09 0.04 3.60 13.43 409.45 477.01 3.18 555.71 95.90 0.06 4.19 13.48 3.60 2.27 4.19 0.08 4.88 13.56 555.71 647.41 98.18 754.23 99.54 647.41 4.88 0.11 5.69 13.68 0.46 878.67 100.00 0.15 13.83 754.23 6.63 5.69

Serial Number: 32734-89

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

p. 38 26 Sep 06 15:52

สูนย์เคร็จงมีขวิจัยวิทธาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทธาลัย อาการสถาปัน 2 จุฬาลงกรณ์ รอย 62 อ.ทธุรไท ปทุมวัน กรุงเทพา 10000 โทร 2168029-32, 2168101 โทรสาง 2560211 -Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10300 Tel. 2188029-32, 2188101 Fax. 2540211 โทรสาง 2540211*

			Analy	sis Result				
Sample ID: Ash (Power Station) Sample File: CHULA Sample Path: C (SIZERS'(DATA) Sample Notes: Wet Analysis System		Sample Details Run Number: 7 Record Number: 575				Measured: 26 Sep 2006 15:50PM Analysed: 26 Sep 2006 15:50PM Result Source: Analysed		
Disp Ultra	ersing Medium : sonic : no	Water						
			Syst	em Details				
Range Lens: 300RF mm Presentation: 30HD Analysis Model: Polydisperse		Beam Length: 2.40 r [Particle R.I. = (1.52)	95, 0.1000); [Sampler: MS1 Nepersant R.I. = 1.3300]		Residual: 0.37		
Modifications: None				1000				
Distribution Type: V	olume	Concentration = 0.0	Resul 332 %Vol	Density = 1.000 g / cu	b. om	Specific S.A. =	9.4540 sq. m	
Mean Diameters: D [4, 3] = 178.12 um		D (v. 0.1) = 0.11 em D [3, 2] = 0.63 um		D (v, 0.5) = 131.82 um Span = 3.181E+00		D (v, 0.9) = 418.79 um Uniformity = 9.672E-01		
Size_Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	in %	Size_High (um)	Under%	
0.05	1.37	0.05	3.58	7.72	0.24	9.00	13.92	
0.07	2.42	0.08	6.00	9.00	0.30	10.48	14.22	
0.08	2.10	0.09	8.16	10.48	0.36	12.21	14.58	
0.09	1.64	0.11	9.60	12.21	0.42	14.22	15.00	
0.11	0.71	0.13	10.92	16.22	0.61	19.31	16.12	
0.15	0.44	0.17	12.05	19.31	0.76	22.49	16.88	
0.17	0.27	0.20	12.33	22.49	0.95	26.20	17.82	
0.20	0.17	0.23	12.50	26.20	1.20	30.53	19.02	
0.23	0.10	0.27	12.60	30.53	1.52	35.56	20.54	
0.27	0.07	0.31	12.67	35.56	1.90	41,43	22.44	
0.31	0.65	0.36	12.72	41.43	2.78	56.23	27.55	
0.42	0.03	0.49	12.79	56.23	3.23	65.51	30.78	
0.49	0.02	0.58	12.01	65.51	3.63	76.32	34.41	
0.58	0.02	0.67	12.83	76.32	3.99	88.91	38.40	
0.67	0.02	0.78	12.85	80.91	4.30	103.58	42.70	
0.78	0.02	0.91	12.85	103.56	4.50	140.58	52.11	
1.05	0.02	1.24	12.90	140.58	5.05	163.77	57.16	
1.24	0.02	1.44	12.92	163.77	5.26	190.80	62.42	
1,44	0.02	1.68	12.94	190.80	5.47	222.28	67.89	
1.68	0.02	1.95	12.96	222.28	5.68	208.95	73.56	
1.59	0.02	2.05	12.98	200.90	5.36	351.46	84.56	
2.65	0.03	3.09	13.04	351.46	4.80	409.45	89.36	
3.09	0.04	3.60	13.08	409.45	3.99	477.01	93.35	
3.60	0.06	4.19	13.14	477.01	3.06	555.71	\$6.41 68.54	
4.19	0.08	4.00	13.22	647.41	1.20	754.23	99.73	
5.69	0.15	6.63	13.48	754.23	0.27	878.67	100.00	
10			Vol	lume (%)			1	
							9	
							8	
							7	
- 01							6	
- 1								
					9/2		0 4	
	61 N				I Y LI	0 10	3	
							1	
0							000.0	
0 0.01	0.1		1.0 Particle I	10.0 Diameter (µm.)	100).0 1	000.0	

ศูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย ทาคารสถาบัน 2 จุฬาลงกรณ์ รอย 62 ค.ศฎาโท ปทุศวัน กรุงเทศา 1030 โทร 2100029-32 2188101 โทรสาร 2640211 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10300 Tel. 2188029-32, 2188101 Fax. 2540211 LHENRY 2040211

			Analy	sis Result			
			Samp	ple Details			
Sample ID: Ash (Power Station) Sample File: CHULA Sample Path: C:(SIZERS)DATA)		Run Number: 12 Record Number:	581	Measure Analysed Result Sc	d: 26 Sep 2006 15:51P 1: 26 Sep 2006 15:51Pt purce: Analysed	M	
ample Notes: Wet Disp Ultra	Analysis System xersing Medium : 1 asonic : no	Water					
			Syste	em Details			
tange Lens: 300RF Presentation: 30HD Inalysis Model: Pol Addifications: None	lydisperse	Beam Length: 2.40 n (Particle R.I. = (1.529	5, 0.1000); D	Sar Dispersant R.L = 1.3300]	mpler: MS1	R	esidual: 0.292
			Docul	t Statistics			
Distribution Type: V Mean Diameters: 2 [4, 3] = 179,24 u	olume m	Concentration = 0.03 D (v, 0.1) = 0.10 un D [3, 2] = 0.58 um	317 % Vol	Density = 1.000 g / cub D (v, 0.5) = 131.41 um Span = 3.230E+00). cm	Specific S.A. = D (v. 0.9) = 424.59 u Uniformity = 9.855E-0	10.2582 sq. m im)1
Size_Low (um)	In %	Size_High (um)	Under%	Size_Low (um)	In %	Size_High (um)	Under%
0.05	1.63	0.06	1.04	6.63	0.19	7.72	14.40
0.08	2.64	0.07	6.86	9.00	0.30	10.48	14.94
0.08	2.28	0.09	9.13	10.48	0.36	12.21	15.29
0.09	1.64	0.11	10.78	12.21	0.42	14.22	15.71
0.11	1.08	0.13	11.83	14.22	0.50	16.57	16.22
0.13	0.64	0.15	12.48	19.31	0.75	22.49	17.57
0.17	0.23	0.20	13.09	22.49	0.93	26.20	18.51
0.20	0.14	0.23	13.24	26.20	1.18	30.53	19.69
0.23	0.09	0.27	13.33	30.53	1.49	35.56	21.18
0.27	0.05	0.31	13.39	35.56	2.30	41.43	23.04
0.38	0.04	0.42	13.47	48.27	2.75	56.23	28.09
0.42	0.03	0.49	13.50	56.23	3.19	65.51	31.28
0.49	0.02	0.58	13.52	65.51	3.57	76.32	34.85
0.58	0.02	0.67	13.54	76.32	3.90	88.91	35.76
0.67	0.02	0.78	13.56	103.58	4.45	103.56	47.41
0.91	0.02	1.06	13.60	120.67	4.68	140.58	52.09
1.05	0.02	1.24	13.62	140.58	4.88	163.77	55.98
1.24	0.02	1.44	13.64	163.77	5.10	190.80	62.07
1.68	0.02	1.00	13.60	222.28	5.57	258.95	72.97
1.95	0.02	2.28	13.71	258.95	5.62	301.68	78.59
2.28	0.02	2.65	13.73	301.68	5.42	351.46	84.01
2.65	0.03	3.09	13.76	351.46	4.93	400.45	88.94
3.60	0.06	4.19	13.86	477.01	3.20	555.71	95.28
4.19	0.08	4.88	13.94	555.71	2.22	647.41	98.49
4.88	0.11	5.69	14.05	647.41	1.24	754.23	99.74
5.69	0.15	6.63	14.20 Vol	ume (%)	0.26	878.67	100.00
10			vo	unie (70)			1
							8
- [9]							7
÷ 9j							6
and a					on/		0 4
$ \mathbf{A} $	G N				ГVI		3
-	$\langle \rangle$						2
0				/			
0.01	0.1		1.0 Particle [10.0 Diameter (µm.)	100	.0	1000.0
struments Ltd. K			Mastersizer S Serial Nun	long bed Ver. 2.19 nber: 32734-89			26

And the

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

10

ศูนธ์แหร็องมือวิจัยวิทธาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทธาลัย อาการธรรมัน 2 จุฬาลกรณ์ ขอย 62 ณหญาโท ปทุมวัน กรุงเทพฯ 16330 โทส 2188629-32 2188161 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thei Rd. Phatumwan Bangkok 10330 Tel. 2188629-32 2188101 Sweets 2540211 Fax, 2540211

Sample ID: SiO2 (Quartz) Sample Details Run Number: 11 Sample Path: C1SI2ERS/DATA\ Sample Notes: Wet Analysis System Dispensing Medium : Water Ultrasonic : 100% 4 min							
Range Lens: 300RF Presentation: 30HD Analysis Model: Pol	mm ydisperse	Beam Length: 2.40 n [Particle R.I. = (1.525	Syste 5. 0.1000); D	m Details San spersant R.I. = 1.3300]	pler: MS1	Ob	scuration: 15.9 esidual: 0.493
Modifications: None							
Distribution Type: W Mean Diameters: D [4, 3] = 5.46 um	olume	Concentration = 0.00 D (v, 0.1) = 0.06 un D [3, 2] = 0.12 um	Result	Statistics Density = 1,000 g / cub D (v, 0.5) = 0.10 um Span = 1.993E+02	cm	Specific S.A. = D (v. 0.9) = 19.98 ur Uniformity = 5.393E+0	49,5069 sq. m. m 01
Size Low (um)	10 St.	Size High (um)	Underlin	Size Low (um)	10.55	Size High (um)	Under%
0.05	10.08	0.06	10.08	6.63	1.62	7.72	77.74
0.05	14.09	0.07	24.17	7.72	1.72	9.00	79.46
0.07	13.00	0.08	37.16	9.00	1.82	10.48	81.28
0.08	9.38	0.09	40.55	10,45	1.92	12.21	83.20
0.09	5.72	0.11	52 26	12.21	2.02	14.22	85.22
0.11	3.19	0.13	55.45	14.22	2.10	16.57	87.32
0.13	1.78	0.15	57.23	16.57	2.19	19.31	09.51
0.15	1.08	0.17	58.31	19.31	2.10	26.49	63.70
0.17	0.74	0.20	60.63	22.49	1.81	30.53	05.51
0.20	0.50	0.27	60.15	30.63	1.51	35.56	97.02
0.27	0.41	0.31	60.52	35.64	1.17	41.43	98.20
0.31	0.34	0.36	60.87	41.43	0.84	48.27	99.03
0.36	0.30	0.42	61.17	48.27	0.54	56.23	99.57
0.42	0.29	0.49	61.45	56.23	0.30	65.51	99.87
0.49	0.30	0.58	61.76	65.51	0.13	76.32	100.00
0.58	0.33	0.67	62.09	76.32	0.00	88.91	100.00
0.67	0.40	0.78	62.49	88.91	0.00	103.58	100.00
0.78	0.50	0.91	62.99	103.58	0.00	120.67	100.00
0.91	0.63	1.06	63.62	120.67	0.00	140.58	100.00
1.06	0.74	1.24	64.36	140.58	0.00	103.77	100.00
1.24	0.79	1.44	60.10	103.77	0.00	222.28	100.00
1.00	0.82	1.00	66.83	222.28	0.00	268.06	100.00
1.96	0.89	2.98	67.72	268.05	0.00	301.68	100.00
2.28	0.93	2.65	68.65	301.68	0.00	351.46	100.00
2.65	1.00	3.09	69.65	351.46	0.00	409.45	100.00
3.09	1.08	3.60	70.73	409.45	0.00	477.01	100.00
3.60	1.18	4.19	71.91	477.01	0.00	555.71	100.00
4.19	1.29	4.88	73.20	555.71	0.00	647.41	100.00
4.88	1.41	5.69	74.60	647.41	0.00	754.23	100.00
5.69	1.52	6,63	76.12	754.23	0.00	070.07	100.00
20			Volu	ume (%)			10
_							90
1							80
0	11,9						70
1							

0.01 0.1 1.0 10.0 100.0 Particle Diameter (µm.) Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789 Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

1000.0

สูนข์เครื่องมือวิจัชวิทธาศาสตร์และเทคโนโดซี จุฬาลงกรณ์มหาวิทธาลัย อาการมากัน 2 จุฬาลเรงณ์ ขอย 62 ณหญาโท ปรุมวัน กรุงเทพา 10300 โทร 2100029-32, 2100101 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Sol 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Events 2540211 Fax. 2540211

			Anal	lysis Result			
Sample Details Measured: 25 Sep 2006 16:26PM Sample File: CHULA Record Number: 12 Measured: 25 Sep 2006 16:26PM Sample Path: C15IZERS/DATA\ Record Number: 400 Analysed: 25 Sep 2006 16:26PM Sample Notes: Wet Analysis System Dispensing Medium : Water Ultrasonic : 100% 4 min							
			Sv	stem Details			
Range Lens: 300RF mm Presentation: 30HD Analysis Model: Polydisperse Modifications: None		Beam Length: 2.40 n [Particle R.I. = (1.525	nm 85, 0.1000);	Dispersant R.I. = 1.0000)		Obscuration: 16.4 9 Residual: 0.520 9	
			Ret	ult Statistics			
Distribution Type: Volume Mean Diameters: D [4, 3] = 5.35 um		Concentration = 0.0 D (v, 0.1) = 0.06 ur D [3, 2] = 0.12 um	Result Statistics 10049 %Vol Density = 1.000 g / cu um D (v. 6.5) = 0.10 um m Spen = 1.997E+02		b. Gm	Specific S.A. = 49.9349 sq. r D (v, 0.9) = 19.76 um Uniformity = 5.354E+01	
Size Low (um)	in %	Size High (um)	Under%	Size Low (um)	in %	Size High (um)	Under%
0.05	10.18	0.06	10.18	6.63	1.59	7.72	78.09
0.06	14.23	0.07	24.41	7.72	1.69	9.00	79.78
0.07	13.12	80.0	37.53	9.00	1.79	10.48	81.57
0.08	9.47	0.09	47.00	10.45	1.89	12.21	83.45
0.09	5.77	0.11	52.77	12.21	1.98	14.22	85.44
0.11	3.22	0.13	55.99	14.22	2.07	16.57	87.61
0.13	1.80	0.15	57.79	18.57	2.16	19.31	09.67
0.15	1.09	0.17	58.88	19.31	2.14	22.49	91.81
0.17	0.75	0.20	59.63	22.49	2.02	26.20	93.83
0.20	0.58	0.23	60.21	28.20	1.80	30.53	95.63
0.23	0.49	0.27	60.70	30.63	1.51	35.56	97.14
0.27	0.42	0.31	61.12	35.66	1.16	41.43	98.30
0.31	0.35	0.36	61.47	41.43	0.81	48.27	99.11
0.36	0.30	0.42	61.78	48.27	0.51	58.23	99.62
0.42	0.29	0.49	62.07	55.23	0.27	65.51	99.89
0.49	0.31	0.58	62.37	65.51	0.11	76.32	100.00
0.58	0.33	0.67	62.71	76.32	0.00	88.91	100.00
0.67	0.40	0.78	63.11	88.91	0.00	103.58	100.00
0.78	0.50	0.91	63.62	103.58	0.00	120.67	100.00
0.91	0.63	1.06	64.25	120.67	0.00	140.58	100.00
1.06	0.74	1.24	64.99	140.58	0.00	163.77	100.00
1.24	0.78	1.44	65.77	163.77	0.00	190.80	100.00
1.44	0.81	1.68	65.58	190.80	0.00	222.28	100.00
1.68	0.85	1.95	67.43	222.28	0.00	258.95	100.00
1.95	0.87	2.28	65.30	258.95	0.00	301.68	100.00
2.28	0.91	2.65	69.21	301.68	0.00	351.46	100.00
2.65	0.97	3.09	70.18	351.46	0.00	409.45	100.00
3.09	1,05	3.60	71.24	409.45	0.00	477.01	100.00
3.60	1.15	4.19	72.39	477.01	0.00	555.71	100.00
4.19	1.26	4.00	73.64	555.71	0.00	764.03	100.00
4,60	1.37	5.69	75.02	647.41	0.00	/54.23	100.00
0.69	1.48	0.03	76.50	/04.23	0.00	0/0.07	100.00

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

p. 2 25 Sep 06 16:28

ศูนย์เครื่องมีขวิจัยวิทยาศาสตร์และเทคในโลยี จุฬาลงกระนั่งหาวิทยาลัย อาการสถาปัน 2 จุฬาลงกรณ์ รอย 62 ก.ค.ญาไท ปหุ่มรับ กรุงเทศฯ 10530 โทร 2168629-32 2168101 โทรศาจ 2546211 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188529-32, 2188101 Fax. 2540211 LV991V 2540211

			Analy	sis Result			
Sample ID: SIO2 (0 Sample File: CHUL Sample Path: C1/SI Sample Notes: We Dis Ultr	Quertz) A ZERS/DATAL Analysis System persing Medium : Issonic : 100% 4 (Water	Sam Bun Number: 1 Record Number:	ple Details 4 402	Measure Analysed Result S	d: 25 Sep 2006 18:27P1 I: 25 Sep 2006 16:27PN ource: Analysed	и 1
Range Lens: 300Rl Presentation: 30Hl Analysis Model: Po Modifications: Non	F mm D olydisperse	Beam Length: 2.40 n (Particle R.I. = (1.52)	nm 05, 0.1000); 0	em Details Sa Dispersant R.I. = 1.3300]	mpler; MS1	Obi	icuration: 16.4 % isidual: 0,671 %
			Resul	It Statistics			
Distribution Type: Nean Diameters: D [4, 3] = 5.33 ur	Volume n	Concentration = 0.0 D (v, 0.1) = 0.06 ur D [3, 2] = 0.12 um	049 %Vol 11	Density = 1,000 g / cul D (v, 0,5) = 0,10 um Span = 1.955E+02	b. cm	Specific S.A. = D (v, 0.9) = 19.60 un Uniformity = 5.200E+0	49,6438 sq. m./g n 11
Size_Low (um)	in %	Size_High (um)	Under%	Sze_Low (um)	in %	Size_High (um)	Under%
0.05	9.84	0.06	9.85	6.63	1.59	7.72	78.18
0.06	13.93	0.07	23.77	7.72	1.70	9.00	79.88
0.07	0.60	0.08	46.42	10.48	1.00	10.40	83,67
0.09	5.94	0.11	52 37	12.21	1.99	14.22	85.55
0.11	3.38	0.13	55.75	14.22	2.07	16.57	87.64
0.13	1.91	0.15	57.66	16.57	2.15	19.31	89.79
0.15	1.16	0.17	58.81	19.31	2.12	22.49	91.91
0.17	0.79	0.20	59.60	22.49	2.00	26.20	93.90
0.20	0.61	0.23	60.21	26.20	1,70	30.53	95.65
0.23	0.50	0.27	61.13	30,53	1,40	35.50	97.10
0.31	0.35	0.36	61.48	41.43	0.80	48.27	99.09
0.36	0.31	0.42	61.79	48.27	0.51	56.23	99.60
0.42	0.29	0.49	62.08	55.23	0.28	65.51	99.88
0.49	0.31	0.58	62.39	65.51	0.12	76.32	100.00
0.58	0.34	0.67	62.72	76.32	0.00	88.91	100.00
0.67	0.40	0.78	63.13	88.91	0.00	103.58	100.00
0.78	0.50	1.06	64.26	103.56	0.00	140.58	100.00
1.05	0.74	1.24	65.00	140.58	0.00	163.77	100.00
1.24	0.79	1.44	65.79	163.77	0.00	190.80	100.00
1.44	0.81	1.60	66.60	190.80	0,00	222.28	100.00
1.68	0.85	1.95	67.46	222.28	0.00	258.95	100.00
1.95	0.88	2.28	68.34	258.95	0.00	301.68	100.00
2.28	0.92	2.00	70.24	301.66	0.00	301.40	100.00
3.09	1.05	3.60	71.30	409.45	0.00	477.01	100.00
3.60	1.16	4.19	72.46	477.01	0.00	555.71	100.00
4.19	1.26	4.88	73.72	555.71	0.00	647.41	100.00
4.88	1.38	5.69	75.10	647.41	0.00	754.23	100.00
5.69	1.49	6.63	76.59	754.23	0.00	878.67	100.00
20			Vol	ume (%)			100
÷							90
1 8							80
- 191	LA C						70
. 9							60
100							40
	617						30
-							20
-							10
0							0
0.01	0.1	1	1.0	10.0	100	.0 1	0.000
			Particle [Diameter (µm.)			

Malvern Instruments Ltd. Malvern, UK Tel:=+[44] (0)1684-892456 Fax:+[44] (0)1684-892789

Mastersizer S long bed Ver. 2.19 Serial Number: 32734-89

สูนย์เครื่องมือวิจั	ัยวิทยาศาสตร์และเทคในโลยี	ๆสาธงกรณ์มหาวิทย	าดัย		
อาศารสถาเป็น 2	จุษาละกรณ์ ขอย 62 ก.พญาไร	ก ปญาพัน กรุงเทพฯ 10336	0 EVIN 2180029-32, 2188101	291818.78	2540211
Scientific and	Technological Research	Equipment Centre	Chulalongkorn University		
Building 2-3 Cl	hula Soi 62 Phaya-Thai Rd	Phatumwan Bangkok	10330 Tel. 2188029-32, 2188101	Fax.	2840211

			Analys	sis Result				
Sample ID: SIC Sample File: CHULA Sample Path: CISIZI Sample Notes: Wet Disp Uthar	3 ERS/DATA) Analysis Syster ensing Medium sonic : 100%	n : Water	Samp Run Number 2 Record Number:	2	Measuri Analyse Result S	ed: 4 Jan 2007 14:24PM d: 4 Jan 2007 14:24PM Seurce: Analysed		
Range Lens: 300RF mm Presentation: 3THD Analysis Model: Polydisperse Modifications: None		Beam Length: 2.40 n [Particle R.I. = (2.592	Syste 5, 0.1000); Di	m Details Sar ispersant R.I. = 1.3300]	npler: MS17	Ob R	scuration: 16.7 % esidual: 0.793 %	
	-		Result	Statistics				
Distribution Type: Volume Mean Diameters: D [4, 3] = 6.92 um		Concentration = 0.0 D (v, 0.1) = 2.64 ur D [3, 2] = 3.64 um	Concentration = 0.0072 %Vol Density = 1.000 g / cub, cm D (v, 0.1) = 2.64 um D (v, 0.5) = 6.18 um D [3, 2] = 3.64 um Span = 1.481E+00		, cm	Specific S.A. = 1.6489 sq. m / g D (v. 0.9) = 11.67 um Uniformity = 4.055E-01		
Size Low (um)	in %	Size_High (um)	Under%	Size_Low (um)	In %	Size_High (um)	Under%	
0.05	0.00	0.06	0.00	6.63	11.42	7.72	65.54	
0.06	0.00	0.07	0.00	7.72	10.30	9.00	76.84	
0.07	0.00	0.08	0.00	9,00	8.49	10.48	85.33	
0.08	0.00	0.09	0.00	10.48	6.33	12.21	91.66	
0.09	0.00	0.11	0.00	12.21	4.21	14.22	95.87	
0.11	0.00	0.13	0.00	14.22	2.40	16.57	\$8.26	
0.13	0.00	0.15	0.00	16.57	1.05	19.31	\$9.32	
0.15	0.02	0.17	0.02	19.31	0.21	22.49	99.52	
0.17	0.08	0.20	0.11	22.49	0.00	26.20	99.52	
0.20	0.18	0.23	0.29	26.20	0.00	30.53	99.82	
0.23	0.32	0.27	0.61	30.53	0.00	35.56	99.52	
0.27	0.37	0.31	0.98	35.56	0.00	41.43	99.52	
0.31	0.34	0.36	1.32	41.43	0.07	48.27	\$9.60	
0.36	0.42	0.42	1.74	48.27	0.13	56.23	99.73	
0.42	0.39	0.49	2.14	56.23	0.13	65.51	99.86	
0.49	0.40	0.58	2.54	65.51	0.09	76.32	99.95	
0.58	0.39	0.67	2.93	76.32	0.04	88.91	100.00	
0.67	0.33	0.78	3.26	88.91	0.00	103.58	100.00	
0.78	0.23	0.91	3.49	103.58	0.00	120.67	100.00	
0.91	0.20	1.06	3.69	120.67	0.00	140.58	100.00	
1.06	0.23	1.24	3.92	140.58	0.00	163.77	100.00	
1.24	0.33	1.44	4.25	163.77	0.00	190.80	100.00	
1.44	0.58	1.68	4.82	190.80	0.00	222.28	100.00	
1.68	1.01	1.95	5.83	222.28	0.00	258.95	100.00	
1.95	1.65	2.28	7.50	258.95	0.00	301.68	100.00	
2.28	2.57	2.65	10.07	301.68	0.00	351.46	100.00	
2.65	3.76	3.09	13.84	351.46	0.00	409.45	100.00	
3.09	5.22	3.60	19.05	400.45	0.00	477.01	100.00	
3.60	6.86	4.19	25.91	477.01	0.00	555.71	100.00	
4.19	8.48	4.88	34.39	555.71	0.00	647.41	100.00	
4,88	9,87	5.69	44.27	647,41	0.00	754.23	100.00	
5.69	10.85	6.63	55.12	754.23	0.00	878.67	100.00	

p. 17 04 Jan 07 15:35

ศูนย์เครื่องมีอวิจัอวิทอาศาสตร์และเทคโนโลอี จุฬาลงกรณ์มหาวิทยาลัย อาการสถาปัน 2 จุฬาลงกรณ์ รอย 62 ณพญาโท ปัญเว็บ กรุงเทตฯ 16300 โทร 2188029-32, 2188101 Scientific and Technological Research Equipment Centre Chutatongkorn University Building 2-3 Chuta Soi 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Inverse 2540211 Fax. 2540211

			Anal	ysis Result			
Sample ID: SIC Sample File: CHULA Sample Path: C (SIZ Sample Notes: Wet Disp Ultre	3 ERS'DATA1 Analysis Syste ersing Medium sonic : 100%	m : Water	Sar Run Number: Record Numbe	mple Details 5 r. 5	Measuri Analyse Result 8	ed: 4 Jan 2007 14:27PM d: 4 Jan 2007 14:27PM Jource: Analysed	
Range Lens: 300RF mm Presentation: 3THD Analysis Model: Polydisperse Modifications: None		Deam Length: 2.40 n [Particle R I. = (2.580	Syn 15, 0.1000);	mpler: MS17	7 Obscuration: 12.6 % Residual: 0.768 %		
			Ros	ult Statistics			
Distribution Type: Vi Mean Diameters: D [4, 3] = 7.21 um	olume	Concentration = 0.0055 % Vol D (v, 0.1) = 2.70 um D [3, 2] = 3.80 um		Density = 1,000 g / cul D (v, 0.5) = 6.26 um Span = 1,467E+00	b. cm	Specific S.A. = 1.5778 sq. m / g D (v. 0.9) = 11.88 um Uniformity = 5.183E-01	
Elen Low (cm)	In It.	Size High (um)	Lindarff.	Size Low (um)	10.96	Size High (um)	Linder%
0.05	0.00	0.05	0.00	6.63	11.39	7.72	65.57
0.06	0.00	0.07	0.00	7.72	10.35	9.00	75.92
0.07	0.00	0.08	0.00	9.00	8.60	10.48	84.52
0.08	0.00	0.09	0.00	10.48	6.47	12.21	90.99
0.09	0.00	0.11	0.00	12.21	4.34	14.22	95.33
0.11	0.00	0.13	0.00	14.22	2.50	16.57	97.83
0.13	0.00	0.15	0.00	16.57	1.11	19.31	98.94
0.15	0.00	0.17	0.00	19.21	0.23	22.49	99.17
0.17	0.05	0.20	0.05	22.49	0.00	26.20	99.17
0.20	0.14	0.23	0.19	26.20	0.00	30.53	99.17
0.23	0.26	0.27	0.45	30.63	0.00	35.56	99.17
0.27	0.33	0.31	0.78	35.56	0.00	41,43	99.17
0.31	0.33	0.36	1.11	41.43	0.14	48.27	99.30
0.36	0.41	0.42	1.52	48.27	0.21	56.23	99.51
0.42	0.40	0.49	1.92	\$6.23	0.20	65.51	99.71
0.49	0.40	0.58	2.32	65.51	0.15	76.32	99.85
0.58	0.39	0.67	2.71	76.32	0.10	88.91	99.95
0.67	0.32	0.78	3.03	88.91	0.04	103.58	100.00
0.78	0.23	0.91	3.26	103.58	0.00	120.67	100.00
0.91	0.19	1.06	3.45	120.67	0.00	140.58	100.00
1.05	0.20	1.24	3.65	140.58	0.00	163.77	100.00
1.24	0.30	1.44	3.95	163.77	0.00	190.80	100.00
1.44	0.54	1.68	4.49	190.80	0.00	222.28	100.00
1.68	0.96	1.95	5.45	222.28	0.00	258.95	100.00
1.95	1.61	2.28	7.06	258.95	0.00	301.68	100.00
2.28	2.52	2.65	9.59	301.68	0.00	351.46	100.00
2.65	3.72	3.00	13.31	351.46	0.00	409.45	100.00
3.09	5.17	3.60	18.47	409.45	0.00	477.01	100.00
3.60	6.78	4.19	25.25	477.01	0.00	555.71	100.00
4.19	8.39	4.88	33.65	555.71	0.00	647.41	100.00
4.88	9.77	5.69	43.42	647.41	0.00	754.23	100.00
5.69	10.76	6.63	54.18	754.23	0.00	878.67	100.00

ศูนย์เครื่องมีขวิจัอริทธาศาสตร์และเทคในโดยี จุฬาลงกรณ์มหาวิทยาลัย จาการสถาบัน 2 จุฬาลงกรณ์ขอย 62 ถ.พญาโท ปรุมวัน กรุงทพฯ 16300 โทร 2188028-32, 2188161 Scientific and Technological Research Equipment Centre Chulalongkorn University Building 2-3 Chula Sol 62 Phaya-Thai Rd. Phatumwan Bangkok 10330 Tel. 2188029-32, 2188101 Sweathy 2040211 Fax. 2540211

			Analy	sis Result			
Sample ID: SIC Sample Details Run Number: 10 Analysed: 4 Jan 2007 15:33PM Analysed: 4 Jan 2007 15:33PM Sample File: CHULA3 Record Number: 10 Analysed: 4 Jan 2007 15:33PM Result Source: Analysed Sample Note:: Vet Analysis System Dispersing Medium : Water Ultrasonic : 100%							
Range Lens: 300RF mm Presentation: 3THD Analysis Model: Polydisperse Modifications: None Distribution Type: Volume Mean Diamoters: Distribution Type: Volume		Beam Length: 2.40 m [Particle R.I. = (2.593	Syst 5, 0 1000):	ern Details Sar Dispersant R.L = 1.3300]	ngler: MS17	Ob	scuration: 13.2 % esidual: 0.770 %
		Resi Concentration = 0.0058 %Vol D (v. 0.1) = 2.68 um D (3. 2) = 3.77 um		It Statistics Density = 1.000 g / cub. cm D (v, 0.5) = 6.23 um Span = 1.477E+00		Specific S.A. = 1.5914 sq. m / D (v, 0.9) = 11.89 um Uniformity = 5.246E-01	
	1.1	I Class Migh (um) I	Destarts	Size Low (um)	in %	Size_High (um)	Under%
Size_Low (um)	11 79	Size_High (um)	0.00	6.63	11.33	7.72	65.75
0.05	0.00	0.07	0.00	7.72	10.28	9.00	76.02
0.06	0.00	0.07	0.00	9.00	8.52	10.48	84,54
0.07	0.00	0.00	0.00	10.43	6.41	12.21	90.95
0.08	0.00	0.00	0.00	12.21	4.30	14.22	95.25
0.09	0.00	0.11	0.00	14.22	2.49	16.57	97.74
0.11	0.00	0.13	0.00	18.57	1.12	19.31	98.86
0.13	0.00	0.15	0.00	10.07	0.25	22.49	99.11
0.15	0.00	0.17	0.00	22.40	0.00	25.20	99.11
0.17	0.06	0.20	0.09	22.49	0.00	30.53	99.11
0.20	0.15	0.23	0.21	26.20	0.00	35.66	99.11
0.23	0.27	0.27	0.48	30.53	0.00	33.00	99.12
0.27	0.34	0.31	0.82	35.56	0.01	41,43	05.27
0.31	0.33	0.35	1.15	41.43	0.15	40.21	06.40
0.36	0.41	0.42	1.56	48.27	0.22	56.23	00.70
0.42	0.40	0.49	1.96	56.23	0.21	65.51	00.00
0.49	0.40	0.58	2.36	65.51	0.15	76.32	99.86
0.58	0.39	0.67	2.75	76.32	0.10	88.91	99.96
0.67	0.32	0.78	3.07	88.91	0.04	103.58	100.00
0.78	0.23	0.91	3.30	103.58	0.00	120.67	100.00
0.91	0.19	1.06	3.49	120.67	0.00	140.58	100.00
1.06	0.21	1.24	3.70	140.58	0.00	163.77	100.00
1.24	0.31	1.44	4.01	163.77	0.00	190.80	100.00
1.44	0.56	1.68	4.57	190.80	0.00	222.28	100.00
1.48	0.98	1.95	5.55	222.28	0.00	258.95	100.00
1.00	1.64	2.28	7.19	258.95	0.00	301.68	100.00
0.08	2.54	2.65	9.75	301.68	0.00	351.46	100.00
2.20	3.75	3.09	13.50	361,46	0.00	409.45	100.00
2.07	6.00	3.60	18.70	409.45	0.00	477.01	100.00
3.09	0.20	4.10	25.51	477.01	0.00	555.71	100.00
3.60	0.01	4.19	13.07	555.71	0.00	647.41	100.00
4.19	0.41	6.69	43.68	647.41	0.00	754.23	100.00
4 85	9.76	0.08		764.33	0.00	878.67	100.00

ประวัติผู้เขียนวิทยานิพนธ์

ชื่อ — นามสกุล	นาย รัฐ <mark>ตั</mark> นติศิริไพบูลย์
วัน เดือน ปีเกิด	วันจันทร์ที่ 18 เมษายน พ.ศ. 2526
ที่อยู่	18/32 หมู่ 2 หมู่บ้านวิสันต์ ถนนเทพกระษัตรี ตำบลรัษฎา อำเภอเมือง จัง <mark>หวัดภูเกี</mark> ต 8 <mark>3</mark> 000
ประวัติการศึกษา	ระดับประถมศึกษา โรงเรียนอนุบาลภูเก็ต ปี พ.ศ. 2538 ระดับมัธยมศึกษาตอนต้นและตอนปลาย โรงเรียนภูเก็ตวิทยาลัย ปี พ.ศ.2544 วิศวกรรมศาสตรบัณฑิต คณะวิศวกรรมศาสตร์ สาขาวิชา วิศวกรรมวัสดุ มหาวิทยาลัยสงขลานครินทร์ ปี พ.ศ.2548
โพรสัมเท้	0 22216 105

ไทรศัพท์

0-23216-195

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย