Charpter II

Historical

Botanical aspects of the family Lauraceae.

The family Lauraceae comprises of about 32 genera and around 2,000-3,000 species distributed in tropic and subtropic regions of both hemispheres with the greatest diversity in Southeast Asia (Hutchinson, 1964; Jones, 1979). Man have used the lauraceous plants for timbers, edible fruits, seed fats, drugs and perfume oil (Gottlieb, 1972). The family can be divided into two subfamilies: Lauroideae, which is arborescent and Cassythoideae, with the parasitic twiner such as Cassytha.

Lauroideae is further classified into five tribe:-

Perseae (Persia), Cinnamomeae (Cinnamomum), Litseeae (Litsea), Cryptocaryeae (Cryptocarya) and Hypodaphnideae (Hypodaphnis).

According to Kosterman's classification, *Litsea* is a genus of small tree belonging to the subtribe Litseinneae of the tribe Litseeae within the subfamily Lauroideae. (Backer and Bakhuizen, 1965).

The Lauraceae is characterized as a family of aromatic tree or shrubs, leaves usually alternate, perianth small and undifferentiated; stamens 3-numerous in several whorls, anthers with valvate dehiscence, fruit a single seeded drupe or berry (Jones, 1979).

The genus *Litsea* is usually evergreen trees or shrubs. Leaves alternate, penninerved or rarely tri-basal-nerved. Flowers small, dioecious, umbellate; umbels few or many flowered, pedunculate, axillary or from the scars of fallen leaves. Fruit a

succulent drupe seated on the much enlarged perianth-tube which is 6-toothed or irregularly lobed (Lalbot, 1976).

According to The Royal Forest Department's Thai Plant Names, 19 species of Litsea are in Thailand (Smittinand, 1980). They are as follows:-

Litsea baviensis Lec.	สุรามะริด	Suraamarit (Lampang)
L. elliptica Boerl.	ทำมัง	Thammang (Surat Thani)
L. euosma W.W.Smith	ชะใคร้ดัน	Sakhraiton (Chiang Mai);
	เหล็กชีดิน	Lek chee din (Phetchabun)
L. garrettii Gamble	ดะใคร้ดัน	Takhraiton (Chiang Mai);
	เมียดดัน	Miat ton (Loei)
L. glutinosa C.B.Robinson	หมีเหม็น	Mee men (Northern, Chon Buri)
L. grandis Hook.f.	กะทั้งใบใหญ่	Ka thang bai yai (Penninsular)
L. johorensis Gamble	แปล	Pae nguu (Pattani)
L. lancifolia Hook.f.	หมอรัด	Mo rat (Surat Thani)
L. leiantha Hook.f.	ทำมัง	Thammang (Surat Thani)
L. megacarpa Gamble	ทั้งช่อ	Thang cho (Surat Thani)
L. monopetala Pers.	กะทั้ง	Kathang (Penninsular)
L. myristicaefolia Hook. f.	ตริด	Trit (Trang),
L. perakensis Gamble	ดารีด	Taareet (Trang)
L. petiolata Hook.f.	ทำมัง	Thammang (Penninsular)

L. pierrei Lec. ดานหล Taan hok (Prachin Buri) L. resinosa Bl. ทำมังพอกรง Thammang phokrong (Nakorn Si Thammarat) L. semecarpifolia Hook.f. ช่อข้าวสุก Cho Khaao suk (Chiang Mai) L. umbellata Merr. ฟันปลา Fan plaa (Chanthaburi) จะได้ดับ L. cubeba Pers. Chakhaiton (Chiang Mai); ตะไคร้ Takhrai (Kanchanaburi);

synnonym: Laurus cubeba Lour., Actinodaphne citrata (Blume) Hayata, Benzoin cubeba (Lour.) Hatusima, Litsea citrata Blume. (Grierson and Long, 1984; Li et al., 1976)

Takhrai ton (Loei)

ตะไคร์ตัน

L. cubeba is a small tree indigenous to Thailand at the attitude of over 1,200 meter. This plant is wide spread through India, China and Southeast Asia. It is distributed naturaly in mix-forest and has been cultivated in Formosa, Java and China. A citral rich oil can be isolated from the fruit-skin, seed, leaf and bark. This oil called Chinese lemongrass oil offers competition to the Indian-grass oil in world market (Zytchi, 1989).

Botanical characteristics of L. cubeba are as follows:-

Leaves (when bruised) heavily smelling of lemon, distinctly but finely pellucid-dotted, mature ones glabrous, oblong or lanceolate, long-acuminate, herbaceous or thinly coriaceous, glaucous beneath, 7-15 cm. by 1.5-3 cm.; lateral nerves 8-12 on either side of midrib, slightly prominent beneath; petiole 0.75-1.75 cm.; apices of stem densely short-hairy, glabrescent, black. Involucres arranged in umbelliform racemes 0.25-1 cm. long, glabrous without; 5-flowered; flowers dioeceous; tepals 5-6, yellowish, glabrous without, 1.5-2.5 mm. long; stamens or staminodes 9, sparsely hairy; gland sessile; fruiting pedicles 3-5 mm.; receptacle cup shaped; berry globose, black, 5-6 mm.diameter. Tree 3-10 m. high; flowering (or in absence of flowers, fruiting) from January to December (Backer et al., 1965). Occurring from 300-1,500 m. over sea-level (Grierson and Long, 1984).

Ethnopharmacological aspects of L. cubeba

L. cubeba has been employed in folk medicine in many countries (Perry and Metzger, 1980) for example:-

China:

The berries are carminative, stomachic, expectorant, a treatment for hernia, bronchitis, and dyspepsia.

The roots are an ingredient of a medicine given after childbirth.

The bark of root branches, and the leaves are employed against athlete's foot and other skin diseases.

Indo-China:

A decoction is useful in case of vertigo, hysterical affections, paralysis, melancholy or forgetfulness.

Indonesia:

The fruits may be used as a substitute for those of Piper cubeba.

Australia:

The seeds are used as a substitute for common salt by the aborigins in

the mountains.

The oleoresin from the root and the fruit (collected just before the fruit turns red) may be a part of some medicines.

Figure 1 Litsea cubeba (Lour.) Pers.

fruiting branch;
 flowering branch;
 flowers;
 dissected flower;
 glandular stamen;
 eglandular stamen (Li et al., 1976).

Alkaloids isolated from lauraceous plants

Laurotetanine (IV₃₄) is the first alkaloid found in lauraceous plant, was isolated from Actinodaphne procera Nees and Litsea chrysocoma Blume (Greshoff, 1890). In 1978, Ralph and coworkers summerized the lauraceous alkaloids which isolated from 103 species of 19 genera. There are about 105 alkaloids of 15 structural types (Ralph et al, 1978). Currently, the occurence of alkaloids found in Lauraceae are about 180 alkaloids from 143 species of 22 genera and almost all of them are isoquinoline type. The alkaloids and their sources are summarized in Table I.

Table I Alkaloids of the Lauraceae

Plant species	Alkaloids	Formulae	Reference
Actinodaphne ocutive (Hayata)Nakai	laurolitsine	IV ₃₃	Lu et al., 1969.
A. hookeri Meissn.	actinodaphnine	IV_1	Ghose et al., 1969.
A. nitida Teschn.	boldine laurolitsine	IV ₅	Johns et al., 1969.
A. obovata Bl.	actinodaphnine laurotetanine	IV ₁	Hema et al., 1972.
	N-methyllaurotetanine	IV ₃₄ IV ₄₇	
A. procera Nees	laurotetanine	IV ₃₄	Ralph et al., 1978.

Plant species	Alkaloids	Formulae	Reference
A. speciosa Nees	laurotetanine	IV ₃₄	Bandara et al., 1989;
	N-methyllaurotetanine	IV47	Sotheeswaran and Wannigama, 1989.
Alseodaphne arch	(+),(-)-coclaurine	IIa ₂	Johns et al, 1967.
-boldiana	(-)-N-norarmepavine	IIa ₅	
(C.K.Allen)Kosterm	(+)-reticuline	Па7	
	100	VV	77 1 1000
A. hainanensis	xylopinine	XV ₂	Zhang et al., 1988.
	armepavine	Па8	
	doryafranine	Па13	
	1-(4-methoxybenzyl)-		
	-6,7-methylenedioxy-		
	-1,2,3,4-tetrahydro		
	isoqinoline		
A. perakensis	N-methyl-2,3,6	XI ₁₀	Lajis et al., 1991.
	-trimethoxy		
	-morphinandien-7		
	-one-N-oxide		
Aniba coto	anabasine	xII_1	Mors and Gottlieb, 1959
(Rusby) Kosterm.			
A. duckeri Kosterm	duckein	XII ₃	Mors et al., 1957.
	anibine	XII_2	

Plant species	Alkaloids	Formulae	Reference
Beilschmiedia elliptica	isoboldine	IV ₂₆	Clezy et al, 1966.
B. oreophila	6-epioreobeline	IX8	Tillequin and
Schlechter	isoboldine	IV_{26}	Koch, 1985.
	oreobeline	IX7	
	thaliporphine	IV ₇₆	
	wilsonirine	IV ₇₉	
B. madang (Bl.) Bl.	dehatrine	XI ₄	Kitagawa et al., 1993.
B. podagrica	(+)-2,11-dihydroxy	IV ₁₆	Johns et al., 1969.
Kosterm.	-1,10-dimethoxyapor	phine	
	glaucine	rv ₂₀	
	(+)-2-hydroxy	-	
	-1,9,10-trimethoxyno	raporphine	
	isoboldine	IV ₂₆	
	predicentrine	rv ₇₁	
B. taxa Benth. & Hook	isoboldine	IV ₂₆	Russell and Fraser, 1969
Cassytha americana	actinodaphnine	IV_1	Cava et al., 1968.
Nees	bulbocapnine	IV_6	
	cassamedine	v_1	
	cassameridine	V_2	

Plant species	Alkaloids	Formulae	Reference
Cassytha americana	cassyfiline	IV ₈	Cava et al., 1968.
Nees	cassythicine	IV ₉	
	cassythidine	IV_{10}	
	dicentrine	IV_{15}	
	Iaunobine	IV ₃₁	
	N-methylactinodaphnine	IV ₄₁	
	O-methylcassyfiline	IV ₆₈	
	neolitsine	IV ₅₁	
	nuciferine	IV ₆₃	
C. filiformis L.	cassyfiline	IV ₈	Webb, 1948;
	laurotetanine	IV ₃₄	Tomita et al., 1965;
	nantenine	IV ₅₀	Johns and Lamberton,
	ocoteine	IV ₆₇	1966;
	cassythidine	IV ₁₀	Merchant and Desai, 1973
C. glabella R.Br	cassythicine	IV ₉	Johns et al., 1966d.
C. melantha R.Br.	actinodaphnine	I_{IV_1}	Johns et al., 1966.
	cassythicine	IV9	

Plant species	Alkaloids	Formulae	Reference
C. pubescens R.Br.	domesticine	IV ₁₉	Johns et al., 1966b.
	isoboldine	IV_{26}	
	laurelliptine	IV_{32}	
	nantenine	IV ₅₀	
	nordomesticine	IV ₅₅	
	sinoacutine	IX ₄	
C. racemosa Nees	(+)-coclaurine	Па2	Johns et al., 1967.
	1,2-dimethoxy-	V_4	
	-9,10-methylenedioxy		
	-7-oxodibenzo(de,g)-		
	quinoline		
	isoboldine	IV ₂₆	
	laurelliptine	IV ₃₂	
	laurotetanine	IV ₃₄	
	N-methyllaurotetanine	IV ₄₇	
	nantenine	IV ₅₀	
	nomantenine	IV ₅₉	
Cinnamomum camphora	laurolitsine	IV ₃₃	Tomita et al., 1964a.
(Linn.) Seib.	reticuline	Па7	
C. laubattii F. Muell	(+)-reticuline	IIa ₇	Ellis et al., 1972.

Plant species	Alkaloids	Formulae	Reference
Cinnamomum sp.	cinnamolaurine	Па1	Gellert and Summon,
	(+)-corydine	IV_{11}	1969,1970 .
	norcinnamolaurine	Па6	
	(+)-reticuline	Па7	
Cryptocarya alba Bl.	(+)-reticuline	Па7	Urzua et al., 1975.
C. amygdalina Nees	(+)-reticuline	Па7	Manandhar et al., 1979.
C. angulata	3,4-dimethoxy-1-(dimethyl	1 -	Cooke et al., 1954;
C.T.White	aminoethyl) phenanthrene	е	Bick and Douglas, 1965.
	N-methylisocorydine	IV ₄₆	
	roemerine	IV ₇₅	
C. archboldina Allen	(-)-armepavine	Па8	John et al., 1969.
C. bowiei (Hook.)	cryptotaustoline	vm_1	Ewings et al., 1953.
Druce	cryptowoline	VIII ₂	
C. chinensis Hemsl.	(±),(-)-caryachine	VII1	Chen et al., 1979;
. ବୃହାରୀ	crychine	VII ₂	Lee et al., 1990.
	(+)-o-methylcaryachine	VII_3	
	neocaryachine	. VII₅	
	caryachine N-methoperchl	Oversone a season	

Plant species	Alkaloids	Formulae	Reference
C. foveolata C.T.	reticuline	IIa ₇	Lamberton and
White & Francis			Vashist, 1972.
C. konishii Hayata	(±)-N-noramepavine	Па5	Lu, 1967;
	crykonisine	Пь1	Lee et al., 1993
	armepavine	Па8	
	(+)-(1R,1aR)-1a-	Па ₁₆	
	-hydroxymagnocurarine		
C. laevigata Bl.	cryptopleurine	X ₂	Hoffmann et al., 1978.
C. longifolia	thalifoline	I	Ralph et al., 1981.
Kosterm.	coclaurine	Па2	
	(-)-norargemonine	VII4	
	(-)-bisnorargemonine	VII ₆	
	isoboldine	IV ₂₆	
	laurolitsine	IV ₃₃	
	laurotetanine	IV ₃₄	
	longifolidine	Па9	
	longifolonine	Пь4	
	N-methylcoclaurine	Па ₁₀	
	N-methyllaurotetanine	IV ₄₇	

norisocorydine	Plant species	Alkaloids	Formulae	Reference
scoulerine XV C. odorata Guillaum. cryptodorine isocorydine isoc		norisocorydine	IV ₅₆	
C. odorata Guillaum. cryptodorine IV ₁₃ Bick et al., 1972 isocorydine IV ₂₇ laurotetanine IV ₃₄ N-methyllaurotetanine IV ₄₇ C. phyllostemon phyllostemine X ₅ Bick et al., 1980; Kosterm. phyllosteminine X ₆ Cave et al., 1989. letroisieme - (-)-antofine X ₃ dehydroantofine X ₄ (-)-cryptowoline VIII ₂ (-)-cryptowolinol VIII ₃ (-)-cryptowolidine VIII ₄ (-)-phyllostone XIII ₂ (+)-phyllocryptine IIa ₁₁ (+)-phyllocryptonine IIa ₁₂ (-)-phyllostemine X ₅		reticuline	Па7	
isocorydine IV ₂₇ laurotetanine IV ₃₄ N-methyllaurotetanine IV ₄₇ C. phyllostemon phyllostemine X ₅ Bick et al., 1980; Kosterm. phyllosteminine X ₆ Cave et al., 1989. letroisieme - (-)-antofine X ₃ dehydroantofine X ₄ (-)-cryptowoline VIII ₂ (-)-cryptowolinol VIII ₃ (-)-cryptowolidine VIII ₄ (-)-phyllostone XIII ₂ (+)-phyllocryptine IIa ₁₁ (+)-phyllocryptonine IIa ₁₂ (-)-phyllostemine X ₅		scoulerine	XV	
isocorydine IV_{27} laurotetanine IV_{34} N-methyllaurotetanine IV_{47} C. phyllostemon phyllostemine IV_{47} E. phyllostemine IV_{47} E. phyllostemine IV_{47} E. phyllostemine IV_{47} E. phyllosteminine IV_{47} E. phyllostemine IV_{47} E. phyllo				
laurotetanine IV ₃₄ N-methyllaurotetanine IV ₄₇ C. phyllostemon phyllostemine X ₅ Bick et al., 1980; Kosterm. phyllosteminine X ₆ Cave et al.,1989. letroisieme - (-)-antofine X ₃ dehydroantofine X ₄ (-)-cryptowoline VIII ₂ (-)-cryptowolinol VIII ₃ (-)-cryptowolidine VIII ₄ (-)-phyllostone XIII ₂ (+)-phyllocryptine IIa ₁₁ (+)-phylloryptonine IIa ₁₂ (-)-phyllostemine X ₅	C. odorata Guillaum.	cryptodorine	IV ₁₃	Bick et al., 1972
N-methyllaurotetanine N-methyllaurotetanine N-methyllaurotetanine Phyllostemine N-methyllaurotetanine N-methyllaurotetanine N-methyllaurotetanine N-methyllaurotetanine N-methyllaurotetanine N-methyllaurotetanine X5 Bick et al., 1980; Cave et al.,1989. Cave et al.,1989.		isocorydine	IV ₂₇	
C. phyllostemon phyllostemine X_5 Bick et al., 1980; Kosterm. X_6 Cave et al., 1989. letroisieme - (-)-antofine X_3 dehydroantofine X_4 (-)-cryptowoline X_{112} (-)-cryptowolinol X_{112} (-)-cryptowolidine X_{112} (-)-phyllostone X_{112} (+)-phyllocryptine X_{112} (+)-phyllocryptonine X_{112} (-)-phyllostemine X_5		laurotetanine	IV ₃₄	
Kosterm. phyllosteminine X_6 Cave et al.,1989 . letroisieme - (-)-antofine X_3 dehydroantofine X_4 (-)-cryptowoline $VIII_2$ (-)-cryptowolinol $VIII_3$ (-)-cryptowolidine $VIII_4$ (-)-phyllostone $XIII_2$ (+)-phyllocryptine IIa_{11} (+)-phyllocryptonine IIa_{12} (-)-phyllostemine X_5		N-methyllaurotetanine	IV ₄₇	
letroisieme (-)-antofine X3 dehydroantofine X4 (-)-cryptowoline VIII2 (-)-cryptowolinol VIII3 (-)-cryptowolidine VIII4 (-)-phyllostone XIII2 (+)-phyllocryptine IIa ₁₁ (+)-phylloryptonine IIa ₁₂ (-)-phyllostemine X5	C. phyllostemon	phyllostemine	X ₅	Bick et al., 1980;
(-)-antofine X_3 dehydroantofine X_4 (-)-cryptowoline $VIII_2$ (-)-cryptowolinol $VIII_3$ (-)-cryptowolidine $VIII_4$ (-)-phyllostone $XIII_2$ (+)-phyllocryptine IIa_{11} (+)-phyllcryptonine IIa_{12} (-)-phyllostemine X_5	Kosterm.	phyllosteminine	X ₆	Cave et al.,1989 .
dehydroantofine X4 (-)-cryptowoline VIII2 (-)-cryptowolinol VIII3 (-)-cryptowolidine VIII4 (-)-phyllostone XIII2 (+)-phyllocryptine IIa ₁₁ (+)-phyllcryptonine IIa ₁₂ (-)-phyllostemine X5		letroisieme	-	
(-)-cryptowoline $VIII_2$ (-)-cryptowolinol $VIII_3$ (-)-cryptowolidine $VIII_4$ (-)-phyllostone $XIII_2$ (+)-phyllocryptine IIa_{11} (+)-phyllcryptonine IIa_{12} (-)-phyllostemine X_5		(-)-antofine	X3	
(-)-cryptowolinol VIII ₃ (-)-cryptowolidine VIII ₄ (-)-phyllostone XIII ₂ (+)-phyllocryptine IIa ₁₁ (+)-phyllcryptonine IIa ₁₂ (-)-phyllostemine X ₅		dehydroantofine	X4	
(-)-cryptowolidine $VIII_4$ (-)-phyllostone $XIII_2$ (+)-phyllocryptine IIa_{11} (+)-phyllcryptonine IIa_{12} (-)-phyllostemine X_5		(-)-cryptowoline	VIII ₂	
(-)-cryptowolidine VIII ₄ (-)-phyllostone XIII ₂ (+)-phyllocryptine IIa ₁₁ (+)-phyllcryptonine IIa ₁₂ (-)-phyllostemine X_5				
(+)-phyllocryptine IIa_{11} (+)-phyllcryptonine IIa_{12} (-)-phyllostemine X_5				
(+)-phyllcryptonine IIa_{12} (-)-phyllostemine X_5		(-)-phyllostone	$XIII_2$	
(-)-phyllostemine X ₅		(+)-phyllocryptine	Πa_{11}	
		(+)-phyllcryptonine	Па12	
(-)-phyllosteminine X ₆		(-)-phyllostemine	X_5	
		(-)-phyllosteminine	x_6	

Plant species	Alkaloids	Formulae	Reference
C. pleurosperma C.T.	cryptopleuridine	x_1	De la Lande, 1948;
White and Francis	cryptopleurine	x_2	Gellert, 1959;
	cryptopleurospermine	XIV	Johns et al., 1970.
	pleurospermine	$XIII_1$	
C. tomentosa Blume	laurotetanine	IV ₃₄	Wehmer, 1935.
C. tripinervis R.Br.	N-methylisocorydine	IV ₄₆	Cooke and Haynes, 1954
C. valeriana	phoebine	IV ₆₉	Castro et al., 1986;
A.J.G.H. Kosterm.	nordelporphine	IV ₅₃	Stermitz, 1986.
	nantenine	IV ₅₀	
	thaliporphine	IV ₇₆	
	3-hydroxyglaucine	IV ₂₂	
	nor-phoebine	IV ₆₀	
	O-methylmoschatoline		
C. velutinosa	velucryptine	Пь5	Lebceuf et al., 1989.
Dehaasia incrassata	isocorydine	IV ₂₇	Said et al., 1991.
(Jack) Kosterm.			
D. triandra Merr.	isocorydine	IV ₂₇	Lu et al., 1989.
	corytuberine	IV_{12}	
	atheroline	V_7	

Plant species	Alkaloids	Formulae	Reference
	nantenine	IV ₅₀	
	obaberine	x_{16}	
	xanthoplanine	IV_{80}	
	dehatrine	XI ₄	
D. triandra Merr.	dehatridine	XI ₅	
Laurus nobilis L.	actinodaphnine	IV ₁	Tomita et al, 1963
	launobine	IV ₃₁	
	reticuline	Па7	
	(+)-boldine	IV ₅	
	N-methylactinodaphnine	IV ₄₁	
	(+)-isodomesticine	IV ₂₈	
	neolitsine	IV ₅₁	
	(+)-actinodaphnine	IV_1	
	nor-isodomesticine	IV ₅₇	
	(+)-nandigerine	IV ₄₉	
	(+)-cryptodorine	IV ₁₃	
Lindera benzoin	laurotetanine	IV ₃₄	Babcock and
Meissn.			Segalman,1974
L. citriodora	laurotetanine	IV ₃₄	Pech and Bruneton, 1984.
(Sieb.& Zucc.) Bl.			

Plant species	Alkaloids	Formulae	Reference
L. erythrocarpa	laurotetanine	IV ₃₄	Kozuka et al., 1984 .
Makino(Sieb. & Zucc.) Bl.	(+)-norcinnnamolaurine	Па6	
	laurotetanine	IV_{34}	
L. megaphylla	N-methylhernangerine	IV ₄₃	Chen et al., 1991;
Hemsl.	d-dicentrine	IV ₁₅	Lu et al., 1972.
L. oldhamii Hemsl.	(+)-dicentrine	IV ₁₅	Lu and Chen, 1976;
	dicentrinone	V ₃	Chen, 1977.
	O-methylbulbocapnine	IV ₄₂	
	N-methylhernangerine	IV ₄₃	
	N-methylhemovine	IV ₄₅	
	lindoldhamine	XI ₁₀	
	dicentrine	IV ₁₅	
	N-nordicentrine	IV ₅₄	
	L-(+)-magnocurarine	Па4	
L. pipericarpa Boerl.	laurotetanine	IV ₃₄	Burkill,1935;
	lindcarpine	IV ₃₅	Kiang and Sim, 1967;
	isocorydine	IV ₂₇	Lajis et al., 1992.
	norisocorydine	IV ₅₆	
	N-methyllaurotetanine	IV ₄₇	

Plant species	Alkaloids	Formul	Formulae Reference	
L. sericea Blume	launobine	IV ₃₁	Kozuka et al., 1985.	
	boldine	IV_5		
	laurotetanine	IV_{34}		
L. strychnifolia	laurolitsine	IV ₃₃	Tomita et al., 1969;	
(Sieb. et.Zucc.) F.Vill	boldine	IV ₅	Kozuka et al., 1984	
	(+)-reticuline	Па7		
L. umbellata Thunb.	launobine	IV ₃₁	Tomita et al., 1969;	
	laurolitsine	IV ₃₃	Kozuka et al., 1985	
	boldine	IV ₅		
	laurotetanine	IV ₃₄		
Machilus acuminatissima	(±)-coclaurine	Па2	Lu, 1967a .	
(Hay.)Kanehira	crykonisine	Пь1		
	(±)-N-norarmepavine	Па5		
	(-)-N-norarmepavine	Па5		
M. arisanensis	(+)-laudanidine	Па3	Tomita et al., 1965a	
Hayata	(±)(-)-N-noramepavine	Па5		
M. duthei	boldine	IV_5	Hassin <i>et al.</i> , 1980 .	
King & Hook	isoboldine	IV_{26}		
	laurotetanine	IV_{34}		

Plant species	Alkaloids	Formulae	Reference	
M. duthei	laurolitsine	IV ₃₃		
King & Hook	(+)-reticulin	Па7		
M. glaucescens Wight	machiline		Talaptra et al., 1982.	
M. kusanoi Hayata	coclaurine	Па2	Tomita et al., 1963;	
	(-)-N-norarmepavine	Па5	Lu, 1963	
M. macrantha Blume	(±)-coclaurine	IIa ₂	Tomita et al., 1963.	
M. obovatifolia	(+)-laudanidine	Па3	Tomita et al., 1965.	
(Hayata)Kanehira	(±)-N-norarmepavine	IIa ₅		
and Sasaki	(-)-N-norarmepavine	Па5		
M. pseudolongifolia	(±)-N-norarmepavine	Па5	Lu, 1963 .	
Hayata	(-)-N-norarmepavine	Па5		
M. thunbergii	(±)-N-norarmepavine	IIa5	Tomita and	
Sieb. & Zucc.	(-)-N-norarmepavine	IIa ₅	Kozuka, 1964;	
	reticulin	Па7	Tomita et al., 1965 b	
M. zuihoensis Hayata	(±)-N-norarmepavine IIa5		Lu,1963;	
	(-)-N-norarmepavine IIa5		Tomita et al., 1965 b	

Plant species	Alkaloids	Formulae	Reference
Nectandra megapotamica	N-methyltryptamine 6-methoxy-N-methyl-	XVI ₃ XVI ₂	Filho and Silvio, 1980
(Sprg.) Chodat and Hassler.	-1,2,3,4-tetrahydro -β-carboline	AV12	
N. pichurim (H.B.K.)Mez.	isoboldine	IV ₂₆	Ferrari et al., 1971.
N. rigida Nees	laurelliptine	IV ₃₂	Quesne et al., 1980.
N. rodioei Hook.	ocotine	XI ₂	Grundon and Garvey,
	rodiasine	XI ₃	1960.
	sepeerine	XI ₈	
N. saligna	dehydroocoteine	IV ₈₄	Baralle et al., 1972.
Nees et Mart.)Nees	ocoteine	IV ₆₇	
	isoboldine	IV ₂₆	
Neolitsea aciculata	laurotetanine	IV ₃₄	Kozaku <i>et al.</i> , 1984.
Koidz.	(+)-reticuline	Па7	
	laurolitsine	IV_{33}	
	boldine	IV_5	

Plant species	Alkaloids	Formulae	Reference
N. accuminatissima	(+)-laurotetanine	IV ₃₄	Kataoku, 1965;
(Hay.) Kanehira & Sasaki			Tomita et al., 1965.
N. aurata (Hay.)	(+)-anonaine	IV ₂	Lu et al., 1975
Koidz	laurolitsine	IV ₃₃	
	litsericine	IIIb_1	
	(-)-roemerine	IV ₇₅	
N. aureo-sericea	bisnorargemonine	VII ₆	Tantisewie and
N. aureo-sericea	isoboldine	IV ₂₆	Ruchirawat, 1992.
Kostermans	norcinnamolaurine	IIa ₆	ta e
	(+)-reticuline	Па7	
N. buisanensis	laurolitsine	IV ₃₃	Lu et al., 1975.
Yamamoto & Kamikoti	litsericine	шь1	
N. daibuensis Kamikoti	(+)-reticuline	IIa ₇	Lu and Homg, 1977.
N. fuscata (Thwait) Alston	isoboldine	IV ₂₆	Gunatilaka et al., 1981.
N. pubescens	boldine	IV_5	Johns et al., 1969.
(Teschn.) Merrill.	laurolitsine	IV_{33}	
	N-methyllaurotetanine	IV ₄₇	
	roemerine	IV ₇₅	

Plant species	Alkaloids	Formulae	Reference
N. pulchella	neolitsine	IV ₅₁	Hui et al., 1965.
(Meiss.) Merr.	pulchelline	-	
N. sericea	actinodaphnine	IV_1	Nakasao and Nomura,
(Blume)Koidzumi	anonaine	IV ₂	1957;1958;1959;
	boldine	IV ₅	Nakasato and Asada;
	laurolitsine	IV ₃₃	1966;
	laurotetanine	IV ₃₄	Nakasato et al., 1966
	liriodenine	V ₅	
	litsericine	Шь1	
	N-methylactinodaphnine	IV ₄₁	
	N-methyllaurotetanine	IV ₄₇	
	nuciferine	IV ₆₃	
	(-)-roemerine	IV ₇₅	
N. variabillima	(-)-hemovine	IV ₂₁	Lu and Su, 1973 a.
Kanehira & Sasaki	(-)-N-methylhemovine	IV ₄₅	
	(-)-nandigerine	IV ₄₉	
Notaphoebe konishii	(±)-N-norarmepavine	IIa ₅	Lu, 1967 b.
(Hay.) Hay.	(-)-N-norarmepavine	Па5	
	(-)-laudanidine	IIa ₃	
Notaphoebe sp.	actinodaphnine	IV_1	Ghose et al, 1934 .

Plant species	Alkaloids	Formulae	Reference
N. umbelliflora Blume	laurotetanine	IV ₃₄	Ralph et al, 1978.
Ocotea brachybotra	14-episinomenine	IX_5	Vecchietti et al., 1976.
(Meiss.)Mez.	ocobotrine	IX_6	
	pallidine	IX_1	
	sinoacutine	IX ₄	
O. bucherii Roij & Acuna	3-hydroxyglaucine	IV ₂₂	Hasso et al., 1983.
O. caesia Mez.,L.L.	(-)-zenkerine	IV ₈₁	Vilegas et al., 1989.
	(+)-laurelliptine	IV ₃₂	
	(-)-pulchine	IV ₇₃	
	(+)-isoboldine	IV ₂₆	
	(s)-(+)-1-hydroxy-		
	2,9-dimethoxynoraporphine	IV ₁₄	
O. caparrapi (Sandino-	reticuline	Па7	Suarez and Enrique, 1980
Grott & Nates)			
O. glaziovii Mez.	glaziovine	Ша2	Gilbert et al., 1964;
	(±)-apoglaziovine	IV ₃	Ferrari and
	asimilobine	IV_4	Casagrande, 1967;
	caaverine	IV_7	Casagrande and
	(±)-crotosparine	Ша1	Ferrari, 1975

Plant species	Alkaloids	Formulae	Reference
	1,10-dihydroxy-2- methoxyaporphine	IV ₁₇	
	(±)-glaziovine	$\text{III}a_2$	
	(<u>+</u>)-1-hydroxy-2-	IV ₂₃	
	methoxyaporphine		
	isoboldine	IV ₂₆	
	(-)-pronuciferine	Ша3	
O. leucoxylon	dicentrine	IV ₁₅	Ahmad and Cava, 1977
Benth. et Hook.			
O. macrophylla Mez	dehydronantenine	IV ₈₅	Franca et al., 1975.
	(+)-glaucine	IV_{20}	
	(+)-isocorydine	IV ₂₇	
	1-(p-methoxybenzyl)-	Пь2	
	6,7-dimethoxyisoquinol	ine	
	1-(p-methoxybenzyl)-	IIb ₃	
	6,7-methylenedioxy-		
	isoquinoline		
	(+)-nantenine	IV ₅₀	
O. macropoda Mez.	dehydrodicentrine	IV ₈₂	Cava et al., 1968;
	dehydroocopodine	IV ₈₃	Charubala et al., 1968;

Plant species	Alkaloids	Formulae	Reference
O. macropoda Mez.	dicentrine	IV ₁₅	Cava and
	dicentrinone	V_3	Venkateswarlu; 1971
	ocopodine	IV ₆₆	
	predicentrine	IV ₇₁	
O. puberula	dehydroocoteine	IV ₈₄	Vernengo, 1963;
(Nees et Mart.)Nees	didehydroocoteine	IV ₈₆	Baralle et al., 1973.
	ocoteine	IV ₆₇	
	thalicminine	V ₆	
O. rodioei Mez	demerarine	XI ₁₂	Mckennis et al., 1965
	norrodiasine	XI_1	Chen, et al., 1967.
	2-(+)-nortetrandrine	940	
	ocoteamine		
	ocotine	XI ₂	
	ocotosine	XI ₇	
	rodiasine	XI ₃	
Ocotea sp.	isocorydine	IV ₂₇	Cava et al., 1968;
	1-(p-methoxybenzyl)	IIb ₂	Franca et al., 1975.
	-6,7-dimethoxyisoquin	noline	
	1-(p-methoxybenzyl)	Пь3	
	-6,7-methylenedioxyisc	oquinoline	

Plant species	Alkaloids	Formulae	Reference
Ocotea sp.	ocokryptine	IV ₆₄	
	oconovine	IV ₆₅	
O. variabilis Mart	(+)-apoglaziovine	IV ₃	Cava et al., 1972.
	(+)-glaziovine	IIIa ₂	
	(+)-nantenine	IV ₅₀	
	variabiline	IV ₇₈	
O. venenosa Gleason	rodiasine	XI ₃	Kostermans et al., 1969
	bebeerine	XI ₉	;Kozuka et al., 1984 .
	dimethylrodiasine		
Parabenzoin praecox	nandigerine	IV ₄₉	Kozuka et al., 1984.
(Sieb & Zacc.)Nakai	praecoxine		
Persea gratissima	dopamine	$XVII_1$	Udenfriend et al., 1959.
Gaertn.f.	serotonine	XVI ₁	
Persea sp.	dopamine	XVII ₁	Udenfreind et al., 1959.
	serotonine	XVI ₁	
	tyramine	$XVII_2$	
Phoebe	oxopurpureine	V_{12}	Martinez et al., 1988
cinnamomifolia Nees	oxoglaucine	V_{13}	

Plant species	Alkaloids	Formulae	Reference
P. clemensii	2,11-dihydroxy-1,10-	IV ₁₆	Gozler et al., 1983;
C.K.Allen	dimethoxyaporphine		Johnsand Lamberton,
	10-hydroxy-1,2-	IV_{18}	1967.
	(methylenedioxy)-aporpl	nine	
	isocorydine	IV ₂₇	
	N-methyllindicarpine	IV ₄₈	
	(-)-mecambroline	IV ₄₀	
	laurolitsine	IV ₃₃	
p. formosana Hay.	laurolitsine	IV ₃₃	Lu and Su, 1973 b;
	liriodenine	V ₅	Lu and Tsai, 1984.
	roemerine	IV ₇₅	Stermitz and Castro,
	ushinsunine	IV ₇₇	1983 .
	purpureine	IV ₇₄	
	preocoteine	IV ₇₂	
	norpreocoteine	IV ₆₁	
P. pitteiri Mez.	1,2,3-trimethoxy	IV ₂₅	Castro et al., 1985.
	-9,10-methylene		
	dioxynoraporphine		
	norlirioferine	IV_{58}	
	reticuline	Па7	
	norpurpureine	IV ₆₂	

Plant species	Alkaloids	Formulae	Reference
P. porfiria (Gris.)Mez.	ocoteine	IV ₆₇	Baralle et al., 1972 .
Ravensara aromatica J.F.Gmel	N-methylisocorydine	IV ₄₆	Groebel et al., 1969.
Sassafras albidum	boldine	IV ₅	Segelman et al, 1976
(Nutt.)Nees	reticuline	Па7	
	isoboldine	IV ₂₆	
	norcinnamolaurine	Па6	
	cinnamolaurine	Па1	
	laurelliptine	IV ₃₂	
Saurauja excelsa	actinidin	XII ₄	Teixeira and
Willd.			Garbarino, 1984.

ิ ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Alkaloids isolated from Litsea spp.

Lauraceous plants in the genus *Litsea* are found to contain a wide range of chemical constituents such as alkaloids, monoterpenes, sesquiterpenes (Jiang, et al., 1986), triterpenes (Govindachari, et al., 1971), lipids (Wang, et al., 1983), alkenes (Arbain, et al., 1990), lactones (Tanaka, et al., 1990) and carbohydrates (Herath, et al., 1990). Among these, alkaloids are the largest group (over 40). Almost of the alkaloids are isoquinoline alkaloids.

The occurrence of alkaloids found in various species of *Litsea* is summerized in Table 2.

Table 2 Alkaloids isolated from the genus Litsea

Plant species F	Part	Alkaloids	Formulae	Reference
		NO STORY	maide	Acteronce
Litsea akoensis	wd	laurolitsine	IV ₃₃	Lu et al., 1979.
F. hayatae (Kanehira)		isoboldine	IV ₂₆	
S.S. Ying				
L. amara Blume	7	laurotetanine	IV ₃₄	Hayata and Wehmer,
L. brassii O. Schmidt		มหมหวง	เยากร	. 1935.
L. brassii O. Schmidt	•	laurotetanine	IV ₃₄	Hart et al., 1969.
		reticuline	Па7	
L. chrysocoma Blume	-	laurotetanine	IV_{34}	Ralph et al., 1978.
L. cubeba Pers.	-	isocorydine	IV ₂₇	Tomita et al., 1965d

Table 2 cont.

Plant species	· Part	Alkaloid	Formulae	Reference
L. cubeba Pers.	ent	laurotetanine	IV ₃₄	Lu and Lin, 1967;
	-	(+)-magnocurarine	Па4	Wu et al., 1991.
	wd	N-methyllaurotetanine	IV ₄₇	
		litebamine	VI ₃	
	wd	boldine	IV ₅	
	wd	liriotulipiferine	IV ₃₆	
	wd	reticuline	Па7	
	40	D-magnocurarine	Па4	
	-	norisocorydine	IV ₅₆	
	ent	N-methyllindcarpine	IV ₄₈	
	ent	isodomesticine	IV ₂₈	
	ent	glaziovine	Ша ₂	
	0.	(-)-oblongine	Па ₁₄	
	4	(-)-8-O-methyloblongin	пе Па ₁₅	
		xanthoplanine	IV80	
	นย์วิ	(-)-magnocurarine	Па4	
L. deccanensis	bk	actinodaphnine	IV_1	Desai, 1966; Gupta and
Gamble	lv+st	(+)-isocorydine	IV ₂₇	Bhakuni, 1989
	lv+st	(+)-corytuberine	IV_{12}	
	lv+st	(+)-dicentrine	IV_{15}	
	lv+st	(+)-nordicentrine	IV ₅₄	

Table 2 cont.

Plant species	Part	Alkaloid	Formulae	Reference
	lv+st	(+)-boldine	IV ₅	
	lv+st	(+)-norboldine (laurolitsine)	IV ₃₃	
	lv+st	(+)-magnoflorine	IV ₃₉	
L. elliptica Boerl.	bk	reticuline	Па7	Arbain et al., 1990.
L. gardneri	bk	actinodaphnine	IV ₁	Bandara et al., 1989.
(Thw.)hook f.	bk	laurolitsine	IV ₃₃	
L. glutinosa	bk	isoboldine	IV ₂₆	Tewari et al., 1972;
(Lour.) C.B.Rob.	lv	laurelliptine	IV ₃₂	Hart et al., 1969;
	CA.	laurolitsine	IV ₃₃	Sivakumaran and
	lv	laurotetanine	IV ₃₄	Gopinath, 1976.
	lv	lirodenine	V_5	
	bk	actinodaphnine	IV_1	
	lv 1	N-acetyllaurotetanine	IV47	
L. glutinosa var.	2	actinodaphnine	IV_1	Tewari et al., 1972.
glabraria Hook.f.	2	boldine	IV_5	
	2	laurolitsine	IV33	

Table 2 cont.

Plant species	Part	Alkaloids	Formulae	Reference
L. glutinosa var	-	laurotetanine	IV ₃₄	
glabraria Hook.f.	-	N-methylactinodaphnine	e IV ₄₁	
	-	N-methyllaurotetanine	IV ₄₇	
L. hayatae Kanehira	*	laurolitsine	IV ₃₃	Lu et al., 1969.
	-	liriodenine	V ₅	
		ushinsunine	IV ₇₇	
L. intermedia Boerl	-	laurotetanine	IV ₃₄	Wehmer, 1935.
L. japonica Mirb.	-	laurolitsine	IV ₃₃	Kozuka, 1962.
L. javanica Blume	-	luarotetanine	IV ₃₄	Wehmer, 1935.
L. laeta Benth & Hook	bk	laetanine	IV ₂₉	Borthakur and Rastogi,
	bk	laetine	IV ₃₀	1979; Rastogi and
	bk	N,O-dimethylhemovine	IV ₄₄	Borthakur, 1980 .
	bk	glaucine	IV ₂₀	
	98	dicentrinone	V_3	
	-	ocominarone	v_{10}	
		(nordicentrinone)		
L. latifolia Blume	-	laurotetanine	IV ₃₄	Ralph et al., 1978

Table 2 cont.

Plant species	Part	Alkaloids	Formulae	Reference
L. laurifolia (Jacq.)		actinodaphnine	IV ₁	Leboeuf et al., 1979;
Cordemoy		glaziovine	Ша ₂	Guinaudeau et al., 1983
		boldine	IV ₅	
		isoboldine	IV ₂₆	
		laurelliptine	IV ₃₂	
		laurolitsine	IV ₃₃	
		laurotetanine	IV ₃₄	
		N-methylactinodaphnin		
		N-methylhemangerine	IV ₄₃	
		N-methyllaurotetanine	IV ₄₇	
		nandigerine	IV ₄₉	
		reticuline	Па7	
L. lecardii Guillaum	lv	(+)-actinodaphnine	IV ₁	Weber et al., 1986.
	lv	(+)-boldine	IV ₅	
	lv	(+)-cassythicine	IV ₉	
	lv	(+)-isoboldine	IV ₂₆	
	-	(+)-laurolitsine	IV ₃₃	
	wd	(+)-litseferine		
	wd	(+)-norisocorydine	IV ₅₆	
lv,wd		(+)-coclaurine	Па2	
lv	,bk,wd	(+)-reticuline	IIa ₇	
1v	,bk,wd	(-)-pallidine	IX_1	

Table 2 cont.

Plant species	Part	Alkaloids For	mulae	Reference
L. leefeana Merr.	-	- boldine	IV ₅	Lamberton and
	-	laurolitsine	IV_{33}	Vashist, 1972.
	-	(+)-reticuline	IIa ₇	
L. lucida Blume		laurotetanine	IV ₃₄	Wehmer, 1935.
L. nitida Roxb.		actinodaphnine	rv ₁	Patnaik and Gopinath,
	bk	dicentrine	IV ₁₅	1975 .
	bk	litsedine	IV ₃₇	
L. polyantha Juss.	•	actinodaphnine	rv ₁	Dutta, 1968.
L.salicifolia (hook.)	lv	dicentrinone	V ₃	Rastogi and Borthakur
	4	glaucine	IV ₂₀	1980 .
	4	laetine	IV ₃₀	
	lv	nordicentrine	IV ₅₄	
	1v	N,O-dimethylhemov	ine IV ₄₄	
L. sebifera Pers.	100	actinodaphnine	v_1	Hema et al., 1972;
	171	boldine	IV ₅	Sivakumaran and
	-	laurotetanine	IV_{34}	Gopinath, 1976.
	-	N-methyllaurotetani	ne IV ₄₇	
	-	sebiferine	IX_3	
		litseferine	IV ₃₈	

Table 2 cont.

Plant species	Part	Alkaloids	Formulae	Reference
L. solomensis Allen	bk	laurolitsine	IV ₃₃	Hart et al., 1969.
	bk	reticuline	Па7	
L. trifora Guillaumin	ar.	(+)-isocorydine	IV ₂₇	Castredo et al., 1980
	ar.	N-methyllaurotetanine	IV ₄₇	
	ar.	(+)-isoboldine	IV ₂₆	
	ar.	(+)-boldine	IV ₅	
	ar.	(+)-reticuline	Па7	
	ar.	(+)-actinodaphnine	IV ₁	
	ar.	(+)-norboldine	IV ₃₃	
	ar.	norisoboldine	IV ₃₂	
		(laurelliptine)		
	ar.	(+)-coclaurine	Па2	
	ar.	(+)-corydine	IV_{11}	
	ar.	glaucine	IV ₂₀	
	ar.	(+)-predicentrine	IV ₇₁	
	ar.	(-)-N-methylcoclaurine	Па2	
L. turfosa Blume	ฟก	boldine	IV ₅	Holloway and
	-	laurolitsine	IV ₃₃	Scheimann, 1973.

Table 2 cont.

Plant species	Part	Alkaloid present	Formulae	Reference
L. wightiana Hook f.	st	boldine	IV ₅	Hema et al., 1972;
	st	laurolitsine	IV ₃₃	Bhakuni and Gupta, 1983
	st	glaucine	IV_{20}	
	st	laurotetanine	IV ₃₄	
	st	isoboldine	IV ₂₆	
L. zeylanica Blume	-	(+)-isoboldine	IV ₂₆	Ralph et al., 1978.
	-	(+)-N-norisoboldine	IV ₃₂	
		(laurelliptine)		
	-	(+)-reticuline	Па7	

lv.=leaves, st=stem, bk= bark, ar= arial part, wd= wood, ent= entire plant

Chemistry of alkaloids from Lauraceous plants

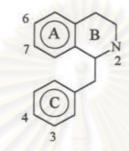
Alkaloids of the Lauraceae possess many structural types found in nature. Most of them are isoquinoline type; such as benzylisoquinoline, proaporphine, aporphine, dehydroaporphine, oxoaporphine, bisbenzylisoquinoline, pavine, protoberberine, morphinan, dibenzopyrrocoline, phenanthroquinolizidine and isoquinoline. Other types are pyridine, sedamine and indole (Ralph, Bick and Sinchai, 1978).

I. Isoquinolone

The isoquinolone alkaloids are a small group of alkaloids present in plants only in minor amounts (Shamma, 1972). In Lauraceous plants, only one isoquinolone, thalifoline, was found in *Cryptocarya longifolia* Kosterm. (Ralph et al., 1981)

thalifoline I

II. Benzylisoquinoline


The benzylisoquinolines occupy a paramount position in alkaloid chemistry because they act as *in vivo* precursors to so many of other natural occuring isoquinolines: isoquinolones, pavines, isopavines, bisbenzylisoquinolines, cularines, dibenzopyrrocolines, morphines, proaporphines, aporphines, protoberberines, etc.

The benzylisoquinoline alkaloids are either of the 1,2,3,4-tetrahydro type, such as coclaurine, or of the completely aromatic type, as in the case of papaverine.

Ring A in the benzylisoquinoline alkaloids may possess two or three substituents, while ring C has only one or two substituents (Shamma, 1972).

The benzylisoquinolines were found widely in the Lauraceous genus plants such as the genus Alseodaphne, Cassytha, Cinnamomum, Litsea and others.

IIa. Benzyltetrahydroisoquinoline alkaloids

IIa Benzyltetrahydroisoquinoline

Alkaloids		Substituent Positions							
		2	6	7	3'	4'			
cinnamolaurine	Па1	Me	-OCH	20-	-	ОН			
coclaurine	Па2	-	OMe	ОН	-	ОН			
laudanidine	Па3	Me	OMe	OMe	ОН	OMe			
magnocurarine	Па4	(Me)	2 ⁺ OMe	ОН	-	ОН			
N-norarmepavine	Па5	1811	OMe	OMe	15	ОН			
norcinnamolaurine	Па6	6-	-OCH	20-		ОН			
reticuline	Па7	Me	OMe	ОН	ОН	OMe			
(-)-armepavine	Па8	Me	OMe	OMe	ОН	-			
longifolidine	Па9	Me	-	OMe	ОН	-			
N-methylcoclaurine	па Па Па	Me	OMe	ОН		-			

(+)-phyllocryptine IIa₁₁

(+)-phyllocryptonine IIa₁₂

doryfranine IIa₁₃

(-)-8-O-methyloblongine IIa₁₅

(1R,1aR)-1a-hydroxymagnocurarine IIa16

IIb. Benzylisoquinoline alkaloids

IIb Benzylisoquinoline

Alkaloids		Substitu	ent Pos	itions
		6	7	4'
crykonisine	IIb ₁	OMe	OMe	OH
1-(p-Methoxybenzyl)-6,7- dimethoxyisoquinoline	IIb ₂	OMe	OMe	OMe
1-(p-Methoxybenzyl)-6,7- methylenedioxyisoquinoline	Пb ₃	-OCH	I ₂ O-	OMe

longifolonine

IIb4

velucryptine

IIb5

III. Proaporphine

The proaporphine alkaloids occur in a variety of oxidation states. There also exists a series of reduced proaporphines exemplified by (+)-litsericine in which the double bonds of the original dienone system have been partially or completely reduced (Shamma, 1972).

Because of the asymmetry at C-6a, one side of the dienone system is not equivalent to the other. The lower numbers (C-8 and C-9) are assigned to the side of the dienone above the mean plane of the molecule, and the higher number (C-11 and C-12) to the side below (Shamma, 1972).

In Lauraceous plants, the proaporphine alkaloids were isolated from the genus Nectandra and Ocotea.

III . Proaporphine

Alkaloids	Substitu	ent Positions
	\mathbb{R}^1	R ²
crotosparine IIIa ₁	Н	Н
glaziovine IIIa ₂	ОН	CH ₃
pronuciferine IIIa3	CH ₃	CH ₃

IIIb proaporphine

Alkaloids		Substituent Positions							
		1	2	6	EQ.	AX.			
litsericine	Шb ₁	-OC	H ₂ O-	Н	Н	ОН			
N-methyllitsericine	IIIb ₂	-OC	H ₂ O-	Me	\mathbf{H}	ОН			

IV. Aporphine alkaloids

The aporphines are the largest group of isoquinolines alkaloids, being second only to the bisbenzylisoquinoline and are represented by the general structure IV. These alkaloids are distributed in at least 18 plants families, of which the most important are the Papaveraceae, Annonaceae, Lauraceae and Monimiaceae.

The nitrogen atom is usually methylated; and although some noraporphine are known, they are not very stable and are often characterized as their N-acetyl derivertives. Aporphine are known with the C-6a stereochemistry either α or β .

The most diverse structural feature of the aporphines is the oxygenation pattern. Position 1 and 2 are always oxygenated, either by the hydroxy, methoxy and

methylenedioxy groups. It is common to find further oxygen substituents at C-9, C-10 and C-11, and occasionally at C-8. It is rare to find oxygenation at C-7, except in the oxoaporphine, and even rare to find any oxygenation in ring B (Cordell, 1981a).

Dehydroaporphine are optically inactive, subgroup of the aporphine alkaloids with unsaturation at C-6a. The first member of this subgroup to be isolated from natural sources were dehydrodicentrine (Shamma, 1972). These alkaloids were found in the genus Ocotea (Cava, et al., 1968; Vernengo, 1963). There is no report on dehydroaporphine occuring in Litsea sp.

IV aporphine

ศูนยวทยทรพยากร หาลงกรณ์มหาวิทยาลัย

Alkaloids				Sul	stituer	t Posit	ions		
		1	2	3	6	8	9	10	11
actinodaphnine	IV_1	-OCH	20-	-	-	-	-	ОН	OMe
anonaine	rv ₂	-OCH	20-	-		-	-	•	
apoglaziovine	IV ₃	ОН	OMe	-	Me	-	-	OH	-
asimilobine	rv ₄	OMe	ОН		-	-	-		-
boldine	IV ₅	OMe	OH	-	Me	-	ОН	OMe	-
bulbocapnine	IV ₆	-OCH	20-	-	Me	-	-	OMe	ОН
caaverine	IV ₇	ОН	ОМе	-	-	-	-	-	ú
cassyfiline	IV ₈	-осн	20-	OMe	-	-	ОН	OMe	+
cassythicine	IV ₉	-OCH	20-	-	Me	-	ОН	OMe	-
cassythidine	IV ₁₀	-ОСН	20-	OMe	-	-	-OCH	20-	-
corydine	IV_{11}	ОН	OMe		Me	-	OMe	OMe	-
corytuberine	IV_{12}	ОН	OMe		Me		OMe	ОН	-
cryptodorine	IV ₁₃	-OCH	20-	-		-	-	-OCH	20-
1-hydroxy-2,9-	IV ₁₄	ОН	OMe	-		-	OMe	-	-
dimetethoxyaporphin	е								
dicentrine	IV_{15}	-OCH	20-	3-9/19	Me	15	OMe	OMe	-
2,11-hydroxy-1,10	IV_{16}	OMe	ОН		Me	-		OMe	ОН
dimethoxyaporphine	งก								
1,10-dihydroxy-2-	IV_{17}	ОН	OMe		Me	-	-	OH	-
methoxyaporphine									
10-hydroxy-1,2-	IV_{18}	-OCH	20-	-	Me	-	-	OH	-
methylenedioxy aport	phine								

Alkaloids				Sul	stituen	t Posit	ions		
		1	2	3	6	8	9	10	11
domesticine	IV ₁₉	ОН	OMe	-	Me	(#)	-OCH	20-	7.
glaucine	IV ₂₀	OMe	OMe	-	Me	-	OMe	OMe	-
hernovine	IV ₂₁	OMe	ОН	-	-	-	2	OH	OMe
3-hydroxyglaucine	IV ₂₂	OMe	OMe	ОН	Me	-	OMe	OMe	-
(<u>+</u>)-1-hydroxy-2 -	IV ₂₃	ОН	OMe	-	Me	-	-	-	-
methoxyaporphine									
2-hydroxy-1,9,10-	IV ₂₄	OMe	ОН	-	-	*	OMe	OMe	-
trimethoxyaporphine									
1,2,3-trimethoxy-9	IV ₂₅	OMe	OMe	OMe	-	-	-OCH	20-	~
,10-methylenedioxy									
aporphine									
isoboldine	IV ₂₆	ОН	OMe	-	Me	-	OH	OMe	-
(+)-isocorydine	IV_{27}	OMe	OMe	-	Me		OMe	OH	-
isodomesticine	IV28	OMe	ОН	121	Me	9-	-OCH	20-	-
laetanine	IV ₂₉	OMe	ОН	Ť	-		OMe	OH	-
laetine	IV ₃₀	OMe	ОН	=	-	-	-	-OCF	H ₂ O-
launobine	IV ₃₁	-OCH	20-	59/19	PFO 1	15	-	OMe	ОН
laurelliptine	IV ₃₂	ОН	OMe	-	- "	-	ОН	OMe	-
laurolitsine	IV ₃₃	OMe	ОН	หาวิ	90 8	19	3 21	-OCF	I ₂ O-
laurotetanine	IV ₃₄	OMe	OMe			-	ОН	OMe	-
lindcarpine	IV ₃₅	OMe	ОН	-	-	¥	-	OMe	ОН
liriotulipiferine	IV ₃₆		OMe	-	Me	-	OMe	ОН	-
litsedine	IV ₃₇		I2O-	-	-	-		OMe	OM

Alkaloids				Sul	stituent	Posit	ions		
		1	2	3	6	8	9	10	11
litseferine	IV ₃₈	-OCH	20-	=	-	-	OMe	ОН	-
magnoflorine	IV39	ОН	OMe	-	Me ₂	-	-	OMe	OH
(-)-mecambroline	IV ₄₀	-OCH	20-	-	Me	4	-	ОН	-
N-methylactino	IV ₄₁	-OCH	20-	-	Me	-	OH	OMe	-
daphnine	-								
O-methylbulbocapnin	eIV ₄₂	-OCH	20-	-	Me	-	-	OMe	OM
N-methylhernangerine	eIV ₄₃	-OCH	20-	-	Me	-	-	OH	OM
N,O-dimethylhernovii	nIV ₄₄	OMe	ОН	-	Me	-		OMe	OMe
N-methylhernovine	IV ₄₅	-OCH	20-	-	Me	2	-	-OCH	20-
N-methylisocorydine	IV46	OMe	OMe	-	Me ₂	-	-	OMe	ОН
N-methyllaurotetanin	IV47	OMe	OMe	-	Me	-	OH	OMe	-
N-methyllindcarpine	IV48	OMe	ОН	4	Me	-	-	OMe	ОН
nandigerine	IV49	-осн	20-	-	-	_	-	ОН	OMe
nantenine	IV ₅₀	OMe	OMe	-	Me		-OCH	20-	-
neolitsine	IV51	-осн	20-	-	Me	-	-OCH	20-	-
norcorydine	IV ₅₂	ОН	OMe	-	-	-	-	OMe	OMe
nordelporphine	IV ₅₃	OMe	OMe	ОН	105	15	OH	OMe	-
nordicentrine	IV ₅₄	-OCH	20-		J. 11	-0	-	OMe	OMe
nordomesticine	IV55	ОН	OMe	ากกิ	971 9	98	-OCH	20-	-
norisocorydine	IV ₅₆	OMe	OMe			-)(2)	OMe	ОН
norisodomesticine	IV57	OMe	ОН	-	-	-	OCH ₂	0-	-
norlirioferrine	IV ₅₈	OMe	OMe	-	-	27	OMe	ОН	_
nornantenine	IV59	OMe	OMe	-	-		-OCH	20-	*

Alkaloids				Sul	stituen	t Positio	ns			
		1	2	3	6	8	9	10)	11
norphoebine	IV ₆₀	OMe	OMe	OMe	•	•	-OCH	20-	-	
norpreocoteine	IV ₆₁	OH	OMe	OMe	-	-	OMe	OMe	-	
norpurpureine	IV ₆₂	OMe	OMe	OMe	-	-	OMe	OMe	-	
nuciferine	IV ₆₃	OMe	OMe	-	Me	-	_	-	-	
ocokryptine	IV ₆₄	OMe	-OCH	120-	Me	•	8	OMe	ОН	
oconovine	IV ₆₅	OMe	OMe	OMe	Me	π.	-	OMe	ОН	
ocopodine	IV ₆₆	-OCH	20-	-	Me	OMe	OMe	OMe	4	
ocoteine	IV ₆₇	-OCH	20-	OMe	Me	-	OMe	OMe	-	
O-methylcassyphil	line IV ₆₈	-OCH	20	OMe	-	OMe	OMe	-	-	
phoebine	IV ₆₉	OMe	OMe	ОМе	Me		-OCH	20-	-	
praecoxine	IV ₇₀	OMe	OMe	7.2	Me	Me	-	OH	OM	e
predicentrine	IV ₇₁	OMe	ОН	-	Me	-	OMe	OMe	-	
preocoteine	IV ₇₂	ОН	OMe	OMe	Me	-	OMe	OMe	-	
pulchine	IV ₇₃	ОН	OMe	-	Me	2/-	OMe	-	-	
purpureine	IV74	OMe	OMe	OMe	Me	-	OMe	OMe	2	
roemerine	IV ₇₅	-OCH	20-	o Ž	Me	•	-	-	-	
thaliporphine	IV ₇₆	ОН	OMe	3-911	Me	7-5	OMe	OMe	-	
ushinsunine	IV ₇₇	-OCH	20-		Me		<i>j</i>	-	-	
variabiline	IV ₇₈	OMe	OMe	197	Me	J-1 a	-N(CI	H ₂ Ph) ₂	-	
wilsonirine	IV79	ОН	-OCI	H ₂ O-	-	7.	OMe	OMe		
xanthoplanine	IV80	OMe	OMe	-	Me	-	•	OMe	-	
zenkerine	IV81	ОН	OMe	-	Me	-		-	-	

Dehydroaporphine

Alkaloids		Substituent Positions								
		1	2	3	8	9	10			
dehydrodicentrine	IV82	-осн	₂ O-			OMe	OMe			
dehydroocopodine	IV ₈₃	-OCH	20-		OMe	OMe	OMe			
dehydroocoteine	IV84	-OCH	I ₂ O-	OMe	-	OMe	OMe			
dehydronanteine	IV ₈₅	OMe	OMe	-	2.54	-OCH	₂ O-			

didehydroocoteine IV86

V. Oxoaporphine alkaloids

The oxoaporphines represent the most highly oxidized state of the aporphine skeleton. They are widely distributed and cooccur with aporphine alkaloids. The numbering system of oxoaporphine is the same as the aporphines, beyond the perennial 1,2-dioxygenation, they exhibit a variety of oxygen substitution patterns.

Liriodenine is the most widely distributed oxoaporphine (Cordell, 1981). In Lauraceous plants, the oxoaporphines were isolated from the genus Cassytha, Dehaasia, Litsea, Lindera, Ocotea and Phoebe.

V. Oxoaporphine

Alkaloids		S	Substituen	t Positions	
6	U81	1 2	3	9 10	11
cassamedine	v_1	-осн ₂ о-	OMe	-OCH ₂ O-	1.5
cassameridine	V_2	-осн ₂ о-	/ [] 0	-OCH ₂ O-	
dicentrinone	V_3	-OCH ₂ O-		OMe OMe	-
1,2-dimethoxy- 9,10- methylen	V ₄ nedioxy	OMe OMe	-	-OCH ₂ O-	-

liriodenine	V_5	-OCH2	0-	2	-	_	_
thalicminine	V ₆	-OCH ₂		OMe	OMe	OMe	-
artheroline	V_7	ОМе	ОМе	-	ОН	-	-
hernandenine	V_8	-OCH ₂	O-	-	2	-OCH	20-
machigline	V ₉	-OCH ₂	0-	15	OM	e OM	e -
ocominarone	v_{10}	-OCH	20-	-	OM	e OM	e -
oxonantenine	V_{11}	OMe	OMe	-	-OCI	H2O-	2

VI. Phenanthrene alkaloids

The phenanthrene alkaloids are a small group of optically inactive tertiary bases probably derived biogenetically from the Hofmann elimination of quaternary aporphine salts. They can, therefore, be included among the isoquinoline alkaloids (Shamma, 1972).

In Lauraceous family, phenanthrene alkaloid were isolated from Cryptocarya sp. and Litsea sp. (Cooke and Haynes, 1954; Bick and Duglas, 1965).

atherospermine VI1

litebamine

 VI_2

VII. Pavine alkaloids

Pavine skeleton is one of those rare situations in alkaloid chemistry where synthesis of the skeleton predated discovery of a natural source(Cordell, 1981d).

The pavine alkaloids have been obtained from family Lauraceae, Papaveraceae and Ranunculaceae. They are derived biogenetically from benzylisoquinolines, but several pavines are derived from tetrahydrobenzylisoquinoline (Gozler et al, 1983).

Alkaloids	Alkaloids			Substituent Positions						
		1	2	3	8	9				
caryachine	$v\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	-	OH	OMe	-OCH	20-				
crychine	VII_2	-	-OCH	20-	-OCH	120-				
O-methylcaryachine	VII ₃	-	OMe	OMe	-OCI	H ₂ O-				
(-)-norargemonine	VII_4	-	OMe	OMe	ОН	OMe				
neocaryachine	VII ₅	ОН	OMe	-	-OC	H ₂ O-				
bisnorargemonine	VII ₆	4	OMe	ОН	ОН	OMe				

caryachine N-methopercorate VII 7

VIII. Dibenzopyrrocolines

Four natural dibenzopyrrocolines have been obtained from the genus Cryptocarya of the family Lauraceae.

VIII Dibenzopyrrocolines

Alkaloids		Substituent Positions				
		2	3	8	9	11
cryptaustoline	vm_1	ОН	OCH ₃	OCH ₃	OCH ₃	H
cryptowoline	$VIII_2$	OH	OCH ₃	-OC	H ₂ O-	H
cryptowolinol	VIII3	ОН	OCH ₃	-OCI	H ₂ O-	ОН
cryptowolidine	VШ4	OCH ₃	ОН	-OC	H ₂ O-	Н

IX. Morphinandienone and Morphinane alkaloids

The morphinan alkaloids are more limited in numbers and distribution. There are fewer than dozen of them distributed in the Papaveraceae and the Menispermaceae (Robinson, 1981).

In the Lauraceae they were isolated from the genus Alseodaphne, Beilschmiedia, Cassytha, Ocotea and Litsea.

Alkaloids		Substituent Positions		
		2	4	
(S)-pullidine	IX_1	OH	-	
(S)-(-)-O-methylpallidine	IX_2	OMe		
sebiferine	IX3	OMe		
sinoacutine	IX4	-	OH	

14-Episinomenine

oreobeiline IX7 (6 --- OCH3)

6-epioreobeiline IX8 (6 - OCH3)

N-methyl-2,3,6-trimethoxy morphinan dien-7-one IX9

N-methyl-2,3,6- trimethoxy morphinandien-7-one N-oxide IX10

X. Phenanthroquinonlizidine and Phenanthroindolizidine

The phenanthroquinolizidine and phenanthroindolizidine alkaloids are basic pentacyclic compounds. They are found in member of the Lauraceae and Moraceae. (Pelletier, 1970).

Alkaloids	C	onstitue	nt Positio	ons
- IND OF	2	3	6	12
cryptopleuridine X ₁	-OCH ₂ O-		OMe	OH
cryptopleurine X2	OMe	OMe	OMe	10

antofine

 X_3

dehydroantofine X4

phyllostemine X5

phyllosteminine X₆

XI. Bisbenzylisoquinoline

The Lauraceae contains several types of bisbenzylisoquinoline alkaloids in which two simple benzylisoquinolines unit appear to have been joined togather head-to-head, tail-to-tail by phenol oxidative processes (Ralph et al, 1978). Aromatic substituents may be hydroxy, methoxy or methylenedioxy. Linkage may be of the diphenyl or diphenyl ether type and a given compound may contain one or more of each of these linkages. A typical bisbenzylisoquinoline contains two asymetric centers, but sometime one or both nitrogen atoms are involved in imino groups(Cordell, 1981).

Alkaloids	Substituent Positions				
	1	1'	12	12'	
norrodiasine XI ₁	H(Me	e) Me(H	I) OMe	OH	
ocotine XI ₂	Me	H	OMe	ОН	
rodiasine XI ₃	Me	Me	OMe	OH	

dehatrine XI₄

dehatridine XI5

obaberine XI6

ocotosine XI7

sepeerine XI8

bebeerine XI9

lindoldhamine XI₁₀

demerarine XI₁₂

XII. Pyridine

In the Lauraceuos plant pyridine alkaloids were found in the genus Aniba and Sauraria (Ralph, Bick and Sinchai, 1978).

$$\bigcap^{R}$$

anabasine XII1

anibine XII₂.

duckeine XII₃

actinidine XII₄.

XIII. Sedamine alkaloids

Pleurospermine is an alkaloid of sedamine type which is considered to be derived from condensation of two equivalents of dihydroxyphenylalanine and one equivalent of lysine. (Johns et al., 1969). In the family Lauraceae it was found only in Cryptocarya sp.

pleurospermine XIII 1

phyllostone

 $XIII_2$

XIV. Cryptopleurospermines

Cryptopleurospermine is the sole representative of a type with fewer rings, and it would seem to have been formed by oxidative ring-opening of a tetrahydroisoquinoline structure. It was also found in *C. pleurosperma* (Ralph *et al.*, 1978).

In Lauraceous plants, scoulerine was the first protoberberine alkaloid isolated from Cryptocarya longifolia Kosterms (Johns et al., 1970).

cryptopleurospermine XIV

XV. Protoberberine

Scoulerine is the first protoberberine alkaloid isolated from Lauraceous plants, Cryptocarya longifolia Kosterms. (Ralph et al, 1981).

The protoberberine are one of the most widely distributed of the isoquinoline alkaloid groups, being present in at least nine plant families, particularly the Annonaceae, Berberidaceae, Lauraceae and Menispermaceae (Cordell, 1981f).

scoulerine XV

XVI. Indole alkaloids

The simplest natural representatives with an indole nucleus are the biogenic amine tryptamine and serotonin. Serotonin was isolated from the genus *Persea* and *Nectandra* (Ralph *et al.*, 1979).

Serotonin (5-hydroxytryptamine) XVI 1

β-carboline nucleus are derived biogenetically from tryptamine(Hesse, 1981). In Lauraceous plants, 6-methyl-N-methyl-1,2,3,4-tetrahydro β-carboline was isolated from *Nectandra megapotanica* (Filho and Silvio, 1980).

6-methyl-N-methyl-1,2,3,4-tetrahydro β-carboline XVI 2

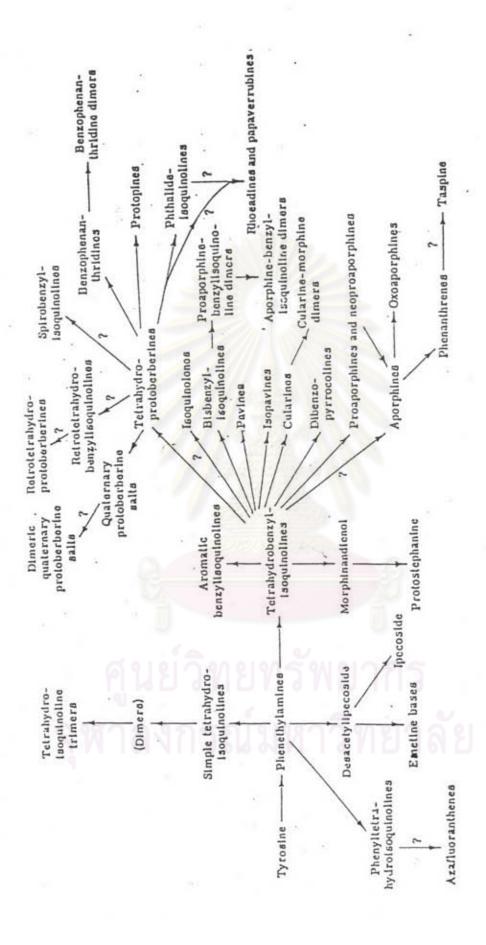
N-methyltryptamine XVI₃

XVII. Phenethylamine

Phenanthrene alkaloid, dopamine and tyramine, were isolated in Persea sp.

dopamine XVII1

tyramine XVII₂

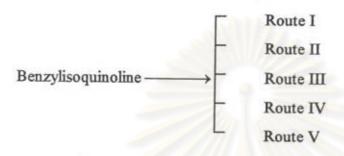

Biosynthesis of aporphine alkaloids

The biogenetic pathway leading to isoquinoline alkaloids are derived from tyrosine. Tyrosine is first elaborated to a suitable hydroxylated phenethylamine which is then combined with a second building block. The second building block can vary widely to give various types of isoquinolines. The biosynthesis of isoquinoline alkaloids is conveniently treated in two parts, starting with the generation of benzylisoquinolines and then elaborating to more complicated structures (Staunton, 1979).

In vitro, all these routes appearently can operate. The proven or probable biogenetic loci for the formation of the isoquinoline alkaloids is shown in scheme I (Shamma, 1972). The biogenetic relationships of the major alkaloid groups derived from a tetrahydrobenzylisoquinoline precursor are shown in Figure 2 (Codell, 1981a).

Benzylisoquinoline derive from two molecule of L-tyrosine. They occupy a paramount position in alkaloid chemistry because they act as in vivo precursors to so many of the other naturally occurring isoquinoline. Reticuline is regarded as the key intermediate in the biosynthesis of the alkaloids based on the benzylisoquinoline nucleus and also was the precursor of alkaloids such as boldine, isoboldine and bulbocapnine (Shamma, 1972). The example of the formation of reticuline in *Papaver somiferum* Linn. is shown in Scheme 2 (Goodwin and Mercer, 1983).

The first step (A) involves the conversion of two molecules of L-tyrosine into two molecules of DOPA. One molecule of DOPA is converted into dopamine (B) whilst the other into 3-4-dihydrophenylpyruvic acid (C). These two compounds then combine with, elimination of water and carbondioxide, in a Mannich-type reaction to yield a molecule of norlaudanosine (D) O-and N-methylation(E) then lead to (-)-reticuline (Goodwin and Mercer, 1983).


Scheme 1 Proven or probable biogenetic loci for the formation of the isoquinoline alkaloids

*SAM = S-adenosylmethionine

Scheme 2 The formation of 1-benzyl-1,2,3,4-tetrahydroisoquinolines

Figure 2 The biogenetic relationships of the major alkaloid groups derived from a tetrahydroisoquinoline precursor

The discussion on the biogenetic synthesis of the aporphine alkaloids has raised a number of points concerning the biogenesis of this group. Depending on the orientation of phenolic and methoxy groups, any of at least five routes might be envisaged as being in operation from benzylisoquinoline precursor as shown in Scheme 3 (Cordell, 1981a).

Route I → proaporphine → aporphine

Route II → neoproaporphine → aporphine

Route III → morphinandienone → neoproaporphine → aporphine

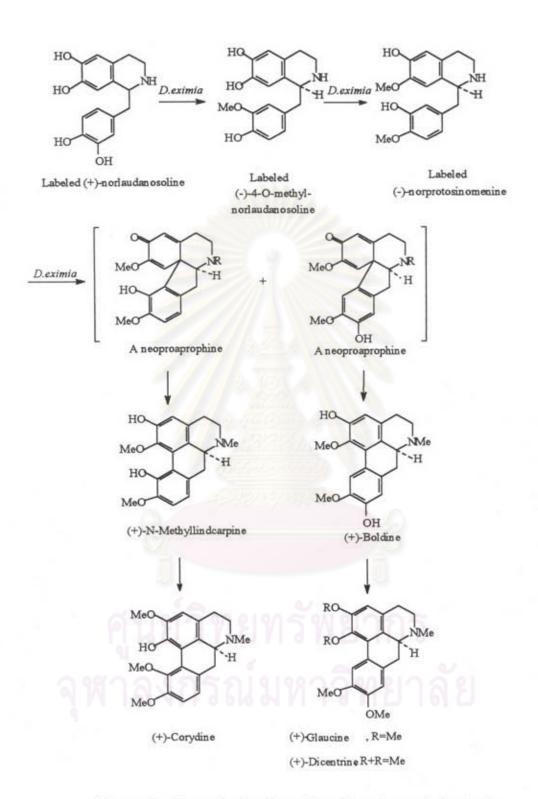
Route IV → directly coupled 3a-substituted quinol → aporphine

Route V → direct coupling of radicals → aporphine

Scheme 3 Biogenesis of aporphine from benzylisoquinoline

Route I: Benzylisoquinoline -> proaporphine -> aporphine

From scheme 4, aporphine alkaloids lacking an oxygen substituent in ring D are derived from a benzylisoquinoline by oxidation to a dienone, reduction to dienol and then, dehydration with rearrangement to the aromatic compound (Barton et al, 1967).


Scheme 4 Reaction of benzylisoquinoline to aporphine

Battersby and co-workers showed that labeled (+)-orientaline, the compound was the precursor of isothebaine, when fed to *Papaver orientale* Linn. through the intermediacy of the proaporphine orientalinone and orientalinol, as shown in scheme 5 (Battersby, 1965).

Scheme 5 Biosynthesis of (+)-isothebaine

Route II: Benzylisoquinoline -> neoaporphine -> aporphine

Battersby and co-workers, 1960, study the formation of corydine and glaucine in *Dicentra eximia* (Ker.)Torr. (Fumariaceae). It was reticuline and orientaline were not precursors, while 4'-O-methylnorlaudanosoline and norprotosinomenine were effective precursors. 4'-O-methylnorlaudanosoline is converted into norprotosinomenine, which must be incorporated into the three aporphine alkaloids by way of the two neoproaporphine intermediates indicated in scheme 6 (Shamma, 1972; Cordell, 1981).

Scheme 6 Biosynthesis of corydine, dicentrine and glaucine in Dicentra eximia (Kerr.) Torr.

Route III: Benzylisoquinoline→ morphinandienone→ neoproaporphine → aporphine

In 1965, Barton and Battersby described the pathway which is open to morphinandienones such as O-methylflavinantine, namely their ability to rearrange to aporphine derivatives as shown in scheme 7. These are *in vitro* interconversions; their importance in the in vivo biosynthesis of aporphine remains to be demonstrated (Cordell, 1981c).

Scheme 7 Biogenesis of Glaucine

คูนยวทยทรพยากร ซาลงกรณ์มหาวิทยาลัย

Route IV: Directly coupled 3a-substituted quinol → aporphine

It is very difficult in some instance to say what the probable machanism is unless variously methylated benzylisoquinoline precursors are used. For example, N-methyl labeled (+)-reticuline was a precursor of bulbocapnine in *Corydalis cava* Schweigg et Korte(Fumariaceae) (Cordell, 1981a).

Scheme 8 Biosynthesis of bulbocapnine

์ ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Route V: Direct coupling of radicals → aporphine

In 1962, Frank and co-workers reported the first *in vitro* synthesis of an quaternary aporphine by phenolic oxidative coupling using quaternary salt. Treatment of N-methyllaudanosoline methiodide with aqueous ferric choride gave a good yield of a tetrahydrobenzylisoquinoline N-metho salt (Shamma and Guinaudeau, 1984).

N-methylaudanosine methiodide

Scheme 9 in vitro synthesis of tetrahydrobenzylisoquinoline N-metho salt

Direct phenolic coupling can thus explain the genesis of several 1,2,10,11 as well as 1,2,9,10 tetrasubstituted aporphines. It does not rationalize for us, however,the existence of other aporphine such as those bearing a single oxygenated function in the Dring, or those devoid of oxygen on that ring (Shamma and Guinaudeau, 1984).

Pharmacology of aporphine alkaloids

The aporphine alkaloids display a wide range of pharmacological activities.

The pharmacological activities of aporphine alkaloids have been reviewed by Cordell (1981a). Those are as follows:-

1,2-Methylenedioxyaporphine increases arterial blood pressure, but higher doses cause strychnin-like convulsions. The methohydroxide salt has a curare-like action.

Isothebaine increased intestinal muscle tone in rabbits and also amplified uterine contractions in the rat. Other activities observed include decreased motor activity and analgesia(mice), and an anti-inflammatory effect in rats.

Glaucine (IV₂₀) reduced blood pressure and inhibited respiration in cats and had antitussive effects resembling codeine, but of longer duration. In rats and cats a potentially useful hypoglycemic effect was observed at 12-mg/kg doses.

Glaucine (IV₂₀) and Laurotetanine (IV₃₄) are reported to increase the antimitotic effect of colchicine (Bhakuni and Gupta, 1983).

Dehydroglaucine has antibacterial activity. Glaucine and dicentrine cause narcosis in animals, and with larger dose convulsions.

Corydine (IV11) has central nervous system depressant and hypotensive activity and blocks transmission of nerve impulses. The corresponding 11-demethyl derivative, corytuberine, accelerates and stimulates secretions.

Bulbocarpnine (IV₆) antagonizes the effects of apomorphine and amphetamine, depresses the central nervous system, and causes catalepsy in mice.

Xylopine has sedative and analgesic activity.

Apomorphine, although not a natural product, has been quite well studied. Ithas hypotensive activity and is a powerful emetic, suitable for rapid emesis after ingestion of poisons. Of more interest from a therapeutic point of view is its stimulation of dopaminergic system in rats and mice, and consequently its potential anti-Parkinsonism activity. Also of interest are reports that it can decrease serum prolactin levels.

Isoboldine (IV₂₆) is an insect-feeding inhibitor (Cordell, 1981a) and some antifungal activity (Paulo *et al*, 1992).

Laurifoline chloride has some hypotensive activity, while corytuberine (IV_{12}) accelerates respiration and slows the pulse (Shamma, 1972).

Boldine(IV₅) is only slightly toxic and does not cause addiction. It has a mild sedative, diuretic, and antiparasitic action, and also increases the secretions of the liver and salivary glands (Shamma, 1972).

(S)-boldine(IV5) and (R)-apomorphine have interesting properties as Ca²⁺ entry blockers (through the benzothiazepine receptor site in the Ca²⁺ channel) and at alpha1-adenoreceptors (Ivorra et al, 1993a).

Boldine(IV₅) and glaucine(IV₂₀) behave as specific calcium entry blockers without affecting the contractile machinery or intracellular Ca²⁺ levels as apomorphine does (Ivorra et al, 1993b).

Bulbocapnine(IV₆), boldine(IV₅), glaucine(IV₂₀) and stepholidine acted as scavengers of hydroxyl radical in the deoxyribose degradation by Fe³⁺-EDTA + H₂0₂. On the contrary, laudanosoline, apomorphine, protopapaverine, anonaine and tetrahydroberberine increased deoxyribose degradation by a mechanism related to generation of superoxide anion in microsomes (Ubeda et al, 1993).

Thalicarpine was known as Tumour-inhbiting alkaloid (Venditti et al, 1967).

d-Dicentrine(IV₁₅) inhibited the aggregation of rabbit platelets induced by adenosine diphosphate, collagen and arachidonic acid, inhibited the high potassium and norepinephrine-induced contraction of rat thoracic aorta and prolonged the action potential duration of rat ventricular cells (Chen et al, 1990). It also appears to exert its hypotensive action through alpha-1-adenoreceptor blockade and in high doses it did not cause any significant changes in heart rate, cardiac output and stroke volume (Yu et al, 1992).

Oxophoebine and liriodenine showed selective toxicity against DNA repair and recombination deficient mutants of the yeast Saccharomyces cerevisiae (Harrigan et al, 1994).