

Academic Year 2010
Copyright of Chulalongkorn University

อาภาพรรณ ประกอบการ: ความแปรผันทางสัณฐานของกิ้งก่ารั้ว Calotes versicolor (Daudin, 1802) ในประเทศไทย. (MORPHOLOGICAL VARIATION OF GARDEN FENCE LIZARD Calotes versicolor (Daudin, 1802) IN THAILAND) อ. ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร. กำธร ธีรคุปต์, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม: อ. ดร. ธงชัย งามประเสริฐวงศ์, 138 หน้า.

กิ้งก่ารั้ว เป็นกิ้งก่าที่พะมากและมุขคบเขอการแพร่กระจายกว้าง ตั้งแต่ตะวันออก กลาง จนถึงตะวันออกไกล และเอเซียตะวันออกคคียงใด แม้ว่าในหลายประเทศรวมทั้งประเทศ ไทยกิ้งก่าชนิดนี้จะมีควมผตนเปดขางสักฐรานอย่างธัดเจน แต่ยังไม่มีผู้ใดทำการศึกษา การศึกษาครั้งนี้ได้ทำมลรศึกะาโดยคด้บตัคอย่างกิ้งก่ารัวตัวเต็มวัยในภาคเหนือและภาคใด้ ของประเทศไทยซึ่งอยู่ต่างเขตส้คคคา ลตรรรยอย (zoological subregion) โดยเก็บตัวอย่างจาก 3 พื้นที่ในแต่ละภาค พื้นที่ดะ 20 ตัว เป็นเพคตู้และเพคเมียอย่างละ 10 ตัว ทำการศีกษา ความแตกต่างทางสัณฐานระหวางเพดแตะระหวางภาค โดยตรวจสอบความแตกต่างของ ลักษณะขนาด (mensural characterfŭวer analysis of covariance (ANCOVA) และ จัด
 (PCA) วิเคราะห์ความแตกต่างขอรรัไชวขแึค็ด (meristic character) ด้วย Mann-Whitney U-test และจัดกลุ่มแต่ละตัวจากความแตกตาางของจำนวนเกศ็ด ด้วย PCA และเปรียบเทียบ ความถี่การปรากฎของลายโดย chi-squared test ผลการศึกษวพบว่าความแตกต่างระหว่าง เพศพบได้ในตัวอย่างกี้งก่ารั้วทั้งภาคเหนือและภาคใด้ โดยตั้ลู้จะมีขนาดหัวและรยางค์ใหญ่ กว่าตัวเมียแต่ตัวเมียมีษนวดลำตัวใหญ่กว่าส่วนจำนวนเกล็ดในตัวผู้พบมากกว่าตัวเมีย
 (DorsSt) ลายบนขาหน้า (ForearSt) ฝเละจุดดำกลางหัว (NucSpot) ชั่นความแตกต่างทาง
 ประชากรในภาคเหนือและภาคใต้ โดยพบว่าตัวผู้ทางใต้จะมีขนาดหัวและรยางค์ใหญ่กว่า และยังพบว่าลายบนลำตัว (TrnkBand) และคอ (ThroatPa) ถี่กว่าทางเหนือ ส่วนความ แตกต่างที่พบในตัวเมียจะไม่ชัดเจนเหมือนในตัวผู้

\#\#507 2574123 : MAJOR ZOOLOGY
KEYWORDS: Calotes versicolor/garden fence lizard / mensural character / meristic character / morphological difference

ARPAPAN PRAKOBKARN: MORPHOLOGICAL VARIATION OF GARDEN
FENCE LIZARD Calotes versicolor (Daudin, 1802) IN THAILAND. THESIS ADVISOR: ASSOC. PROF KUMTHORN THIRAKHUPT, Ph.D., THESIS COADVISOR: THONGGHAI NGAMPRASERTWONG, Ph.D., 138 pp.

The garden fence lizard, Calotes versicolor, is a common and widely distributed lizard throughout the Middle East far-fasf and Southeast Asia Although this species displays variations in its morphalogy inrougnget is range these vanations have not been examined in many countries including Thailand Thus, we examined 20 adult lizards, ten males and ten females from each of three samplith iocalitestin each of northern and southern Thailand to document sexual and regional variatiofs. Differentiation in characters between sexes and populations were tested by analysis gflobyarance (ANCOVA) and principle component analysis
 test for stripe patterns. Sexual dimargismyys found in both northern and southern populations. Males have a large Prelative head size and longer relative limb fengths, whilst females exhibit a longer relative trunk lgngth. The number of scale in males yyes also more prominent than in females. Females in bōh southern and northern Thailand populations have brighter patterns in paired dorsolateral stripe (DorsSt), forearm stripe, (ForearSt) and paired nuchal spots (NucSpot)
 was more promigent in males, but meristic characters were not clearly different. Males in the southern populations have a larger relative head size and longer relative firfig lengths than those from the notherp copulatiọns, bont onfege differences were fol tound in temates. No difference in stripe pattern was found between females from the northern and southern populations, whereas males in the southern populations have brighter patterns in dark bands on trunk (TrnkBand) and colored throat patch (ThroatPa) than those in the northern populations.

Department:	Biology	Student's Signature A. Prakobkarn
Field of Study:	Zoology	Advisor's signature K. Thiak
Academic Yea	2010	co-Advisor's Signature Theli Norputy

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my thesis adviser, Associate Professor Dr. Kumthorn Thirakhupt, and my thesis co-advisor, Dr. Thongchai Ngamprasertwong, for their invaluable suggestions, supports and encouragement throughout my study.

I would like to thank Assistant Professor Dr. Duangkhae Sitthicharoenchai, chairman of thesis committee and also grateful thank to Dr. Komsorn Lauprasert, as the member of thesis committee.

I would like to give special thank Dr. George R. Zug, Dr. Harold K. Voris and Professor Merel J. Cox for useful suggestions in thesis writing.

I would like to express my special thank to Assistant Professor Dr. Pattarasinee Bhattarakosol, Dr. Varanya Aranyavalai and Mr Ratchata Pochayavanich for useful suggestions and help with the statistical analysis.

I wish to thank Mr. Thasun Amarasinghe for specimen information.
I thank to Dr. Kruewan Pipatsawasdikul, Dr. Anchalee Aowpol, Mr. Thanakom Bundhitwongrut, Miss. Nuttharin Wongthamwanich, Mr. Chattraphas Pongcharoen, Mr. Pratchayaporn Wanchai, Miss. Salinee Khachonpisitsak, Miss Waristha Angsirijinda and Mr. Sarawoot Gomuttapong for providing additional specimens and other information in my research.

I also thank Dr. Robert Butcher, Publication Counseling Unit, Faculty of Science, Chulalongkorn University for Englishcorrections and suggestions.

I would like to thank Dr.Sansareeya Wangkulangkul who inspired and persuaded me to further my study to interest on amphibians and reptiles

I would like to express my gratefl gthank to Mr. Amporn Prakobkarn, Mr. Pichai Suprakarn, Mr. Yuth Suripong, Miss Antida Prakobkarn, Mr. Thirapat Prakobkarn and Mrs Kattiya Prakobkarn who assisted in specimen collection.

This study was supported by the Thai Government budget 2009, under the research program on Conservation and Utilization of Biodiversity, and by the Center of Excellence in Biodiversity (CEB_M_50_2009), Faculty of Science, Chulalongkorn University, and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund).

CONTENTS

Page
Abstract (Thai) iv
Abstract (English) v
Acknowledgements vi
Contents vii
List of Tables

\qquad
$\ldots \ldots \ldots$ x
List of Figures xii
Chapter I: Introduction

$\qquad$$\ldots \ldots \ldots$
1.1 Rationale

\qquad

\qquad1.2 Objectives
\qquad2
3
1.3 Anticipated benefit
Chapter II: Literature Review. .4
2.1 Classification and general description. 4
2.2 Geographic variation..... 11
Q....
Q....
คนยวิทยทรพยากร2.3 Sexual dimorphism12
 13
3.1 Study area 13
3.2 Methods 15
3.2.1 Morphological study 15
3.2.2 Data analysis.... 22

Page

Chapter IV Results 25
4.1 General information from field study 25
4.2 Morphological difference within-region 26
4.3 Sexual dimorphism 30
4.4 Geographic variation 45
Chapter V Discussion 51
5.1 Morphological difference within-region. 51
5.1.1 Morphological difference of C. versicolor within northern Thailand 51
5.1.2 Morphological difference of C. versicolor within southern Thailand 52
5.2 Sexual dimorphism of C. versicolor............... 52
5.2.1 Mensural character. $\ldots \ldots \ldots \ldots \ldots \ldots .$. 52
5.2.2 Meristic character. 53
5.2.3 Stripe patterns 54
5.3 Geographic variation of C. versicolor 54
 54

5.3.3 Stripe patterns 56
Chapter VI Conclusions and Recommendations 57
6.1 Conclusions 57
6.2 Recommendations 58
Page
References 59
Appendices 63
Appendix A: Specimen and Morphological data 64
Appendix B: Principal component analysis 85
Appendix C: Linear regression analysis 102
Appendix D: Mean of rainfall and air temperature 134
Biography 138

LIST OF TABLES

Table

Page
4-1 Summary of reproductive status of Calotes versicolor in Thailand during July 2008 to September 200927

4-2 Summary of the head measurements of C. versicolor in the northern and southern
populations in Thailand. Data are shown as the mean \pm SE with the range shown in
parentheses, and are derived from 30 samples each. All measurements are in mm .
The F - and p-values from ANCOVA are also shown..

4-3 Summary of the limb, body and tail measurements of C. versicolor in northern and southern populations in Thailand. Data are shown as the mean \pm SE, with the range in parentheses, and are derived from 30 samples each unless indicated otherwise (N). All measurements are in mm.The F-and p-values from ANCOVA are shown.... 32

4-4 Summary of the scalation characters of C . versicolor in the northern and southern populations in Thailand. Data are shown as the mean \pm SE, with the ranges shown in parentheses and are derived from 30 samples untess indicated otherwise (N). The Z- and p-values from Mann-Whitney U-test are also shown

4-5 The percentages of occurrence of stripe patterns in C. versicolor in the northern

4-6 Regression analysis of Calotes versicolor morphological characters in both sexes

4-6 (Cont.) Regression analysis of Calotes versicolor morphological characters in both sexes of northern population.
4-7 Regression analysis of Calotes versicolor morphological characters in both sexes of southern population 40

LIST OF TABLES

Table

Page

4-7 (Cont.) Regression analysis of Calotes versicolor morphological characters in both sexes of southern population41

4-8 The F - and p-values from ANCOVA of the mensural characters of C.versicolor in males and females between populations in northern and southern Thailand

4-9 The Z - and p-values from Mann-Whiney U-tests of the meristic characters of C. versicolor in males and females between populations in northern and southern Thailand. \qquad

LIST OF FIGURES

Figure Page
2-1 A time tree of squamate reptiles (Squamata). Abbreviations: Ng (Neogene) and Tr (Triassic) 5
2-2 Distribution of Family Agamidae 6
2-3 Distribution of Calotes in Thailand 7
2-4 Calotes versicolor 9
2-5 Picture of Calotes versicolor (left). Head scale of lizard group (right) 10
3-1 Map of Thailand, showing 6 sampling localities in northern and southern regions 14
3-2 Mensural characters of Calotes versicolor were used for this study 16
3-3 Meristic characters of Calotes versicolor were used for this study 19
3-4 Stripe patterns of Calotes versicolor were used for this study 21
3-5 Captured technique, using of noose for Calotes versicolor 23
3-6 Reproductive organs of Calotes Versicolor; immature male (A), mature male (B), immature female (C) and mature female (D) 24
4-1 PCA for the mensural characters of C. versicolor males in northern region. 28
4-2 PCA for the meristic characters of male (left) and female (right) C. versicolor in northern region 28
4-3 PCA forthemensurat characters of C versicolorfemales in southern region 29
4-4 PCA for the meristic characters of male. (leff)female(rigth) G versicolor in PCA for the mer
southern region. 29
4-5 Picture of male (upper) and female (lower) Calotes versicolor in northern Thailand. Male have thicker tail (TailTh) and larger vent (VentW) than female 36

LIST OF FIGURES

Figure

Page

4-6 Linear regression line between Snout-vent length with Tailthickness both sexes in northern (upper) and southern (lower) population. Abbreviations:

- females; O, males

4-7 PCA for (A, B) the mensural characters and (C, D) the meristic characters of C. versicolor in (A, C) northern and (B, D) southern Thailand population.... 44

4-8 PCA for (A, B) the mensural characters and (C, D) the meristic characters of C. versicolor in (A, C) female and (B, D) male population 50

CHAPTER I

INTRODUCTION

1.1 Rationale

Lizards are the most successful group of the reptiles because of their majority in species number (Hedges and Vidal, 2009; Mattison, 2009). They also exceed other reptiles in anatomical, behavioral, and reproductive diversity and in the extant of their geographical distribution (Halliday and Adler, 2002).

One of the most common lizards is the garden fence lizard, Calotes versicolor, which is widespread over a large area, ranging from southern Iran, Afghanistan, Nepal, Sri Lanka, India, southern China, Myanmar, Thailand, Laos, Vietnam, Peninsular Malaysia and Sumatra (Erdelen, 1984, 1986; Auffenberg and Rehman, 1993; Ji et al., 2002; Radder, 2006).

The taxonomic status of this species has been classified into only one species, but it is proposed that this species represents a complex of several species because morphological variations among populations of C. versicolor were found in Pakistan, India and Myanmar (Tiwara and Schiavina, 1990; Auffenberg and Rehman, 1993; Zug et al., 2006). Geographic differences among populations have been reported in this species, with specimens from the Himalayan mountain complex in Afghanistan, Pakistan and India being distinctly different from those in other parts of the countries (Auffenberg and Rehman, 1993). Thus, C. versicolor in this area was divided into two subspecies, C. v. versicoion and C. vonigrigularis, which are found at elevations below 300 m and at between 300-1800 m amsl, respectively.

Moreover, sexual dimorphism has been widely studied in lizards (Ji et al., 2002; Kuo et al., 2009), and in C. versicolor, as in many other animals, sexual differences occur in morphology, shape, size and color (Auffenberg and Rehman, 1993; Radder et al., 2001; Ji et al., 2002). The occurrence of morphological differences between males
and females could arise from natural selection processes, where the different evolutionary trends are explained as the results of three major forces that differentially act on males and females of a population: fecundity, sexual and natural selection (Olsson et al., 2002).

In Thailand, there are three species in genus Calotes, i.e. C. versicolor, C. mystaceus and C. emma which was divided into two subspecies, C. e. emma and C. e. alticristatus (Cox et al., 1998). Both C. versicolor and C. mystaceous have adapted to man and so are commonly found among the undergrowth in human-made habitats. However, C. versicolor probably occurs in all the provinces and many reports from other countries were showed it had more morphological variation than C. mystaceous.

Although Radder et al. (2001) and Ji et al. (2002) reported sexual differences in this species in some regions, it is still unclear whether sexual dimorphism occurs in other parts of its range or not. Indeed, sexual dimorphism in this species has not been studied in Thailand. In order to address geographic variation and sexual dimorphism of C. versicolor in Thailand, in this study the mensural and meristic (scalation) characters plus the stripe patterns of C. versicolor from northern and southern region of Thailand were examined. These two regions represent the Indochinese subregion and Sundaic subregion for northern and southern Thailand, respectively. The morphological differences between the northern and southern populations in both sexes were also

1.2 Objectives 1.2.1. To study the morphological variation in mensural characters, meristic

 characters and stripe patterns of C. versicolor between northern and southern Thailand.1.2.2. To study sexual dimorphism between adult males and females of C.
versicolor.

1.3 Anticipated benefit

The information obtained from this study could be used for providing basic knowledge on taxonomic status of C. versicolor in Thailand. The results also point out the difference between sexes in non-breeding season.

CHAPTER II

LITERATURE REVIEW

2.1 Classification and general description

Most of reptiles are squamates ($\sim 8,200$ species) which consists of $\sim 4,900$ species of lizards, $\sim 3,070$ species of snakes, and ~ 200 species of amphisbaenians (Hedges and Vidal, 2009). Much greater diversity is found in lizards because of their small body size and lower demand for food, likewise each species can adapt to their available microhabitats (Cogger and Zweifel, 2004).

Lizards are classified into 26 families (Fig. 2-1) (Hedges and Vidal, 2009). One of these families is Agamidae, which consists of 54 genera and more than 400 species (Vitt and Caldwell, 2009).

Agamids consist of small to targe lizards (45-350 cm SVL in adult). They are diurnal and terrestrial or arboreal lizards. The body is covered dorsally and ventrally by overlapping scales or granular, juxtaposed scales. The scales are often modified to form extensive crests, frills, or spines. In many agamids these features are sexually dimorphic and are used in intraspecific interactions (Pough et al., 2004; Vitt and Cladwell, 2009). Limbs are well developed. The pectoral girdle has T-shaped or cruciform interclavicles, and curved rod-shaped clavicles. The tail is long, less than SVL to 1.4 times SVL, and lacks feature planes in caudal vertebrae (except in some Uromastax). The tongue is thick and covered dorsally with reticular papillae. The foretongue is nonretractable (Vitt and Cladwell, 2009). The skull is diapsid type.

Agamids are largely confined to Africa, southern and central Asia, and the Indoaustralian Archipelago to Australia (Fig 2-2) (Taylor, 1963; Cox et al., 1998; Pough, 2004; Vitt and Cladwell, 2009).

Figure 2-1 A time tree of squamate reptiles (Squamata). Abbreviations: Ng (Neogene) and Tr (Triassic) (Hedges and Kumar, 2009). Twenty-six lizard families are shown in pink boxes.

Figure 2-2 Distribution of Family Agamidae (Vitt and Cladwell, 2009)

In Thailand, family Agamidae consists of 9 genera and 24 species (Cox et al., 1998; Honda et al., 2000). One of these genera, Calotes, is commomly found throughout Thailand. Three species in genus Calotes, C. versicolor, C. mystaceus, and C. emma, have been reported in Thailand.

Calotes versicolor in Thailand was reported in North Ohiang Mai, Mae Hong Son, and Phrae; Northeast: Loei, Nong Khai, and Kalasin;:East: Ubon Ratchathani, Nakhon Ratchasima, Roi Et, and Chaiyaphum; Southeast: Chanthaburi, Chachoengsao, and Rayong; Central Bangkok; Southwest: Kanchanaburi; Phetchaburi, and Ratchaburi; South: Ranong, Trang, Surat Thâhi, Naknon Si Thammarat, Songkla, Pattani, Phattalung, and Narathiwat (Jaylor, 1963 and Nabhităbhata et al 2000). \& 9 ?
C. mystaceous was reported in North: Nakhon Sawan, Chiang Mai, Mae Hong Son, and Phrae; Northeast: Udon Thani, Khon Khaen, Loei, and Nong Khai; East: Nakhon Ratchasima, Ubon Ratchathani, and Chaiyaphum; Central: Bangkok, Saraburi, and Nakhon Pathom; Southeast: Sa Kaeo; Southwest: Uthai Thani, Ratchaburi, Kanchanaburi, Prachuap Khiri Khan, and Phetchaburi (Taylor, 1963 and Nabhitabhata et al, 2000).

Figure 2-3 Distribution of Calotes in Thailand.
C. emma was reported in North: Tak, Kamphaeng Phet, Chiang Mai, Phrae, and Mae Hong Son; Northeast: Loei, Nong Khai, and Sakon Nakhon; East: Nakhan Ratchasima, and Chaiyaphum; Southeast: Sa Kaeo, Prachin Buri, Chanthaburi, and Trat;

Southwest: Uthai Thani, Kanchanaburi, Ratchaburi, and Prachuap Khiri Khan; South: Trang, Nakhon Si Thammarat, Phattalung, Pattani, Surat Thani, Narathiwat, Yala, Ranong, Phuket, and Krabi (Taylor, 1963 and Nabhitabhata et al, 2000).
C. versicolor and C. mystaceous have adapted to human and so are commonly found among the undergrowth in human-man habitats. Both species can be found in urban and agricultural areas.

Genus Calotes mostly has acrodont teeth. The tail is often two to three times length of head and body. The dorsal crest usually presents higher in males, likewise femoral and preanal pores are absent. Each species of this genus has variation in the number of scales around the middle of the body, and also in color and markings (Taylor, 1963).

Calotes versicolor (Fig 2-3) was first described by Francois M. Daudin, who was French naturalist, in 1802. The type specimens were collected from Pondicherry, Chenai [Madras], and Kolkata [Calcutta], in India:

This lizard is distributed widely in southeastern Iran, Afghanistan, Nepal, Sri Lanka, India, southern China, Myanmar, Thailand, Laos, Vietnam, Peninsular Malaysia and Sumatra in Indonesià (Erdelen, 1984; Cox et al., 1998; Radder, 2006). Within Thailand, C. versicolörprobablyocquars in all the provinces (Taytor, 4963). ข C. versicolor has severab common names in different, geographic locations;
Blood-sucke! Lizard (India), Crested Tree Lizard (Florida, US), Garden Fence Lizard (Thailand) and Garden lizard (China, Sri Lang Ka) (Cox et al., 1998; Enge and Krysko, 2004; Matyot, 2004; Radder, 2006).

Zug et al. (2006) noted that this species classified in genus Calotes by sharing traits: 1.) pre-axillary scales is uniform-sized, i.e., absence of a crescent-shaped patch of granular scales in front of the shoulder; 2.) trunk scales are smaller than or equal to
size of ventral scales; 3.) a continuous row of dorsal crest scales is above the shoulders; 4.) supratympanic area with a pair of spine patches or patches fused as a single longitudinal series; and 5.) multiple (2-4) distinctly linear rows of elongate loreal and suboccular scales are above the supralabial scales.

$$
\begin{aligned}
& \text { จุหาลงกรณ์มหาวิทยาลัย }
\end{aligned}
$$

Figure 2-5 Picture of Calotes versicolor (Smith, 1935) (left). Head scale of lizard group (Dennis and Adler, 2003) (right).

Furthermore, their scales on the sides of body point backwards and upwards and no fold in front of shoulder, likewise two spine locate above tympanum. The body color is light brown, fawn jor graysh with darkerl marking? Throat and chin with longitudinal darker tharks that are continuous with radiating lines from eye. A dim median dark ine is found on venter. The moderate nûchal land gorsall crests are continuous raw on dorsum. Base of tail in males thickened and their scales are larger and thicker than females (Taylor, 1963).

Halliday and Adler (2002) noted that the bright red head of the male was a conspicuous social cue used to signal other members of its species.

The diets of C. versicolor are small various insects. This lizard laid 4-12 eggs and then hatchlings emerge after five to seven weeks and they mature in about one year (Cox et al., 1998).

2.2 Geographic variation

This species has widely distribution, and morphological difference has been found among population.

Auffenberg and Rehman (1993) reported that they found the variation in the scalation and color of this species at difference of gradient level of Himalayan mountain complex in Afghanistan, Pakistan and Incia. Two subspecies, C. v. nigrigularis and C. v. versicolor were found in the mountain complex area at elevations below 300 m and at between 300-1800 mamsl, respectively. The difference in a number of midbody scale rows, the subdigital lamellae under $4^{\text {th }}$ toe, a number of gular scales, angle of dorsal scale rows and head and body length (SVL) supported the subspecies difference in their groups.

Zug et al. (2006) examined Calotes "versicolor" group, which were collected from among and within in Myanmar and they found new species in its group. These new species, C. htunwini and G. irawadi, showed the morphological difference on a number

Radder (2006) noted that C. versicolor groups had difference $91 /$ the life history traits between China and India populationsbocause these differenceswere provided for the ecological adaptation. China populations are smaller than India populations because C. versicolor from cooler climate (China) matures at a smaller size than at the same age compared to the warmer (India) population.

However, Taylor (1963) noted that the Thailand form cannot be ascertained at this time. The Indian form reaches a size nearly a half larger than the typical-sized adults of Thailand.

2.3 Sexual dimorphism

Sexual dimorphism is the differences in shape, size, morphology, color, etc., between male and female of a species.

In C. versicolor, sexual differences occur in morphology, shape, size and color (Auffenberg and Rehman 1993; Radder et al. 2001; Ji et al. 2002). The occurrence of morphological differences between males and females could arise from natural selection processes, where the different evolutionary trends are explained as the results of three major forces that differentially act on males and females of a population: fecundity, sexual and natural selection (Oilsson et al. 2002).

Sexual size dimorphism may appear at any stage during the life history of C. versicolor (Ji et al., 2001; Radder et al: 2002), while differences in color and stripe patterns among adult males, adult females and juveniles are reported (Auffenberg and Rehman 1993).

Auffenberg and Rehman (1993) reported that the difference in mean SVL of mature males are greater than females within all samples in Pakistan. In addition, the number of midbody scale rows, with fêmales having a higher number than males. Females usually have aseries of circumorbital/radiating darker barswhich are usually lacking in males. Females also lack a dark ventral partial collar at the base of the neck, which is characteristic of the adult males of some population.

CHAPTER III

METHODOLOGY

3.1 Study area

In this study, a total of 120 individuals of C. versicolor, 60 adult males and 60 adult females, was captured from three sampling sites in northern Thailand and three sites in southern Thailand from June 2008 to September 2009. Ten males and 10 females were collected from each sampling site. Sixty samples in total from northern region were collected at [1] Mae Hong Son (zone 47 384049mE 2079323mN), [2]Chiang Mai (zone 47509105 mE 2084247 mN) and [3] Nan (zone 47681552 mE 2078573 mN) where the elevation is between $130-150 \mathrm{~m}$ amsl. The other 60 samples were collected at [4] Songkla (zone 47656230 mE 759923mN), [5] Krabi (zone 47513357 mE 885169 mN) and [6] Ranong (zone 47459585 mE 1097063mN) in southern Thailand where elevation is between $4-50 \mathrm{~m}$ amst (Fig 3-1).

The three sampling localities in porthern region were divided by three major mountain ranges; Thanon Thongchai mountain range..Western Phi Pan Nam mountain range and eastern Phi Pan Nam mountain range. Sampling localities in southern region were also divided by two major mountain ranges; Phuket mountain range and Nakornsri-Thammarat mountain range.

These northern and southern civersicolor populations arelinhabited in the Indochinese and Sundaic subregions, respectively, whichwere divided by Isthmus of Kra(Fig 3-1).

Figure 3-1. Map of Thailand, showing 6 sampling localities in northern and southern regions. Northern sampling sites are [1] Mea Hong Son, [2] Chiang Mai and [3] Nan. Southern sampling sites are [4] Songkla, [5] Krabi and [6] Ranong. The map also shows mountain ranges: PK, Phuket mountain range; NK, Nakornsri-Thammarat mountain range; TC, Thannon Thongchai mountain range; PN, Phi Pan Nam mountain range.

3.2 Methods

Lizards were caught by noosing and hand catching (Fig 3-5). Then, their habitat types and co-ordinates were recorded. Each specimen was photographed and weighed before it was anaesthetized using thiopental (Close et al., 1997). Tissue samples were collected from the liver of each individual and stored in $95 \%(\mathrm{v} / \mathrm{v})$ ethanol for future molecular studies, and then the rest of each individual was preserved in $70 \%(\mathrm{v} / \mathrm{v})$ alcohol for routine storage. All samples were cataloged (see in Appendix A) and deposited at Chulalongkorn University Museum of Natural History.

3.2.1 Morphological study

In this study, 54 morphological characters, consisted of mensural characters, meristic characters and stripe patterns, were recorded. Mensural characters were taken to the closest 0.01 mm using dial caliper. Meristic characters were counted under a stereomicroscope and stripe patterns were observed by eyes. All.characters were measured on the right side of the body. The sex and maturity of each specimen were determined by abdominal dissection (Zug et al., 2006). In mature females, the diameter of vitellogenic follicles was more than 1.5 mm , or they possessed oviductal eggs of stretched oviducts. Epididymides were enlarged in mature males (Fig 3-6). Each character and its abbreviation followed Auffenberg and Rehman (1993), Angsirijinda (1999) and Zug et al. (2006).

จหาลงกรณ์มหาวิทยาลัย
 Mensural characters (Fig 3-2)

1). Eye-ear length (EyeEar): Distance from anterior edge of tympanum to posterior of orbit.
2). Head height (HeadH): Dorsoventral distance from top of head to underside of jaw at transverse plane intersecting angle of jaws.
3). Head length (HeadL): Distance from anterior edge of tympanum to tip of snout.

Figure 3-2. Mensural characters of Calotes versicolor were used for this study.
4). Head width (HeadW): Distance from left to right outer edge of temporal or jaw muscles at their widest point without compression of soft tissue.
5). Interorbital width (Interorb): Transverse distance between anterodosal corners of left and right orbits.
6). Jaw width (JawW): Distance from left to right outer edge of jaw angles; this measurement excludes jaw musculature broadening of head.
7). Naris-eye length (NarEye): Distance from anterior edge of orbit to posterior edge of naris.
8). Snout-eye length (SnEye): Distance from anterior edge of orbit to tip of snout (rostral scale).
9). Snout-eye width (SnW): Transverse distance between left and right nares (Internasal distannce).
10). Snout to pineal (SP): Distance from tip of snout to parietal eye.
11). Snout to nostril (SN): Distance from tip of snout to anterior edge of naris.
12). Labial to ear length (LE): Distance from angle of jaw to anterior edge of tympanum.
13). Labial length (LL): Distance from tip of snout to angle of jaw.
14). Tympanum diameter (ED): Transverse distance between anterior edge of left and right tympanum.
15). The fourth finger Jength (4FingLng): Distance from juncture of $3^{\text {rd }}$ and $4^{\text {th }}$ digits to distalmost extant (Outer/distalmost surface of claw) of $4^{\text {th }}$ finger.
16). The fourth toe length (4ToeLng): Distance from juncture of $3^{\text {rd }}$ and $4^{\text {th }}$ digits to distal end of $4^{\text {th }}$ digit on hindfoot.
18). Forefoot length (ForefL) : Distance from wrist offorefoot to tip of fourth digit.
19). Hindfoot length (HindfL): Distance from heel of hindfoot to tip of fourth toe.
20). Lower arm length (LoArmL): Distance from elbow to distal end of wrist.
21). Pectoral width (PectW): Distance between left and right axilla (posterior to forelimb insersions) measured on ventral side.
22). Pelvic width (PelvW): Distance between left and right inguen (posterior to hindlimb insertions).
23). Snout-vent length (SVL): Distance between tip of snout to anterior edge of vent.
24). Snout-forelimb length (SnForel): Distance from anterior of anterior of forelimb to tip of snout.
25). Tail Thickness (TailTh): Distance from dorsal to ventral surface of tail base measured just posterior to vent.
26). Tail length (TailL): Distance from posterior edge of vent to distal end of tail.
27). Tail width (TailW): Distance from left to right side of tail base just posterior to vent.
28). Trunk length (TrunkL): Distance between posterior edge of forelimb insertion to anterior edge of hindlimb insertion.
29). Upper arm length (UpArmL): Distance from anterior insertion of forelimb to elbow.
30). Upper leg length (UpLegL): Distance from anterior edge of hindlimb insertion to knee.
31). Total length (TL): Distance from tip of snout to distal end of tail.
32). Vent width (VentW): Transverse distance between (inner) angle of left and right vent.

Meristic characters (Fig 3-2)

33). Canthus rostralis (CanthR): Number of scales from above posterodorsal corner of nasal scale to and including posteriormost supraciliary scale.
34). Dorsal eyelid scales (Eyelid): Number of scales found along dorsal edge of eyelid.
35). Dorsal head scales (HeadSLn): Number of scales longitudinally on midline between interparietal and rostal scale. 8 el
36). Head scalesj (HeadSTr): Number of scales in transverse line between posterior left and right supraciliary scales
37). Infralabials (Inflab): Number of scales between postmental scales to enlarged scale at corner of mouth.
38). Snout scales (SnS): Number of scales on line transversally between left and right nasal scales.
39). Supralabials (Suplab): Number of scales between rostal scales to enlarged scale at corner of mouth.

Figure 3-3. Meristic characters of Calotes versicolor were used for this study.
40). Gular scales (GuS): Number of scales between mental scale longitudinally on transverse scales between tympanums on ventral side.
41). Forefoot lamellae (4FingLm): Number of $4^{\text {th }}$ digit lamellae; from $1^{\text {st }}$ lamellae at digits' cleft that is wider than deep and touches dorsal digital scale to most distal lamella.
42). Hindfoot lamellae (4ToeLm): Number of $4^{\text {th }}$ toe lamellae; as for 4FingLm.
43). Ventral scale (VentS): Number of midventral scale, beginning on nape to anterior vent.
44). Midbody scales (Midbody): Number of scale rows around trunk at midbody.

Stripe patterns (Fig 3-4)
45). Cheek Color (CheekCol): Presence (1) or absence (0) of dark patches on jowl muscles.
46). Cheek Stripe (CheekSt): Presence (1) or absence (0) of dark stripe on jowl muscles.
47). Paired Dorsolateral Stripes (DorsSt): Presence (1) or absence (0) of pair of dorsolateral light stripes, one on each side of trunk.
48). Forearm Stripe (ForearSt): Presence (1) or absence (0) of longitudinal light stripe on outer surface of forearm.
49). Paired Nuchal Spots (NucSpot): Presence (1) or absence (0) of pair of dark spots on interpariatal scale.
50). Dark Bands on Trunk (TrnkBand): Presence (1) or absence (0) of dark bands on dorsum of trunk ben dorsum of trunk between axilla andingaen. $9 / 9$ 51) Mid-ventral
51). Mid-ventral Dark Line (MidvLine): Presence (1) or absence (0) of dark line on venter

53). Throat Patch (ThroatPa): Presence (1) or absence (0) of dark patch on throat.
54). Ventral Trunk Striping (TrunkSt): Presence (1) or absence (0) of ventral trunk stripe.

Figure 3-4. Stripe patterns of Calotes versicolor were used for this study.

3.2.2 Data analysis

The data of mensural and meristic characters in adult females and adult males from each region were calculated and shown in mean $\pm \mathrm{SE}$. Variations within-region were analyzed using principal component analysis (PCA). PCA identified which characters vary most between individuals and then the score of these analyzes was grouped which was shown in scattered graph (in results). All mensural characters of each sex were analyzed for the relationship between SVL and other morphological parameters using linear regression analysis and then these data were $\log _{\mathrm{e}}$-transformed for parametric tests (Sokal and Rohlf, 1998).

Intersexual differences and geographic differences of mensural characters of adult lizards from northern and southern populations were compared using analysis of covariance (ANCOVA) due to the parametric results. This analysis examined morphological differences based on the same linear relationship data and used snout-vent length (SVL) as covariate. SVL of these samples were also parametric data, therefore these results were compared by independent samples t-test. Moreover the PCA was used to analyze mensural characters between sexes and between regions. Scattered graphs of the scores from PCA were shown and can be used for grouping individuals.

The differences in meristic characters, which were non-parametric data, were compared using Mann-Whitney U-test Sexuaf-dimorphism andogeographig variation were also described using PCA.

Additionally, stripe patterns, which were quality data, were-analyzed by chi-square test $\left(\chi^{2}\right)$ and presented in occurrence percentage. All statistical analyses were carried out using SPSS for Window version 17.

Figure 3-5. Captured technique, using of noose for Calotes versicolor.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Figure 3-6. Reproductive organs of Calotes versicolor; immature male (A), mature male (B), immature female (C) and mature female (D).

CHAPTER IV

RESULTS

4.1 General information from field study

From June 2008 to September 2009, 120 individuals of Calotes versicolor were collected from six localities; Mae Hong Son, Chiang Mai, Nan, Songkla, Krabi and Ranong. These lizards were usually found in suburban area, such as the village and its surrounding area, and agricultural area, such as rubber plantation. At all six localities, female lizards were mostly found on the ground, while male lizards were usually found on the trees or shrubs. All specimens were mature and being in reproductive stage, indicated by large vitellogenic follicles ($>1.5 \mathrm{~mm}$ diameter) in females and large epididymides in males. A few males which were collected in December 2008 and January 2009 had small epididymides, but their body sizes were larger than the smallest mature male collected in breeding season.

Specimens from Mae Hong Son were collected in May 2009. Large vitellogenic follicles were found in all adult females from this tocality and epididymides were also enlarged in all adult males, indicating that all specimens were in reproductive stage during this time of the year.

Specimens from Chiang Mai were collected in December 2008 and May 2009. In December 2008, all aquilt females duere in non-reproductive stage, as well as adult males. However, all female and male specimens collected in May 2009 were in reproductive stage.

จหาลงกรณมหาวทยาลย

Specimens from Nan were collected in July 2008, October 2008, June 2009 and August 2009. All female and male specimens were in reproductive stage during these times of the year.

Specimens from Songkla were collected in June 2008, March 2009 and September 2009. All female and male specimens were in reproductive stage during these times of the year.

Specimens from Krabi were collected in January 2009 and April 2009. All female and male specimens were in reproductive stage during January 2009 and April 2009.

Specimens from Ranong were collected in January 2009 and March 2009. All female and male specimens collected in March 2009 were in reproductive stage, but some specimens collected in January 2009 were in non-reproductive stage.

All reproductive status of this species in June 2008 to September 2009 were shown in

Table 4-1

4.2 Morphological difference within-region

Results of the principal component analysis (PCA) showed that the three locality-based populations sampled in northern Thailand could be combined into one group (Fig. 4-1, 4-2), and the same result also occurred for the three populations within southern Thailand (Fig. 4-3, 4-4). These results showed only principat component (PC) 1 and PC2 and not PC3, PC4, PC5 and PC6. The percentage of the variation was shown in appendix-B. However, these results do not show PCA results in northern females and southern males because the program SPSS cannot analyze these data.

Thus, samples from the three localitiess in each region were groupedinto one population,

Table 4-1. Summary of reproductive status of Calotes versicolor in Thailand during July 2008 to September 2009

Year	2008									2009						
	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MHS												$\begin{gathered} M a \\ (F \& M) \end{gathered}$				
CM												$\begin{gathered} \mathrm{Ma} \\ \text { (F\&M) } \end{gathered}$				
NN		$\begin{gathered} \mathrm{Ma} \\ (\mathrm{~F} \& \mathrm{M}) \end{gathered}$			Ma (F)								Ma (F)		$\begin{gathered} \mathrm{Ma} \\ (\mathrm{~F} \& \mathrm{M}) \end{gathered}$	
RN								Im (F)		Ma (F\&M)						
KB								Ma			Ma (F)					
SK	$\begin{gathered} \mathrm{Ma} \\ (\mathrm{~F} \& \mathrm{M}) \end{gathered}$									$\underset{(F \& M)}{M a}$						Ma (M)

Note: $\mathrm{Ma}=$ Maturity, $\mathrm{Im}=$ Imaturity, $\mathrm{F}=$ Females and $\mathrm{M}=$ Males
MHS = Mae Hong Son, CM = Chiang Mai, NN = Nan, RN = Ranong, KB=Krabi and SK=Songkla
จุหาลงกรณ์มหาวิทยาลัย

Figure 4-1 PCA for the mensural characters of C. versicolor males in northern region. Abbreviations: O, Mae Hong Son; \square; Chiang Mai; \times, Nan.

Figure 4-2 PCA for the meristic characters of male (left) and female (right) C. versicolor in northern region. Abbreviations: O, Mae Hong Son;, Chiang Mai; ×, Nan.

Figure 4-3 PCA for the mensural characters of C. versicolor females in southern region.
Abbreviations: O, Songkla; \square, Krabi; x, Ranong.

Figure 4-4 PCA for the meristic characters of male (left) female (rigth) C. versicolor in southern region. Abbreviations: O, Songkla; \square, Krabi; ×, Ranong.

4.3 Sexual dimorphism of C. versicolor

The mean \pm SE (standard error) of each morphological trait, such as mensural character and meristic character, in both northern and southern populations are presented in Table 4-2, 4-3 and 4-4. The percentage occurrences of stripe pattern are also shown in Table 4-5

Mensural characters. - The average snout-vent lengths (SVLs) of males were significantly larger than those of females in both northern $(84.11 \pm 0.96 \mathrm{~mm}$ vs. $78.67 \pm 0.99 \mathrm{~mm}$, respectively, $t=3.942, p<0.001$) and southern populations (87.08 ± 0.86 mm vs. $75.74 \pm 0.89 \mathrm{~mm}$, respectively, $t=9.161, p<0.001$).

Table 4-2. Summary of the head measurements of C. versicolor in northern and southern populations in Thailand. Data are mean $\pm S E$ with the range in parentheses, and are derived from 30 samples each. All measurements are in mm . The F - and p-values from ANCOVA are also shown.

Characters	Northern population				Southern population			
	Males	Females	F	p-value	Males	Females	F	p-value
EyeEar	5.64 ± 0.10	4.54 ± 0.06	77.483	<0.001	6.33 ± 0.10	4.55 ± 0.06	73.092	<0.001
	(4.70-6.62)	(4.06-5.25)			(5.24-7.28)	(3.98-5.53)		
HeadH	12.49 ± 0.18	11.54 ± 0.22	1.870	.17	5 ± 0.23	10.87 ± 0.15	27.272	<0.001
	(11.10-14.92)	(9.37-14.06)			1.70-16.40)	(9.67-12.77)		
HeadL	19.63 ± 0.21	17.41 ± 0.25	6.252	<0.001	21.15 ± 0.23	17.28 ± 0.21	33.982	<0.001
	(17.86-22.10)	(14.42-19.6			8.56-23.52)	(15.37-19.87)		
HeadW	16.55 ± 0.30	2		0.00	67 ± 0.35	13.21 ± 0.20	87.132	<0.001
	(13.14-19.86)	(11.70-16			10-23.48)	(11.45-15.52)		
Interorb	8.19 ± 0.10	42		0.009	78 ± 0.0	7.44 ± 0.13	-	-
	(7.14-9.44)	(6.38-8.38)			(81-9.70)	(6.30-9.16)		
JawW	13.43 ± 0.20	$2.06 \pm$			26 ± 0.2	11.78 ± 0.18	5.085	0.028
	(11.54-15.64)	(10.60-13.4			.40-16.82)	(10.20-14.20)		
NarEye	4.50 ± 0.05	.13 ± 0.06		0.018	77 ± 0.06	4.02 ± 0.07	8.550	0.005
	(4.05-5.18)	(3.45-4.72)		-d.	4.21-5.37)	(3.52-5.28)		
SnEye	8.22 ± 0.10	7.66 ± 0.10	. 189	0.145	8.77 ± 0.08	7.55 ± 0.10	11.342	0.001
	(7.38-9.67)	$(6.43-8.72)$.98-9.48)	(6.73-8.71)		
SnW	4.91 ± 0.07	4.69 ± 0.06	0.295	0.589	0.40 ± 0.06	4.76 ± 0.08	1.162	0.286
	(4.12-5.74)	(3.91-5.25)			(4.74-6.15)	(4.04-5.70)		
SP	15.95 ± 0.16	14.94 ± 0.19	2.102	0.153	16.70 ± 0.15	14.49 ± 0.16	8.937	0.004
	(14.55-18.14)	(12.90-17.44			15.16-18.64)	(13.12-16.34)		
SN	$\begin{aligned} & 3.67 \pm 0.079 \\ & (3.00-4.40) \end{aligned}$	(3.04-3.97)			(3.58-4.54)	$\begin{aligned} & 3.41 \pm 0.05 \\ & (2.92-4.09) \end{aligned}$	9.051	0.004
LE	5.51 ± 0.10	4.65 ± 0.07	26.105	<0.001	6.33 ± 0.10	4.65 ± 0.08	36.272	<0.001
LL	14.64 ± 0.16	13.45 ± 0.17	8.042	0.006	15.39 ± 0.17	12.99 ± 0.18	4.409	0.040
	(13.33-16.44)	(11.28-14.63)			13.03-17.52)	(11.37-15.00)		
$E D$	3.15 ± 0.08	2.67 ± 0.05	9.786	0.003	3.44 ± 0.07	2.69 ± 0.05	5.206	0.026
	(2.55-4.30)	(2.20-3.24)			(2.71-4.18)	(2.22-3.36)		

Table 4-3. Summary of the limb, body and tail measurements of C. versicolor in northern and southern populations in Thailand. Data are mean $\pm S E$, with the range in parentheses, and are derived from 30 samples each unless indicated otherwise (N). All measurements are in mm . The F - and p-values from ANCOVA are shown.

[^0]Table 4-4. Summary of the scalation characters of C. versicolor in northern and southern populations in Thailand. Data are mean \pm SE, with the range in parentheses and are derived from 30 samples unless indicated otherwise (N). The Z - and p values from Mann-Whitney U-test are also shown.

Characters	Northern population				Southern population			
	Males	Females	z	p-value	Males	Females	Z	p-value
CanthR	$\begin{gathered} 7.90 \pm 0.14 \\ (7-10) \end{gathered}$	$\begin{gathered} 8.00 \pm 0.08 \\ (7-9) \end{gathered}$	-0.932	0.352	7.87 ± 0.09	$\begin{gathered} 7.57 \pm 0.09 \\ (7-8) \end{gathered}$	-2.165	0.030
Eyelid	9.87 ± 0.20	9.37 ± 0.17	-1.949	0.05	0.03 ± 0.20	9.53 ± 0.19	-1.642	0.101
	(7-12)	(8-11)			(8-13)	(8-13)		
HeadSLn	13.17 ± 0.21	13.43 ± 0.26	0.70	0.479	13.83 ± 0.19	13.23 ± 0.26	-2.344	0.019
	(11-15)	(11-16)			1-16)	(11-17)		
HeadSTr	13.43 ± 0.21	12.47		0.001	40 ± 0.25	13.03 ± 0.22	-1.220	0.223
	(11-16)	(10-19)				(11-16)		
Inflab	9.50 ± 0.12	9.30 ± 0.1				9.33 ± 0.12	-0.104	0.917
	(8-11)	(8-11)			(-10)	8-11)		
SnS	6.13 ± 0.08	± 0.0			. 47 ± 0.11	6.40 ± 0.10	-0.457	0.647
	(5-7)	(5-7)				(6-7)		
Suplab	$9.87 \pm 0.12^{\text {a }}$	9.62 ± 0.12		210	47 ± 0.1	9.17 ± 0.11	-1.797	0.072
	(9-11)	(8-11)		2000	(8-11)	(8-10)		
GuS	12.20 ± 0.32	11.03 ± 0.23	-2.496	0.013	1.27 ± 0.22	10.83 ± 0.19	-1.427	0.154
	(9-15)	$(9-14)$			(9-14)	(9-13)		
4FingLm	19.68 ± 0.25	18.57 ± 0.20^{6}	-3.366	0.001	20.27 ± 0.2^{2}	19.37 ± 0.18	-2.741	0.006
	(16-22)	(17-21)			(18-23)	(17-21)		
$4 T o e L m$	$23.90 \pm 0.21^{\text {a }}$	23.21 ± 0.23	-1.806	0.071	$25.07 \pm 0.27^{\text {a }}$	24.79 ± 0.23	-0.789	0.430
	(22-26)	(21-25)			(22-28)	(23-28)		
VentS								
Midbody	43.53 ± 0.34	44.10 ± 0.44	-1.058	0.290	43.67 ± 0.56	44.50 ± 0.54	-0.813	0.416

[^1]Table 4-5. The percentages of occurrence of stripe patterns in C. versicolor in northern and southern populations of Thailand.

Of the 14 head measurements, nine characters showed significant difference (p $<0.05)$ between the sexes in northern population, while 12 characters showed significant difference between the sexes in southern population. Head size of both populations was significantly greater in males than in females (Table 4-2). In addition, linear regression analysis showed the positive relationship between SVL and head size, except HeadW in northern males and SN in southern males (Table 4-6 and Table 4-7).

Differences between the sexes in limb, tail and body sizes were also found to be significant. The eight characters associated with limb lengths (4FingLng, 4ToeLng, CrusL, ForefL, HindfL, LoArmL, UpArmL and UpLegL) were all statistically longer in males than in females (Table 4-3). Moreover, the TailTh and VentW were significantly larger in males than in females in both populations (Table 4-3 and Fig 4-5). TailL and TL were significantly longer in males than in females only in the southern population, likewise tail width was significantly larger in males than in females only in the northern population. Note here that C. versicolor does not shed its tail (no autotomy), which could otherwise potentially compound any tail length analyses. With respect to the trunk length (TrunkL), this was significantly larger in females than in males in both northern and southern populations (Table 4-3).

The linear regression analysis revealed the relationship between SVL and each of the other morphological parameters (Table 4-6 and 4-7). The results showed that northern males, SN of southern males, VentW of southern females and 4FingLng and ForefL of poth sexes. Each morphological character of each sex was also plotted against SVL (Appendix ${ }^{\circ}$). Tail thickness (Fig 4-6) was also showed Obvious difference character.

Figure 4-5 Picture of male (upper) and female (lower) Calotes versicolor in northern Thailand. Male have thicker tail (TailTh) and larger vent (VentW) than female.

Figure 4-6 Linear regression line between Snout-vent length with Tailthickness both sexes in northern (upper) and southern (lower) population. Abbreviations:
females; O, males.

Table 4-6 Regression analysis of Calotes versicolor morphological characters in both sexes of northern population.

Table 4-6 (Cont.) Regression analysis of Calotes versicolor morphological characters in both sexes of northern population.

Table 4-7 Regression analysis of Calotes versicolor morphological characters in both sexes of southern population.

Table 4-7 (Cont.) Regression analysis of Calotes versicolor morphological characters in both sexes of southern population.

The results of the multivariate analyses of the mensural characters between sexes also revealed clear sexual differences. The PCA of adult lizards showed a clustering of each sex in both populations (Fig. 4-7). PCA revealed VentW, TailTh, TailW, HeadW, UpLegL, EyeEar, CrusL, SnForel, HindfL, 4ToeLng, 4FingLng, UpArmL, LoArmL, HeadL, LE, JawW, HeadH and Interorb being the major loadings on the first component (PC1), whilst the EyeEar, CrusL, SnForel, TL, TailL, ForefL, HindfL, 4ToeLng, 4FingLng, NarEye, UpArmL, LoArmL, HeadL, SnEye, LE and SVL were the main loading for the second component (PC2) and the SnEye, SnW, PelvW, TrunkL, SN, SVL, JawW, PectW, LL, HeadH, ED, Interorb and SP were the major loading for the third component (PC3) in the northern populations. PC1, PC2 and PC3, at 26.63\%, 26.49\%, and 24.28\% of the total variation, respectively, accounted for 77.40% of the total variance.

In addition, for the southern population the PCA revealed two components, the LL, Interorb, SnW, SP, SVL, HeadL, JawW, SnEye, TrunkL, ED, PelvW, SnForel, SN, EyeEar, TailW, PectW, NaeEye, UpArmL, TailTh, UpLegL, CrusL, HeadW, LoArmL, LE, HeadH, VentW, TL and TailL were the majof loading for the PC1, and SP, SVL, HeadL, SnEye, SnForel, EyeEar, TailW, PeciW, NarEye, ForefL, 4FingLng, HindfL, 4ToeLng, UpArmL, TailTh, UpLegL, CrusL, HeadWV, LoArmL, LE, HeadH, VentW, TL, TailL were the main loading in PC2. PC1 and PC2, at 44.32% and 39.31% of the total variation, respectively, accounted for 83.63% of the total variance.
 characters, but significanto differences between the Genders within Populations still existed (Table 4-4). Across both the horthern and southern populations, from the twelve characters evaluated, only one (4FingLm) was significantly different, being more numerous in males than in females in both populations. However, within either regional population, the numbers of HeadSTr, GuS and VentS in males were statistically more than in females from the northern population, whilst conversely the numbers of CanthR and HeadSLn in males were statistically more than in females in the southern population (Table 4-4).

The PCA of the meristic characters in the northern population revealed 15.98%, $15.34 \%, 12.91 \%, 12.39 \%$ and 11.45% of the total variation was compartmented into PC1, PC2, PC3, PC4 and PC5, respectively, accounting for 68.07% of the total variance. 4FingLm and 4ToeLm were the major loading on PC1, Suplab and GuS on PC2, Midbody and VentS on PC3, HeadSLn, SnS and Inflab on PC4 and Eyelid, HeadSTr and CanthR on PC5. However, PCA of northern populations showed overlapping between sexes (Fig. 4-7C). In southern populations, PCA revealed 14.94\%, 14.21\%, 14.11\%, 14.00% and 11.99% of the total variation in PC1, PC2, PC3, PC4 and PC5, respectively, although this accounted for 69.25% of the total variation. Within these groupings, 4FingLm, HeadSTr and 4ToeLm were the major loading traits on PC1, GuS, Inflab and Suplab on PC2, VentS, CanthR and Midbody on PC3, SnS on PC4, and Suplab on PC5. The PCA of the southern population could not be separately discerned (Fig. 4-7D). However, note that figure 4-7 only shows PC1 and PC2 and not PC3, PC4, and PC5 for the southern and northern populations.;

Stripe patterns.-Females from the northern populations displayed statistically brighter patterns in DorsSt, ForearSt, NucSpot and TrnkBand than males, whereas CheekCol was more frequently found in males (Table $4-5)$. In-the southern populations, DorsSt, ForearSt and NucSpot were more often found in females, whereas ThroatPa was more frequently found in males (Fable 4-5).

ศูนย์วิทยทรัพยากร

จุหาลงกรณ์มหาวิทยาลัย

Figure 4-7. PCA for (A, B) the mensural characters and (C, D) the meristic characters of C. versicolor in (A, C) northern and (B, D) southern Thailand populations. Abbreviations: O, females; \times, males.

4.4 Geographic variation of C. versicolor

Mensural characters.-The mean SVLs in males from the northern populations were significantly smaller than the SVLs in males from the southern populations (84.11 ± 0.96 mm vs. $87.08 \pm 0.86 \mathrm{~mm}$, respectively, $t=2.296, p=0.025$), but in it was the other way round with females from the northern populations having a larger SVL than those from the southern populations $(78.67 \pm 0.99 \mathrm{~mm}$ vs. $75.74 \pm 0.89 \mathrm{~mm}$, respectively, $t=-2.200$, $p=0.032$).

Ten characters;EyeEar, HeadH, HeadL, HeadW, Interorb, NarEye, SnEye, SnW, SP and LE, of the fourteen head measurements were significantly different between populations of males, whereas females showed significant differences between populations in five characters, being EyeEar, HeadL, Interorb, SnW and ED (Table 4-8).

With respect to the limb lengths, only two (4ToeLng and HindfL) of the eight limb lengths showed significant differences between populations in both sexes. Seven (4ToeLng, CrusL, ForefL, HindfL, LoArmL, UpArmL and UpLegL) of the eight limb lengths evaluated were significantly different, between populations of males, whereas only two (4ToeLng and HindfL) were significantly different between populations of females (Table 4-8).

With regards to the trunk and tail, the trunk length was not significantly different between males or between females in all populations, but of the two tail measurements, TailL and TL were significantly different between populations in both sexes (Table 4-8). TailTh and TailW were not significantly different between populations in Both sexes.

PCA revealed no clustering of each population in females and males (Fig. 4-8A and 4-8B). The PCA of all females showed 26.44\%, 18.89\%, 13.08\%, 9.30\% and 7.89\% of the total variation expressed in PC1, PC2, PC3, PC4 and PC5, respectively, which together accounted for 75.60% of the total variation. Within these five components, SnForel, SnEye, SN, LL, HeadL, EyeEar, Interorb, SnW, NarEye, SP, LE, SVL, HeadW, JawW and TailTh were the major loading on PC1, SVL, HeadH, VentW, PectW, TailW,

HeadW, JawW, PelvW, TailTh and TrunkL on PC2, 4ToeLng, HindfL, ForefL, 4FingLng on PC3, TaiL and TL on PC4, LoArmL and UpArmL on PC5.

For males, the PCA revealed $26.43 \%, 17.38 \%, 16.23 \%, 9.19 \%$ and 8.25% of the total variation expressed in PC1, PC2, PC3, PC4 and PC5, respectively, which together accounted for 77.48% of the total variation. Within these five components, LL, SVL, ED, TrunkL, SnW, HeadL, SP, JawW, SnForel, PectW, HeadH, SN, TailTh, Interorb, PelvW and EyeEar were the major loading on PC1, HindfL, 4ToeLng, UpLegL, CrusL, ForefL, 4FingLng and UpArmL were the major loading on PC2, HeadL, SnForel, Interorb, NarEye, SnEye, HeadW, EyeEar, LE were the major loading on PC3, VentW and TailW were the major loading on PC4, and Tailf and TL were the major loading on PC5. Figure 4-8A and 4-8B show only PC1 and PC2 notPC3, PC4 and PC5 for both sexes.

Meristic characters.-The meristic characters of both populations were found to be slightly different in both sexes (Table 4-9), with the numbers of HeadSLn, SnS, Suplab, GuS and 4 ToeLm between populations in males, and the numbers of CanthR, HeadSTr, SnS, Suplab, 4FingLm, 4ToeLm and Vents in females, being significantly different between the northern and southern populations (Table 4-9). These are split as having significantly more CanthR Suplab and GUS in the northern populations compared to the southern ones, but more HeadSLn, HeadSTr, SnS, 4FingLm and 4ToeLm in the southern populations.

PCA revealed no clustering of each population for either female or male populations (Fig 4-8G and 4-8D). With respect to females, PGA revealed 16.56\%, $14.59 \%, 13.61 \%, 11.68 \%$ and 10.93% of the total variation infemales being found in PC1, PC2, PC3, PC4 and PC5, respectively, although this only accounts for 67.37% of the total variation. Nevertheless, 4ToeLm and 4FingLm were the major loading on PC1, Suplab, Inflab and GuS on PC2, Midbody and VentS on PC3, HeadSLn and SnS on PC4 and HeadSTr and Eyelid on PC5.

With respect to males, PCA revealed 16.83\%, 15.78\%, 15.10\%, 11.91\% and 9.85\% of the total variation being found in PC1, PC2, PC3, PC4 and PC5, respectively, together accounting for 69.47% of the total variation. Within these components the major loadings were; GuS, Suplab and Inflab on PC1, 4ToeLm and 4FingLm on PC2, VentS, Midbody and Eyelid on PC3, HeadSLn and SnS on PC4 and CanthR on PC5. Figure 48C and 4-8D show only PC1 and PC2 not PC3, PC4 and PC5 for both sexes.

Stripe patterns.-Females showed no significant differences between populations, whilst in males only the TrnkBand $\left(\chi^{2}=6.405, p=0.011\right)$ and ThroatPa $\left(\chi^{2}=15.864, p<0.001\right)$ were found more often in southern populations.

Table 4-8. The F - and p-values from ANCOVA of the mensural characters of C. versicolor in males and females between populations in northern and southern Thailand.

Table 4-9. The Z - and p-values from Mann-Whitney U-tests of the meristic characters of C. versicolor in males and females between populations in northern and southern Thailand

Figure 4-8. PCA for (A, B) the mensural characters and (C, D) the meristic characters of C. versicolor in (A, C) female and (B, D) male populations. Abbreviations: O, northern populations; \times, southern populations.

CHAPTER V

DISCUSSION

This study supported many previous researches (Taylor, 1963; Cox et al., 1998; Radder, 2006) in that C. versicolor was usually found in man-made habitats such as rubber plantation, orchards, gardens and along garden fences both northern and southern regions. Although habitat type of the northern region was similar to the southern region, the climate and microhabitat were different. Averages of the rainfall and air temperature for ten years from January 2000 to December 2009 at six localities were shown in appendix D.

According to the results, reproductive stage of this species in Thailand might be found all the year, corresponded to the the study by Erdelen (1986), who reported that C. versicolor in Sri-Lanka had no breeding season. In India, however, C. versicolor in reproductive stage was found only during May to October (Shanbhag, 2003)

5.1 Morphological difference of Calotes versicolor within-region

5.1.1 Morphological difference within northern Thailand

The principal component analysis (PCA) on northern Thailand samples showed that C. versicolor captured from the three sampling sites i.e. Mae Hong Son, Chiang Mai and Nan can be combined into one group. These sampling sites are located on nearly the same Latitude (Mae Hong Son at 2079323 mN , Ghiang Mai at 2084247 mN and Nan at 2078573 mN) with similar climate. Thai Meteorological Department data showed that the meant temperatures from 2000 to 2009 were $26.18^{\circ} \mathrm{C}$ at Mae Hong Son, $26.21^{\circ} \mathrm{C}$ at Chiang Mai and $26.45^{\circ} \mathrm{C}$, at Nan. Therefore, the temperatureshould not be the cayse for morphological difference and growth rate of this species. Differences in temperature could influence to morphology and growth rate of this lizard as suggested by Radder (2006). The average adult size of C. versicolor in India where the mean temperature is $23^{\circ} \mathrm{C}$ is larger than in China where the mean temperature is $29^{\circ} \mathrm{C}$.

5.1.2 Morphological difference of within southern Thailand

The PCA of within southern Thailand samples also showed only one group for the three sampling sites i.e. Songkhla, Ranong and Krabi. Even though each site is located in different latitude, the average temperatures in those areas were similar. Thai Meteorological Department data showed that the annual mean temperatures since 2000 to 2009 were $27.62^{\circ} \mathrm{C}$ at Songkla, $26.92^{\circ} \mathrm{C}$ at Krabi and $27.66^{\circ} \mathrm{C}$ at Ranong indicating the similarity of environmental factors in the southern region.

5.2 Sexual dimorphism of C. versicolor

5.2.1 Mensural character

In Thailand, the mean SVL, head size, limb length and tail size of males were significantly larger than those of females in both northern and southern populations.

Sexual dimorphism in head size were reported in adult C. versicolor in China, India and Myanmar (Ji et al., 2002; Radder et al., 2001: Radder, 2006; Zug et al., 2006). In China, the sexual dimorphism in head size of this lizard was found in hatchings, but not in juveniles and subadults (Ji et al., 2002). A larger head size in adult males could perhaps indicate a greater resource holding power, and has been shown to be an advantage in intrasexual competition for territory defense and mate choice, and in intersexual dietary difference in prey size in many lizard species including C. versicolor (Cooper and Vitt, 1989; Hews, 1996; Radder et al., 2001; Vitt and Cooper, 1985).

females. However, females have greater trunk length than males in both northern and southern populations. The strong sexual dimorphism in relative trunk length of lizards has been suggested to be the result of fecundity selection because the increase in the relative trunk length in females will result in an increased abdominal volume to carry the developing offspring (Olsson et al., 2002). Correspondingly, a reduction in this character is favored in males (Vitt and Congdon, 1978; Arak, 1988; Shine, 1992; Olsson et al., 2002). Greater PectW and SnForel demonstrate that the skeleton of front body part in male is larger and may be helpful in malemale competition.

Even though Radder et al. (2001) did not demonstrate any sexual dimorphism in the tail length of this species in India, this study in contrast found that males of southern populations have significantly longer tails than females. This is, however, in accord with the report of sexual dimorphism in tail length of this species from Hainan population in southern China (Ji et al. 2002). Adult male lizards possess a longer tail than females at the same SVL throughout their size range which likely reflects the fact that the lizard uses its long tail as a balancing organ on arboreal activities (Ji et al. 2002).

Male has greater tail thickness than female because of its hemipenes at the base of the tail. This result agrees with the study of Radder et al. (2001). Larger VentW in males may relate to TailTh size because VentW located on base of tail and available to hemipenis of males.
5.2.2 Meristic character?
The meristic characters of the males and females exhibited a much lower degree of sexual dimorphism than the mensural characters, but significant differences between the
genders within populations still existed. $60 \sqrt{6}$

The significant difference of the number of scale on the head was found only in four characters i.e. HeadSTr and GuS on northern population, and CanthR and HeadSLn on southern population. Numbers of scale in those characters were found in males more than in females. This may be because males have larger size than females and should have more number of those scales.

Moreover, the difference of the number of scale on limb was found only in 4FingLm. This character may relate to the perching capacities between males and females. More 4FingLm in males would allow them to perch higher than females. In accordance, this difference had been found in lizards from the Anoles family from the Greater Antilles island groups in the Caribbean Sea (Glossip and Losos, 1997).

5.2.3 Stripe pattern

The sexual dimorphism in stripe pattern of C. versicolor during breeding season displayed on the bright red head of the male, this is a conspicuous social cue used to signal other members of its species (Halliday and Adler, 2000)

Moreover, the differences of DorsSt, ForearSt and NucSpot in both northern and southern populations were found. The difference of stripe pattern in lizard might be caused from the differences in habitat types, reproductive strategies or the genetic variation of each individual (Vercken et al., 2007; Stuart-fox and Ord, 2004; LeBas and Marshall, 2000). Vercken et al. (2007) reported that Lacerta vivipara have color variation for the benefit of reproduction in females, whereas coloration in Ctenophorus ornatus has the role for signaling and male choice (LeBas and Marshall, 2000)

5.3 Geographic variation of C. versicolor

Geographic differences in the mensural characters between northern and southern populations of/a. versicolot in Ghailand were observedinrmates. All the different characters in males were found in the head size, limb lengths, only one character in body size and tail length which were larger in the southern population than in the northern population. Greater head size and body size in southern Thailand had also been found in the common skink, Sphenomorphus maculatus (Yamasaki et al., 2001). Yamasaki et al. (2001) reported that the common skink had head size larger in southern Myanmar and southern Thailand than in eastern India, southern China and northern Thailand, and was able to separate into 2 subspecies, Sphenomorpus maculates maculates (Blyth, 1854) and Sphenomorpus maculates mitanensis (Annandale,
1905), according to mensural and meristic characters. In Thailand, although C. versicolor of southern populations was larger than of northern populations, it was not able to divide into new species or subspecies because the meristic characters were not clearly different.

Morphological difference could occur from many reasons. Radder (2006) mentioned that the difference of C. versicolor specimens in India and China was influenced by environmental factors. China populations, living in cooler temperature, were smaller than India populations. This can be explained that the lizard in cooler temperature has lower growth rate but it can increase fecundity fitness by faster maturity. However, this result did not agree with Adolph and Porter's model (1996) who reported that lizards might mature at smaller size in warmer habitat.

Although differences in the prey availability could influence the body size (Karn et al., 2005), this effect should then influence not only males but also females. However, a larger head and longer limbs are potentially more advantageous in male-male competition (Olsson et al. 2002), and so it is possible that males in the southern populations may be involved in stronger male-male competition for resources or mating success than in those northern populations.

5.3.2 Meristic character

The geographic variation of meristic characters was rarely found as well as the sexual dimorphism of those characters. Thus, there was no clearly separated from using PCA test.

The causes of the $9 / 8 /$ difference of meristic character in lizards were reported by many herpetologists. Thorpe and Baez (1993) mentions that the fizard, Gallotia stehlini, on the Grand Canaria Island has geographic variation ino meristicl character due to altitude difference and habitat types. Additionally, climate is also thought to influence the size of scales (Soule and Kerfoot, 1972). They found that large scale has higher rate of cutaneous evaporation than smaller scale in sceloporine lizard. Therefore, large scale of this species was found more in rainfall area than in drought area.

In some cases, the meristic character difference could be divided into new species or subspecies. Example of the common skink, Sphenomorphus maculates, (Yamasaki et al., 2009) become to 2 subspecies. Zug et al. (2006) suggested that the scalation on head area of C. "versicolor" in Myanmar could be used to separate them into 2 species, C. htunwini and C. irawadi. According to the study by Auffenberg and Rehman (1993), Midbody scale was one of key characteristics used to distinguishable between C. versicolor versicolor in Sumatra, Malay Peninsula and China, and C. v. nigrigularis in Afghanistan. Data on midbody scale from this study indicated that C. versicolor from northern and southern Thailand is classified into C. v. versicolor.

From this study, the meristic character difference of C. versicolor between northern and southern regions could not be separated into new species or subspecies because of the lower degree of geographic difference in those characters.

5.3.3 Stripe pattern

The geographic difference in stripe pattern of C. versicolor was found only in male. ThroatPa and TrnkBand were only two characters found in this study.

Many reasons can explain this result such as habitat type difference, predators and climate difference. Stuart-Fox-and Ord (2004) referred to the difference of coloration and ornamentation in that it may be influenced from sexual selection and natural selection. In this case, habitat type could be one of the gauses for the difference. In close habitat, male lizard always shows outstanding body color in order to have highly efficient communications. Moreover, in open habitat, color in the body may not be clearly seen and this can protect it from predators. The climate may influence the balance betweenselection for signaling coloration for sexual/territorial purposes and natural selection for crypsis (Thorpe and Brown, 1989a and 1989b).

CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

1. C. versicolor in Thailand can be found in man-made habitat similar to those in other distribution range. The reproductive stage was seasonal and was found during May to October.
2. Distinct from this study morphological difference of C. versicolor within northern and southern regions was not found.
3. Sexual dimorphism of C. versicolor in each region was examined and significant differences were found. Adult males have larger head and thicker tail, while adult females have greater trunk length in both northern and southern populations. A larger head size in adult males could indicate a greater power to protect the resource and the intersexual dietary difference in prey size in this and other lizard species, and has been shown to be an advantage in intrasexual competition for territory defense and mate choice,. Greater trunk length of lizards has been suggested to be the result of fecundity selection. Althoügh meristic characters did not show much difference between sexes, they demonstrated greater number of scales in males than in females. For the stripe pattern, only 3 characters, i.e. DorSt, ForearSt and NucSpot, showed significant differences and were more distinguishable infemales than in males.
4. Geographic gifferences in the mensural characters betweenthe northern and southern populations of C. versicolor in Thailand were obvious in males. All different characters in males were found in the head size and limb lengths, and were larger in the southern populations than in the northern populations. With respect to the meristic characters, there was no obvious geographic variation. The geographic difference in stripe pattern was found only in two characters in male. The climate may influence the balance between selection for signaling coloration for sexual/territorial purposes and selection for crypsis.

6.2 Recommendations

Although, the populations within a region are not strongly different, there are some differences between populations of the two (northern and southern) regions in Thailand. However, this research should be supported by ecological data such as behavior for accurate discussion. Detailed studies on population genetics of C. versicolor in Thailand and nearby countries should be conducted in the future.

REFERENCES

Adolph, S. C. and Porter, W. P. 1996. Growth, seasonality, and lizard life histories: age and size at maturity. Oikos 71(2): 267-278.

Angsirijinda, W. 1999. Ecology and morphology of garden water dragon Physignathus cocincinus in Thailand. Master's Thesis. Department of Biology, Faculty of Science, Chulalongkorn University.

Arak, A. 1988. Sexual dimorphism in body size: a model and a test. Evolution 42(4): 820-825.
Auffenberg, W. and Rehman, H. 1993. Studies on Pakistan reptiles. pt. 3. Calotes versicolor. Asiatic Herpetological Research 5:14-30.

Close, B., Banister, K., Baumans, V., Bernoth, E. M., Bromage, N., Bunyan, J., Erhardt, W., Flecknell, P., Gregory, N., Hackbarth, H., Morton, D. and Warwick, C. 1997. Recommendations for euthanasia of experimental animals: part 2. Laboratory Animals 31: 1-32.

Cogger, H. G. and Zweifel, R. G. 2004. Encyclopedia of reptiles and amphibians. San Francisco: Fog City Press.

Cooper, W. E., Jr. and Vitt, L. J. 1989. Sexual dimorphism of head and body size in an iguanid lizard: paradoxical results. The American Naturalist 133: 729-735.

Cox, M. J., van Dijk, P. P., Nabhitabhata, J. and Thirakhupt, K. 1998. A photographic guide to snakes and other reptiles of Thailand and south-east Asia. Bangkok: Asia book.
Dennis, D. M. and Adler, K. 2003. Illustrating amphibians and reptiles. In E. R. S. Hodges (ed.), The guild handbook of scientific illustration, pp, 385-400. New Jersey: John Wiley and Sons.
Enge, K. M. and Krysko, K. ᄂ, 2004. A new exdtic/species in/Florida, the bloodsucker lizard, Calotes Versicolor (Daudin 1802) (Sauria: Agamidae). Biological Science 67(3): 226230.

Erdelen, W. 1984. The genus Calotes (Sauria, Agamidae) in Sri Lanka: distribution patterns. Journal of Biogeography 11: 515-525.

Erdelen, W. 1986. The genus Calotes (Sauria, Agamidae) in Sri Lanka: clutch size and reproductive seasonality of Calotes versicolor preliminary results. Spixiana. 9: 111-115.

Glossip, D. and Losos, J. B. 1997. Ecological correlations of number of subdigital lamellae in Anoles. Herpetologica 53(2): 192-199.

Halliday, T. and Adler, K. 2002. The new encyclopedia of reptiles and amphibian Oxford: Oxford University Press.

Hews, D. K. 1996. Size and scaling of sexually-selected traits in the lizard, Uta palmeri. Journal of Zoology 238(4): 743-757.

Hedges, S. B. and Vidal, N. 2009. Lizards, snakes, and amphisbaenians (Squamata). 383-389 in The timetree of life, Hedges, S. B. and Kumer, S. Eds. Oxford: Oxford University Press.

Hedges, S. B. and Kumer, S. 2009. The timetree of life Oxford: Oxford University Press.
Honda, M., Ota, H., Kobayashi, M., Nabhitabhata, J., Yong, H. S., Sengoku, S. and Hikida, T. 2000. Phylogenetic relationships of the family Agamidae (Reptilia: Iguania) inferred from mitochondrial DNA sequences. Zoological Science 17:527-537

Ji, X., Qiu, Q. B. and Diong, C.H. 2002. Sexual dimorphism and female reproductive characteristics in the oriental garden lizard, Calotes versicolor, from Hainan, southern China. Journal of Herpetology 36(1);1-8

Karn, D. R., Murphy, J. C., Voris, H. K.and Suddeth, J. S. 2005. Comparison of semi-aquatic snake communities associated with the Khorat Basin, Thailand. The Natural History Journal of ChulalongKorn University 5(2): 73-90

Kuo, C., Lin, Y and Lin, Y. 2009. Sexual size and shape dimorphism in an Agamid lizard, Japalura swinhonis (Squamata: Lacertilia: Agamidae), Zoological Studies 48(3): 351361.

LeBas, N. R. and Marshall, N. J. 2000. The role of colour in signalling and male choice in the Agamid lizard Ctenophorus ornatus. Proceedings of the Royal Society B: Biological Science 267: 445-452.

Mattison, C. 2009. Lizards of the world London: Bounty Books.
Matyot, P. 2004. The establishment of the crested tree lizard, Calotes versicolor (Daudin, 1802) (Squamata: Agamidae), in Seychelles. Phelsuma 12: 35-47.

Nabhitabhata, J., Chan-ard, T. and Chuaynkern, Y., 2000. Checklist of amphibians and reptiles in Thailand Bangkok: Office of Environmental Policy and Planning.

Olsson, M., Shine, R., Wapstra, E., Ujvari, B. and Madsen, T. 2002. Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution 56(7): 15381542.

Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H. and Wells, K. D. 2004. Herpetology New Jersey: Pearson Education.

Radder, R. S., Shanbhag, B. A. and Saidapur, S. K. 2001. Ontogeny of sexual size dimorphism in the tropical garden lizard, Calotes versicolor (Daud.). Journal of Herpetology 35(1): 156-160.

Radder, R.S. 2006. An overview of geographic variation in the life history traits of the tropical agamid lizard, Calotes versicolor. Current Science 91: 1354-1363.

Shanbhag, B. A. 2003. Reproductive strategies in the lizard, Calotes versicolor. Current Science 84(5): 646-652.

Shine, R. 1992. Relative clutch mass and body shape in lizards and snakes: Is reproductive investment constrained or optimized? Evolution 46(3): 828-833.

Smith, M. A. 1935. The fauna of British India including Ceylon and Burma: reptilia and amphibia. Vol.2: Sauria. London: Taylor and Francis!

Sokal, R. R. and Rohlf, F. J. 1998. Biometry: the principles and practice of statistics in biological research. $3^{\text {rd }}$ ed. New York: W. H. Freemãn and CO .

Soule, M. and Kerfoot, W. C. 1972. On the elimatic determination of scale size in a lizard. Systematic Zoology 21(1): 97-105.

Stuart-fox, D. M. and Ord, T. J. 2004. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proceedings of the Royal Society of London Series B-Biological Sciences. 27 1(1554): 2249-2255.
Taylor, E. H. 1,963o The-lizards of Thailang. University of Kansas Science Bulletin 44(14): 6871077.

Tiwari, M. and Schiavina, A. 1990. Biology of the indian garden lizard, Calotes versicolor (daudin) part I: morphometrics. Hamadryad. 15(1): 30-33

Thorpe, R. S. and Baez, M. 1993. Geographic variation in scalation of the lizard Gallotia stehlini within the island of Gran Canaria. Biological Journal of the Linnean Society 48: 75-87.

Thorpe, R. S. and Brown, R. P. 1989a. Microgeographic variation in the colour pattern of the lizard Gallotia galloti within the island of Tenerife: distribution, pattern and hypothesis testing. Biological Journal of the Linnean Society 38: 303-322.

Thorpe, R. S. and Brown, R. P. 1989b. Testing hypothesized causes of within-island geographic variation in the colour of lizards. Experientia 45: 397-400.

Vercken, E., Massot, M., Sinervo, B. and Clobert, J. 2007. Color variation and alternative reproductive strategies in females of the common lizard Lacerta vivipara. Journal of Evolutionary Biology 20: 221-232

Vitt, L. J. and Caldwell, J. P. 2009. Herpetology: an introductory biology of amphibians and reptiles. London: Academic Press.

Vitt, L. J. and Congdon, J. D. 1978. Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. The American Naturalist 112(985): 595-608.

Vitt, L. J. and Cooper, W. E., Jr. 1985. The evolution of sexual dimorphism in the skink Eumeces laticeps: an example of sexual selection. Canadian Journal of Zoology 63: 995-1002.

Yamasaki, T., Hikida, T., Nabhitabhata, J., Panha, S. and Ota, H. 2001. Geographic variations in common skink Sphenomorphus maculatus (Blyth, 1853) in Thailand, with re-validation of Lygosoma mitanense Annandale, 1950 as its subspecies. The Natural History Journal of Chulalongkorn University 1(1): 23-31.

Zug, G. R., Brown, H. H. K., Schulte, J. A. and Vindum, J. V. 2006. Systematics of the garden lizards, Calotes versicolor group (Reptilia, Squamata, Agamidae), in Myanmar: central dry zone populations. Proceedings of the California Academy of Sciences 57(2): 35-68.

ศูนย์วิทยทรัพยากร

 จุหาลงกรณ์มหาวิทยาลัย

Specimen and Morphological data of garden fence lizard

Number	Locality	Date of collection	Sex	Maturity	EyeEar	HeadH	HeadL	HeadW	InterOrb	JawW	NarEye	SnEye	SnW	SP
CUMZ-R-2010.07.14,1	Songkla	29 Jun 08	Male	Mature	6.43	4.38	21.20	19.10	8.57	13.32	4.55	8.66	5.40	17.05
CUMZ-R-2010.07.14,2	Songkla	29 Jun 08	Female	Mature	5.04	11.90	17.68	12.96	7.58	11.13	4.57	7.88	4.55	14.64
CUMZ-R-2010.07.14,4	Songkla	30 Jun 08	Male	Mature	6.26	14.90	21.36	19.76	8.48	12.90	4.81	8.84	5.30	17.20
CUMZ-R-2010.07.14,6	Nan	19 Jul 08	Male	Matur	4.90	11.18	18.47	15.16	7.84	12.34	4.40	7.70	4.84	16.06
CUMZ-R-2010.07.14,7	Nan	19 Jul 08	Female	Mature	5	11.54	18.20	13.01	8.16	12.17	4.57	7.85	4.97	16.64
CUMZ-R-2010.07.14,19	Nan	29 Oct 08	Female	Mature		11.87	19.62	14.76	8.38	12.82	4.72	8.72	5.25	15.86
CUMZ-R-2010.07.14,56	Chiang Mai	15 Dec 08	Female	Imatur		11.24	18.60	14.54	8.30	13.14	4.63	8.46	4.88	15.26
CUMZ-R-2010.07.14,58	Chiang Mai	15 Dec 08	Male	Imat	6.38	13.17	20.55	19.10	8.64	14.98	4.46	8.58	5.34	15.48
CUMZ-R-2010.07.14,59	Chiang Mai	15 Dec 08	Female	Imature	4.96	11.88	18.70	15.54	7.92	13.10	4.53	8.05	5.06	15.22
CUMZ-R-2010.07.14,61	Chiang Mai	15 Dec 08	Female	Imature	4.37	10.84	17.52	12.87	7.37	11.73	4.07	7.36	4.71	15.14
CUMZ-R-2010.07.14,67	Chiang Mai	15 Dec 08	Male	Imature	5.63	12.66	19.59	18.00	7.97	13.29	4.84	8.46	5.20	15.35
CUMZ-R-2010.07.14,69	Chiang Mai	15 Dec 08	Male	Imature	6.34	13.06	20.48	19.22	8.88	14.12	5.18	8.98	4.98	16.30
CUMZ-R-2010.07.14,70	Chiang Mai	15 Dec 08	Female	Imature	5.10	12.92	19.00	14.67	7.53	12.74	4.38	7.65	5.14	15.02
CUMZ-R-2010.07.14,71	Chiang Mai	15 Dec 08	Female	Imature	5.25	11.63	18.60	14.53	8.05	12.94	4.51	8.38	4.88	15.30
CUMZ-R-2010.07.14,72	Chiang Mai	15 Dec 08	Male	Imature	6.16	12.66	20.55	18.38	8.61	14.62	4.90	8.58	5.04	16.38
CUMZ-R-2010.07.14,73	Chiang Mai	15 Dec 08	Male	Imature	6.06	13.39	21.72	17.10	9.23	14.50	5.14	9.67	5.24	16.64
CUMZ-R-2010.07.14,80	Krabi	25 Jan 09	Male	Mature	6.53	14.18	21.39	19.23	9.13	13.04	4.50	9.26	5.78	16.70
CUMZ-R-2010.07.14,82	Krabi	25 Jan 09	Male	Mature	6.90	13.70	22.10	20.20	9.10	15.66	4.79	9.04	5.86	17.63
CUMZ-R-2010.07.14,83	Krabi	25 Jan 09	Male	Mature	5.90	12.48	20.06	16.62	8.30	12.40	4.28	8.20	5.56	16.30
CUMZ-R-2010.07.14,88	Krabi	25 Jan 09	Male	Mature	6.06	12.82	21.30	17.43	8.96	14.10	4.82	8.95	5.60	17.22
CUMZ-R-2010.07.14,90	Krabi	25 Jan 09	Female	Mature	/ 4.71	10.46	17.10	13.27	7.19	11.94	4.02	7.00	4.94	14.37
CUMZ-R-2010.07.14,91	Krabi	25 Jan 09	Male	Mature	6.36	13.60	21.00	19.70	8.74	14.78	4.84	8.72	5.52	16.37
CUMZ-R-2010.07.14,93	Krabi	25 Jan 09	Male	Mature	6.85	15.92	-23.20	18.80	8.82	14.18	4.64	9.45	6.00	18.64
CUMZ-R-2010.07.14,94	Krabi	25 Jan 09 -	Female	Mature	4.71	11.04	17.89	14.15	8.37	12.34	3.77	7.86	5.46	14.97
CUMZ-R-2010.07.14,95	Krabi	25 Jan 09	Male	Mature	6.90	14.38	21.86	20.66	9.60	15.54	4.80	9.48	6.15	16.94

Specimen and Morphological data of garden fence lizard (Cont.)

Number	SN	LE	LL	ED	4FingLng	4ToeLng	CrusL	ForefL	HindfL	LoArmL	PectW	Pelvw	SVL	SnForel	Tailthick	TailL
CUMZ-R-2010.07.14,1	3.75	6.54	15.02	3.69	10.82	16.12	19.30	13.64	. 67	13.62	15.36	14.09	84.26	28.36	11.20	26.30
CUMZ-R-2010.07.14,2	3.52	4.90	13.12	2.88	8.70	14.20	16.50	13.02		12.96	12.31	12.62	79.11	22.45	6.62	22.30
CUMZ-R-2010.07.14,4	4.10	6.62	15.75	3.75	11.17	17.13	18.58	16.16	26.56	14.64	12.90	12.58	86.25	30.00	11.22	-
CUMZ-R-2010.07.14,6	3.25	5.40	13.33	2.91	9.81	14.98	17.80	14.40	24.50	13.70	13.56	11.36	82.70	24.60	9.68	24.80
CUMZ-R-2010.07.14,7	3.16	4.66	13.75	2.58	8.20	13.86	. 08	2.70	23.50	12.76	12.22	11.58	81.82	22.71	6.82	21.80
CUMZ-R-2010.07.14,19	3.80	5.86	14.63	2.96	9.07	13.90		12.88	23.44	13.08	12.90	11.05	88.08	25.20	7.84	23.70
CUMZ-R-2010.07.14,56	3.55	4.43	14.43	2.96	8.28	12.75		12,16	21.6	12.59	13.28	12.02	83.20	24.17	7.22	-
CUMZ-R-2010.07.14,58	4.40	6.13	14.62	3.55	10.05	15.70		15.44	25.08	14.28	16.71	14.70	88.57	27.77	9.53	25.10
CUMZ-R-2010.07.14,59	3.97	5.19	14.59	2.98	8.34		5.55	11.87		13.02	14.23	12.72	84.92	23.72	7.10	-
CUMZ-R-2010.07.14,61	3.86	4.54	13.84	2.62	8.34	12.54	5.35	11.20	19.58	12.82	10.94	11.20	78.32	21.85	5.80	21.30
CUMZ-R-2010.07.14,67	4.20	5.81	14.23	2.71	10.10	15.58	7.95	14.53	25.40	13.60	16.00	12.25	82.70	26.48	9.57	22.90
CUMZ-R-2010.07.14,69	4.03	6.04	14.93	3.08	11.88	16.81	8.68	5	27.21	15.11	16.05	14.51	90.04	27.87	10.40	25.50
CUMZ-R-2010.07.14,70	3.44	5.12	14.24	2.40	8.82	13.02	. 20	212.12	22.00	12.98	13.54	12.96	84.44	23.59	7.30	23.20
CUMZ-R-2010.07.14,71	3.74	5.42	14.02	2.42	8.00	13.16	17.05	11.68	22.18	13.64	13.04	13.37	77.85	23.73	7.76	-
CUMZ-R-2010.07.14,72	3.60	6.50	15.38	2.92	11.00	16.56	18.90	14.38	27.38	14.38	14.85	12.92	87.93	27.40	9.78	23.00
CUMZ-R-2010.07.14,73	3.78	6.75	15.57	3.41	11.19	15.69	19.96	14.86	25.46	15.72	14.80	12.86	89.09	27.86	10.43	25.00
CUMZ-R-2010.07.14,80	4.11	6.40	15.62	4.08	10.48	16.77	20.14	14.46	27.74	15.53	15.43	13.26	89.74	30.50	11.04	-
CUMZ-R-2010.07.14,82	4.11	6.10	17.19	3.86	10.10	15.14	18.15	14.10	24.60	14.36	14.62	13.40	90.66	29.83	10.31	26.20
CUMZ-R-2010.07.14,83	3.76	5.58	14.88	2.96	10.38	16.37	17.46	14.93	24.94	14.53	14.00	11.62	84.77	26.58	8.98	25.40
CUMZ-R-2010.07.14,88	4.13	6.67	15.50	3.58	9.30	14.24	$\bigcirc 17.33$	12.24	Q22.80	14.05	14.33	12.07	84.72	28.40	9.43	-
CUMZ-R-2010.07.14,90	2.96	4.61	13.44	3.20	7.77	13.30	16.05	11.57	23.18	13.00	11.57	10.82	77.48	22.45	6.64	23.70
CUMZ-R-2010.07.14,91	4.53	5.96	15.70	3.64	9.65	15.71	18.56	13.30	25.34	14.60	15.60	13.40	86.26	28.44	10.48	24.20
CUMZ-R-2010.07.14,93	4.54	7.35	16.33	3.25	10.55	17.15	19.40	15.86	$28.00=$	15.85	15.76	14.03	92.17	31.76	11.37	-
CUMZ-R-2010.07.14,94	3.53	4.55	13.80	2.74	07.50	12.91	15.42	11.34	20.25	$\sqrt{11,90}$	11.78	11.00	76.43	22.55	6.25	21.50
CUMZ-R-2010.07.14,95	4.00	7.04	15.64	3.57	11.15	18.00	18.52	16.12	28.80	15.80	16.27	14.23	89.52	30.00	11.35	-

Specimen and Morphological data of garden fence lizard (Cont.)

Number	TailW	TrunkL	UpArmL	UpLegL	TL	VentW	CanthR	Eyelid	HeadSLn	HeadSTr	Inflab	SnS	Suplab	GuS	4FingLm
CUMZ-R-2010.07.14,1	10.55	39.82	14.20	21.76	35.00	9.10			14	13	10	7	10	10	19
CUMZ-R-2010.07.14,2	9.38	40.50	12.30	20.00	30.40	6.35	8	8	13	13	8	6	8	9	19
CUMZ-R-2010.07.14,4	10.96	40.16	14.36	21.47	-	$9.54=$	8	10	15	15	9	8	10	12	20
CUMZ-R-2010.07.14,6	9.88	40.67	13.52	20.38	33.30	9.12	8	10	13	13	9	6	9	10	20
CUMZ-R-2010.07.14,7	8.37	32.24	14.10	20.31	29.90		8	9	14	12	9	6	9	9	17
CUMZ-R-2010.07.14,19	8.48	41.82	14.02	19.04	32.40	,	8		13	12	9	6	9	12	20
CUMZ-R-2010.07.14,56	9.36	40.14	12.53	18.94		18		10	12	12	9	5	10	10	17
CUMZ-R-2010.07.14,58	11.27	40.50	14.87	19.90	34.00	. 38	8		15	16	9	7	10	11	16
CUMZ-R-2010.07.14,59	9.93	43.88	13.37	18.61		28	8	10	14	13	10	6	10	12	19
CUMZ-R-2010.07.14,61	9.43	36.67	13.03	18.10	29.20	6.38	8	10	16	13	10	6	9	11	18
CUMZ-R-2010.07.14,67	10.32	38.58	13.02	19.63	31.00	7.25	- 28	9	13	12	9	5	9	9	19
CUMZ-R-2010.07.14,69	11.97	41.17	15.43	19.92	34.60	09		10	15	14	10	6	10	12	20
CUMZ-R-2010.07.14,70	10.46	43.10	13.82	17.50	31.70				12	13	8	5	-	11	18
CUMZ-R-2010.07.14,71	10.92	35.10	14.30	18.80	-	7.45		9	13	11	9	6	9	9	17
CUMZ-R-2010.07.14,72	10.55	43.70	14.58	20.56	31.90	8.14		11	12	15	10	6	10	15	22
CUMZ-R-2010.07.14,73	10.92	43.58	15.47	21.78	34.00	9.30	7	9	15	13	9	6	10	12	18
CUMZ-R-2010.07.14,80	10.23	41.62	14.43	21.13		9.56	7	13	4	14	10	6	9	12	21
CUMZ-R-2010.07.14,82	10.04	44.00	14.14	20.43	35.30	7.64	7	9	13	13	9	6	10	12	19
CUMZ-R-2010.07.14,83	9.44	39.92	13.50	19.26	33.90	8.17	8	10	14	12	9	7	11	11	21
CUMZ-R-2010.07.14,88	9.95	38.37	14.18	19.36		8.64		10	13	14	9	6	9	9	20
CUMZ-R-2010.07.14,90	7.74	35.15	12.25	18.02	31,70	5.73	18	11	12	14	9	6	9	12	21
CUMZ-R-2010.07.14,91	10.59	39.94	14.94	19.92 I	33.00	9.93	8	12	16	14	10	7	9	11	22
CUMZ-R-2010.07.14,93	11.58	42.06	14.89	22.34	-	9.89	8	10	13	${ }^{0} 14$	9	7	9	11	22
CUMZ-R-2010.07.14,94	8.78	37.20	11.31 앙	17.05	29.30	7.28	89	10	11	11	9	7	9	10	19
CUMZ-R-2010.07.14,95	11.16	43.07	14.72	21.62	-	8.88	8	11	13	14	9	6	8	12	20

Specimen and Morphological data of garden fence lizard (Cont.)

Number	ToeLm	ventS	Midbody	CheekCol	CheekSt	DorsSt	ForearSt	NucSpot	TrnkBand	MidvLine	ThroatSt	ThroatPa	TrunkSt
CUMZ-R-2010.07.14,1	24	59	41	0	1	0		0	1	1	1	1	0
CUMZ-R-2010.07.14,2	24	52	41	1	1	0	0	0	1	1	1	1	1
CUMZ-R-2010.07.14,4	27	56	43	1	1	0	0	0	1	1	1	1	0
CUMZ-R-2010.07.14,6	22	60	42	0			0	0	1	1	1	0	0
CUMZ-R-2010.07.14,7	22	52	42	0			1		1	1	1	0	0
CUMZ-R-2010.07.14,19	25	56	47	0	1		1		1	1	1	0	1
CUMZ-R-2010.07.14,56	23	56	45	0					0	1	1	0	0
CUMZ-R-2010.07.14,58	22	55	46	0					1	1	1	0	0
CUMZ-R-2010.07.14,59	-	59	46	0					1	1	1	0	0
CUMZ-R-2010.07.14,61	24	53	43	0		0	0		0	1	1	0	0
CUMZ-R-2010.07.14,67	24	60	42	0	1	12	0		1	1	1	0	0
CUMZ-R-2010.07.14,69	24	60	42	0	1	1			1	1	1	0	0
CUMZ-R-2010.07.14,70	23	55	44	0	1	5	1	1	1	1	1	0	0
CUMZ-R-2010.07.14,71	22	56	41	0	0	1	0	1	1	1	0	0	0
CUMZ-R-2010.07.14,72	25	59	47	0	1	θ	0	0	1	1	1	0	0
CUMZ-R-2010.07.14,73	23	56	41	0		0	0	1	1	0	1	0	0
CUMZ-R-2010.07.14,80	25	62	49	1	1	0	0	1	1	1	1	1	1
CUMZ-R-2010.07.14,82	24	62	46	0		0	1	0	1	1	1	0	1
CUMZ-R-2010.07.14,83	26	64	46	0	1	0	1		1	1	1	0	0
CUMZ-R-2010.07.14,88	24	62	48	1		0	00	1	1	1	1	1	1
CUMZ-R-2010.07.14,90	26	58	46	09	1	11	1	1	1	1	1	0	0
CUMZ-R-2010.07.14,91	26	61	49	1	1	0	1	1	1	1	1	1	1
CUMZ-R-2010.07.14,93	27	63	46	0	1	0	1	-1	10	1	1	0	0
CUMZ-R-2010.07.14,94	26	58	43	0	1		$1{ }^{-1}$	0	16	1	1	0	1
CUMZ-R-2010.07.14,95	24	60	46	0	1	1	1	1	1	1	1	1	1

Note: $0=$ Absence, $1=$ Present

Specimen and Morphological data of garden fence lizard (Cont.)

Number	Locality	Date of collection	Sex	Maturity	EyeEar	HeadH	HeadL	HeadW	InterOrb	JawW	NarEye	SnEye	SnW	SP
CUMZ-R-2010.07.14,97	Krabi	25 Jan 09	Male	Mature	7.04	15	22.87	23.48	9.70	15.25	4.76	8.66	5.78	17.47
CUMZ-R-2010.07.14,98	Krabi	25 Jan 09	Male	Mature	5.92	13.03	20.48	17.38	8.23	13.78	4.32	8.07	5.75	15.70
CUMZ-R-2010.07.14,100	Krabi	25 Jan 09	Male	Mature	6.91	14.80	21.65	21.52	9.47	15.95	5.14	9.08	5.71	16.66
CUMZ-R-2010.07.14,111	Ranong	26 Jan 09	Female	Imature	4.84	12.77	19.16	15.08	9.16	14.20	5.28	8.66	4.88	16.16
CUMZ-R-2010.07.14,114	Ranong	26 Jan 09	Female	Imature		1.77	18.65	15.52	8.86	13.94	4.65	8.71	5.02	15.69
CUMZ-R-2010.07.14,118	Songkla	27 Mar 09	Male	Mature	, 2	15.25	20.95	20.44	8.60	14.21	4.48	8.70	5.27	16.36
CUMZ-R-2010.07.14,119	Songkla	27 Mar 09	Male	Mature		16.40	22.93	21.74	9.21	15.05	5.37	9.03	5.60	17.00
CUMZ-R-2010.07.14,120	Songkla	27 Mar 09	Female	Mature		10.55	15.90	12.25	6.92	11.10	3.86	7.18	4.04	13.40
CUMZ-R-2010.07.14,121	Songkla	27 Mar 09	Female	Mature		9.86	16.12	12.43	6.80	11.17	3.56	6.97	4.75	13.70
CUMZ-R-2010.07.14,122	Songkla	27 Mar 09	Female	Mature	,	10.03	15.61	11.45	6.54	10.20	3.60	6.95	4.38	13.42
CUMZ-R-2010.07.14,123	Songkla	27 Mar 09	Male	Mature	5.87	43.70	19.73	19.98	8.06	14.18	4.63	8.55	4.98	15.62
CUMZ-R-2010.07.14,124	Ranong	28 Mar 09	Male	Mature	5.55	. 90	19.44	18.38	8.93	13.08	4.44	8.12	5.06	15.71
CUMZ-R-2010.07.14,125	Ranong	28 Mar 09	Male	Mature	5.37	12	18.56	16.55	7.96	12.45	4.21	7.98	5.21	15.16
CUMZ-R-2010.07.14,126	Ranong	28 Mar 09	Male	Mature	5.24	11.70	19.70	16.84	8.56	13.17	4.90	8.78	5.30	15.90
CUMZ-R-2010.07.14,127	Ranong	28 Mar 09	Male	Mature	5.84	12.60	19.50	19.04	7.81	13.90	4.78	8.49	5.05	15.98
CUMZ-R-2010.07.14,128	Ranong	28 Mar 09	Male	Mature	6.45	13.00	21.56	21.83	8.22	14.36	5.34	9.06	4.90	16.70
CUMZ-R-2010.07.14,131	Ranong	28 Mar 09	Female	Mature	4.26	11.26	16.66	11.94	6.86	11.42	4.20	7.46	4.76	14.08
CUMZ-R-2010.07.14,132	Ranong	28 Mar 09	Female	Mature	4.68	11.66	17.53	13.16	7.53	12.09	4.04	7.26	4.53	14.36
CUMZ-R-2010.07.14,133	Ranong	28 Mar 09	Male	Mature	6.88	14.12	21.70	20.70	8.77	14.68	5.09	8.94	5.38	16.76
CUMZ-R-2010.07.14,134	Ranong	28 Mar 09	Female	Mature	-4.06	10.03	$\bigcirc 15.37$	12.38	6.30	10.66	3.64	6.73	4.18	13.12
CUMZ-R-2010.07.14,135	Ranong	28 Mar 09	Female	Mature	3.98	-10.00	15.48	11.79	6.82	11.04	3.78	7.05	4.24	13.16
CUMZ-R-2010.07.14,136	Ranong	28 Mar 09	Male	Mature	6.19	14.02	20.77	20.38	9.02	15.69	4.86	8.77	5.06	15.86
CUMZ-R-2010.07.14,137	Ranong	28 Mar 09	Female	Mature	4.54	${ }^{11.33}$	17.96	13.45	7.69	12.13	4.18	7.73	4.82	15.29
CUMZ-R-2010.07.14,138	Ranong	29 Mar 09	-Female	Mature	4.24	10.04	16.21	12,24	7.02	10.40	4.24	7.17	4.38	13.76
CUMZ-R-2010.07.14,140	Ranong	29 Mar 09	Male	Mature	6.12	13.18	20.64	19.04	8.34	14.40	4.48	8.36	5.36	16.55

Specimen and Morphological data of garden fence lizard (Cont.)

Number	SN	LE	LL	ED	4FingLng	$\begin{gathered} \hline \text { 4ToeLn } \\ \mathrm{g} \\ \hline \end{gathered}$	CrusL	ForefL	HindfL	LoArmL	PectW	Pelvw	SVL	SnForel	Tailthick	TailL
CUMZ-R-2010.07.14,97	3.86	6.72	16.62	4.06	11.00	16.55	19.85	15.66	27.	14.87	16.87	14.60	94.70	32.40	11.50	26.70
CUMZ-R-2010.07.14,98	3.58	5.40	16.02	3.23	7.14	16.10	18.78	11.19	25.43	14.02	13.89	12.20	85.73	26.87	9.78	24.50
CUMZ-R-2010.07.14,100	4.06	7.10	15.72	3.40	10.84	16.46	19.31	15.09	26.21	14.32	15.58	12.20	89.64	30.50	10.86	-
CUMZ-R-2010.07.14,111	3.48	4.82	14.70	3.36	8.70	14.02	17.25	1.69	23.60	13.90	13.53	13.44	83.81	24.50	8.32	-
CUMZ-R-2010.07.14,114	3.56	5.68	13.96	2.88	8.16	13.27	.	12.16	21.86	13.43	11.87	12.96	83.76	24.20	6.90	-
CUMZ-R-2010.07.14,118	3.65	6.68	15.39	3.37	10.16	16.40	9.18	4.92	25.92	15.66	14.74	14.26	87.24	30.38	10.90	25.30
CUMZ-R-2010.07.14,119	3.90	7.05	15.64	3.60	11.00	16.20	0.30	14.86	26.26	15.80	16.72	13.61	86.30	30.65	11.71	25.40
CUMZ-R-2010.07.14,120	2.92	4.56	11.78	2.51	8.51	12.60	16.00	11.44	21.60	12.14	10.84	11.96	70.71	20.26	5.50	20.70
CUMZ-R-2010.07.14,121	3.05	4.42	11.83	2.94	8.14	13.66	15.27	12.5	20.78	11.50	12.89	10.38	71.64	20.75	5.50	-
CUMZ-R-2010.07.14,122	3.25	4.02	11.58	2.38	8.25	12.54	15.00	11.37	1.19 .76	10.30	10.12	11.14	69.32	20.12	5.34	19.30
CUMZ-R-2010.07.14,123	3.61	6.56	13.74	3.34	9.48	15.82	18.66	15	25.72	14.37	15.92	13.53	84.86	28.10	10.32	25.70
CUMZ-R-2010.07.14,124	3.84	5.92	14.54	3.27	10.74	15.48	18.81	6.	25.37	15.03	14.79	12.27	84.03	27.17	9.82	25.80
CUMZ-R-2010.07.14,125	3.63	5.71	13.03	2.85	10.33	15.06	18.74	14.73	26.33	14.42	12.20	10.98	79.20	25.54	9.18	-
CUMZ-R-2010.07.14,126	4.09	5.35	14.90	3.26	10.12	15.36	18.86	13.96	24.42	15.06	13.07	12.24	82.04	27.17	9.50	-
CUMZ-R-2010.07.14,127	3.75	6.07	14.57	3.34	11.36	16.96	18.02	15.62	26.75	14.41	13.04	13.05	80.90	26.54	10.37	25.60
CUMZ-R-2010.07.14,128	3.79	5.95	15.36	2.71	11.16	16.85	19.01	15.98	26.98	4.24	15.04	12.40	86.86	29.91	10.20	25.50
CUMZ-R-2010.07.14,131	3.61	4.27	12.88	2.64	8.88	14.02	15.28	12.96	22.52	12.12	11.12	10.55	70.74	21.21	6.14	-
CUMZ-R-2010.07.14,132	3.24	4.83	12.00	2.38	8.54	14.18	16.55	12.48	23.64	12.43	11.61	10.40	75.04	22.03	5.38	21.00
CUMZ-R-2010.07.14,133	4.10	6.92	15.40	3.19	10.95	16.84	20.20	16.75	27.75	15.28	16.00	13.92	92.14	28.72	11.44	27.00
CUMZ-R-2010.07.14,134	3.25	3.76	11.76	2.25	8.45	12.64	14.89	11:20	20.52	- 12.32	10.76	10.38	67.36	19.46	5.36	20.10
CUMZ-R-2010.07.14,135	3.26	4.08	11.88	2.26	8.26	12.82	14.53	11,38	21.06	${ }^{-} 11.42$	10.20	9.51	65.30	19.70	5.48	17.40
CUMZ-R-2010.07.14,136	3.75	6.10	14.96	3.93	10.10	14.90	18.28	14,97	24.80	14.80	15.50	12.06	81.95	28.88	10.72	-
CUMZ-R-2010.07.14,137	3.37	4.99	13.71	2.65	8.92 n	13.98	16.31	13.05	22.14	12.20	-12.48	. 12.60	77.62	22.94	7.30	-
CUMZ-R-2010.07.14,138	3.43	4.68	12.37	2.36	- 8.10	613.07	15.39	11.56	20.98	d 11.86	10.24	- 11.10	71.56	20.64	5.75	20.30
CUMZ-R-2010.07.14,140	4.04	6.15	14.87	3.04	99.82	15.64	18.53	14.48	23.82	14.97	14.54	12.54	84.75	28.68	10.06	23.60

Specimen and Morphological data of garden fence lizard (Cont.)

Number	TailW	TrunkL	UpArmL	UpLegL	TL	VentW	CanthR	Eyelid	HeadSLn	HeadSTr	Inflab	SnS	Suplab	GuS	4FingLm
CUMZ-R-2010.07.14,97	11.29	44.85	16.02	24.44	36.10	9.74	8		12	16	8	6	9	10	23
CUMZ-R-2010.07.14,98	10.54	41.05	14.50	20.90	33.10	7.50	8		13	13	10	7	10	10	20
CUMZ-R-2010.07.14,100	10.10	41.57	14.79	20.82	-	8.55	7		15	12	10	7	9	11	21
CUMZ-R-2010.07.14,111	11.28	39.34	13.14	19.36	-	7.94	8	9	13	14	11	6	10	13	18
CUMZ-R-2010.07.14,114	9.50	43.48	13.80	19.22	-	7.39		9	16	13	9	7	10	11	20
CUMZ-R-2010.07.14,118	11.61	42.93	17.26	21.86	34.40			11	14	14	9	7	9	10	20
CUMZ-R-2010.07.14,119	12.32	40.50	16.63	22.78	34.30	.		9	4	12	9	6	9	10	21
CUMZ-R-2010.07.14,120	8.68	30.16	11.58	17.84	27.80		8	8	14	12	10	6	9	11	19
CUMZ-R-2010.07.14,121	8.03	34.33	12.10	17.23	-	,			13	13	9	6	9	9	17
CUMZ-R-2010.07.14,122	8.75	34.53	12.24	16.80	26.40	5.40		9	13	12	9	6	9	10	18
CUMZ-R-2010.07.14,123	11.30	41.45	14.57	22.06	34.60	. 82	8	8	13	12	9	6	9	9	18
CUMZ-R-2010.07.14,124	10.69	39.62	15.55	20.32	34.10	9.74		10	14	13	9	7	10	11	20
CUMZ-R-2010.07.14,125	9.47	37.35	13.88	20.14	-		-8	10	15	15	9	6	9	11	21
CUMZ-R-2010.07.14,126	9.38	38.26	15.28	20.83	-	8.35	9	10	13	14	9	7	9	11	22
CUMZ-R-2010.07.14,127	10.71	37.27	15.40	21.02	34.10	8.64		10	14	13	8	7	9	11	23
CUMZ-R-2010.07.14,128	10.21	40.10	14.58	21.18	34.20	9.06	8	11	14	11	9	6	9	10	20
CUMZ-R-2010.07.14,131	7.83	33.10	11.00	17.29		6.78	8	10		14	10	6	10	12	19
CUMZ-R-2010.07.14,132	8.10	33.67	12.52	18.18	28.60	6.60	7	9	13	15	9	7	10	12	21
CUMZ-R-2010.07.14,133	10.16	42.25	15.35	22.51	36.30	8.81	8	9	14	11	9	6	10	12	19
CUMZ-R-2010.07.14,134	7.93	34.48	11.76	16.72	26.90	5.68	8	8	13	13	9	7	9	12	19
CUMZ-R-2010.07.14,135	7.38	31.10	11.98	15.98	23.90	6.30	8	8	15	13	9	7	9	10	20
CUMZ-R-2010.07.14,136	10.98	37.37	14.18	20.30	1-	9.54	8	11	14	13	9	7	10	12	20
CUMZ-R-2010.07.14,137	8.54	37.18	12.66	18.30	-	6.87	8	10	17	16	10	7	9	11	20
CUMZ-R-2010.07.14,138	8.07	34.47	11.53	16.72	27.60	6.87	8	410	12	13	10	7	9	13	19
CUMZ-R-2010.07.14,140	10.37	39.96	14.60	20.56	32.20	8.62	8	11	15	14	10	7	10	13	20

Specimen and Morphological data of garden fence lizard (Cont.)

Number	ToeLm	ventS	Midbody	CheekCol	CheekSt	DorsSt	ForearSt	NucSpot	TrnkBand	MidvLine	ThroatSt	ThroatPa	TrunkSt
CUMZ-R-2010.07.14,97	28	57	47	1	1	0		0	1	1	1	1	0
CUMZ-R-2010.07.14,98	24	61	46	1	1	0	0	0	1	1	1	1	0
CUMZ-R-2010.07.14,100	25	58	45	0	1	0	1	1	1	1	1	1	1
CUMZ-R-2010.07.14,111	24	60	49	0	1		1		1	1	1	0	0
CUMZ-R-2010.07.14,114	26	53	44	0			1		1	1	1	0	1
CUMZ-R-2010.07.14,118	24	56	43	0			0		1	1	1	1	1
CUMZ-R-2010.07.14,119	22	54	39	0			0	0	1	1	1	1	0
CUMZ-R-2010.07.14,120	25	55	43	0			0	1	1	1	1	0	0
CUMZ-R-2010.07.14,121	23	57	42	0			0		1	1	1	0	1
CUMZ-R-2010.07.14,122	23	54	48	0					1	1	1	0	1
CUMZ-R-2010.07.14,123	23	58	43	0	1	$0 \cdot 3$	0	0	1	1	1	1	1
CUMZ-R-2010.07.14,124	24	58	41	0	1	0	0.		1	1	1	1	1
CUMZ-R-2010.07.14,125	27	60	44	0	1	0	0	0	1	1	1	1	1
CUMZ-R-2010.07.14,126	27	53	44	0	1	0	0	0	1	1	1	0	1
CUMZ-R-2010.07.14,127	27	62	43	0	1	0	0	0	1	1	1	1	1
CUMZ-R-2010.07.14,128	26	56	43	0		0	0	1	1	1	1	1	0
CUMZ-R-2010.07.14,131	25	54	39	0	I	1	1	1	1	1	1	0	1
CUMZ-R-2010.07.14,132	28	62	45	0		0	1	1	1	1	1	0	1
CUMZ-R-2010.07.14,133	24	60	41	0		0	0		1	1	1	1	0
CUMZ-R-2010.07.14,134	24	55	41	0	1	1	0 O	1	1	1	1	0	1
CUMZ-R-2010.07.14,135	24	60	44	0 9	1	$9 / 18$	41	${ }^{2}$	1	1	1	0	1
CUMZ-R-2010.07.14,136	24	64	44	0	1	0	0	0	1	1	1	0	1
CUMZ-R-2010.07.14,137	24	66	44	0	1	,	0	-1	10	1	1	0	1
CUMZ-R-2010.07.14,138	24	59	43	00	811		0		1 ¢	1	1	0	1
CUMZ-R-2010.07.14,140	23	56	43	0	1	0	1	0	1	1	1	0	1

Note: $0=$ Absence, $1=$ Present

Specimen and Morphological data of garden fence lizard (Cont.)

Number	Locality	Date of collection	Sex	Maturity	EyeEar	HeadH	HeadL	HeadW	InterOrb	JawW	NarEye	SnEye	SnW	SP
CUMZ-R-2010.07.14,141	Ranong	29 Mar 09	Male	Mature	6.35	13.13	21.07	20.89	9.05	13.86	5.01	9.05	5.08	16.36
CUMZ-R-2010.07.14,142	Ranong	29 Mar 09	Male	Mature	5.93	3	20.26	19.33	8.48	13.70	5.26	9.24	5.36	16.12
CUMZ-R-2010.07.14,143	Ranong	29 Mar 09	Female	Mature	4.20	10.21	16.88	12.62	7.06	11.04	4.03	7.42	4.38	14.00
CUMZ-R-2010.07.14,144	Ranong	29 Mar 09	Female	Mature	4.5	11.21	17.44	13.55	7.23	11.76	4.22	7.70	4.48	14.87
CUMZ-R-2010.07.14,147	Songkla	30 Mar 09	Female	Mature	. 30	10.77	16.10	13.20	7.14	11.30	3.70	7.93	4.60	13.62
CUMZ-R-2010.07.14,148	Songkla	30 Mar 09	Female	Mature		11.00	17.20	13.82	7.28	11.52	4.16	7.14	4.54	14.11
CUMZ-R-2010.07.14,149	Songkla	30 Mar 09	Male	Mature		. 91	22.18	22.22	9.35	14.75	4.71	9.04	5.51	17.10
CUMZ-R-2010.07.14,150	Krabi	15 Apr 09	Female	Mature		10.50	17.06	13.42	7.20	11.70	4.20	7.73	4.74	13.96
CUMZ-R-2010.07.14,151	Krabi	15 Apr 09	Female	Mature	4.32	9.67	16.43	11.70	7.04	10.54	3.52	7.06	5.25	13.86
CUMZ-R-2010.07.14,152	Krabi	15 Apr 09	Female	Mature	80	1.25	17.93	15.04	7.72	12.20	4.20	8.07	5.40	14.84
CUMZ-R-2010.07.14,153	Krabi	15 Apr 09	Female	Mature	5.03	12.24	19.74	13.59	8.70	13.46	3.70	8.05	5.70	16.34
CUMZ-R-2010.07.14,154	Krabi	15 Apr 09	Female	Mature	5.53	11	19.87	15.22	8.73	13.37	4.46	8.50	5.54	16.20
CUMZ-R-2010.07.14,155	Krabi	15 Apr 09	Female	Mature		10.8	17.40	13.69	7.40	12.00	3.68	7.12	5.10	14.45
CUMZ-R-2010.07.14,156	Krabi	15 Apr 09	Female	Mature	5.04	11.69	18.16	12.80	7.29	11.30	3.90	7.86	5.10	14.70
CUMZ-R-2010.07.14,157	Krabi	15 Apr 09	Female	Mature	4.48	9.76	16.85	11.69	7.70	10.93	3.94	7.64	4.95	14.00
CUMZ-R-2010.07.14,158	Chiang Mai	7 May 09	Female	Mature	4.90	11.60	19.20	15.88	7.94	12.48	4.42	8.37	4.76	15.40
CUMZ-R-2010.07.14,161	Chiang Mai	7 May 09	Female	Mature	4.46	10.20	17.22	12.66	6.88	10.92	3.86	7.33	4.22	14.16
CUMZ-R-2010.07.14,163	Chiang Mai	7 May 09	Female	Mature	4.42	10.80	17.86	12.87	7.86	11.57	4.21	7.34	4.87	13.86
CUMZ-R-2010.07.14,164	Chiang Mai	7 May 09	Male	Mature	6.20	13.78	20.46	13.14	8.25	13.86	4.43	8.14	5.74	15.85
CUMZ-R-2010.07.14,166	Chiang Mai	7 May 09	Female	Mature	4.55	10.50	18.54	12.83	7.40	12.26	4.12	7.96	4.87	15.80
CUMZ-R-2010.07.14,167	Chiang Mai	7 May 09	Female	Mature	+ 4.80	10.96	18.18	14.37	7.46	12.04	4.20	8.04	4.83	15.36
CUMZ-R-2010.07.14,225	Chiang Mai	7 May 09	Male 0	Mature	5.04	11.74	17.86	14.20	7.25	11.70	4.10	7.52	4.20	15.00
CUMZ-R-2010.07.14,226	Chiang Mai	7 May 09	Male	Mature	5.84	11.68	20.56	15.40	8.00	11.84	4.57	8.70	5.00	15.80
CUMZ-R-2010.07.14,227	Chiang Mai	7 May 09 e	Male	Mature	6.32	13.14	20.38	16.62	$8.10{ }^{\circ}$	13.64	4.75	8.44	4.74	17.32
CUMZ-R-2010.07.14,228	Chiang Mai	7 May 09	Male	Mature	5.78	12.77	19.06	16.72	8.30	13.84	4.38	8.04	4.93	16.54

Specimen and Morphological data of garden fence lizard (Cont.)

Number	SN	LE	LL	ED	4FingLng	4ToeLng	CrusL	ForefL	HindfL	LoArmL	PectW	Pelvw	SVL	SnForel	Tailthick	TailL
CUMZ-R-2010.07.14,141	4.20	6.10	15.44	3.40	10.21	15.28	18.13	14.48	25.50	15.26	14.80	12.62	85.65	29.50	11.10	26.20
CUMZ-R-2010.07.14,142	3.93	5.76	14.36	3.20	10.26	15.20	17.52	14.80	23	14.37	14.68	12.12	85.74	26.54	10.33	23.70
CUMZ-R-2010.07.14,143	3.56	4.42	12.91	2.47	8.48	13.61	16.10	11.87	22.48	12.53	12.16	11.27	72.88	21.45	6.57	20.90
CUMZ-R-2010.07.14,144	3.22	4.46	13.37	2.80	8.54	13.33	15.70	2.74	21.02	12.27	10.98	11.37	76.53	21.58	6.20	-
CUMZ-R-2010.07.14,147	3.23	5.20	11.37	2.61	7.97	12.72	15.10	2.04	21.09	11.36	11.94	10.90	70.87	20.44	5.82	25.00
CUMZ-R-2010.07.14,148	3.52	4.71	12.70	2.69	8.50	13.57	16.30	11.37	21.84	13.56	12.50	10.15	77.72	21.61	6.40	21.50
CUMZ-R-2010.07.14,149	4.00	7.02	15.20	3.06	10.08	16.36		4.07	26.65	14.91	16.00	14.09	86.20	31.20	10.80	25.40
CUMZ-R-2010.07.14,150	3.73	4.69	13.03	2.72	7.94	13.27	58	1.4	21.47	11.54	11.38	11.76	73.66	21.77	6.20	19.70
CUMZ-R-2010.07.14,151	3.21	4.55	12.00	2.22	8.46	13.78	5.40	13.00	21.95	11.17	11.37	10.23	71.24	20.77	5.54	-
CUMZ-R-2010.07.14,152	3.54	4.76	13.60	2.70	8.50	13.80	15.44	12.00	21.66	12.33	12.40	12.12	77.42	22.58	7.02	-
CUMZ-R-2010.07.14,153	3.88	4.86	14.85	3.00	8.05	13.40	. 35	11	01.31	13.06	13.39	12.91	82.11	25.08	7.20	-
CUMZ-R-2010.07.14,154	4.09	5.25	15.00	3.06	8.10	13.88	16.42	11.43	22.20	12.63	13.93	13.44	82.91	24.84	7.00	23.80
CUMZ-R-2010.07.14,155	3.08	5.00	12.90	2.86	8.46	-	16.40	11.62		12.78	13.20	11.85	81.70	24.04	6.60	23.00
CUMZ-R-2010.07.14,156	3.60	4.69	14.03	2.95	8.88	14.16	15.70	13.50	23.62	13.50	13.04	11.03	78.78	23.20	6.68	22.20
CUMZ-R-2010.07.14,157	3.37	4.24	12.72	2.41	8.17	12.84	14.16	10.04	20.26	11.93	11.86	10.05	75.15	21.20	6.16	20.40
CUMZ-R-2010.07.14,158	3.52	5.13	14.16	2.84	9.40	13.14	17.37	12.90	22.37	14.40	13.32	11.82	82.33	24.70	6.88	-
CUMZ-R-2010.07.14,161	3.28	4.50	13.34	2.88	8.73	12.85	15.80	11.72	21.06	13.00	13.06	11.83	74.54	21.70	6.37	18.90
CUMZ-R-2010.07.14,163	3.44	5.02	13.26	2.88	8.18	13.06	16.30	12.76	21.96	12.90	13.60	11.34	81.44	22.36	6.30	22.10
CUMZ-R-2010.07.14,164	4.04	5.86	14.96	3.50	10.49	15.73	17.94	14.58	24.78	13.96	14.69	12.50	89.62	28.38	10.00	25.20
CUMZ-R-2010.07.14,166	3.76	4.86	14.05	2.78	8.06	13.00	16.30	12.18	21.90	13.46	12.90	12.04	80.75	23.74	6.86	-
CUMZ-R-2010.07.14,167	3.86	4.78	13.70	2.55	9.25	14.28	17.00	13.52	23.44	? 13.44 ?	13.86	12.95	81.52	23.04	6.72	22.50
CUMZ-R-2010.07.14,225	3.33	5.10	13.54	3.14	9.06	13.63	17.02	12.02	21.96	13.20	12.78	10.47	79.30	23.12	8.93	-
CUMZ-R-2010.07.14,226	4.10	5.52	15.14	3.32	8.92	14.44	19.00	13.34	24.70	- 14.91	13.57	10.52	83.40	27.04	9.82	-
CUMZ-R-2010.07.14,227	3.34	6.53	14.74	2.95		14.93	17.92		23.88	14.17\%	13.60	- 11.38	86.30	27.50	10.37	-
CUMZ-R-2010.07.14,228	3.49	5.65	13.58	2.88	9.50	14.50	18.52	13.58	23.40	13.96	13.70	11.30	82.38	24.96	10.28	-

Specimen and Morphological data of garden fence lizard (Cont.)

Number	TailW	TrunkL	UpArmL	UpLegL	TL	VentW	CanthR	Eyelid	HeadSLn	HeadSTr	Inflab	SnS	Suplab	GuS	4FingLm
CUMZ-R-2010.07.14,141	10.81	38.00	13.85	18.54	34.70	9.60	8		13	14	9	5	10	12	18
CUMZ-R-2010.07.14,142	9.26	41.11	13.56	19.75	32.30	8.08	8		15	15	10	7	10	14	20
CUMZ-R-2010.07.14,143	8.03	35.46	12.38	18.70	28.30	6.56	7	10	15	13	10	6	9	11	19
CUMZ-R-2010.07.14,144	7.72	37.92	11.94	16.60	-	7.20		8	15	12	10	7	9	11	20
CUMZ-R-2010.07.14,147	9.23	33.26	12.40	17.36	27.90	8.3		10	13	15	11	6	9	11	19
CUMZ-R-2010.07.14,148	9.12	38.58	12.52	18.62	29.20	6.11		10	13	13	9	7	10	11	18
CUMZ-R-2010.07.14,149	11.70	39.17	15.39	20.78	34.40	析		11	14	14	9	6	9	11	20
CUMZ-R-2010.07.14,150	9.84	36.21	12.00	17.10	27.00	. 63		8	12	11	9	6	10	11	19
CUMZ-R-2010.07.14,151	7.02	32.92	12.23	16.52	-	. 30	8	11	14	13	9	6	9	11	21
CUMZ-R-2010.07.14,152	9.05	38.38	11.40	17.86	-			10	13	13	9	6	9	9	20
CUMZ-R-2010.07.14,153	9.70	40.51	12.90	19.02	-	8.03	87 c	10	14	13	9	7	8	11	19
CUMZ-R-2010.07.14,154	10.55	37.60	12.00	18.27	32.20	8.18		10	12	11	9	6	10	10	19
CUMZ-R-2010.07.14,155	9.72	39.48	13.10	18.40	31.10	7.48	4	10	11	13	9	6	8	11	20
CUMZ-R-2010.07.14,156	10.87	37.34	12.95	18.47	30.10	9.12	8	12	12	12	9	6	9	10	19
CUMZ-R-2010.07.14,157	8.70	35.55	11.45	17.37	27.70	7.56		10	13	14	9	7	10	11	20
CUMZ-R-2010.07.14,158	10.02	40.37	13.80	18.70		8.20	9	11	5	13	11	6	10	13	19
CUMZ-R-2010.07.14,161	8.64	33.20	11.63	17.53	26.30	7.12	8	11	14	13	10	7	10	12	19
CUMZ-R-2010.07.14,163	8.72	39.37	13.40	17.08	30.30	7.02	8	9	14	12	9	6	10	11	19
CUMZ-R-2010.07.14,164	9.42	42.95	14.23	20.28	34.20	8.12	8	9	13	12	9	6	9	10	19
CUMZ-R-2010.07.14,166	9.14	37.65	12.83	18.74	-	6.79	7	40	13	13	10	6	10	12	17
CUMZ-R-2010.07.14,167	8.58	38.58	13.49	18.88	30.70	7.42	27	9	14	12	10	6	10	11	19
CUMZ-R-2010.07.14,225	9.14	39.12	13.50	16.84	-	8.18	7	10	14	15	9	6	10	14	19
CUMZ-R-2010.07.14,226	10.00	35.82	13.55	19.90	-	9.53	9	10	12	15	10	7	10	13	21
CUMZ-R-2010.07.14,227	10.72	43.88	14.47	19.43	0	9.73	7	1/9	12	14	8	6	10	14	-
CUMZ-R-2010.07.14,228	9.23	39.22	12.49	20.18	-	9.08	7	11	12	14	10	6	11	14	21

Specimen and Morphological data of garden fence lizard (Cont.)

Number	ToeLm	ventS	Midbody	CheekCol	CheekSt	DorsSt	ForearSt	NucSpot	TrnkBand	MidvLine	ThroatSt	ThroatPa	TrunkSt
CUMZ-R-2010.07.14,141	26	58	43	0	1	0		0	1	1	1	1	1
CUMZ-R-2010.07.14,142	25	58	46	0	1	0	0	0	1	1	1	0	0
CUMZ-R-2010.07.14,143	24	53	43	0	1	1	1	1	1	1	1	0	1
CUMZ-R-2010.07.14,144	24	59	43	0	1		1	1	1	1	1	0	1
CUMZ-R-2010.07.14,147	26	60	44	0			1		1	1	1	1	0
CUMZ-R-2010.07.14,148	24	58	44	1			0		1	1	1	0	1
CUMZ-R-2010.07.14,149	26	59	44	0					1	1	1	1	1
CUMZ-R-2010.07.14,150	26	61	47	0			- 1		1	1	1	0	0
CUMZ-R-2010.07.14,151	27	58	48	0			1		1	1	1	0	0
CUMZ-R-2010.07.14,152	24	60	51	0			0		1	1	1	0	1
CUMZ-R-2010.07.14,153	24	64	48	0	1	1	1		1	1	1	0	1
CUMZ-R-2010.07.14,154	23	61	47	0	1	0			1	1	1	0	0
CUMZ-R-2010.07.14,155	-	63	45	0	1	1		1	1	1	1	0	0
CUMZ-R-2010.07.14,156	26	57	44	0	1	1	1	1	1	1	1	0	0
CUMZ-R-2010.07.14,157	25	61	50	0	1			1	1	1	1	0	1
CUMZ-R-2010.07.14,158	24	59	44	0		1	1	1	1	1	1	0	0
CUMZ-R-2010.07.14,161	24	59	45	0	1	1	1	0	1	1	1	0	1
CUMZ-R-2010.07.14,163	24	61	45	0		1	0		1	1	1	0	1
CUMZ-R-2010.07.14,164	24	55	41	0	1	0	0	0	1	1	1	0	0
CUMZ-R-2010.07.14,166	23	56	46	0		0	00	1	1	1	1	0	0
CUMZ-R-2010.07.14,167	24	52	44	0	1	$9 / 1 \%$	-	1	1	1	1	0	0
CUMZ-R-2010.07.14,225	23	62	45	0	1	0	0	1	1	1	1	0	1
CUMZ-R-2010.07.14,226	25	57	42	0	1	0	0	-1	10	1	1	0	0
CUMZ-R-2010.07.14,227	22	59	42		59	0	\square^{4}	19	16	1	1	0	0
CUMZ-R-2010.07.14,228	24	65	45	0	1	0	0	0	0	1	1	0	0

Note: $0=$ Absence, $1=$ Present

Specimen and Morphological data of garden fence lizard (Cont.)

Number	Locality	Date of collection	Sex	Maturity	EyeEar	HeadH	HeadL	HeadW	InterOrb	JawW	NarEye	SnEye	SnW	SP
CUMZ-R-2010.07.14,169	Mae Hong Son	9 May 09	Male	Mature	5.80	12.90	9.18	19.86	8.40	12.58	4.66	8.06	4.92	15.22
CUMZ-R-2010.07.14,170	Mae Hong Son	9 May 09	Male	Mature	5.90	11.50	19.65	16.04	7.74	12.48	4.28	7.97	4.71	15.98
CUMZ-R-2010.07.14,171	Mae Hong Son	9 May 09	Male	Mature	5.46	12.25	19.55	17.03	8.26	13.71	4.52	8.45	4.80	16.04
CUMZ-R-2010.07.14,172	Mae Hong Son	9 May 09	Male	Mature	4.70	12	17.88	14.38	7.14	12.43	4.05	7.56	4.50	14.66
CUMZ-R-2010.07.14,173	Mae Hong Son	9 May 09	Female	Mature		10.42	15.46	12.30	6.38	10.68	3.58	6.43	4.36	13.14
CUMZ-R-2010.07.14,174	Mae Hong Son	9 May 09	Male	Matu		11.66	17.87	16.60	7.42	12.24	4.34	7.55	4.12	14.78
CUMZ-R-2010.07.14,175	Mae Hong Son	9 May 09	Male	M		11.10	18.52	16.13	7.70	12.90	4.31	7.42	4.54	14.94
CUMZ-R-2010.07.14,176	Mae Hong Son	9 May 09	Male	Mature		$\underline{11.70}$	19.02	16.75	7.92	12.97	4.51	8.21	4.42	15.46
CUMZ-R-2010.07.14,177	Mae Hong Son	9 May 09	Male	Mature			19.36	15.82	7.90	12.40	4.86	8.50	4.70	15.36
CUMZ-R-2010.07.14,178	Mae Hong Son	9 May 09	Female	Mature	55	10.58	14.42	13.68	7.90	12.30	4.08	8.05	4.70	15.37
CUMZ-R-2010.07.14,179	Mae Hong Son	9 May 09	Male	Mature	4.88	11.59	17.87	14.87	7.42	11.54	4.10	7.66	4.52	14.55
CUMZ-R-2010.07.14,180	Mae Hong Son	9 May 09	Female	Mature		10.40	-16.95	14.86	6.86	11.10	4.00	7.71	4.70	14.75
CUMZ-R-2010.07.14,181	Mae Hong Son	9 May 09	Male	Mature	5.22	11.58	17.94	17.26	8.06	12.31	4.25	7.38	4.36	14.83
CUMZ-R-2010.07.14,182	Mae Hong Son	9 May 09	Female	Mature	4.20	13.20	14.42	11.70	6.56	11.10	4.04	6.66	4.36	13.36
CUMZ-R-2010.07.14,183	Mae Hong Son	9 May 09	Female	Mature	4.28	9.37	15.21	11.86	6.49	10.72	3.68	6.77	3.91	12.90
CUMZ-R-2010.07.14,184	Mae Hong Son	9 May 09	Female	Mature	4.19	9.87	16.46	12.35	6.60	10.70	3.96	7.26	4.37	13.87
CUMZ-R-2010.07.14,185	Mae Hong Son	9 May 09	Female	Mature	4.42	11.08	16.38	12.55	6.56	10.73	4.03	7.27	4.71	13.96
CUMZ-R-2010.07.14,186	Mae Hong Son	9 May 09	Female	Mature	4.53	10.88	17.70	12.87	6.70	11.83	3.92	7.84	4.95	14.46
CUMZ-R-2010.07.14,187	Mae Hong Son	9 May 09	Female	Mature,	4.14	10.38	16.04	12.36	6.60	10.60	3.70	7.12	4.06	13.58
CUMZ-R-2010.07.14,188	Mae Hong Son	9 May 09	Female	Mature	4.74	1104	18,44	14.	8.22	12.80	4.70	8.20	4.54	16.05
CUMZ-R-2010.07.14,195	Songkla	15 Jun 09	Female	Mature	4,80	10.74	18,46	13,90	7.66	12.22	4.06	7.88	4.68	15.27
CUMZ-R-2010.07.14,196	Songkla	15 Jun 09	Female	Mature	4.48	11.12	16.92	13.66	7.37	12.14	3.87	7.54	4.66	14.94
CUMZ-R-2010.07.14,197	Songkla	15 Jun 09	Female	Mature		10.1	17.58	3.60	7.68	12.38	3.77	7.35	4.65	14.74
CUMZ-R-2010.07.14,199	Songkla	15 Jun 09	Female	Mature	4.52.	10.48	17.14	12.76	6.62	11.82	3.68	7.00	4.20	14.70
CUMZ-R-2010.07.14,200	Nan	18 Jun 09	9 Female	Mature	4.42	11.95	17.21	14.20	7.30	11.88	4.12	7.24	4.36	15.60

Specimen and Morphological data of garden fence lizard (Cont.)

Number	SN	LE	LL	ED	4FingLng	4ToeLng	CrusL	ForefL	HindfL	LoArmL	PectW	Pelvw	SVL	SnForel	Tailthick	TailL
CUMZ-R-2010.07.14,169	3.56	5.64	13.73	2.97	9.90	13.33	17.36	13.25		14.24	14.24	12.95	79.60	25.56	10.00	-
CUMZ-R-2010.07.14,170	3.20	5.58	14.54	3.00	9.65	15.48	19.53	13.22	25	14.38	15.33	11.33	82.36	26.70	11.22	22.50
CUMZ-R-2010.07.14,171	3.57	5.27	14.86	3.08	9.38	14.50	18.50	13.12	24.17	14.36	13.69	11.86	83.38	26.21	11.03	23.20
CUMZ-R-2010.07.14,172	3.23	4.65	13.38	2.76	9.15	13.77	17.70	2.25	22.42	13.70	12.54	10.46	76.86	23.10	9.37	21.10
CUMZ-R-2010.07.14,173	3.04	4.32	11.82	2.38	8.28	11.96	4.33	1.0	19.50	11.41	11.07	10.74	67.36	20.04	5.37	17.00
CUMZ-R-2010.07.14,174	3.00	4.79	13.42	2.71	8.80	13.80	16.72	. 15	21.02	12.03	13.38	11.33	76.16	23.72	9.20	21.00
CUMZ-R-2010.07.14,175	3.37	5.54	13.94	2.55	9.00	14.00		2.46	23.30	14.20	12.44	11.21	77.42	24.18	9.96	21.20
CUMZ-R-2010.07.14,176	3.30	4.73	14.86	3.05	9.86	14.82	8.2	3.80	24.11	14.36	13.22	11.26	79.02	24.43	9.44	23.30
CUMZ-R-2010.07.14,177	3.60	4.85	14.85	2.55	10.46	15.89	2	14.70	25.12	14.26	14.38	11.23	79.53	25.87	9.50	-
CUMZ-R-2010.07.14,178	3.55	4.37	14.13	2.72	8.76	12.84	16.20	11.7	20.80	13.00	12.67	12.45	80.12	22.40	6.70	-
CUMZ-R-2010.07.14,179	3.36	4.70	13.56	2.57	9.33	14.14		12.24	1123.36	13.75	13.56	10.74	76.38	24.90	8.12	23.00
CUMZ-R-2010.07.14,180	3.68	4.52	13.04	2.50	7.32	11.84	15.84	11.40	20.04	12.63	14.40	11.82	75.27	22.20	6.84	19.70
CUMZ-R-2010.07.14,181	3.48	5.03	13.37	2.70	9.26	13.66	6.74	,	22.43	13.21	12.45	11.40	77.36	23.96	8.28	-
CUMZ-R-2010.07.14,182	3.11	4.75	11.53	2.28	7.72	11.96	14.86	10.24	18.80	11.50	11.72	10.20	70.71	20.03	5.70	17.50
CUMZ-R-2010.07.14,183	3.04	4.18	11.28	2.20	7.84	12.38	14.78	11.34	20.30	11.92	11.53	10.68	68.43	19.40	6.15	-
CUMZ-R-2010.07.14,184	3.10	3.94	13.05	2.28	8.13	12.2	15.30	11.46	20.46	12.20	12.04	11.14	72.64	20.40	5.75	18.30
CUMZ-R-2010.07.14,185	3.50	4.36	12.50	2.35	8.52	13.60	15.47	11.89	21.85	12.72	11.10	11.45	71.85	20.78	6.42	18.40
CUMZ-R-2010.07.14,186	3.92	4.54	13.70	2.78	9.42	14.11	17.07	12.74	23.18	12.9	11.80	12.88	76.54	22.60	6.44	21.20
CUMZ-R-2010.07.14,187	3.14	4.21	12.06	2.58	7.44	11.56	14.80	11.18	18.86	12.10	11.34	11.44	69.88	20.08	6.30	-
CUMZ-R-2010.07.14,188	3.56	4.80	14.24	2.70	8.50	12.88	16.30	11.70	20.62	13.16	12.86	12.40	80.80	24.06	6.62	-
CUMZ-R-2010.07.14,195	3.78	5.04	13.92	2.60	8.68	13.06	16.46	12.22	21.58	? 15.00 ?	11.75	10.84	79.53	23.60	6.33	21.90
CUMZ-R-2010.07.14,196	3.37	3.80	13.03	2.65	8.87	14.00	16.90	12.22	22.36	13.30	12.14	12.13	77.84	21.00	6.54	21.70
CUMZ-R-2010.07.14,197	3.44	4.68	13.23	2.90	8.34	12.82	15.88	11.60	21.26	- 12.61	12.56	12.54	79.42	22.04	5.86	21.90
CUMZ-R-2010.07.14,199	3.15	4.84	12.34	2.54	08.32	13.02	15.46	11.83	20.88	11.80	11.53	${ }^{-11.02}$	74.70	21.12	6.18	19.30
CUMZ-R-2010.07.14,200	3.21	4.78	12.70	2.88	8.26	13.80	17.12	11.70	23.12	12.70	13.50	12.24	84.34	21.21	6.50	28.00

Specimen and Morphological data of garden fence lizard (Cont.)

Number	TailW	TrunkL	UpArmL	UpLegL	TL	VentW	CanthR	Eyelid	HeadSLn	HeadSTr	Inflab	SnS	Suplab	GuS	4FingLm
CUMZ-R-2010.07.14,169	10.36	37.67	13.85	19.84	-	9.00	8		14	13	9	6	10	12	20
CUMZ-R-2010.07.14,170	11.40	37.20	14.76	20.94	30.70	10.11	8		14	12	9	6	9	11	19
CUMZ-R-2010.07.14,171	10.54	41.42	14.08	19.27	31.50	9.06	9	11	14	11	10	7	9	12	18
CUMZ-R-2010.07.14,172	9.30	35.48	13.46	19.04	28.70	7.	9	10	13	13	9	7	9	11	21
CUMZ-R-2010.07.14,173	8.50	34.14	10.90	17.13	23.60	7.70		10	16	11	10	6	10	11	20
CUMZ-R-2010.07.14,174	9.37	34.54	13.47	19.20	28.60	8.26	7	12	11	14	9	6	9	11	19
CUMZ-R-2010.07.14,175	10.30	36.22	14.16	19.53	29.00	9.2		12	15	14	9	6	10	11	20
CUMZ-R-2010.07.14,176	10.45	36.36	14.74	19.08	31.20	9.54	δ	8	13	13	10	6	10	11	19
CUMZ-R-2010.07.14,177	11.02	38.78	14.16	19.70	-	9.09	8	11	4	13	10	7	10	11	21
CUMZ-R-2010.07.14,178	9.63	39.73	12.72	17.54	-	2		9	14	12	8	6	9	10	18
CUMZ-R-2010.07.14,179	9.76	34.24	13.78	18.23	30.70	50	705	11	14	12	9	6	11	10	21
CUMZ-R-2010.07.14,180	9.38	39.68	11.70	17.23	27.20	7.88			14	13	10	6	10	12	18
CUMZ-R-2010.07.14,181	10.68	35.70	13.29	19.17	-	8.94		10	13	13	9	6	10	11	20
CUMZ-R-2010.07.14,182	8.55	33.26	12.03	17.18	24.50	6.40	8	8	11	12	8	6	9	9	17
CUMZ-R-2010.07.14,183	8.57	31.54	12.38	16.70	-	6.82	8	9	12	13	8	6	10	12	18
CUMZ-R-2010.07.14,184	7.78	34.64	12.55	16.07	25.60	6.26	8	11		12	10	6	10	12	19
CUMZ-R-2010.07.14,185	8.59	34.77	11.72	16.79	25.60	6.46	8	9		11	9	7	9	11	21
CUMZ-R-2010.07.14,186	8.24	38.53	12.28	18.73	28.90	6.92	8	8	15	12	10	6	11	13	20
CUMZ-R-2010.07.14,187	8.58	31.14	11.18	16.66	-	7.56	8	10	14	19	9	6	9	10	17
CUMZ-R-2010.07.14,188	9.40	38.45	12.88	18.45	-	3.38	8	40	11	13	10	6	10	10	18
CUMZ-R-2010.07.14,195	9.81	40.20	13.88	19.00	29.80	5.20	7	9	12	11	9	6	9	11	20
CUMZ-R-2010.07.14,196	9.08	38.92	13.05	18.76	29.40	6.11	8	9	13	14	10	6	9	11	21
CUMZ-R-2010.07.14,197	9.44	38.04	12.26	18.22	29.70	6.00	8	11	12	14	9	6	9	11	20
CUMZ-R-2010.07.14,199	8.37	37.46	11.86	17.69	26.70	6.76	7	410	13	13	9	7	9	9	18
CUMZ-R-2010.07.14,200	10.28	43.56	13.54	18.55	29.20	8.26	9	9	14	12	9	6	10	9	19

Specimen and Morphological data of garden fence lizard (Cont.)

Number	ToeLm	ventS	Midbody	CheekCol	CheekSt	DorsSt	ForearSt	NucSpot	TrnkBand	MidvLine	ThroatSt	ThroatPa	TrunkSt
CUMZ-R-2010.07.14,169	23	55	43	1	1	0		0	1	1	1	1	1
CUMZ-R-2010.07.14,170	23	54	41	0	1	0	0	0	0	1	1	0	1
CUMZ-R-2010.07.14,171	23	61	44	1	1	0	0	0	0	1	1	0	0
CUMZ-R-2010.07.14,172	26	52	45	0	1		0	0	0	1	1	0	1
CUMZ-R-2010.07.14,173	22	52	41	0			1		1	1	1	0	1
CUMZ-R-2010.07.14,174	23	58	42	0	1		0	0	0	1	1	0	0
CUMZ-R-2010.07.14,175	23	61	45	1			0	0	1	1	1	1	1
CUMZ-R-2010.07.14,176	25	55	42	1		0	0		0	1	1	0	1
CUMZ-R-2010.07.14,177	26	61	46	0			0		1	1	1	1	1
CUMZ-R-2010.07.14,178	21	55	43	0			1		1	1	1	0	1
CUMZ-R-2010.07.14,179	25	56	42	1	1	$0 \cdot 1$	0	0	0	1	1	1	1
CUMZ-R-2010.07.14,180	21	52	43	0	1	1	Io		1	1	1	0	0
CUMZ-R-2010.07.14,181	24	56	43	0	1	0	0	0	0	1	1	0	1
CUMZ-R-2010.07.14,182	21	52	42	0	1	1	1	0	1	1	1	0	1
CUMZ-R-2010.07.14,183	23	55	44	0	1	+39	1	1	1	1	1	0	1
CUMZ-R-2010.07.14,184	24	59	48	0		1	1	1	1	1	1	0	1
CUMZ-R-2010.07.14,185	25	53	42	0	1.	1	1	1	1	1	1	0	1
CUMZ-R-2010.07.14,186	24	56	44	0		1	1	1	1	1	1	0	1
CUMZ-R-2010.07.14,187	21	51	43	0	1	1	1		1	1	1	0	1
CUMZ-R-2010.07.14,188	23	52	45	1	1	0	10	1	1	1	1	1	0
CUMZ-R-2010.07.14,195	25	56	40	19	1	-9 0	$9 / 0$	${ }^{9}$	1	1	1	0	1
CUMZ-R-2010.07.14,196	26	57	43	0 -	1	0	0	1	1	1	1	0	0
CUMZ-R-2010.07.14,197	24	56	41	0	1	0	0	-1	10	1	1	0	0
CUMZ-R-2010.07.14,199	25	57	45	011	817	10	\square^{\prime}	/ 0		1	1	0	1
CUMZ-R-2010.07.14,200	24	63	45	\bigcirc	${ }^{1}$	0	0	0	1	1	1	0	1

Note: $0=$ Absence, $1=$ Present

Specimen and Morphological data of garden fence lizard (Cont.)

Specimen and Morphological data of garden fence lizard (Cont.)

Number	SN	LE	LL	ED	4FingLng	4ToeLng	CrusL	ForefL	HindfL	LoArmL	PectW	Pelvw	SVL	SnForel	Tailthick	TailL
CUMZ-R-2010.07.14,201	3.16	4.29	12.60	2.61	8.28	12.22	14.44	11.60	20.0	11.74	11.94	11.46	75.00	20.84	6.80	19.30
CUMZ-R-2010.07.14,202	3.48	4.55	13.65	2.55	9.37	13.78	16.36	11.46		13.02	14.04	12.50	83.02	22.14	7.56	20.80
CUMZ-R-2010.07.14,203	3.37	4.46	14.22	3.00	9.38	14.35	19.00	13.14	24.36	13.05	14.66	12.86	79.78	22.48	7.55	22.90
CUMZ-R-2010.07.14,204	3.54	4.74	14.60	3.24	9.46	13.30	16.34	13.08	21.80	14.23	14.08	11.86	84.55	24.45	7.38	-
CUMZ-R-2010.07.14,205	3.35	4.68	13.53	3.04	9.50	13.51	.11	13.20	21.50	14.20	13.74	11.86	83.55	22.21	7.05	23.00
CUMZ-R-2010.07.14,206	3.22	4.08	13.60	2.56	8.10	12.40	. 40	11.30	20.54	12.20	13.50	11.70	77.36	21.90	6.10	18.40
CUMZ-R-2010.07.14,207	3.84	4.55	13.34	2.74	7.35	12.83	6.50		20.12	12.76	14.20	12.64	79.64	21.98	6.20	19.10
CUMZ-R-2010.07.14,208	4.18	6.04	16.38	3.74	10.88	16.22	. 54	14.90	26.24	15.48	16.54	13.23	96.64	29.59	11.19	26.00
CUMZ-R-2010.07.14,209	4.12	5.45	16.44	4.30	8.50	14.28	8.12	13.35	24.38	15.26	16.88	13.00	92.10	28.02	11.00	24.00
CUMZ-R-2010.07.14,210	3.89	5.66	14.54	3.28	9.88	14.64	9.40		25.71	15.33	15.88	12.54	90.56	26.08	10.84	-
CUMZ-R-2010.07.14,213	3.69	5.74	15.36	3.48	9.68	15.15	. 82	12.59	24.89	14.54	13.86	12.30	87.70	27.38	10.34	23.10
CUMZ-R-2010.07.14,214	3.59	4.90	14.70	3.31	9.12	14.32	7.60		22.72	13.58	12.60	12.02	82.00	25.16	9.86	22.30
CUMZ-R-2010.07.14,215	4.18	5.49	15.32	3.10	9.45	13.88	. 65	12.86	23.34	14.34	14.62	12.98	88.50	27.22	10.12	-
CUMZ-R-2010.07.14,216	4.15	5.63	15.44	3.23	9.23	15.67	18.84	14.15	25.38	14.22	14.50	14.12	87.00	27.55	11.06	-
CUMZ-R-2010.07.14,217	3.79	5.38	15.28	4.14	9.85	15.27	$18.71=$	13.85	24.35	14.21	14.76	13.30	85.92	25.70	10.34	-
CUMZ-R-2010.07.14,218	3.38	4.90	15.33	3.61	-	14.98	18.03	-	23.92		15.02	13.84	82.78	25.33	10.65	21.70
CUMZ-R-2010.07.14,220	3.62	5.25	14.78	3.16	10.08	15.68	18.56	14.04	25.52	15.16	16.00	12.58	83.87	25.74	10.34	25.00
CUMZ-R-2010.07.14,221	3.70	6.42	14.87	3.06	9.00	16.00	19.44	12.93	25.19	14.54	15.12	13.54	84.21	28.12	10.82	24.50
CUMZ-R-2010.07.14,223	3.78	7.06	17.52	4.05	11.16	16.92	20.85	15.38	27.66	16.80	19.76	13.00	99.74	30.63	11.73	-
CUMZ-R-2010.07.14,224	3.94	6.45	17.12	4.18	11.16	16.52	49.88	15.26	26.20	16.18	16.72	15.07	98.20	31.00	12.64	27.80
																\cdots

Specimen and Morphological data of garden fence lizard (Cont.)

Specimen and Morphological data of garden fence lizard (Cont.)

Number	ToeLm	ventS	Midbody	CheekCol	CheekSt	DorsSt	ForearSt	NucSpot	TrnkBand	MidvLine	ThroatSt	ThroatPa	TrunkSt
CUMZ-R-2010.07.14,201	22	56	45	0		1		0	1	1	1	0	1
CUMZ-R-2010.07.14,202	25	65	48	0	1	0	- 0	1	1	1	1	0	0
CUMZ-R-2010.07.14,203	23	58	45	0	1	1.	-1	1	1	1	1	0	1
CUMZ-R-2010.07.14,204	24	66	50	0		1	0	1	1	1	1	0	0
CUMZ-R-2010.07.14,205	23	60	44	0			1	1	1	1	1	0	1
CUMZ-R-2010.07.14,206	25	54	41	1		0		1	1	1	1	0	1
CUMZ-R-2010.07.14,207	24	58	38	0			0	1	1	1	1	0	0
CUMZ-R-2010.07.14,208	25	65	43	1		0	0	1	,	1	1	0	0
CUMZ-R-2010.07.14,209	24	59	45	1		0	0	1	1	1	1	0	1
CUMZ-R-2010.07.14,210	25	60	44	1			0	1	1	1	1	0	0
CUMZ-R-2010.07.14,213	24	66	45	1		0	0	1	1	1	1	0	0
CUMZ-R-2010.07.14,214	24	61	48	1		0	0	1	1	1	1	0	0
CUMZ-R-2010.07.14,215	23	70	45	1		0	0	1	1	1	1	0	1
CUMZ-R-2010.07.14,216	26	58	42	1	1	0	0	1	1	1	1	0	1
CUMZ-R-2010.07.14,217	23	53	42	1		0		1	1	1	1	0	0
CUMZ-R-2010.07.14,218	24	59	44		1	0	0		1	1	1	0	0
CUMZ-R-2010.07.14,220	24	55	42		1	0	0		1	1	1	0	0
CUMZ-R-2010.07.14,221	24	54	35	1	1	0		1	1	1	1	0	0
CUMZ-R-2010.07.14,223	26	57	41	1	1	0	0	1	1	1	1	0	0
CUMZ-R-2010.07.14,224	26	58	39	1	-1	0	Q) 0	1	0	1	1	0	0

Note: $0=$ Absence, $1=$ Present

จุหาลงกรณ์มหาวิทยาลัย

Principal component analysis

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

1. Morphological difference within-region

1.1 PCA for mensural characters of female in northern Thailand.

Total Variance Explained						
	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	18.253	57.040	57.040	18.253	57.040	57.040
2	2.279	7.121	64.161	2.279	7.121	64.161
3	2.167	6.773	70.933	2.167	6.773	70.933
4	1.343	4.197	75.131	1.343	4.197	75.131
5	1.194	3.731	78.861	194	3.731	78.861
6	1.064	3.324	82.185		3.324	82.185

1.2 PCA for mensural characters of male in northern Thailand.

Total Variance Explained									
	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative $\%$	Total	\% of Variance	Cumulative \%
1	18.080	56.501	56.501	18.080	56.501	56.501	6.284	19.638	19.638
2	2.622	8.195	64.695	2.622	8.195	64.695	4.874	15.230	34.868
3	1.939	6.061	70.756	1.939	6.061	70.756	4.659	14.559	49.427
4	1.456	4.549	75.305	1.456	4.549	75.305	4.584	14.325	63.752
5	1.324	4.138	79.443	1.324		79.443	3.423	10.696	74.448
6	1.064	3.326	82.769	1.064	3.326	82.769	2.663	8.321	82.769

Rotated Component Matrix ${ }^{\text {a }}$

1.3 PCA for meristic characters of female in northern Thailand.

1.4 PCA for meristic characters of male in northern Thailand.

Total Variance Explained									
	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	$\%$ of Variance	Cumulative \%
1	2.978	24.814	24.814	2.978	24.814	24.814	2.312	19.266	19.266
2	1.931	16.088	40.902	1.931	16.088	40.902	1.966	16.379	35.645
3	1.536	12.802	53.704	1.536	12.802	53.704	1.657	13.809	49.454
4	1.464	12.197	65.901	1.464	12.197	65.901	1.646	13.715	63.169
5	1.194	9.948	75.849	1.194	9948	75.849	1.344	11.199	74.368
6	1.045	8.708	84.557	1.045	8.70	84.557	1.223	10.189	84.557

1.5 PCA for mensural characters of female in southern Thailand.

Total Variance Explained									
	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	$\%$ of Variance	Cumulative \%
1	17.721	55.377	55.377	17.721	55.377	55.377	6.563	20.509	20.509
2	2.979	9.308	64.685	2.979	9.308	64.685	6.303	19.698	40.207
3	1.930	6.031	70.716	1.930	6.031	70.716	5.447	17.022	57.228
4	1.717	5.367	76.083	1.717	5.367	76.083	3.899	12.183	69.411
5	1.193	3.727	79.810	1.193	3.727	79.810	3.327	10.398	79.810

1.6 PCA for mensural characters of male in southern Thailand.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	15.489	48.402	48.402	15.489	48.402	48.402
2	3.020	9.437	57.839	3.020	9.437	57.839
3	2.273	7.103	64.941	2.273	7.103	64.941
4	1.796	5.614	70.555	1.796	5.614	70.555
5	1.654	5.168	75.724	1.65	5.168	75.724
6	1.406	4.392	-80.116	40	$\square 4.392$	80.116
7	1.082	3.381	83.497	$\square 1.082$	3.381	83.497

1.7 PCA for meristic characters of female in southern Thailand.

1.8 PCA for meristic characters of male in southern Thailand.

2. Morphological difference between regions (populations)

2.1 PCA for mensural characters of female between populations.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	17.462	54.569	54.569	17.462	54.569	54.569	8.460	26.439	26.439
2	2.693	8.416	62.986	2.693	8.416	62.986	6.045	18.891	45.330
3	1.649	5.152	68.138	1.649	5.152	68.138	4.186	13.080	58.410
4	1.319	4.121	72.259	1.319	121	72.259	2.975	9.298	67.708
5	1.067	3.335	75.595	1.067		75.595	2.524	7.886	75.595

Rotated Component Matrix ${ }^{\text {a }}$

	Component							Component				
	1	2	3						2	3	4	5
Zscore(SnForel)	. 806	. 350	. 195				Zscore(TailW)	294	. 680		. 275	. 276
Zscore(SnEye)	. 799	. 342	. 200				Zscore(HeadW)	. 500	. 640	. 109	. 150	. 296
Zscore(SN)	. 778						Zscore(JawW)	601	. 613	. 154	. 122	. 233
Zscore(LL)	. 775	. 431	. 212				Zscore(Pelvw)	. 444	. 605	. 128		. 186
Zscore(HeadL)	. 763	. 293	. 274	. 271			Iscore(Tailthick)	. 524	. 603	. 259	. 144	. 209
Zscore(EyeEar)	. 724	. 218	. 177	. 372			Zscore(TrunkL)	. 404	. 529	. 139	. 194	. 435
Zscore(InterOrb)	. 719	. 452	. 121	. 240			Zscore(ToeLng)	286		. 854	. 232	
Zscore(SnW)	. 657	. 268	. 202	. 290	-. 351		Zscore(HindfL)	. 235	. 175	817	. 300	
Zscore(NarEye)	. 641	. 238	. 204		. 285		Zscore(ForefL)	. 165		. 797	. 195	. 144
Zscore(SP)	. 630	. 465	. 246	. 137	-. 304		Zscore(FingLng)		167	. 789		. 291
Zscore(LEE)	. 574	. 143		- 475	. 181		Zscore(CrusL)	. 409	. 428	. 488	. 282	. 377
Zscore(SVL)	. 567	. 506	. 222	31	. 390		Zscore(UpLegL)	.363		. 468	. 250	. 363
Zscore(ED)	. 416	413	$.220$	359	d 130		Zscore(TailL)	4	180	. 275	. 868	. 112
Zscore(HeadH)	. 183	. 752	. 152	-. 129			Zscore(TL)	. 311	. 128	. 375	$.753$. 160
Zscore(VentW) Zscore(PectW)	$\begin{aligned} & .126 \\ & .297 \end{aligned}$	$.696$			$\begin{array}{\|l} -.199 \\ .250 \end{array}$.429 .239		$\begin{aligned} & .298 \\ & .297 \end{aligned}$	8.142	$\begin{array}{r} 665 \\ 632 \end{array}$

2.2 PCA for mensural characters of male between populations.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	18.740	58.564	58.564	18.740	58.564	58.564	8.460	26.437	26.437
2	2.028	6.337	64.901	2.028	6.337	64.901	5.561	17.377	43.814
3	1.735	5.422	70.322	1.735	5.422	70.322	5.194	16.232	60.046
4	1.199	3.748	74.070	1.199	3.748	74.070	2.939	9.185	69.231
5	1.091	3.410	77.480	1.091		77.480	2.640	8.249	77.480

2.3 PCA for meristic characters of female between populations.
otal Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	2.646	22.050	22.050	2.646	22.050	22.050	1.988	16.565	16.565
2	1.780	14.831	36.882	1.780	14.831	36.882	1.751	14.592	31.156
3	1.297	10.809	47.691	1.297	10.809	47.691	1.633	13.608	44.764
4	1.235	10.292	57.983	1.235	10.29	57.983	1.402	11.681	56.446
5	1.127	9.390	67.373	1.127		67.373	1.311	10.928	67.373

2.4 PCA for meristic characters of male between populations.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	$\begin{gathered} \text { \% of } \\ \text { Variance } \end{gathered}$	Cumulative \%
1	2.589	21.578	21.578	2.589	21.578	21.578	2.019	16.829	16.829
2	2.072	17.267	38.845	2.072	17.267	38.845	1.893	15.779	32.608
3	1.341	11.177	50.022	1.341	11.177	50.022	1.812	15.097	47.704
4	1.195	9.961	59.983	1.195	9.961	59.983	1.429	11.908	59.612
5	1.138	9.483	69.466	1.138		4 69.466	1.182	9.854	69.466

3. Morphological difference between sexes.

3.1 PCA for mensural characters of northern population.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	$\begin{gathered} \text { \% of } \\ \text { Variance } \end{gathered}$	Cumulative \%	Total	$\begin{gathered} \text { \% of } \\ \text { Variance } \end{gathered}$	Cumulative \%
1	21.674	67.732	67.732	21.674	67.732	67.732	8.522	26.631	26.631
2	1.859	5.808	73.540	1.859	5.808	73.540	8.477	26.491	53.121
3	1.236	3.861	77.401	1.236	3.861	77.401	7.770	24.280	77.401

3.2 PCA for mensural characters of southern population.

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	25.554	79.855	79.855	25.554	79.855	79.855	14.183	44.322	44.322
2	1.209	3.778	83.633	1.209	3.778	83.633	12.580	39.311	83.633

3.3 PCA for meristic characters of northern population.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	$\%$ of Variance	Cumulative \%
1	3.089	25.743	25.743	3.089	25.743	25.743	1.917	15.979	15.979
2	1.563	13.025	38.768	1.563	13.025	38.768	1.840	15.336	31.315
3	1.360	11.337	50.105	1.360	11.337	50.105	1.550	12.913	44.228
4	1.143	9.527	59.632	1.143		59.632	1.487	12.389	56.618
5	1.012	8.437	68.069	1.012		4 68.069	1.374	11.451	68.069

3.4 PCA for meristic characters of southern population.

Linear regression line of Calotes versicolor morphological characters in both sexes of northern and southern population.

1. Linear regression line between Snout-vent length with Eye-ear length of both sexes in northern (upper) and southern (lower) population. Abbreviations: •, females; O, males.

2. Linear regression line between Snout-vent length with Head height of both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O, males.

3. Linear regression line between Snout-vent length with Head length of both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O, males.

4. Linear regression line between Snout-vent length with Head width of both sexes in northern (upper) and southern (lower) population. Abbreviations: • females; ○, males.

5. Linear regression line between Snout-vent length with Interorbital width of both sexes in
northern (upper) and southern (lower) population. Abbreviations: •, females; O, males.

6. Linear regression line between Snout-vent length with Jaw width of both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O , males.

7. Linear regression line between Snout-vent length with Naris-eye length of both sexes in northern (upper) and southern (lower) population. Abbreviations: •, females; O, males.

8. Linear regression line between Snout-vent length with Snout-eye length of both sexes in northern (upper) and southern (lower) population. Abbreviations: •, females; O, males.

9. Linear regression line between Snout-vent length with Snout width of both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O, males.

10. Linear regression line between Snout-vent length with Snout-pineal length both sexes in northern (upper) and southern (lower) population. Abbreviations: • females; ○, males.

11. Linear regression line between Snout-vent length with Snout-nostril length both sexes in northern (upper) and southern (lower) population. Abbreviations: • females; ○, males.

12. Linear regression line between Snout-vent length with Labial-ear length both sexes in northern (upper) and southern (lower) population. Abbreviations: •, females; O, males.

13. Linear regression line between Snout-vent length with Labial length both sexes in northern (upper) and southern (lower) population. Abbreviations: •, females; O, males.

14. Linear regression line between Snout-vent length with Ear opening diameter both sexes in northern (upper) and southern (lower) population. Abbreviations: • females; ○, males.

15. Linear regression line between Snout-vent length with The fourth finger length both sexes in northern (upper) and southern (lower) population. Abbreviations:

[^2]
16. Linear regression line between Snout-vent length with The fourth toe length both sexes in northern (upper) and southern (lower) population. Abbreviations: •, females; O, males.

17. Linear regression line between Snout-vent length with Forefoot length both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O, males.

18. Linear regression line between Snout-vent length with Hindfoot length both sexes in northern (upper) and southern (lower) population. Abbreviations: ©, females; O, males.

19. Linear regression line between Snout-vent length with Lower arm length both sexes in northern (upper) and southern (lower) population. Abbreviations:, females; O, males.

20. Linear regression line between Snout-vent length with Crus length both sexes in northern (upper) and southern (lower) population. Abbreviations: ©, females; O, males.

21. Linear regression line between Snout-vent length with Pectoral width both sexes in northern (upper) and southern (lower) population. Abbreviations: •, females; O, males.

22. Linear regression line between Snout-vent length with Pelvic width both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O, males.

23. Linear regression line between Snout-vent length with Snout-forelimb length both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O, males.

24. Linear regression line between Snout-vent length with Tailthickness both sexes in northern (upper) and southern (lower) population. Abbreviations: - , females; O, males.

25. Linear regression line between Snout-vent length with Tail length both sexes in northern (upper) and southern (lower) population. Abbreviations: •, females; ○, males.

26. Linear regression line between Snout-vent length with Tail width both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O, males.

27. Linear regression line between Snout-vent length with Trunk length both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O, males.

28. Linear regression line between Snout-vent length with Upper Arm length both sexes in northern (upper) and southern (lower) population. Abbreviations: - females; O, males.

29. Linear regression line between Snout-vent length with Upper Leg length both sexes in northern (upper) and southern (lower) population. Abbreviations: • females; O , males.

30. Linear regression line between Snout-vent length with Total length both sexes in northern (upper) and southern (lower) population. Abbreviations: ©, females; O, males.

31. Linear regression line between Snout-vent length with Vent width both sexes in northern (upper) and southern (lower) population. Abbreviations: - , females; O, males.

The rainfall and air temperature averages ten years from January 2000 to December 2009 at six localities.

BIOGRAPHY

Miss Arpapan Prakobkarn was born on January 1, 1985 in Songkla Province. She graduated with a Bachelor degree of Science in Biology from the Faculty of Science, Prince of Songkla University in 2007. She furthered her graduate study for master's degree of science in Zoology at Chulalongkorn University in 2007.

Research publications:

Prakobkarn, A., Ngamprasertwong, T. and Thirakhupt, K. 2009. Morphological Variation of Garden fence lizard Calotes versicolor (Daudin, 1802) between Northern and Southern Thailand. Abstract. The $14^{\text {th }}$ Biological Science Graduate Congress, Chulalongkorn University, Bangkok, Thailand.

[^0]: ${ }^{a} \mathrm{~N}=29 ;{ }^{\mathrm{b}} \mathrm{N}=28 ;{ }^{\mathrm{c}} \mathrm{N}=21 ;{ }^{\mathrm{d}} \mathrm{N}=20 ;{ }^{\mathrm{e}} \mathrm{N}=19$.

[^1]: ${ }^{a} \mathrm{~N}=29 ;{ }^{\mathrm{b}} \mathrm{N}=28 ;{ }^{\mathrm{c}} \mathrm{N}=21 ;{ }^{\mathrm{d}} \mathrm{N}=20 ;{ }^{\mathrm{e}} \mathrm{N}=19$.

[^2]: \bullet, females; O, males.

