CHAPTER THREE

COMFUTED TOMOGRAPHY

3.1 INTRODUCTION
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section. Such superimposition is one of the Primary
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shortcomings of radiography.

Conventicnal tomography (gecometric tomography)
can be used to eliminate the problem of
superimposition of structures. However, there are .other

limitations imposed by coskl

ional tomographic methods,

‘i"il persists and poor

- e presence of

such as image blur
contrast resolus

scattered radi= Fam - geometry of

the system.

-

In CT, .[,pletely removed

(a)
(b)

{c) ssion readings

ecific scanning (x-ray

. Lzliuences.
v

‘aging technique

based on sim{lfar steps involved it digital image

"“ﬂ:‘iﬁﬁﬁiﬁ'ﬂﬂ‘m;ﬂ
QRN ﬁﬁ“ﬁﬁiﬁtﬁﬁﬂiiﬁﬁ 18Y.......

using spec1a1 detectors to measure

transmitted x-rays and ¢onverting them into
electrical signals (analog data).
(c) OQuantization, where each measurement in (b)

above is assigned a numerical value

(digital data).
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{d) Processing the digital data with a digital

computer.

(e) Display and Storage of the computer-processed

image.

Various gas - gtechnique go back as

far as 1917, whe | v m—.ced the idea of

using mathematjo- . S o data to solvel

problems relat: gravity. Other

basic theorem
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In 1972, Godfrey Hewbold chnsfleld rece:ve the
equivalent ©f the Nobel Prize in Engineering for his
wnrk on CT. Hounsfield was born in England in 1919, He

studied electronics at the Royal Air Force in Cranwell,




Later, he attended Faraday House where he graduated in
electrical and mechanical engineering.

In 1951, he joined the staff at EMI (Electric
and Musical Industries) and in 1967 he began working on

pattern-recognition tech es which later gave birth

/éw Nobel Prize in

Medicine and Bl a%s | _éﬁ,ﬁ; Leod Cormack, a

to CT scanning.

In 1979,

physics profe ty in Medford,

Massachusetts Africa in 1924

and studied nugfe: Y - Mle University. He
CT, since he

developed 7 V7 : WA the mathematical

3.4 PRINCIFPLES OF ‘-‘ 7 B TOMOGRAFPHY
‘E' area) beam of
£l ‘ v. |;'-“
monoenergeti® : through some

homogeneous me “ rial, the beam intenstdy is observed to
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secand per unit cross- -sectional area} and I is the
cbserved intensity after the beam passes a distance x
through the material. The linear attenuatien
coefficient p depends on both the density of the

material and the nuclear composition characterized by

the atomic number Z,
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ﬁ = ptf,z}.

In the following discussion, this dependence gnjp and Z
will not be shown explicitly.

If the x-ray be es through two different

materials, distanc dium 1 characterized

by p» and distand 2 characterized by
1

»n , the fracti

L Wty is given by

For several megy

I a = aix) is #M:cewise continuous)

functien of x, the gz te an integral aloﬁq

the beam patg
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attenuation coefficient in the plane may be written as

a function of two variables x and y, which coordinatize

the xy plane,

po=pilx,y.
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If the narrow beam traverses the Xy plane as indicated

in Figure 3.1, the fractional decrease in intensity is
given by

I/I = exp[-| nix,y)ds] (3.3)
-0

where the line inte the beam path L. The

natural logarithm ; ‘éingle projection,

ds. (3.4)
By moving theg indicated in

Figure 3.2F Bhain a set of

(3.5)
In the cnmplete scan . 5 ,values of P(r,0) are

determined oM e

'ines Lir,0) at

various ang§# M ansmitted and

incident 1nten£§ties Proying (3% . In theory.if

P(r,8) is knowfigfor every@/line intersecting the

ceceion, R BN BNINEUN G <o

inverted. In practice,wlues fek(r,8) cafs only
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1 terest is divided into a number of small sguares

of dimension w, called picture SlEneis or pixels,on
which the absorption coefficient has a constant value.
The number and size of these pixels is

determined by the nature of the scanning process.
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Figure 3.1 The
uls,y) alons
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Figre 1.2 The source and detector move togetherir varies)
50 that ‘the bean covers the entire region leading to the
profile Flir.8) for fired angle &,

L
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3.5 HEORY OF THE IMAGE R CONSTREUCTION I COMFUTED
TOMOGRAPHY
A theoretical solution,namely the determination

of ulx,y) from (3.5), given P(r,0), was first found by

Radon (1917) in association with a gravitational

problem. No numerical ion was investigated,

"/; encountered the
A’

however, until

identical prnhle_“” - 2hen attempting to

identify regions “Se@itted microwave

radiation. The i hlkicblem was later

encountered by EAEX biomolecules

using electrof Wrendent solution

techniques were and Klug(1968),

and Gordon,Bende
(52) B
(1963), (1964
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dependently of other

anwhile, Cormack

workers, developed Becheique which he

applied expé}* 7777777777 ' A use of the
process in trar o e wil not until the

early develapmeng.of the cnmm ial scanners, described

ﬁ%ﬁlﬂ%&’%ﬂﬂ’m‘ias made in

extending Y these techqﬁques 0 txansver axial
) ANNINURIINIANY
present -a diversity of methods for
reconstruction are available. One reference' (Budinger
and Gullbergtl??d}}taql lists 13 different methods
which may be_dsed in both transmission and emission
tomography. However,it is possible to classify the

: , (55-73)
various approaches broadly into four categories,
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namely
(a) summation methods (e.g. simple back
projection),

(b) series expansion methods (e.g. iterative

{20,25, 78-96)
estimate-correct), ]
{c} (e.g. Fourier
(18
transform),
(d) are .g. convolution

117-124)
or filtered b

In th bresent on the

theory underly =ction algorithm
for which the : : o\ EEH} s were presented
in next sectio ﬂ; \ red-backprojection
algorithms is theff Srem.
3.5.1 The .!’fffxf! gheorem
7 #fites the oné*
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The
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dimensional ——_
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function

y) to its two-dim sional Fourier

¢

e
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_and - - )
gix,y) = S [G{u,v]exp{:ifﬂ{ux+vy}]dudv (3.7)
Al
Also let S (w) be the Fourier transform of the
e

projection P (t), that is

<
S (w) = S P (tlexp(-j2Twt)dt (3.8)
6 8
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Let wus first consider the values of Glu,v) on

the line v = 0 in the uv plane. From equation (3.6)

© L
G(u,0) = Im thx,y}expt-jz'ﬁ'ux}dxdy

{3.9)

because 5 glx ion of the image

for" ﬂ = 0. Nota# . 1 . pn X and t are

the same.

The pre g8 F§F S RPN “':“ hat the values
of the Fourier t, ¥ 5 ’ff{ | VH Iﬂ”'line defined by

transforming the

vertical (aleng y)|

T T ® image. This result
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can be generalized Fﬁ%gﬁﬁﬁi‘ if G(w,0) denotes the

values of 1 4. v) along a lin ‘,jf with the u
Y}

axis, as shudl _SB{w] is the

& . ‘ 4¥
Fourier transfxl. of the projection P ), then

ﬂ‘lﬁ:l*’mm‘l‘i wmm
::::a“ﬁ:imimﬂmma AN

in Flgure 3.3. The coordinates(t,s) are related tc the

(x,¥) coordinates by

t cosB sina x

= {3.11)
s -sin@ cos®| | ¥

Clearly,
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Tha Fourier transform gf this function
gives the values of Gly vl aleng
the dashed line § in phe uv plane -

(3.12)

Therefore,

s (W) o
a o ‘

e (—i28vt)ac. (3.13)

T““““’W‘UEI INININT:

to Xy cd'rdlnates, we abta n

qmmﬂﬁmumamma By axay

u = weosh
= G(u,v) for { -
v = Hsinﬁ

= 6w, B, (3.14)
which prove equation (3.10). This result is also known

as the projection slice theorem.
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3.5.2 Derivation of Filtergd—gackgrujectian
Equations for Parallel Data

If, as before, {w,ﬁ} are the polar coordinates

in the uv plane, the integral in equation (3.7) can be

expressed as
m
glx,y) = j

Tw (xcosB+ysin®) Jwawah

(=]
R w[xcos (B+180 )

+ We can write

gix,y) = #F I A7 -xﬁx: wt)dw]ah

52T wet)awldl  (3.15)

Where, as nd Y Jand where we

have used eq , itegihl in equation

¥

(3.15) may be exiressed as

g uq‘a uﬂmmmﬂ‘i a3
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s {w]lwlexp{i21fwt}dw. (3.17)

where

qmas

These two equations form the basics of the algorithm

-n

discussed in next chapter.

cosB+ysin®) Jwawab
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