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CHAPTER 1
INTRODUCTION

All graphs considered in this thesis are undirected and simple. Let G be a
graph. The square of G, denoted @7, is theegraph obtained from G by adding
edges joining those pairs of vertices whosé distance from each other in G is two.
Although it is not truesin gemeial that the square of a graph is hamiltonian, in
1969, Plummer [9] and Nash—\VilliaﬂF 113] conjectured independently that G?

is hamiltonian if G'€ontainsme c_ut—vé_rtjces. In 1974, Fleischner [7] proved the

=t

i
| #

conjecture in the affimmative, S

A graph is Hamilton- cofindeted if anj":;;tv;zo vertices are connected by a Hamilton
path. In 1974, Chartraud of al. [3] bhoy\ffzd that if G is 2-connected, then G? is
Hamilton-connected. A grap-lll: 1sdpanco7;ndec’,a;ed if, between any pair of distinct

vertices, it contains a path of ea_gh 1ongtﬁtl least the distance between the two
et S Eagl S

vertices. In 1976, ‘__F'.fiudree and Slchelp 5] showed that if G is 2-connected, then
G? is panconnected;; Clearly, a panconnected graph _rs Hamilton-connected but
not conversely. However, in the square of graphs, Fleischner [8] showed that these
two concepts are equivalent in,1976. He proved that for.a connected graph G, G2
is panconnected if‘and-only if G%-is Hamilton-connected.

Suppose G is connected. Then“the number 4 (G)| — |V (G)[+ 1, denoted ¢(G),
is called the cyelamatic' number \of G+ Thus, (@) = 0.f andronly if G is a tree.
Also, ¢(G) = 1if and only if G is a unicyclic graph, a graph with exactly one cycle.
A cut-edge zy of G is termed an internal cut-edge if both the degrees of x and y
in G are at least 2. In 2009, Chia et al. [4] showed that if G? is panconnected,
then G has no internal cut-edge. An immediate consequence of this result is that,
if G has n(> 3) vertices and ¢(G) = 0, then G? is panconnected if and only if

G = Ky 1, the tree with all vertices but one of degree 1.



Chia et al. [4] also characterized all graphs G such that ¢(G) = 1 and G? is
panconnected. They proved that for a unicyclic graph G, G? is panconnected if
and only if G is a broken SF' graph, a graph consisting of only one cycle together
with a set of independent vertices joining to each vertex on the cycle and some

set of independent vertices is empty.

s panconnected.

Motivated by these, we would like to characterize all graphs G such that
¢(G) = k for some integer k > 2
In Chapter II, we give pre!

iz
—

ter I1I that if ¢(G) = 2-and G* is pa

)ture reviews. We show in Chap-
cowhen GG must be a member of
the two families of grap wed i f.u e, L We then determine all graphs

G such that ¢(G) = 2 \\\

that if ¢(G) = 3 and G2i€ pandont eC oy e of eight families of graphs

Chapter 1V, we first show
defined in Section 4.1 amilies of graphs are generalized
to larger families of graphs. i Cessary, a fficient conditions for these
three larger families of g aphs to MR on ted square are determined.

SYidiis « 4

=3

2
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CHAPTER I1
PRELIMINARIES AND LITERATURE REVIEWS

This chapter gives definitions ill be used in our work and then literature

reviews are shown.

2.1 Definition

All definitions not

A Hamilton path th t ncludes all its vertices. A

R

@

=1 :
ey O AL LANENIR S,

path

o/

It is natural to look for graphs with many edges which are hamiltonian.
The k-power of G, denoted G¥, is the graph with vertex set V(G) and two
vertices u and v are adjacent in G¥ if and only if d(u,v) < k where d(u,v) is the

length of a shortest path from v to v in G.



In Figure 2.2, (a) shows a graph G while (b) shows G? and (c) shows G®.

It is not true in

shows a graph G suc

G

0o
Figure 2.3: Aﬂr H E]s’ﬂ] %E% ‘ﬁtw&] ']aﬂN le G* is hamiltonian

R TN é’ o

tonian graph. The converse is not true as shown in Figure 2.4(b

Based on the definition of a pancyclic graph, we have definitions of the specific
graphs involving every vertex (respectively edge).

A graph is vertex- (respectively edge-) pancyclic if every of its vertex (respec-
tively edge) is in a cycle of every length.

Figure 2.5(a) shows an edge-pancyclic graph. Clearly, an edge-pancyclic graph



Figure 2.4: (a) A p h, and (b)-a tonian graph which is not

pancyclic

is vertex-pancyclic, whi Che converse is not true. The

graph in Figure 2.5(b) i ol t 1t is not an edge-pancyclic

graph.

Figure 2.5: (Wﬁﬂ?@%lwgrwmmancychc graph which

is not edge-pandyclic

ARIAIAIN NI TNy

of distinct vertices.

Figure 2.6(a) shows a Hamilton-connected graph. Clearly, if G is a graph with
|[V(G)| > 2, then a Hamilton-connected graph is necessary hamiltonian, but the
converse is not true as shown in Figure 2.6(b).

A graph is panconnected if, between any pair of distinct vertices, it contains a

path of each length at least the distance between the two vertices.



(a) (b)

Figure 2.7(a) shows a_pamiCefinected graph. Clearly, a panconnected graph is
pancyclic and it is Hamilg henceit is hamiltonian. The converses
are not true. Flgure ) i ! pan ,‘ » aph which is not panconnected
and Figure 2.6(a v / ‘

Figure 2.7: (ﬂuﬂﬁ%ﬁwﬁlwﬂqﬂﬁﬁc graph which is not

panconnected 4}

ARIAINIUURIINYIA Y

2.2 ﬂlterature reviews

In 1960, Sekanina [14] and Karaganis [12] obtained a result concerning G3.
Theorem 2.1. ([1/],[12]) If G is a connected graph, then G® is Hamilton-connected.

It is not true in general that G? is hamiltonian (see Figure 2.3). In 1969,

Plummer [9] and Nash-Williams [13] raised a conjecture independently which is



known as the Plummer-Nash-Williams conjecture.

The Plummer-Nash-Williams conjecture If a graph G contains no cut-

vertices, then G? is hamiltonian.

In 1971, Harary and Schwenk [10] characterized trees T such that T2 is hamil-

%}, 3) vertices. Then T? is hamiltonian
. 1,3 @graph, where S(K, 3) is the graph

obtained by subdividin@o]’ t co_mrtite graph K 3 exactly once.
In 1974, Fleisch"% '_\a*Williams conjecture in the
';! d : %

tonian.

Theorem 2.2. ([10]) Let T' be

L)

affirmative.

In 1974, under the s & Plummer-Nash-Williams conjecture,
Chartrand et al. [3] proved the
iq‘..-
";—Eu 47 oy . .
Theorem 2.4. ([3]) The sqnziypg“g.f}.u?ii iis Hamilton-connected.

a Y
In 1975, Alavi &Wming 3
)

||
Theorem 2.5. (/2] )Jf G is a connected graph, then'G? is panconnected.

i 76, A B S BIPASIRD PG i ooner then e

Plummer-Nash*Williams conjectuge. . "
AT BIIDINRI NN E

Later, Fleischner [8] showed that in the case of square of connected graphs these

two properties, Hamilton-connectedness and panconnectedness, are equivalent.

Theorem 2.7. (/8]) Let G be a connected graph. Then
(1) G? is vertez-pancyclic if and only if G? is hamiltonian.

(ii) G? is panconnected if and only if G* is Hamilton-connected.



In 1985, Hendry and Vogler [11] obtained a sufficient condition for a graph

which is not a tree such that the square is vertex-pancyclic based on the subgraph

S(Klyg).

Theorem 2.8. ([11]) Let G be a connected graph on 8 or more vertices which

does not contain S(K13) as a subgraph. Then G* is vertez-pancyclic.

The result of Hendry and Vogler [L1] (in Theorem 2.8) motivated Abderrezzak
et al. [1] to look for weaker conditions bastd®on the subgraph S(K 3) for which
the square of a connected graph remains ﬁn.

b7
Theorem 2.9. (/1) L

has at least three edge,

that every induced S(Ki3)

then G? is hamiltonian.

In 2009, Chia e dition for a graph which

contains one or more e is panconnected.

Theorem 2.10. (/4]) having only one cut-verte.

Then G? is panconnected.

Theorem 2.11. w Suppose ' ' ith only two cut-vertices.

ltonian, then G* is pancon-

nected.

Chia et a,lﬁl ucﬂwj‘wﬁw?wﬁmlaﬂo?raphs having at most

one cycle.

s R0 HAAFU UG RHR B

then G ‘Gontains no internal cut-edge.

Corollary 2.13. ([4]) Let T be a tree on n(> 3) vertices. Then the following are
equivalent.

(1) T?* is panconnected;

(11) T? is edge-pancyclic;

(i11) T is a star Ky ,_1.



Theorem 2.14. ([4]) Let G be a unicyclic graph. Then G* is panconnected if and
only if
(i) G contains no internal cut-edges and

(i) G contains vertices of degree 2.

Corollary 2.15. ([}]) Let G be a unicyclic graph. Then the following are equiv-

alent.

(i) G* is panconnected;
(1i) G* is edge-panc
(iii) G is a broken Sk

Corollaries 2.13 and (G)=0and ¢(G) =1

respectively such tha

\Z
i

AULINENINYINT
PAIATUAMINYAE



CHAPTER III
GRAPHS WITH CYCLOMATIC NUMBER TWO
HAVING
PANCONN 7TED SQUARE

STl s o@h cyclomatic number 2 and
\\ \\q ic number 2 whose square is

In this chapter, we de

obtain a necessary conditiot
panconnected. Then, y 1 cyclomatic number 2 whose

square is panconnected

3.1 A necessary ¢ou -

| ,m/* ey,
Let G be a connected re; ic number of G, denoted ¢(G), is

defined to be |E(G )| — |V(G e

2
o

Figure 3.1 sho

AR ?E fumm:%?? 'mil

C

Figure 3.1: (a) ¢(G1) =0, (b) ¢(Ga) =1, (¢) ¢(G3) =2 and (d) ¢(G4) =3
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Clearly, ¢(G) = 0 if and only if G is a tree and ¢(G) = 1 if and only if G is a
unicyclic graph, a graph with exactly one cycle.

A cut-edge xy of a graph G is termed an internal cut-edge if both the degrees
of x and y in G are at least 2.

Figure 3.2 shows a graph with an internal cut-edge indicated in the thick edge.

é_.
Figure 3.2: A gﬁ? wicated in the thick edge

NN

AU ENING NS

AR ‘@i;iyﬂ
(d)

()

(e)
Figure 3.3: (a) and (b) are some G(3) and (c), (d) and (e) are some G(4)

Let G(m) and G(n) be two SF graphs whose cycles are z1xs ... 2,2, and
Y1Y2 - . - Yny1 respectively. Let G(m,n) denote the graph obtained from G(m)

and G(n) by identifying the two vertices z; and y;. In this case, we may take
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A, = Ay, Wesay that G(m, n) is broken if there exist 4, > 2 such that A,, = @
and A, =&

Figure 3.4(a) shows a non-broken G(3,3) and Figure 3.4(b) shows a broken
G(3,4).

= 2122 . .. 2, denote three paths
on m,n and r vertices mﬁ ‘ n § n,r. Identifying the end
: ‘dxm:yn:zr:y, we obtain
the generalized #-graph. If m .;i=a".: L we require that n,r > 3. Let ©(m,n,r)
denote the graph ob bain T f the generalized 6-graph to a

new set of independén o pendent set of v. A vertex

vm@mnrlscalgiatve ex if v ' m

Figure 3.5(a) showsf@£2,4,5) and Figure 3.5(b) shows O(3,4,5).

‘UH’MBV]‘?WMI‘W

qma UREVNEY

Figure 3.5: (a) ©(2,4,5) and (b) ©(3,4,5)
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Note that the union of any two paths of P,,, P, and P, together with all their
pendent sets forms an SF' graph.

It is routine to check that G(m,n) and ©(m,n,r) have cyclomatic number 2.

In [4], Chia et al. gave a necessary condition for graphs whose square is

panconnected.

Theorem 3.1. ([4]) Let G be a gm‘

such that G? is panconnected. Then G has
no internal cut-edge. @ ,
We now obtain a n@

2

ond}ion@qs with cyclomatic number 2

whose square is panCW .

Lemma 3.2. Let G

creates (i) one or (ii) two extra cycles i
e —— ==

. 2 . £ _— N _
Since G is panconnecteﬁ@g 0 intenal cut-edge (by Theorem 3.1). As
such, Case (i) implies that G is the graph

is the graph O(m, 7 O

Remark 3.3. Supposefiga vertex of a th G. If A,, which is a pendent set of

vertex v, is nﬂe%tﬂh’% %ﬁu‘ﬂ @WE} Qbﬁ;@' in G2. Let P, denote

a Hamilton pa&l i this induced s%bgmph. In %t follows, ver&;}often, we shall be
dealin@u%fﬂp&q ﬂ fﬁ‘mad %Wﬂ,yﬂeaaﬂw are vertices
adjacent to v and z,w € A,. In the event that A, is an empty set, then P, is an
empty path and the corresponding subpath of the form vP,w or zP,w reduces to

the edge vw or zw respectively.

Suppose u and v are two vertices in a graph G. In what follows, whenever
we use P(u,v) = uayas - - a,_1a,v to denote a path in G from u to v, then by

P(v,u) we mean the path va,a,_; - - asaiu.
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3.2 G(m,n)

In this section, we obtain a necessary and sufficient condition for the graph
G(m,n) to have panconnected square.
In [4], Chia et al. characterized all graphs with cyclomitic number 1 having

panconnected square.

that A,, # @ for all

in G? having x5 and

(respectively A,,) are adjagg;ﬁti@y?% the vertex z; (respectively x4, or x; if

> subpaths uP,,r1 and vP,, 74

|

where {u,v} = {xy, Z5}. (Note that, when m = 3, vP,, x4y = vP,,11).

Now, in o ﬂﬁ? ﬁﬂ,ﬂ fﬁﬁ ﬂ , the subpath vP, x4
must be exte bpat form v P, 4P, me1D, . But

Tm—

“earle ANIaLMIANY 'léLEJ A, — o

and A,, = @. Let u and v be two vertices in G. We shall show that there is a
Hamilton path P(u,v) in G* having u and v as end vertices.

Case (1): w is in Gy and v is in Gs.

By Theorem 3.4, there is a Hamilton path P (respectively @) in G? (respec-
tively G%) with u and x; (respectively y; and v) as end vertices. As such PQ is a

Hamilton path in G2.
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Case (2): uw and v are both in G;.

Without loss of generality, assume that v = z;, and v = x; for some 1 < k <
[ <m.

Case (2.1): 2 <i<k<l<m.

Let L =xxPpap 1Py wp 2Py, 21 Pry 0 Pry 0y 1 Pry 7 o

i+l
o x2Px1$1memezm_1xm—l o xl—l—lelxl—lle_gxl—&

If k and [ are of different

ake M to be the following Hamilton

path in G? with z;, and z;

L i 9 b xl_2le_1xl-
If k and [ are of th on take Lt be the following Hamilton
path in G? with x;, and v tic 1 ; \
.. I - 1o Py, 1.

IPwk_lxk—Qka_g e x’i-l-leiJrl
xiPwi_lxi—IP:Ei_zxi—2 T

Let N denote the following: path /5 and g, as end vertices

Vo Pt P el i G, . )
Let M; (respectively fﬂ' 1th 25, and x5 (respectively

— I
x1 and ;) as end vertices. Since xays is an edge in G, we see that My N P,, My is

Hﬂuﬂﬁmﬂ%’ WeNT

Case (2.2
RN IUNRINYAY

k—3D,
. 'xi—lpwi_lxipmi+1xi+lpmi+2xi+2 T Pwl_lxl—lpmlxl+1px,+2$l+3-
Further, let L; denote the following path

mm—3Palcm_2$m—1Palcmmexm_lxm—Z o xl+2le+1wl

or the path

xm—QPa:m_lxmpzmxm—lpzm_zxm—3 T xl+2Pa:l+1xl
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depending on whether [ and m are of the same or different parity.
If Il =m, let
Lo = 3P, ,wp 1 Pptp1 Py Tpyo oy
: '«Ti—lpmi_lxipmi+1xi+lpmi+2xi+2 cemp Py
(i) Suppose k = 1.

If I = m, then we take

M = l‘lpmll‘gpmzl';gpmg cee

i+lpmi+2xi+2 e m P
to be the Hamilton path in end vertices. If [ < m, then we
take |
M =a,P, 2o P,x3P,, - - - & . -xl_1Pw1x1+1le+2xl+3 - L.
(ii)) Now consider tlu

Suppose k is odd. 6 g g t011 path in G% with x;, and
M = 2Py, s &3% APABPY AL Ly ifl<m

M = .'Ekka

x; as end vertices where

and

Suppose k is ev 1; . Then take 1 | 'u"-jj path in G? with z; and

2 as end vertices wnﬁe 1
ﬁﬁﬁ?ﬂﬁﬁ?ﬂﬂ'fﬂ? e

’Q WA AT HAIRARAN ) Btk

Let N denote the path in G2 with y, and ¥, as end vertices as defined in (*)

(of Case (2.1)).
Suppose k = 1. Then let P(u,v) be the Hamilton path obtained from M by

an

replacing z; with x1N.

Suppose k > 1.
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If k is odd, let M; (respectively M,) denote the subpath of M from xz; to
z1 (respectively Py, to z;). Since y, P, o is a path in G?, we see that M; N M,
(where x, P, is replaced by y,P,,) is a suitable Hamilton path P(u,v) in G*.

If k is even, let M (respectively Ms) denote the subpath of M from zj to P,
(respectively x1 to z;). Since z2P,,yo is a path in G2, we see that M, N M, (where
P,z is replaced by P, ys) is a suitable Hamilton path P(u,v) in G2

The case where u or v lies on some peudent set A,, or A, can be easily reduced

to the above cases. O]

3.3 O(m,n,r)

|
In this section, we®btain a lemima which is a necessary condition for the graph
©(m,n,r) to have pan€onuected squares Then a necessary and sufficient condition

\ #

for ©(m, n,r) to have pangonnected sqtl':;igr'e is determined.

We first give a well-known fact which is a necessary condition for the existence

)
of a Hamilton path in a gwaph. Jﬂ Y

Theorem 3.6. ([15]) Suppesea graph @ has @ Hamilton path. Then the deletion

of any s vertices frofn sl result in G with_at man-;_s%— 1 components.

Let A be a subset of the vertex set of a graph & and let G[A] denote the
subgraph of G inducedtbysthe set A.

Lemma 3.7. Let G denote the graph ©(m,n,r) where 2 < m < n,r. Suppose G
has no-westex of degree 2+ FhenG? risy mot panconpected; unless m, = 2 and G has

a t-vertex such that its pendent set 1s empty.

Proof. We shall show that there is no Hamilton path in G? having x; and z,, as
end vertices unless m = 2 and G has a t-vertex such that its pendent set is empty.
First, assume that there is no t-vertex such that its pendent set is empty in G.
Let H denote the graph obtained from G? by deleting the vertices x; and z,,

together with all edges incident to them.
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Let S ={xa, ..., Tm_1,Y2,- - Yn—1,22,--,2r—1}- LThen |S| =m+n+r—6and
H —S has m+n+r—4 components, H[A,,], H[A, |, H[A,,] wherei=1,2,... ,m,
j=2,....,n—1land k=2,...,r — 1. This implies that H has no Hamilton path
and hence G2 has no Hamilton path with 2; and x,, as end vertices unless A, =09
or A, =

Now, assume that A,, = @ and m > 3. Suppose there is a Hamilton path

P(xy,2,,) in G? having z; and , tices. Then, without loss of generality,

we may assume that P(x. a subpath of the form

M1 = $1Px2$2Px3ZE3 —

M2 = $1Px2$3x2W /i

M3 = xlx?yngxQPz 1 i

to cover the rest of thel vertices of € sebices in P, are not adjacent

to those in P,, and vice Versa) O

o oﬂu%aywc&m@wmme s 1)

have panconneued square.

Theorth 45 5 ADINNRIINYIA Y

(i) Suppose m =2 and n,r > 3. Then G? is panconnected if and only if G has
a vertex w such that A, is an empty set.
(i) Suppose m,n,r > 3. Then G* is panconnected if and only if G has a vertex

of degree 2.

Proof. The necessary part has been established in Lemma 3.7. We now prove the

sufficiency.
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(i) Suppose m = 2. Let H be the graph obtained from G by deleting the edge
21Tp. Then H is an SF graph. Since G has a vertex w such that A, is an empty
set, we see that H is a broken SF graph and H? is panconnected by Theorem 3.4.
Consequently, G? is also panconnected.

(ii) Suppose m,n,r > 3. Let u and v be two vertices in G. We shall show

that there is a Hamilton path P(u,v) in G? having v and v as end vertices. We

W/’ U P, (since the other cases can be
reduced to this case). /

Recall that z and %? corlmon-mn G where all the end vertices
of the three paths P,,, - :

can just assume that u and v a

and P,, whose unio
W. There is no loss of in W and v is in P,.

By Theorem 3.4, there i il ‘ ) in W? with u and z as end

If k =r — 1, thew let P s e R N
Ifk<r—1, 1etm" 1

Ly =2 P,,2P, 23 - - Zk o, 21 P, Zk+1 and Lz P, k2P 2k

Also, let ﬁ?ﬂ gﬂeweglmﬁ Wkﬂwﬂ'l ﬂ?rs all the vertices in

G — W) with end vertices  and v

q RGATRUATINH G

or

Llpzk+2zk+3 ot ZT—2P2T71Z7'—1PZ7‘72Z7"—3 e L2

depending on whether k£ and r have the same or different parity.
We can then take P;(u,z)Ps(x,v) to be a suitable Hamilton path P(u,v).
Case (2): w and v are on the same path of G.

Suppose u and v are on the path P, say u = 2, and v = z.
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Consider the case 2 < k < <r — 1 first.
Case (2.1): P, has no vertezx of degree 2.
Let Py (y,v) denote the subpath z,.P, ,z,_1P, ,---z_1P, 2. Further,let L; =

26 Py 22 Py s 2kpa and Ly = zp1 Py 2p 1 Py 250 Pyy - 20 P 21

k+3

Now let Py(u,x) denote the subpath

V?I 1 21 o Rl— 3Pz "L2

Ly--- Zl—4Pz,_3Zl 2

or the subpath

Let W be the subg 4 : ele ng all vertice of P, — {z,y}
together with their pend 0 n F graph (because P, has
no vertex of degree 2). \' path Ps(21, z,) in W? with
z1 and z, as end vertices. (y,v) = P(u,v) is a suitable
Hamilton path in G2. :

Case (2.2): P, has some veiticcs

Suppose A,, = @ with-i-{t] :

(i) Suppose 1 < 4 Iy , _1%2zr_2 - P, 21 Pz and

Ll — Zk—i—lp Zk— 1sz 12#—2Pz o Pzz_‘_lzgzl 1 RZi— 1Pz o P

Further lﬂﬁﬂﬂhww SN E ’] ﬂ P
qwﬁ Y3l iR TEia Y

or the path
Py 2hre P21 3P oz Py 2 9P sz g Ly

depending on whether k£ and [ have the same or different parity.

In the event that & = [ — 1, M, reduces to 2P, 2,1 P, -+ Ps,

zi_1”i—1

P.

2Py
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Then we see that G — (M; U Ms) = W is a broken SF' graph. By Theorem
3.4, W? has a Hamilton path P3(21, z.) with z; and z, as end vertices. As such
My Ps(21, 2,) M is a suitable Hamilton path P(u,v).

(ii) Suppose i = k. Then let My = P,,29P,,23 - - 2,1 P, _, 2 and

Ll = Zl—3le_2zl—IleZl+1le+1 Zl+2Pz e Zr—lpz,«_l

142

Further let Ms denote the following path

‘ l,#/,/)ﬁ 243 Po 2ys - L

zk+3 Zgta Ly

ZlP

Zl—1

ZlPlezly )

depending on whethe

Zl—2PZl_3 =

or

~ nt parity.

In the event that Tedu . l ,.,,\ P, zaP, .
Then G — (M; U My) = g taph. By Theorem 3.4, W has a

.‘ ices. As such MsPs(z,, z1) M,

ry t?"!"'

(iii) Suppose 2 < k < i < l's#—1. 1
LTINS I,

Ly = z,_ 3Pz e Tl 2 e ZPZ 12i+1pzi+22i+2. AISO, let
M, denote the folld I VT I— v

ZkPZk—1z§—2PZk_3zk—4 e Z5Pz423PZ2ngiz4Pz5 e Ll

- AUYINININYINT

szk_lzk—2sz_32k‘4 ce PZ524Pﬁ2PZ2Z3PZ4Z5 : 'dl

w AR AN TDUUVNTNEN N E

Now if [ and r are of the same parity, then let

Ly = Pzr_lz'r‘—QPZT-_ng—él to Zl+2Pz <l and L3 = Zl—2le_1Zl—1leZl+1 T Zr—lpzr

1+1

otherwise let
Ly=P,z 1P, 14+1
Finally, let Pi(zx) = M;--- Ls. Then we see that G — (Py(2x) U Ly) = W is
a broken SF graph. So, by Theorem 3.4, W? has a Hamilton path P(z,, z) with

voZr—3 22y and Ly = 21 0P, 2 Pz 2P
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z and z as end vertices , where z is a vertex in W and z is adjacent to z.. In
this case, Py(zx)P(z, z) Ly or Pi(z;)P (2., z) Ly (depending on whether [ and r are
of the same or different parity) is a suitable Hamilton path P(u,v) (because z is
adjacent to a vertex of P, and z, is adjacent to a vertex of P, ).

We now consider the remaining case where k =1 or [ =r.

Suppose l = rand k > 2. Let Py(zx) and P(z, z,.) be as defined in Case(2.2)(iii).

X

1
1l
i¥ |

AULINENINYINT
AN TUNM NN Y



CHAPTER IV
GRAPHS WITH CYCLOMATIC NUMBER THREE
HAVING
PANCONNECTED SQUARE

In this chapter, we present. 8 faniilies of graphs denoted Fi, Fs, ..., Fg each
with cyclomatic number ghaying no internal cut-edges. It turns out that these are
the only such families ofgraphs whose square could be panconnected (see Proposi-
tion 4.1). Furthermore sve defing three l-al-i'"ger families of graphs G(mq, mo, ..., m,),
H(r,s,t) and ©(my, mo 4. . 1y )which éontain Fi,F> and F5 respectively as sub-
families. We then determine mecessary and sufiicient conditions for each of these
larger families of graphs to have panconnected square.

4.1 A necessary condition

Figure 4.1 depicts a list of 8 graphs each with eyclomatic number 3 having no

internal cut-edge.

Figure 4.1: A list of 8 graphs with cyclomatic number 3.
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It is routine to check that these are the only smallest simple graphs with
cyclomatic number 3 having neither internal cut-edges nor vertices of degree 1.
To each of these graphs we do the following operations:

(i) Subdivide any edge an arbitrary number of times. This is equivalent to
replacing any edge by a path of arbitrary length. This operation yields many
graphs with cyclomatic number 3.

(ii) To each resulting graph G obtained in (i), and to each vertex v of G we
join a new set of independent vertices “A; that is the pendent set of v, (which
may be empty). .t

Let C3 be the set of allgraphs obtained by performing the operations (i) and
(ii) above to every graphein Figure 4]1

We now obtain a neéesgary condition for graphs with cyclomatic number 3

- =t

whose square is panconnected. = \ &
: ), 4

Proposition 4.1. Suppese G is a gmp‘-fz:-‘méth c(G) = 3. If G? is panconnected,

. #_-
then G € Cs. == .
S 7

Proof. Clearly a graph has cyclomatic nﬁ?ﬁ@r_O if and only if it is a tree. Hence

graphs with cycloma’"_i,ic number 1 are those that are i%btained from the trees by

adding a new edge;'\'ﬁjhich are unicyclic graphs. Likewiéé, graphs with cyclomatic
number 2 are those tlat are obtained from unicyclic graphs by adding a new edge.

Since ¢(G)=&=p3y Gris~obtained fromaggraphy with-cyclomatic number 2 by
adding a new edge t0 two non-adjacent vertices. Since G? is panconnected, G
has no-internal.cut-edge-by. Theorem 3.1..If-we-delete all vertices,of degree 1 and
then contract those edges that ‘are incident to vertices'of degree 2+n the resulting
graph until we get a graph A with neither multiple edges nor loops, then 4 must
be one of those graphs shown in Figure 4.1. This shows that G € Cs. ]

For each 1 = 1,2,...,8, let F; denote the set of all graphs obtained from the
graph X; (in Figure 4.1) by applying the operations (i) and (ii) described above.
Then clearly, C3 = U}_, F;.
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We focus our attention on 3 families F;, F5 and F5 of graphs. We determine
necessary and sufficient conditions for these families of graphs to have pancon-

nected square.

4.2 G(ml,mg,...,mr)

Suppose r > 2. Let G(m;), G( +) be SF graphs. For each i = 1,

2,...,r, let z; be a c-verte 1,Ma, ..., m,) denote the graph

obtained by identifying , Zr into a single vertex x. We
call G(my,mg,...,m e graph G(mq,ma,...,m,)
is said to be broken i xists a vertex z in G(m;)
where z # x and A

Note that each of C mT ) of a broken G/(my, mo,
Figure 4.2(a) shows & " é} Figure 4.2(b) shows G(4,4,4,4,4) which is

broken.

amammumawmaﬂ

Figure 4.2: (a) G(3,3,4) and (b) G(4,4,4,4,4)

Clearly, F; is the set of all bouquet of 3 SF' graphs. Bouquet of 2 SF' graphs
having panconnected square are completely characterized in Theorem 3.5.

The following proposition will be needed for the necessary part of the proof of
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main results (Theorems 4.5 and 4.6).

Proposition 4.2. Let G(m) denote an SF graph with cycle x1xs ... x,x1. Let
H, and Hy be two graphs with |V (Hy)| > 2 and |V (Hs)| > 2. Let G be a graph
obtained by

(i) identifying any vertex of Hy with the vertex x; and

:1:] for some 2 < j <m of G(m).
// panconnected.

se order if necessary), we may

(i) identifying any vertex of Hy
If A,, # @, for every i & {1, j

Proof. Since we can r%ﬁr

assume without loss o
We shall show tha
vertices. Let () be the ‘ i = by de eting x; and x,,.

Let 1 denote th

g m— 2 vertices To, T3, ...,

ely Ql[Aacz]v ce an[Azj_1]7
A, UHy) —xq]. Thus @y has

Tm—1. Then there are

Ql[(Amj U H2) - xj]? Ql

no Hamilton path and h path having x; and x,, as end

vertices. O

: lenote the set of vertices

adjacent to z in G. D
The next 2 lemmas,'wg be needed fo e sufficient part of the proof of main

s e HAN TS WS
i} P RRED b1V lte [E IR N

in G2 - ({xl} U A,,) having x) and x,, as end vertices.

(ii) Suppose G(my, ma,...,m,) is a broken bouquet of v SF graphs. Let J,
denote the graph obtained from G(my, ma, ..., m,)* by deleting all the vertices in
{z} UA,. Suppose z € N(x)NV(G(m1)) and w € N(x) NV (G(m,)). Then there

is a Hamilton path P(z,w) in J, with z and w as end vertices.
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Proof. (i) Let L denote the following path
5Py, w3 Py vo Pryxy Py g OF 6P 24Py, xoPryvs Py, s

depending on whether k is odd or even.
If k > 2, then a suitable Hamilton path is given by

P _ P P P P P .. P
—1 [ m
Tplg, Tp—2-" " Tp—1 (thk-i-l T i1l Uil i1, ZmLTm

k+1 ’

If £ =2, then a suitable Ha & given by
xQPx2x3Px xl 1 z xm m

(ii) For each i = 1,,7 Zi *nd

@ertices in N(x) NV (G(m,)).
From (i) (with k = 2), w eisa. i )2 —

({x}UA,) with z; and

P.(z.,w,) where z; = = Eat U Sui _ﬂton path in J,. O

Lemma 4.4. Let G( ' bf "1'? ‘g"F raph with cycle r1xs ... 1. Sup-

For each k € W, let Hy denote: 3 ollowing properties:
i“"‘
(z) H, contains vertices Up L 7 at ug s adjacent to both vy and wy.

— r" ;

"".—'

Am,c and then identifying
uy of Hy with xy foﬂjach ke or any tu@ vertices u and v in G(m),

there is a Hamilton paﬁmG having u @and v as end vertices.

VIO NEN

Proof. Since us a bro en graph for any two vertices u and v, there is a

Hmwrm ARTDRY WY (1015 ¢ —-—

(u,v) in G? with u and v as end vertices in the following way.

First, if & ¢ W, then any subpath of P(u,v) involving z; or A,, in G(m)?* i
taken to be a subpath of P*(u,v) in G2.

Next, suppose k € W. Let Py(vg, wy) denote a Hamilton path in H —uy with
v, and wy, as end vertices. (i) If P(u,v) contains a subpath of the form z;P,, xy

for some j € {k—1,k+ 1}, then in G?, we take x; Py (vy, wy)zy to be a subpath of
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P*(u,v). (ii) If P(u,v) contains a subpath of the form xj_1 P, .1, then in G

we take xj_1 Py (vg, wg)Tpr1 to be a subpath of P*(u,v). O

We now obtain a necessary and sufficient condition for the graph G(my, mso,

..,m,) to have panconnected square.

Theorem 4.5. Suppose r > 2. Let G denote the graph G(my,ms,...,m.). Then

G? is panconnected if and only if G s broken.

Proof. To prove the necessity, suppose Someé SF' graph, say G(m,) of G is not
broken. If we take H; tosbethe graph@ (nmiysweesmy 1) and Hs to be the subgraph
of G(m,) induced by some.eVerfex and its pendent set. Then the resulting graph
as constructed in Proposition 4.2 is iépmorphic to the graph GG. By Proposition
4.2, G? is not panconnegted. Y

Next, we shall prove ghe suﬂi_ciéncyﬁm_induction on r.

For r = 2, G is the graph G(m1, mz‘;" .Si'nce (1 is broken, by Theorem 3.5, G?
is panconnected. i d '}_‘

Let » > 3 and assume that t'lze resul@i&g{ds for any broken bouquet of k& SF
graphs for k < r. Let G be the-graph G(ZT‘LjJTLQ, ..., m,) which is broken and let

u and v be two Verti‘l(_é"'_es in . We shall show that thereé;is"a Hamilton path P(u,v)

in G2 with u and v asend vertices.

For eachi € {1,2,7..,m}, let B; denote the graph obtained from G(my, mo, ...,
m,.) by deleting all tlie vertices i G/ )-exceptrthosedn £z} U A,. Then B; is a
bouquet of r -1 SF graphs.

Supposestisand-y aresongdifferenty S E graphs,of, G'.

Without loss of generality, assunie that « is in G(m7) and v'is'th G(m,). Since
B, is the graph G(my, ms, ..., m,_1) which is broken, by the induction hypothesis,
B? is panconnected. So there is a Hamilton path Pj(u,z) in B? with v and z as
end vertices. Since G is broken, G(m,) is also broken. By Theorem 3.4, G(m,)?
is panconnected. So there is a Hamilton path Py(z,v) in G(m,)? with x and v as

end vertices. Then P;(u,z)Ps(x,v) is a suitable Hamilton path P(u,v).

Hence we assume that u and v are both on the same SF' graph of G.
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Without loss of generality, assume that v and v are both in G(m,.) whose cycle
is v129 ... Ty, x1. Suppose x = x; and A,, = @ for some 2 < i < m,.

Recall that B, is the graph G(my, ms,...,m,_1). Now if we take z € N(x) N
V(G(my)) and w € N(z) N V(G(m,—_1)). Then, by Lemma 4.3(ii), there is a
Hamilton path in B? — ({x} U A,) having z and w as end vertices.

By Lemma 4.4, there is a Hamilton path in G? having u and v as end vertices.

This completes the proof. ]

4.3 H(r,s,t) .4

Suppose r, s and Lare integers such that . 5> 1'and ¢ > 3. Let G(t) be an SF
graph with cycle 228" 2%, JLet H (rl S5 t) denote any graph obtained from G(t)
by identifying a c-vertex ofeagh of the r—SF graphs G(m,), G(ma), ..., G(m,) with
7 and identifying a c-yertex of each of"the s SE graphs G(ny),G(n2),...,G(ng)
with z,, where 2 < m £ & 'AS such,"{the graph H(r,s,t) contains r + s + 1
SF graphs G(m1),...,G(m,), G’(n]), = fG( ) and G(t) as subgraphs. If each of
these SF' graphs has a Vertex of deglee ﬁe say that H(r,s,t) is broken.

Clearly, F is the set of all ‘the graphs H(l, 1,1).

Let G4 (respect&velv (i3) denote the subgraph of H(J“ s,t) induced by G(my),
G(ms),...,G(m,) (respectively G(n,),G(ns),...,G(ns)). Then G is the graph
G(my,ma, ..., m,) and'Ggis the graph G{ai, no, ..., ny). Further G; UG(t) is the
graph G(mq,ma, i, ., t) and Go U G(6) is the graph G(my, na, ..., ng, t).

In Figure 4.3, (a) shows H(1¢1,3) with the subgraphs Gyrand Gy and (b)
shows ‘& broken | Hy(1,2, 4) with the subgraphs GGy and Gs.

Figure 4.3: (a) H(1,1,3) and (b) H(1,2,4)
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We now obtain a necessary and sufficient condition for the graph H(r, s, t) to

have panconnected square.

Theorem 4.6. Let G denote the graph H(r,s,t). Then G? is panconnected if and

only if G is broken.

Proof. Suppose G is not broken. We shall show that G? is not panconnected by
using Proposition 4.2. Let J be an SA subgraph of G which is not broken. If J is
some subgraph of the type G(m;) or G{ns), ¢ take Hy to be the subgraph of .J
induced by some c-vertex.and.its pendent setyand H, to be the subgraph induced
by the the rest of the ST subgraphs of G. If Jis the SF subgraph G(t), then we
take H; to be the subg}"aph G of G’i'?nd H> to be the subgraph Gy of G. This

proves the necessity. 2448

r

Next, we prove the suﬁiciengy._ W? shall show that, for any two vertices u
and v in G, there is adamilton pafh PJQu, v) i G* with u and v as end vertices.
Throughout, assume that z; 1saiverte.x}gf degree 2 where 2 < i < m (since
otherwise we can relabel the sertices of fhé-ig’ycle in G(t) in reverse order).

Case (1): u,v € V(Gy) for-some i € ﬁ,g}__

We may just assﬁime that u, v € V(Gy). —j;

(i) Suppose u EJ{/’(G(ml)), v € V(G(mg)) and u,'ﬁJ # z1. By Theorem 3.4,
there is a Hamilton path Pj(u, z1) in G(my)? with wand z; as end vertices.

Let @, dendteytheysubgraph of |G induced by Glmg)y <, G(m,.) if r > 3. Let
wy € N(z1) NV(G(m3)) and we € N(z1) M V(G(m,.)). Then by Lemma 4.3, there
is a Hamilten pathePofsswa) in Q2 o ({21} e Az, ) awith, w-and. g, as end vertices.
If r # 3, then Py(wi,ws) is an empty path.

We can assume that the cycle yiys...y,y1 in G(mg) is such that y; = =z,
U=y, Ay, =S with 2 <k <i<n.

Suppose 2 < k < i < n. By Theorem 4.5, there is a Hamilton path Ps(z1, 2;)
in (G(t)UG3)? from 2 to z;. By Lemma 4.3(i), there is a Hamilton path Py(ys, yn)

in G(ma)* — ({11} U Ay,) from yx to yy,.
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Then P(u,v) = Pi(u, z1)Ps(21, 2t) Pa(wq, wa) Py(yn, v) is a suitable Hamilton
path in G2

Suppose 2 < k =i < n. Let P3(z1, 23) denote the following path

21 P, y3 Py - Ye—a Py, s Uk—2Ly  yk—1Py, U3+ Pyyazo

or

ZIPy2y3Py4 Yk Py3y222
depending on whether ki
Let Py(Yn, yx) dengtesbhe pat  Yr+1Py, . Y- In the event

(U G2)* = ({21} U AL).
a Hamilton path Ps(z, z,,)

Ps(z2, 2t) = 22, oy »
Then P(u,v) = P(ug2)Ps . 2 (w1, we) Py(yn,v) is a suitable
Hamilton path in G2.

for some vertex w EE( : 4 there-@ a Hamilton path Q(z2, w)
in H? — ({21} U A,,) withezs and w as end.vertices. Then by Lemma 4.4, we have

o amivon ot bl hiahol b B 9k T 3

To see this q|le1: 2z € N(2,,) NV (Gs). Then by.Theorem 4.5, fhere is a Hamilton

parh Al AL Tl i kel e ) 6 B

P2(z§, 2) = 20P.y - 2Py 2Py o P21 Pi(2, 2m) Peyy o 2mt o P2
If r =1, then take w = z; and Q(z2, w) = Pa(29, 2).
If r > 2, let H; denote the subgraph of G induced by G(ms),...,G(m,). Also,
let wy; € V(G(my)),w € V(G(m,)). Then by Lemma 4.3(ii), there is a Hamilton
path P3(wi,w) in H? — ({21} U A,,) with w; and w as end vertices. As such,

Py(29, z;) P3(wy, w) is a suitable Hamilton path Q(zz, w).
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Case (2): u,v € V(G(t)).

By Lemma 4.3, we can find two vertices uy,us € N(z1) N V(Gy) such that
there is a Hamilton path in G2 — ({21} U A,,) having u; and uy as end vertices.
Likewise, we can find two vertices vy, vy € N(zp,) N V(G2) such that there is a
Hamilton path in G% — ({2,,} U A.,,) having v; and v, as end vertices.

Since the subgraph G(t) has a vertex of degree 2, by Lemma 4.4, G* has a
Hamilton path having v and v as end vertices.

Case (3): u e V(Gy), we V(Gy) UVAGHE) Jwand {u, v} # {21, 2m} -

Suppose u # z;. By«@ase (1), wescan assume-that v # z;. As such there is a
Hamilton path Py (u, 21) @ tith o and 2, as end vertices by Theorem 4.5 (or
Theorem 3.4 dependingen thevalue I}f 7). Also, by Theorem 4.5 again, there is
a Hamilton path P(z,0) in (G(#) U GQ)Q with 2 and v as end vertices. Then
P(u,v) = Pi(u, z1)Ps(z 0) 1§ a sultable Hamilton path in G2.

Hence assume that'u = zy. By Case (2) we may assume that v € V(G2) and
v # Zy. By Theorem 4.5, there s a Hﬁmﬂton path Pi(u,z,) in (G(t) U G)?
with « and z,, as end vertices. ]}y Theﬁm‘élf) (or Theorem 3.4 depending on
the value of r), there is a_Hamilton pat’f;'ﬂg{zm, v) in G2 with z, and v as end

vertices. Then P(u eaj;&ﬁg%jﬂg@%mmMable Hamilton path in G

The proof is complete - ]

4.4 O(mishty,. 0.1, M)

Suppose r > 3 is an integer® Let 6, be asmultigraph with 2 vertices, say
x and™y, together with r multiplecedges. ‘Suppose m; >12 is an integer for
each i = 1,2,...,r. Let 8(my,ms,...,m,) denote the graph obtained by re-
placing the edges of 6, with paths P, Py, - - -y Pm, 00 My, ma, ..., m, vertices
respectively. Note that if m; = 2, then we require that mgy,ms,...,m, > 3.
Let ©(my, ma,...,m,) denote any graph obtained by joining each vertex v of
O(myi, mo,...,m,) to a new set of independent vertices A,. That is, A, is the

pendent set of v. We call ©(my, ma,...,m,) an r-stripe cactus graph.
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©(2,3,3,4) is depicted in Figure 4.4(a) and ©(3,4, 4,5, 5) is depicted in Figure
4.4(Db).

Let H be any graph with |V Iﬁ:f

G denote any gra Elobtamed from @(m,ﬂ‘ ﬁ dentifying x with u and
y with v respectwiW
I ﬂ

Proof. We shall show hat there is no Hamﬂton pathin G? having x and y as end

vertices. SupF1 urg\qama% Wﬁhﬂ EJMTTTT path P(z,y) in G?

with = and y agjend vertice

AR TN gAY

We may assume that G is connected (otherwise G? is clearly not pancon-

nected). As such H has at most two components. Further, if H has two compo-
nents H; and H,, we may assume without loss of generality that u is in H; and v
is in H,.

Then we assert that J = G®—{z, y}, has no Hamilton path and this contradicts

the assumption that P(x,y) is a Hamilton path in G? with x and y as end vertices.
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To see this, let S = {za, ..., Tm_1,%2, -+, Yn_1,22,---,2r—1}. Then |S| =m+n+
r —6 and J — S has at least m +n 4 r — 4 components, namely H; UA,, HyUA,,
JAz], J[Ay), J[A,] wherei=2,...,m—1,j=2,....,n—landk =2,...,7r—1.

Hence we assume that H is a connected graph. Further, we may assume that,
for some vertices wy and wy in H such that w; and ws are neighbors of v and v

respectively, there is a Hamilton path Pl(wl, wy) in H% — {u, v} with w; and wy as

Let
Ll = xm—lpmm_lxm— ] 9 = "Yn Yn— 1Yn— 2Pyn P y?Pyzv
L3 = Zr— lpz o xm—lpxm_la

Ls= y2Py2y3Py3 e
If ww ¢ E(H),

2 Zr—lpzrfl-

of generality that P(xz,y)

Mz = 2P, Py (w;

M, =zP i e
Vi

Ms = x Ly,

M6 = xw1L4, OI'

M7ﬁWﬂ°ﬂﬂW§WMﬂ‘§

If wv € E(H), then P(xz,y) mazy also begln with a subpath of the form
IR IBIAIRIMIANEEY 20

in addition to those given by M e

Since My, My, M5, Mg and My cannot be extended to cover the rest of the
vertices in G? (because vertices in a pendent set from one path are adjacent
neither to vertices from another path nor to vertices of the graph H — {u,v}), it
follows that P(z,y) must begin with Mj, My, M7, Mg or M.

If P(x,y) begins with Mj, then it must take the form MsL; for some i €
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{1,2,3}.

If P(x,y) begins with M}, then it must take the form M,L; or M, P, L; for some
i € {2,3}, or the form M, P, (ws,wy)L; or MyP;(wy, wy)P,L; for some j € {5,6}.

If P(z,y) begins with My, then it must take the form M;L; or M7;P,L; for
some ¢ € {1,2,3}.

If P(z,y) begins with Mg, then it must take the form AMgL; for some i €
{1,2,3} or the form MgP;(ws, wy)L; 0F MgP;(wy, w;)P,L; for some j € {4,5,6}.

If P(z,y) begins with My, then it musetake the form MygP,L; or MyL; for
some ¢ € {4,5,6}. v

Since all these paths_end with some pendent set, none of them can be ex-
tended to P(z,y) (for the same reaS(F)lj,n as has been explained for the case with

My, My, Ms, Mg or M) This/contradiction proves the proposition. O]

— =t
[}

We now obtain necegSary and "sufﬁciéntﬁconditions for the graph ©(my, mo, .. .,

m,) to have panconnected square: - i B

id )

A Sdia
Theorem 4.8. Let G' déenote the gmpl@.:_'_@{;ml,mg,...,mr) where r > 3 and
mi,Mao,..., M. > 3. Then_Q_Z,_ i panca?};_egte_d if and only if G has at most 2

f
|

paths without vertices of degree 2.

Proof. Suppose G has'_at least 3 paths without verticés of degree 2, say Py, P,
and P,,. Then these“‘-chree paths together with their =_1>)endent sets form the graph
©(mq, mg, mz) without vertices of degree 2. Lett H denote the graph obtained
from G by deleting all vertices of (P, U Py, U Pry) — {z, y} together with their

pendebt! sets. By Broposition 4:7, G? is not panconnected.

We shall establish the sufficiency by induction on r. For r = 3, G is the graph
©(mq,mg,m3). Since G has at most 2 paths without vertices of degree 2, by
Theorem 3.8 (ii), ©(my, mg, m3)? is panconnected.

Hence we assume that r > 4. Suppose the theorem is true for any k-stripe
cactus graph which has at most 2 paths without vertices of degree 2 for k£ < r.

Let G be the graph ©(m;, ma, ..., m,) which has at most 2 paths without vertices
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of degree 2 and let u and v be two vertices in G. We shall show that there is a
Hamilton path P(u,v) in G* with u and v as end vertices. We may assume that
neither u nor v is of degree 1.

Case (1): uw and v are on different paths of G.

Without loss of generality, we may assume that u is in P,,, = x125. .. 2, and

v isin Py, .

Suppose u = x, for some 2 1. Let H denote the graph obtained

from G by deleting all th .y} together with their pendent

sets. Then H is the gra p mﬁhas at most 2 paths without
p i # is panconnected. So there

vertices of degree 2. By

is a Hamilton path P;
Iftk=m,—1,let
Ifk<m,—1,1

the following path

xkpmk+1xk+2pmk+

or

xkpzkﬂka

|
depending on whether k: and m, are of the same or Q different parity.

Then P( uﬁ} %j@w erﬁ path. Notice that if
hen Jgu z)P

P, contains awertex of degree 2, x,v) is stlll a su1table Hamilton

ﬂﬁﬁ%ﬁ% NRANYAY

Without loss of generality, we may assume that v and v are on P,,,, = x122... 2T,
Let H denote the graph obtained from G by deleting all the vertices of P, —

{z,y} together with their pendent sets. Then H is the graph ©(mq, mo,...,m,_1)

which has at most 2 paths without vertices of degree 2. By the induction hypoth-

esis, H? is panconnected, and so there is a Hamilton path P;(x,y) in H? with z

and y as end vertices.
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Suppose u = x;, and v = x; where 1 < k <l < m,.

Assume first that 2 < k <1 <m, — 1.

Let Py(u,x) denote the path zy Py, 21 Py, -+ T2 Py, .

Ifk<l—1,1et L=yP,, Tm 1P, Tm 2 i1 P11 1Py 13 Also,
let P3(y,v) denote the following path

L ap43P,

k+2

or

W2ka+3 w1y
7Z,

oy 41% T2 Py, 1

depending on whethe - \ u\ [ different parity.
', H . xmr—lpxm —olm,—2" " Pa:lxl-

suitable Hamilton path.

1‘\ asek—landl<mr—11f

P,

Notice that this Ha

we take Py(u,z) = u.

in reverse order, we see that the
|

2 and [ = m,.

By changing the labels
above Hamilton path also co

It remains onlyto conside e o wse k' = .

Suppose Py, 70‘*‘1"—_ :-j each having a vertex of

degree 2. .m

Suppose i € {1,2,. rrS 2}. Let Py, 5 Wi Wi . .. Wiy, Where w; ; is a vertex

. ﬂﬂﬂf?ﬂﬂﬂﬁwmﬂ‘i

P,(m;) = w; ml_lel i1 Wiimi—2Puw 5 B ]+1w”Pw” Wig—1- - Py, w; o if
“SO@WQ AINIUNRIINYIAY

Pz(n%) = Wi Py, ,Wi 3Py Py Wi j Py Wigyr -+ Py Wiy i 4008
even.

Suppose P, ; = Y1Y2 - - Ym, , and Py, = 2129 ... 2y,

Let Ny = P,yaPpys -+ By, Ym, y-1-

Suppose 7 is odd. Let Ny = 20P,,23F,, - - - 2, 1P, _,. Then

P(’LL, U) = l'NlePl(ml)Pz(mg) e Pr_g(mr_Q)PzNgy
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is a suitable Hamilton path.

Suppose r is even. Let

N2 - Zmr—lpzmT_gzmr—B . P Z2Pz2z3P 425" zmr—4szT_3Zmr—2szT_1
if m, is odd and let

N2 = Zmr—lpzmr_gzmr—3 te Z5PZ423PZQZ2PZ3Z4 te Zmr—4szT_3Zmr—2szT_1

if m, is even.

Then

P(u,v) = 2Ny ) - _o(my_o)Noy

is a suitable Hamiltoy ' ‘ O

In the r-stripe cag

say that Py, is a long path

if and only if m; > 3.

Theorem 4.9. Let .,m,) where r > 3 and

my, Mo, ...,m. >3. T and only if G has at most 2 long

paths without vertices of

Proof. Suppose G h icegrof degree 2, say Ppy,, P,

and Pp,,. Then the ‘V_ this form the 13712, m3) having no vertices
of degree 2. Let H dgote e
of (Pimy U Py UPry) = E, y} together with their pendent sets. By Proposition

r, s ok @ Y B Y1 TWEITI D

On the otkﬂr hand, if G has at most 2 p&hs without V(ar}ices of degree 2,

e LR M%’%’Jhﬂ j=iR(2% 2

Theorent 4. 8, O(my, my, ..., m,)? is panconnected and this implies that G2 is also

d from mby deleting all the vertices

panconnected. O

The classification of the other five families of graphs having panconnected

square remains to be explored.
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