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CHAPTER I

Introduction

In 1851, Kummer proved, see [7], a well-known congruence for Bernoulli num-
bers, B, of the the form

Bn+p—1 Bn
)y Tl = L d
a1 n RN

for all n > 1, where pis a prime and p — 1 t n. This originates the term Kummer’s
congruence which, so far, has been used in various meanings. There have been a
number of papers using the term Kummer’s congruence without a rigorous defini-
tion, for instance, the congruences for Euler numbers in the even-suffix notation,

E,, of the following forms

> (=1 (Z) Enisp-1) =0 (mod p),

see [4], and

sT r—s = o
Z(_l) (S) Ep En+s(p—1) =0 (mOd p )7

s=0

see [3], where n > r and p is an odd prime, are both referred to as Kummer’s
congruences. However, a classification has appeared in Stevens'work, see e.g.
Stevens [9], but, unfortunately, it is not commonly used.

In this thesis, we first make precise the definition of Kummer’s congruence by
categorizing it into three types, referred to as Kummer’s congruences of a zeroth
kind, Kummer’s congruences of a first kind and Kummer’s congruences of a second
kind and then study each type as well as relationships among them.

Our setting here consists of an integral domain R that contains the ring of all

integers Z. Congruences are here considered ideal theoretically.



Definition 1.1. Let p be a fized prime, r € N and (a,) a sequence in R. A
Kummer’s congruence of a zeroth kind is a congruence of the form
S r — T
Z(_l) s Ants(p—-1) = 0 (mOd p )7
s=0
a Kummer’s congruence of a first kind 1s a congruence of the form
S 3 r—S — T
Z(—l) o )0 Onrs(om1) = 0 (mod p")
s=0
and a Kummer’s congruence of a second kind is a congruence of the form
S B T8 iz
Z(—l) NLRCEES 0 (mod p")
s=0
where the free parameters n,r of each type may be subject to its additional require-
ments. Sometimes, the last type of Kummer’s congruences (of a second kind) is

referred to the form

/3 —s _ 71
Z(—l)s (s) ay *Gnysp = 0 (mod p™),

" " and hereby called a weak Kummer’s congruence of a second kind.

where 1 = [

The following are examples of three types of Kummer’s congruences with dif-

ferent conditions on the free parameters n and 7.

Example 1.2. Here, let R =7, a, =n, b, =1 and ¢, =2". Then we have

r

> (-1 <Z> ntsp-1) = 0 (mod p")

s=0
where n > 0 and r > 2,

T

r —s — r
Z(_l)s (S) b; bn+s(p71) =0 (mOd p )

s=0

where n,r > 0 and

where n,r > 0.



In Chapter II, we introduce the usual differrence operator and prove their basic
properties. Then we generalize the main identity employed to prove a Kummer’s
congruence of a zeroth kind for Bernoulli numbers.

In Chapter I1I, we consider Hurwitz series equipped with an operator €2, study
Snyder’s method and then derive a criterion for a sequence to satisfy a Kummer’s
congruence of a first kind. Snyder’s elegant technique is elaborately given in detail.

In Chapter IV, we deal with weak Kummer’s congruences of a second kind.
The proof is based on difference equations and a number of identities. An example
of weak Kummer’s congruences of a second kind is also given.

In the final chapter, Chapter V, we reveal some relationships among those

three types of Kummer’s congruences which can be viewed as common examples.



CHAPTER I1

Kummer’s congruences of a zeroth kind

In [6], Johnson used the (p — 1)st roots of unity in Z,, the ring of p-adic

integers, to prove congruences for Bernoulli numbers B,,. One such congruence is

n

Z(—l)n‘t (?) Bokt (i+t)p—1) = O0(mod p") (2.1)

t=0
where p > n+ 3, 2k > n > 1 and 3, are defined by
B./r] p—14¢r

(B, +pt=1)/r, p—1]|r.

The above congruence is deduced directly by the recursion
p—1 D
o+ rlt TadE 3 arjt —207
e S+ (ot (ZA S Za
where » > 1, using properties of the usual differrence operator, introduced soon
in the first section.

Our goal of this chapter is to prove analogous results for sequences satisfying

generalized recursion of the form

T pj_l
B + Z fj~1(7")._|ﬁr+1—j
) = J:

1

s
-I—Zgj 1( p;' chjar]+2h] o ,. —I—d(ril)r:().

s=1

2.1 Difference operator
Let z1,xs, ... be a sequence in any ring. Define the operator A; by

0. _ 1. _ _
Aﬂ?z‘—xm Aixz‘—Aﬂ?i—le—Ii



and

Alz; = A (A 'z)  (n>2).

To avoid ambiguity, we use the subscript ¢ in the operator to remind that the
operator effects only to the terms having index 7 in the sequence.

It is easily checked that the operator A; satisfies a linear property and the
associative law, i.e., AT"A? = A", The following proposition summarizes some

well-known properties of A;.

Proposition 2.1. For any integer n > 0, we have

) ams = (A4 o

t=0

(ii) A (vy;) = Z (TZ) (Alz;) (AT yipe) (Leibniz’s rule);
=0
(#3) if x; is a polynomial in i of degree < n, then Alx; = 0.

Proof. We use induction on n to show (i). This is easy for n = 0. Suppose that

(i) is true for n. Then

— A, (g(—n”—t (ZL) th)

& (?) B = (1P (Z) Y

t=0

=], _1 n+1 ; _1 n+1—t n n ;
Titni1 + (—1) x—i-;( ) ((t ) ) v
n+1
YISt
L3 erarn(B Yas

t=0

I

To prove (ii), we also use induction on n. For n = 0, this follows from the

definition of the difference operator. Suppose that (ii) holds for n. To show (ii)



for n + 1, we easily have, by the induction hypothesis, that
AT (ziys) = A ( (?) (Aﬁxi) (A?_tywt))
t=0
—~ (n t n—t —~ (n t n—t
=3 (1) (@) (@1 ) - 3 (7) (8l0) (20

=0
{(AEIH‘l) (A?_tyzurut) - (Afxz) (A?_tyi+1+t)

+ (Alzy) (AT yigase) — (Alzy) (AP 'yipe) }
n o e el
: (t) (A?lxi) (Ai tyz'+1+t) 5o tz; (t> (Af%) (Ai+1 tyi+t)

t
= (A?—Hl’i) YA B 5= T (A?—Hyi)

+ i (Aiz:) (AT yive) ((?) " (t - 1>)

=il

n+1
Fl
= <” t > (Adzi) (A7 i) -

t=0

3

To show (iii), it suffices to check that A? (i) = 0, for each integer m with
0 < m < n. It is obvious for n = 0. Suppose that (iii) is true for n. Now let
0 <m < n+ 1. Then, by the induction hypothesis, A’** (i™) = A; (A7 (™)) = 0

for 0 < m < n. If m =n, we have

=

A ) = A+ = = 3 (1) ar @) o
=0 \J
m
2.2 Main theorems
Let p be a prime > 5, r € N and 3y, 35, ..., a sequence satisfying
T p]_l
Br + Z fjfl(T)TﬁrJrlfj
j=2
r i S A r P2 I
()= e ar hya(r) e+ d _0
+;gj 1(7‘) ]' ;Cdas +jz:; J Q(T) ]' + (’l“—i-l)?“

(2.3)



where f;_1(r) and g;_1(r) are polynomials in r of degree < j—1 having coefficients
in Z, whereas h;_5(r) have degree < j —2, a, € Z with ged(as,p) =1, S € N and
Cs,jsd € L.

For x € Z,, we let ey(x) be the largest exponent of prime p that divides z.

The valuation e, is regularly used for the rest of this chapter.

Lemma 2.2. For j > 1, we have
P’ o
il > T
%(ﬂ p—1)’

Proof. Clearly, e, (p],> = j —¢ep(J!). The lemma follows from a well-known result
that

.Y
p—1
where > is the sum of all digits of j represented in base p. Since > > 1, we

0 (%) —itai=i-te 105 (122)

- 1 p—1

ep(J!) =

obtain

Lemma 2.3. For r > 1, we have (3, € Z,.

Proof. Tt is obvious, from the equation (2.3), that

B = —go(r) ES:CM —r (g) € Z,.

s=1
Suppose that ﬁz € Zy forall 1 <i<r—1. Lemma 2.2 gives us ep( i ) > 1 for
7 > 2 and ep( 7 ) > (0 for j > 2 which imply that the three middle summations

of (2.3) belong to Z,. Now, it remains to check that dety 2

G
d\gardisel (e

€ Z,. Since

this establishes the lemma. O



Theorem 2.4. Forr > 2, we have (3, = [r4p-1 (mod p).

Proof. We easily obtain, from Lemma 2.2, that ep(f%) > 1 for j > 2 and

ep(p%) > 1 for 7 > 3. Then the equation (2.1) becomes

m

Mm

= 0 (mod p).

Br + go(r ATy

S=ll
By the Fermat’s little theorem, it follows from ged(as, p) = 1 that
S

.
@E—%WE}@%“?“—g)E@W4WMM-

F=1

Theorem 2.5. Letn < p—3. Fork>n>1, A?Biiip-1) =0 (mod p™).

Proof. We show the theorem by induction on n. For n = 1, it follows by Theorem
2.4 that, for each k > 1.

AiBrip-1) = Br+itp-1) — Brti+1)p—1) = 0 (mod p).

Suppose that the theorem holds up to the value n—1, i.e., foreach 1 <m < n-—1,
if ¥ >m > 1, then

AT By 1ip-1) = 0 (mod p™)
for all + > 1. To show the induction step, we let £ > n > 1 and use the equation
(2.3) with r = k +i(p — 1). Now, we aim to show that all summations and single
terms but the first in the equation (2.3) are congruent to 0 modulo p™ after taking
Al

To deal with the second summation

Zf] 1 5r+1 -3

in the equation (2.3), we separate it into 2 cases. If n + 1 <5 < r, then

-1 -2\ +1
o(5r) = (5=5) 012 () e

n2—|—n—1_ n+1

n+2 " E2




and hence

()

Now let 2 < j < mn. Since j < n < p, we have p { j!, that is, e, <p]3—71) =j5—1

Observe that, for each 2 < 5 < n,

n n :
Al fi-1(r)Bry1j = Z (t)AEfj—l(T)A? Brr i+ p-1)+1-5
=0

n -
” Z (t)A Fi=1(r) AT Bt i+t o-1)+1-5-

We are reduced to show only

A} EBri ity io—1)+1~5 = 0 (mod p" 7 11).
where 0 <t < 7 — 1. The case of t = 0 is considered separately. Since

k ot dif-7) il +

the induction hypothesis implies that

AT B rip-1)41-5 = 0 (mod p* 7T
and thus

Al Brrip1)+1-5 = qu (A?ij—l—lﬂk—l—i(p—l)-i-l—j) = 0 (mod p"7*1).
As in the previous case, if 1 <t < j — 1, then
A Brer i+ p-1) 41— = 0 (mod p"~")

because k+t(p—1)+1—j>n—t.
We now come to the next summation. As above, we do not repeat for the case

ofn+1<j5<r. Smceep( 7 >>j—1fora112<]<n it suffices to show that

A? (gj_l(r)af”(p_l)_j) =0 (mod p”_j+1).



But
A (a1 = 3 () (Blayalr) (Aol 000)
t=0
J5 b,
= 5= () i 1) (A7)
=0
and

n—t
An t ( (p— 1)) — Z(_l)n—t—l ('fl l_ t) agi+l)(p—1)

= gile 1) (a2~ — 1)n_t =0 (mod p"").
S
For j = 1, we only consider go(r) Z cha;_l. Notice that
s=1
A7 (go(r)a?~Y) = go(r)Afa?~
= 0 (mod p").

Then
(Zgj 1 chjrj)_O(modp)

Now consider the forth summation in the equation (2.3)
T —
Z hj_g(r)p;'.
j=2 o
Clearly, if 2 < j < n+ 1, then
Al (hj—2(r)) = 0

and thus

<

(th | ) im hj_a(r)) =0,

Jj=2 j=2

by Proposition 2.1 (iii). If n+ 2 < j < r, then it follows from

o) (=5) -

n+1
> 2) —2=n-—1.
_<n+2>(n—|— ) n

10
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that
P2
g!
Finally, for the last term, since

()2 () e -

> (n+1)(k+i(p—1)+1)—1> (Z—i;) (n+2)—1,

=0 (mod p").

n+2
we have
p’f'
>

// (<r+ 1>r) N

ie.,
pT‘
d -3 d p").
(r+ Dr e o

[]

We remark that the lemmas and theorems, stated in this section, still hold if
B1 € Z, (other than §; from substituting r =1 in (2.3)) and the equation (2.3) is
true for all » > 2. Their proofs are the same as above and so are omitted here.

An application concerning Bernoulli numbers will be given in the following

section.

2.3 Bernoulli numbers and the (p — 1)st roots of unity

Definition 2.6. The Bernoulli numbers By, Bi, Bs, ... are defined by By = 1 and

the recursion

r +_1
i1 % (T j )BTH_]. LAy (2.4)

Jj=1

A fact about the Euler-Maclaurin summation formula is established now.

Proposition 2.7. The Fuler-Maclaurin summation formula

n—1 r
r+1 .
(r+1)) d :Z< j )Bn + (2.5)
a=1 7j=1

for n,r > 1, is equivalent to (2.4).
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Proof. Setting n = 1 shows that (2.5) implies (2.4). Assume (2.4) which is also
the basis step for showing (2.5) by induction on n. Now suppose that (2.5) holds

for a value n. Then

r

> (r j 1) Brj(n+1) + (n+ 1)+

j=1
r r41 ) ] . el - .
-2 (7 ) () 25
]:1 s=0 t=0
g (i g L4l
— L ) S t
SR IES D) (i 1) S CA RS ol (M T
a=1 1=l 5=() =0
n—1 r— L T r
"y T r+1
= 1 i = BT E— !
EEDSTED I (M5 DN (Nl LS i (M I
a=1 5=0 j=s+1 t=0
n—1 =1 TS T
4 T 1\ . AN r+1\ ,
oS R (e 5
a=1 s=0 y=" t=0
n—1 1 "
r+1 TE]
— 1 T S t
rrn e S e ()
a=1 s=0 t=0
=(r+1) Z a’.
a=1
This proves the assertion for n + 1 and therefore the proposition. O

Let U denote the group of all units in the ring Z,. We know, from [1], that the
set V' consisting of all (p — 1)st roots of unity in Z, forms a cyclic mutiplicative
subgroup of U of order p — 1. Also, for » > 1, we have

0, p—141r
veV p—l, p——l'?".

Any z € Z, has the p-adic representation

oo
& e e
n=0
where the z,, are integers satisfying 0 < z,, < p for all n > 0. Whenever z € Z,,
we let z,, denote the coefficient of p™ in the p-adic representation of x.

For any rational integer a, 1 < a < p—1, let v(a) be the unique element of V'

with v(a) = a (mod p). In particular, v(a)y = a.
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Now, we write the p-adic expansion for v = v(a) in V' as follows:

v=uv(a) =a+t(a)p (2.7)

where t(a) = Zv(a)np"_l. Expanding the rth power of (2.7) and using the

n=1

equation (2.5) with n = p, we obtain, for r > 1,

r Dl r
PN | S It(a P 2.8
2 (j>p7<r+1 +;“ ) rl 28)

veV =1

Together with equation (2.6), we get

5T+Za”t Z () (H:?_J +Z“”t ) (r—]il)rzo’

where r > 1, and (3, is given by

Br/ra /4 1 'f r
Br =
(B-+p ' =1)/r; p=1|r
Theorem 2.8. The sequence (3, defined as (2.9) satisfies the equation (2.3). In

particular, the lemmas and theorems in the previous section are valid.
Proof. Putting f;_1(r) = (r—1)---(r—j+1) = gj_1(r) for 2 < j <r, go(r) =1,

=1 —1)(r—j+2), p—1r+1—;
hj_gz

0 p—14r—1+4j
for2<j<r, S=p—1,a,=s,¢5;=1(s) for2<j<randd=1in (2.3), we
obtain
mzsw SSL(ANS (@Hﬁzsw )

7j=2

1/(r\ ., 1-1/p p"
- —0.
+ ; r(j)p] r—j—|—1+(r+1)r

p—1jr+1—j




Applying the identity

AU INENINGINS
ARIAINTUNNINGAY

14



CHAPTER III

Kummer’s congruences of a first kind

In this chapter, we study congruential properties of a given sequence in a dif-
ferent way, mainly, dealing with Hurwitz series. This leads us to another technique
regarding Kummer’s congruences of a first kind. The technique was invented by
Snyder, see [8], based on Carlitz’s work. We first give a definition of Hurwitz series
and next introduce the operator €2, which plays an important role in presenting

a useful criterion for Kummer’s congruences of a first kind.

3.1 Hurwitz series

Recall that R denotes an integral domain containing Z.

Definition 3.1. A Hurwitz series (or H-series) H(x) over R is a formal power

series of the form

Bl = Zan%,an €R.
n=0 ’

We can easily check that the set of all Hurwitz series over R is an integral

domain. The following proposition gives us a basic property of Hurwitz series.

Proposition 3.2. If H(z) is an H-series defined as above and ag = 0, then
(H(z))" =0 (mod k')

for all £ > 0.

Proof. Observe that

my M2 Mn

> nlai™ay?---a”

n=k mi+mao+-+mn=k
mi1+2ma+--+nmn=n
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Then we need to show only

n!

(IH)mimql(2D)m2mg! - - - (nl)mem,,!

€L

where mq + 2mso + - - - + nm,, = n. Since my + 2msy + - - - + nm,, = n, it is obvious

that
n!
€7
i.e., it suffices to show that
m )|
—.(Zml)' €Z

for all 1 <+¢ < n. The proposition follows from the identity

L))
Ao Eria(o)

3.2 Operator (2,

Let D, be the formal differential operator with respect to x.
Hypothesis. Throughout the rest of this chapter, we will assume the following;:

n

L. f(z) = Z cn% is an H-series over R with ¢; = 1.

n=ll
2. D,f =Y d,f" where d, € R and dy = 1.

v=0
Next, we let p be a fixed prime and define the operator

Of = (D} —cD.)f,

x

It is clear from the above hypothesis that, for each r > 1, 27 f can be written as

a power series in f with coefficients in R. Then, from now on, we express
Gf=> nDf".
v=0

Some interesting properties concerning €2, are listed without proofs, see [2].
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Proposition 3.3. For each positive integer r, we have

o o0 rmT
pr - n;dr,m (m . 7“)!7

. S r 7"—S8
where dy., = Z(—l) (5) o T

s=0
Proposition 3.3 allows us to consider the coefficients of (27 f instead of the

coeffcients of f. Thus, the sequence (c,) of the coefficients of f satisfies the
Kummer’s congruence of a first kind if and only if €27 f is congruent to 0 modulo
p" for all r > 1, i.e., the sequence (¢,) satisfies the Kummer’s congruence of a first

kind if and only if 5 is congruent to 0 modulo p" for all r > 1.

Proposition 3.4. Let D, be the differential operator. Then
p—1 00
DV —cpf =bo+p Y bifi+> b f
=1 v=p
where b, € R for p > 0.
Corollary 3.5. Let Q, be the operator defined above. Then for each v < p,

M =0 (mod p).

3.3 Main theorem

From the remark after Proposition 3.3, our work deals with the coefficients
nl(,T) that seem tough to be determined, especially, for large . Our main theorem,
Theorem 3.14, gives us an efficient criterion to answer the problem. Before we

establish the main theorem, the following are needed.

Proposition 3.6. For each integer z, we define
X(z) = max(0, 2)
and e,(2) as the exact exponent of p in the prime decomposition of z. Then

Qf =0 (mod p")
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if and only if
7]1(/7‘) = (mod pX(r—ep(l/!)))
for all v > 0.

Proof. Let (f(z))" = Z cﬁfl’)w—‘. By Proposition 3.2, we have %) = 0 (mod v!).
m!

Observe that

L. 1"
v=0

A Y W
v=1 m=v .

73 14 I’m
a3 (S )
m=1 \v=1 :
If ?7,(/r) =0 (mod p*"=¢)) for all v > 0, then
7](()7') =0 (mod p")

and

77,(/7.)6,5;;) -= O (mod pX(T_eP(V!))+eP(V!))
where v > 1. This yields that
nyel) =0 (mod p')

since X (1 — e,(!)) + e, (V) = maz(ey(v)),r) > r.

Conversely, suppose that 7 f =0 (mod p"). Then
() =0 d 7
ny. =0 (mod p")

and

e = 0 (mod p')

where v > 1. If 7 > e, (v!), then the previous congruence implies

7" =0 (mod p"~™).
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Lemma 3.7.

fe'e) p—1
r r v p 1 LV 7
Qp+1f:prZ(u+1)n,(,J31f +Z(z) Z 77y+uf“ 'DLfrDP f,
v=0 i=1

p,v=1

Proof. We first establish that, for all m € N,

m—1 (0°0)
QU =Q,f (Z(v + L+ m Y 775”]“”)

v=0 ="

+Zf“ : Z 0 +f’”Zm wBf’ (3.)

v=p+1

p=1
where (k) = Z (p) Dif*DP=if for k € N, by induction on m. For m = 0, it
i
i=1
follows by the linearity of €2,.

Now suppose it is true for m. We will show that it is true for m + 1. Since
Q" = DV — e, D, f”
= Z ( )DZ [ D f = e Daf* ! + £71D,. f)
= O LT A f M)

for v > 1, we have

fm Znu-‘rm pfu
= fm Z DL (fQ L+ I + 0 — 1))
= Q,f Z 77V+m+1fy+m 8 Z 77u+m v—1)+ fm+1 Z 7752m+19p]w

=5f Z 771(/21]“/ Y Z 771(/7')9(” ] AP Z 771(/2m+1

v=m-+2

Replace f™ Z Ny imS ¥ in (3.1) by the previous equation and combine the ap-

propriate terms we then obtain (3.1) for m + 1.

Finally, letting m tend to infinity establishes this lemma. O]
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Proposition 3.8. Define

o | min{v: n) £0 (mod p)} if {v:n #0 (mod p)} # ¢,

]/0 —
00 otherwise.

(1)

and suppose that vy’ < p*>. Then

v =Y — (r=1)p
for all r < u(()r)/p il

Proof. We will prove the proposition by induction on r. It is clear for r = 1. Now,

we assume the proposition for r, i.e. if r <y )/p + 1 then l/ = l/él) — (r—1)p,
and then show that r + 1 < 1, )/p + 1 implies v (1) — V(()l) —rp = I/(()T) —p.
By Lemma 3.7,
o) p—1 D [e’s)
U =Q,f Z(u + L+ (Z) > i f DL DR
= =1 =1
o p— D
1 r — i rv —i
-y (z il ) 5 (1) 3 i pis
=0 p,v=1
(3.2)

First, note that for k < Vér) —p,

o) ko
) (Zo + 1>n§ﬁm,i“j> 5= 0 (mod p+)

=0

since for each 7 = 0,1,2,...,k 4+ 1 is less than Vér) implying 17](721 =0 (mod p")
. 1 1

and k — 7 is less than I/é ) s0 n,(c_)j =0 (mod p).

Consider the second summation of the equation (3.2). Since we can write

p—1 e’}
p i pvp—i (V) rk
DifrDrif =
Z(@) LD = Y 5
i=1 k=X (v—p+1)

where X is defined as in Proposition 3.6, 5,(:) € R and 5,(:) = 0 (mod p) for all v

and k, a brute force calculation shows that

p—1 e8] o]
p i pU —1
(Z) Z nl/-i-u # lDa:f Dz f: Zakfk
k=0

=1 p,v=1
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where
k+p—1k+1-X(v—p+1)

a, = Z Z MO (3.3)

Notice that for each k, 1§V§k+p—1and1§u§k+1—X(u—p+1)

imply v+ pu < k+p. Moreover, if p— 1 <v<k+p—1and p =k — v+ p, then

v+ p =k + p. Consider the case k < V(()T)

—p, we have ap = 0 (mod p"!) since
v+ p < v and 61821_/1 = 0 (mod p).
Now let k = ) = p. Then

("') L.

i) ™
Q=1 o) Z 51/ Zp T Z 771/+u (r)

—ptl—p
v=p—1 p,r>1

where the second term is the restriction of the summation to those p and v with

v+ p < U(()T) which vanishes modulo p"*!. By the definition of Vér), we have

7](72) £ 0 (mod p"). It remains to prove that

l/(gr) —1

S8 20 (mod p?).

v=p—1

Since v > p — 1,
p—1 D o0
edr DT DT e (V) pk
S>{E o g AR - 3.0
=il k=v—p+1
Observe that (5( )p 41 only occurs when ¢ = p — 1 and hence the only contribution
to 5£3p+1 is in the term of
( . >D£1f”Dxf-
p—1
Thus (5V i =prv(v—1)--- (v =p+2) and so

'r)l

'r)l
S =0 Y =)= p+2)

v=p—1 v=p—1
VST)fl

p Y, (-

v=p—1
v=—1(p)

V(Sr) 2
—p |——| (mod p°).
p
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()
Since 0 < V(()T) < V(()l) < p?, we get {VOT} # 0 (mod p) and hence

U(()T> —1

> 0 #0 (mod p°).

v=p—1

Therefore V(STH) = V(()T) — PaasNseq i | O

Corollary 3.9. If there exists v < p? such that 77,(,1) Z 0 (mod p), then

Q. f #0 (mod p")

for some r > 1.

Proof. By the previous proposition with r = 1/(()1)/ p + 1, we obtain l/(()r) = 0 and

hence n(()r) # 0 (mod p"). The corollary then follows from Proposition 3.6. O]

Lemma 3.10. For each v > 1, we let

p—1

p 3 o oo
Db L PDPRuls (v) n
ZQ)Jmf > of
=1 n=0

Then there ezist polynomials pm (X1, Xo, ..., X,—1) € pZ[X1,Xo, ..., X,1] for
m=1,2,...,p— 1 independent of v such that

—1

p—1
Z (f) Dt QL — Z viv—1)--- (v —m+ 1) f" "pn(Daf, D2f,..., D71 f).

=1

i)

m=1

Proof. First, we will establish, by induction on ¢, that

D;;fy = ZV<V_ 1)(V_m+ 1)fyimpz,m(sz7D325f7>D;f) (35)

m=1
where p; (X1, X, ..., X;) € Z[ X1, Xo, ..., X;] and is independent of v. Fori = 1,
we let pl,l(Xl) = Xl-
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Now suppose that the equation (3.5) is true for i. Take D, on both sides of

the equation (3.5), we get
D' fr = Z v —1)(v—m+1)D, (f"pim(Dof, D2f, ...  Dif))
— Z v(v—1) (v =m)f* " (Daf) pigm(Daf, Dif, ..., Dif)
+ Z v—1)- (v —m+ 1) f* "D, (pim(Dsf, D2f,..., Dif))

_Z @ — U (5 A g im(Do feD2 f, ..., DEFLE.

p—1
_ (™= 1) - @ - 1)f”_m2pz-,m (f) (D.f,...,D.f)DP~1f.
i=1

Now take p,(Xq,..., X Zp””( ) (X1,..., X;)X,_1, we then have the

lemma. O

Corollary 3.11. Let 5 be defined as above. Then
5@ = 6% (mod p?).

n n—+p

Proof. Let pp(Dyf,...,DP7Lf) = Z Qi f*. Then we have
k=0

p—1
ZVV—]_ l/—m‘f‘]-)fym (DxfaDagsfang_lf)
m=1

0o p—1
:Z( viv—1)- (v =m+ 1)Qmnmin— ,,)f”

n=0 \m=1

where o, , = 0 if £ < 0. Thus

p—1
Zyy—l (v —=m+1)ommin—v
m=1
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whereas

3
L

57(;-4;31)) = (V —|—p)<1j +p— 1) U (V +p—m+ 1)am,m+n—y—p‘

1

3
I

We have seen from the proof of the previous lemma that o, , = 0 (mod p) for

all m and k. This establishes the corollary. O]

Proposition 3.12. If 779) = 0 (mod p) for all v < p° where e > 1, then

for all k > 0.

Proof. The proof is done by induction on r. It is apparently shown, by the as-
sumption, for » = 1. Now, we assume it true for  and then show it true for r + 1.
To prove this, we let the index k£ = gp® + ¢ with 0 < ¢ < p® and use induction on
q=0.

By the equations (3.2), (3.3), and the identity

k+p—1 k+1-X(v—p+1) k+p n—1

Z Z niﬁu k+1-—p Zn Z 61(61)1—71-&-1/

v=max(1l,n—k—1)
for £ > 0, we obtain

k+p n—1

k
(r+1) 1 v
+ Z ] o L 77j+1771(c )g + Z nn Z 51(17)(1171971)' (36)
7=0

v=max(l,n—k-—1)

Now suppose ¢ = 0, then k£ = ¢ < p®. We wish to show that n,(crﬂ) vanishes

modulo p" !

. For the first summation in the equation (3.6), it follows from the
hypothesis of the propsition and the induction hypothesis that

)

S G+ Dm0t = 0 (mod pHY).
=0

To deal with the second summation, we first easily have that if ¢ + p < p°, then

i+p n—1

Z ) Z 51(/11—)(17,—1'—1) =0 (mod p").
n=2

v=max(l,n—i—1)
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Next we suppose p® — p < ¢ < p® which is divided into 2 cases.

Case 1: Suppose n —7 — 1 > 1 and let s be the least residue of ¢+ modulo p.

Then
i+p i+p n—1
;nn Z 15'/ (n—i=1) Z nn Z B VV)(n—i—l)
i+p
— Z nn Zd(nfiflJru) (mod prJrl)'
pn=0

By the induction hypothesis, it suffices to show

Z 5;"_i_1+“) (mod p*).

pn=0
Note that Corollary 3.11 implies

Zi:él(jmilhu) :28: ZZ: 5}(Lnfi71+,u) + pz_i ZZ: 6£Ln~i-1+p)
n=0

=08 120 J= el W0
1=3j(p) r=3(p)
-4 Zpe 16(” P=1+7) b Z 6(n i—1+7) (mod p2)
Jj=s+1

and the first summation in the right-hand side is congruent to 0 modulo p%. Now,

it remains to prove that for each 7 > s+ 1,

(55”71’71“) =0 (mod p?).

(n—i—1+4j5)

By Lemma 3.10, we can see that d; is the coefficient of f7 in the expansion

with respect to f of

—

.
n—i—14)n—i—14+j—1)-(n—i—1+j—m+1)x
1

3
I

d YV L AR50, D2 1)
Since n > p® and j > s+ 1, we have

T1 d bi& o V1=t d P HD.

(n—i—1+j)

Moreover, we can see that the only possible contribution to d; occurs when

n—1i—14+j —m < j which implies, since j < p — 1, that

n—it—1l4+j—-m+1<n—i+p—1—m<np.
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Hence
n—i—1+)n—i—14+j—1)---(n—i—1+j—m+1)=0 (mod p).

Lemma 3.10 gives us p,, (X1, Xo,..., Xp—1) € pZ[X1, Xo, ..., X,—1]. We obtain
the congruence

5§n;i71+]’) = 0 (mod p*)

as desired.

Case 2: Suppose n—i — 1 < 1. Then as above

i+p n—1 i+p n—1
DD 82k ay= Y000 Y 6 iy (mod pH).
n=2 v=1 n=p® |

We now consider p < n <i+p. Sincen—i—1< 1 and p® —p < i < p° there is
exactly one possibility of n = p® and ¢ = p® — 1. The induction hypothesis for r

brings us to show only

A
Z 6% =0 (mod p?).
v=1

Note that
p p-
S8 =3 S = S - i o)
=1 =i
v=j5(p)

By Lemma 3.10, it is not hard to see that both terms on the right-hand side in
the previous equation are congruent to 0 modulo p?. We now finish the proof for
q=0.

Next, we assume that the proposition holds for k = gp°® + 4, where 0 <1 < p°.
That is,

n,EfH) =0 (mod p*+1-9),

We wish to show the result holds for k = (¢ + 1)p° + 1, i.e.,
77](:“) =0 (mod pX=9).

To succeed this, we use the equaion (3.6) to prove that each term on the right-

hand side vanishes modulo p"~¢ where, without loss of generality, we assume r > q.
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Now fix k = (¢ + 1)p® + i with 0 <14 < p®. Then we have

k
- r 1 r—
> G+ Dy =0 (mod pro),
=0
by the facts that j < (¢ + 1)p°® implies (5 + 1)77](.21 =0 (mod p"™9), 5 > (¢+ 1)p°

implies (j + 1)n§'_21 = 0 (mod p"~7') and k — j < i implies n,iljj = 0 (mod p).

Next consider the second term

k+p n—1

Z m(f) Z 55,_)(71_1@—1)-
n=2

v=max(l,n—k—1)
The induction hypothesis implies that if i +p < p¢, then 7\’ =0 (mod pr=771).
Since 5:(/11—)(71—1@—1) = 0 (mod p), the previous expression is congruent to 0 modulo
p"~1. Now suppose that p° — p <7 < p°. Then

k+p n—1

Z 777@ Z 61(/,/—)(71—]6—1)
n=2

v=max(l,n—k—1)

k+p n—1
= Z n Z 51(/V—)(n—k—1) (mod p™*). (3.7)
n=(q+2)p° v=max(l,n—k—1)

As above, the induction hypothesis allows us to show only

n—1

Z 515”_)(n_k_1) =0 (mod p?).

v=max(l,n—k—1)
The proof is again divided into 2 cases.
Case 1: Suppose n — 7 — 1 > 1 and let s be the least residue of ¢ modulo p.

Note, by Corollary 3.11, that

n—

)

(v)
v—(n—k—1)

k
_ (n—k—14+p)
- Z 5# !

p—1 k
5£n—k—l+u)+ Z Z 5£Ln—k—1+u)

j=0 p=0 j=s+1 p=0
p=j(p) u=3(p)
s p—1
(q+2)p 0" 4 N (g2 = D)0 (mod p?).

i=0 Jj=s+1

1
v=n—k—1

I
M~

<
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Clearly, the first summation is congruent to 0 modulo p?. For the second sum-

mation an argument completely analogous to the one for ¢ = 0 shows that each
(n—i—1+j) 2

0; (mod p?).

Case 2: Suppose n — k — 1 < 1. Then as above

k+p gik=1

k+p
r @) =S/ 48 ) r—
Znn)zéu i oy 777(1) 5V_(n_k_1) (mod p"9).
(q+2)

n= =1
We now consider (¢+2)p <n <k+p. Sincen—k—1<1and p*—p < i < p®,
there is exactly one possibility of n = (¢ + 2)p° and ¢ = p® — 1. The induction

hypothesis for » brings us to show only

v=1
Note that
k D T p—1 ‘
S8 =35 8 =3 g+ 2p 0V + (g +2)pt — 1)8P) (mod p?)
v=1 7j=1 I/Zl H=1

that is congruent to 0 modulo p?, as in case 2 for ¢ = 0. Now we complete the
proof for k = (¢ + 1)p° + 1.
This establishes the induction step and thus the proposition. O

Corollary 3.13. If 55" =0 (mod p) for all v < p*, then
- S r rT—S — ‘s
Z(_l) o Cp  Cnts(p—1) = 0 (mOd p )7
foralln>r>1.
Proof. Substituting e = 2 in Proposition 3.12 gives us
nl(/r) =0 (mod pX(T—[p%,D)
for all v > 0. Thus since [v/p?] < e, (),
ny) =0 (mod pX(T‘—Ep(V!)))

for all ¥ > 0. The corollary clearly follows from Proposition 3.3 and Proposition

3.6. [l
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Now, we are ready to state the main theorem whose proof is straightforward

from Corollary 3.9 and Corollary 3.13.

Theorem 3.14. Let ), and f be defined as above. Then, forn >r > 1,

- N —s r
Z(Hl)s (S) C; Cnts(p—1) = 0 (TI’LOd p )

of and only iof
nY =0 (mod p) for all v < p*.

Finally, we end up with an example of using Theorem 3.14.

Example 3.15. Let f(z) = tan x. Obuviously, the Taylor expansion of f about
x = 0 satisfies the hypothesis. Observe that

V' () SGecs
f"(z) = 2sec’ztan x

f(x) = 2sec's + dtan®vsec’s.
Then

Qs f =D2f — f"(0)D, f
= 2sectx + Atan’zsectx — 2sec’x
= 2sec’z(sec’x + 2tan’s — 1)

= 6tan’x(1 4 tan’xs).

By Theorem 3.14, the sequence f(0), f(0), f”(0),... satisfies the congruence of
the form

r

S0 (1) 0oy 0) = 0 nod )

s=0
where n > r > 1.



CHAPTER IV

Weak Kummer’s congruences of a second kind

We are led to the last type of Kummer’s congruence of the form

2 (=1 C) @, "ntop = 0 (mod p'), (4.1)

s=0

with some additional conditions for n and r, where (a,) is a sequence in a given
setting. It is apparent that the constant sequence a,, = 1 is one of trivial examples.
Moreover, it is valid for all n,r > 0.

In this chapter, our interest slightly changes to the congruence of the form

v

> (])ag ey 20 (o), 2)

s=0

r+1

5|, having been studied by Carlitz and Stevens, see

where n,r > 0 and r = |
[5] and [9], respectively. The congruence (4.2) is sometimes said to be a weak
Kummer’s congruence of a second kind as in [9]. Difference equations and a

beautiful technique are here presented.

4.1 Difference equations

Consider the difference equation
uﬁl = ag(n)ul® + al(n)uff_)l +.- 0t ak(n)uff_)k (4.3)

of order k + 1, where aj(n) € Zln| for j > 0 (aj(n) may be added by some

additional indeterminates). In addition, we assume that
WP =1and a;(s) =0 (s=0,1,...,5—1;j=1,2,... k). (4.4)
One property we can show is that w, satisfies

Upttl — Uy = 0 (mod m)
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forallm > 0, m > 1 and t > 1. It seems natural to ask for the generalization.

More precisely, we need to show that

> (-1 (T) Uty g st = 0 (mod m™),
S

s=0
where n > 0,7 > 0,¢ > 1,m > 1 and r; = [=5]. In order to show this, we replace

(4.3) by

k
(7)== ao(m)uff) (@) + 3 ay(n)u,? () (45)
j=1
where a;(n) € Z[n] for j > 0. In addition, we assume that

uF(z) =1 and a;(s)=0 (s=0,1,....5—Lj=1,2 ... k). (4.6)

It is easily seen that uP () are monic polynomials in z of degree n and ugﬁ)(O) =

uﬁ{“ for n > 0.

k \ .
From now on, we let ul” () = u,(x) for convenience. Our task now is to show

that

S

2:(—1)S (T) U (2)1 "~ Uy st () = 0 (mod m™), (4.7)

where n > 0,r > 0,t>1,m>1and r, = [%], but first we need some lemmas

and have to deal with a number of identities.

Lemma 4.1. Let u,(x) be a sequence satisfying (4.5) and (4.6). Then
Untm(T) = Wp (@), (T) (mod m)

for allm >0 and m > 1.

Proof. We induct on n. It is obvious for n = 0. Suppose now that this lemma
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holds up to the value n. Then

k

Untm41(2) = (& + ao(n + m))Upim(z) + Z a;(n 4+ m)uyim— ()

(@ + a(n) s (2) + Y (1) tn s (@)

Il
€ I
+
=)
o
=5
=
| -
N—
<
3
—
8
<
3
&
+
8
>
<
3
4
&
<
3
K
N—

-

((m +ao(n) Jun () + Y a; ()t (l‘)) U ()

=1

= Up41 (2)um (z) (mod m)
by the induction hypothesis. O]
Corollary 4.2. Let u,(x) be a sequence satisfying (4.5) and (4.6). Then
Untwm(T) = Up(Z)Usn(T) = vy (x)ul, (2) (mod m)
foralln>0, m>1andt > 1.

Lemma 4.3. Let vs(x) be monic polynomials of degree s with integral coefficients

and m > 1. If there are integers Ay, A1, ..., A, such that

ZAsvs(x) =0 (mod m), (4.8)

then
Ay =0 (mod m)

for all 0 < s < n.

Proof. First, we write
S
2 (s E as ;o
J=0

where a;; = 1 and 0 < s < n. Since

n n S n n
E Asvg(z) = E A, E as v’ = E x’ E Asas
s=0 s=0 7=0 7=0 =j
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and (4.8), we get
Z Agas; =0 (mod m)

s=j

for 0 < j < n. From the fact that a,; = 1 for 0 < s < n, the lemma follows by

substituting j from n to 0. [

By the equation (4.5),

(&) = s (2) = 3 @ ()t ()

o
Il E
o

and hence

P (@)= 3 Aug0)rs(@),

7— s

by induction on n, where A, ;(n) € Z[n| for s,n =0, 1,2, ... and in the summation

we may assume that j > n. It follows that

tm

un(ey, (@) = Y Bj(n)uni(e)

j=—ktm
where B;(n) € Z[n]. Since both sides of the previous equation are polynomials of

degree n + tm and the left side is monic, By, (n) = 1, so

tm—1
(€)1 () = U (@) = By (0t (). (4.9)
j=—ktm
By Corollary 4.2, we get
tm—1
Y Bi(n)uny(@) =0 (mod m),
j=—ktm
and thus

Bj;(n) = 0 (mod m) (4.10)

for —ktm < 7 <tm — 1, by Lemma 4.3.
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4.2 Operators A and 9

Now, for fixed integers m,t, we define the operator A by

Ap, = uin(‘r)(pn — Pnttm, (4‘11)

and more generally,
A"Gp =, () A" o= Oy (4.12)

where 7 > 1 and ¢, is an arbitrary function of n. By induction on r, (4.11) and

(4.12) imply

Ao = i(—l)s C) E N D (4.13)

=0
Applying A™! to equation (4.9), we obtain
pplymg

tm—1

Au, (@) = S A=Y B;(n)une; ()} (4.14)

j=—ktm

Define the operator § by

i i
0 o = Z<_1)s <S> Pni-stm

s=0

where m and t are fixed. It is clearly equivalent to

! r
Ontrim = »_(—1)° <S> 8°pn.

Then, the equation (4.6) becomes

A", (x)
tm—1 r—1
—1
- Z (7” )Uf?%r_l_S)(x)un-l-j-&-stm(x)Bj (n + stm)
j=—ktm s= 0
tm—1 r—1 r—1 s .
S A <)Wmeme@mw
j=—ktm s=0 i—0
tm—1 r—1
r—1 s
2, 20 Z ( ) (2> Uy (@)t 50 ()
j=—ktm i=0 _
tm—1 r—1

=Y > ( Hon <>§<—1>S(T;:i)uzs’"“><:c>un+j+stm<x>

j=—ktm =0
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Ss=

=2 2 ( i 1>5iBj<n>N1iun+j+z-tm<x>- (4.15)

Lemma 4.4. Let f(n) € Z[n] and r > 0. Then

tm—1 r—1 r—1—1 1
= (T > Z <T Z) W (2 Uit st ()
° —0
1

0" f(n) =0 (mod m").

Proof. Tt suffices to show for the case of f(n) = n’. To see this, we use induction

on r. For r =1, we have
6(n') =n' —~ (n+tm)" = 0 (mod m).

Now suppose that the lemma holds for the value » and we want to show for r + 1.

Note that

5 ) = S (-1): (T y 1) (n +stm)’

— 04 (<1 (n & D)+ 2(—1>5 ( (Z) + (5 " 1)) (n + stm)’
TO(_1)8< =

>y

~ 2 ()3 (e

LS

s=0

i

(n+ stm) +) " (=1)* C) (n+ (s+ 1)tm)’

s=0

Il
(]

S

=l

) sem
(:) ((n + stm) — (n + stm + tm)?)
(C

The induction hypothesis tells us that

r

N (1) (Z) (n+ stm)™7 = 0 (mod m"):

s=0

This immediately implies the induction step and thus the lemma. O

Now, we are ready to establish the main theorem.
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4.3 Main theorem

Theorem 4.5. Let u,(x) be a sequence satisfying (4.5) and (4.6). Then

>0 (7)ol e aon() = 0 ot ™)
5=0
forn>0,r>0,t>1m>1andr = [%1]
Proof. We will prove that

Auy () =0 (mod m™) (r>1,n>0) (4.16)
by induction on r. If r = 1, we have r; = 1 and hence, by Corollary 4.2,

A () = e (@)U T) = Unim(x) = 0 (mod m)

for n > 0. Suppose now that (4.16) holds up to » — 1 for all n > 0. Consider the

equation (4.15), if we view B;(n) as a polynomial in n, then Lemma 4.4 implies
§'Bj(n) =0 (mod m"). (4.17)
Next, we use equation (4.15) and set
A == B (Y AT P .., ()

where 0 <1 < r— 1. From the equations (4.10), (4.17) and the induction hypoth-

esis, we obtain

Ag = Bj(n) A" upy(x) = 0 (mod m'*B)),

Ary = 8" Bj(0)Untja(r-ayim () = 0 (mod m’~*)

and

r—1

-

where (1 < i <7 —2). It is easily verified that 1+ [5], 7 + [5*] and r — 1 are

A; = 0 (mod m*l

greater than r = [“#] and thus

A; =0 (mod m™)

where 0 < ¢ < r — 1. This completes the theorem. O



Corollary 4.6. Let u,, be a sequence satisfying (4.3) and (4.4). Then
. s(T t(r—s) — 1
E (—1) U " Uy o = 0 (mod m™)
s
s=0

forn>0,r>0,t>1,m>1andr = [%1]
Proof. 1t follows from the fact that w,(0) = u, for all n > 0.

Example 4.7. The Hermite polynomial H,(x), n > 0, is defined by

t’n

= (Ho@)=1)

eta—t2 i Z Hn(x)
n=0
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Differentiating with respect to t on both sides of the above equation easily yields

the difference equation
. i) =25 H3lz) — 2nH,%, (z)
By Corollary 4.6, we obtain
>0 () ) o) =0 (o

form>0,r>0,t>1m2>1.



CHAPTER V
Relationships among three types of Kummer’s

congruences

In the previous three chapters, we have mentioned each type of Kummer’s
congruence as well as each used technique, basically, starting with a nice setup
and an appropriate operator. However, they are quite unique. Another interesting

aspect is to investigate some relationships among them.

5.1 The zeroth and the first kinds

As seen in Definition 1.1, we are not restricted by the conditions of parameters

n and r. However, a Kummer’s congruence of a zeroth kind of the form

T

> (=1 (Z) nts(p-1) =0 (mod p") (5.1)

s=0
and a Kummer’s congruence of a first kind of the form
S i T—S8 — w
Z(—l) (s) ap “Onysp—1) = 0 (mod p"), (5.2)
s=0
where (a,) is a sequence in R and n > r > 1, have often appeared in several
papers, see [4], [8] and [9].
A little fact regarding both of them is given below.

Proposition 5.1. Let (a,) be a sequence in R and a, =1 (mod p). If (a,) satis-
fies the congruence (5.1), then (ay,) also satisfies the congruence (5.2). Moreover,

the converse is true.

Proof. We first show that the congruence (5.1) implies the congruence (5.2). Sup-

pose the congruence (5.1) holds for all n > r > 1. By the assumption, we have



a, =1+ kp for some k € R. Hence, for each n > r > 1,

§;<—1>8 () i = Y1) () (1 + hp) ™
:g( ( )an+sp2( )kjp7

7=0

Z ( )W Z ( ])an+sp.

J_
But

ij(—l)s (r i;i j) Qe of 5 ij(—l)s <r ; j) Anisp = 0 (mod p").

s=0 s=0

The converse implication can be proved in a similar way.

5.2 The zeroth and the second kinds

Let (31, s, ... be a sequence with §; = 1 satisfying, for r > 2,

/67'+ij 1 /B’I”+1j

T

Y
N — —— B -
+;gj 1(7”) ]' ;CSJGS +]2:; J Q(T) ]' +d(7“—|— 1)7“
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where k is fixed, f;_1(r) € Z[r] have degree < j — 1 with f;_1(r) = 0 (mod j!) for

2<j <k, fioi(r)=0for j >k, gj_1(r) = hj_a(r) =0 for j > 2, go(r) = 0 and

d = 0. This reduces to

ﬁr‘i_Zf] 1 5r+1 —j — O

(5.3)

where f;_;(r) € Z[r] have degree < j—1with f;_1(r) =0 (mod j!) for 2 < j <k,

f]-,l(?“) =0 for j > k.

We have already known from Theorem 2.5 that the sequence (,) satisfies the

congruence

n

Z(—l)n_t (7;) Brt(i+t)(p—1) = 0 (mod p")

t=0
wheren <p—3,k>n>1and > 0.

The following proposition reveals another view of j,.
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Proposition 5.2. Let 3, be defined in (5.3) and uq,us, ... a sequence satisfying

the difference equation
Upp1 = ar(T)uy + a2(r)tpq + -+ ap1(1)Up—gr2  (r>1) (5.4)
of order k — 1, where a;(r) = — f;(r )( T for1 < j<k—1. If we assume that
u =1 and [OP=0ui(s =l 2, oS0 3 .  k—1), (5.5)
then u, = B, for all r > 1.

Proof. 1t suffices to verify that u, = 3, for all 1 < r < k — 1. Obviously, u; = .
Now, let » > 2 and suppose that u; = G; for 1 < i < r—1 < k —1. To show

u, = (3., we observe that, by (5.5),

Ur = a1 (r = Dupoq +ao(r = Dtp_g + -+ -+ ap1(r — Dy

2 r—1
=—fi(r - 1)2,Ur PNl — 1)15,%« 2w — froa(r — 1)p7«l Uy
T % S
== fialr— 1)p].—,ur+1—j-
j=2 ¥

The induction hypothesis yields u,1—; = G415 for all 2 < 7 < r. Thus

j—1

ngl D Bracs = 6
]

Corollary 5.3. The sequence 3, defined in (5.3) satisfies the congruence of the

form

- Ir r—s r
Z(_l)s (3) ﬁfyg-u )5n+stm+1 =0 (mod m")

s=0
WhEre s> 07 >0 ,48% LSy Jond 7 & [%]

Proof. The previous proposition tells us that [, satisfies equations (4.3) and (4.4)
mentioned in Chapter IV. m
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