CHAPTER 11

THEORY

2.1 The significance of h

Human appreei ' _conduction 6f begins with the well-known
fact that something, a pi V Z ' eel cold to the touch while a
piece of wood, feel W ' \\ at metal conducts heat away
from the body faster & . ngs \~ ps that feel warm because of

their low thermal cond ity ares fid ‘_ : % 5, 4 ven cloth used by mankind for

!’ }*_J - Jd r
protection against external col —
£ .l;“;f ‘ fe.! Y.

fi é‘;‘ ;
For elecronﬂ (1o H e need to protect certain

semiconductor devices from damage jdue to overheating has led to the
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case, but there are many others where efficiency requires the transfer of heat. We
sometimes need high, sometimes low thermal conductivity. Often this will be
associated with a requirement of good mechanical strength. It will be clear that the
existence of data on thermal conductivity and related properties will never suffice to

meet the problems posed by technology. What is also needed is theoretical
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understanding which will use to predict the thermal conductivity of new materials.
In turn the testing of theories will challenge the experimenters to obtain new

standards of accuracy in measurement and prediction.

2.2 The definition of heat ¢« ,)tlon

To define the - K whould refer to the concept of

atomic and moleculs 7 “wviewed as the transfer of energy
from the more e  Jthe. \ es! e ¢ particles of a substance due to
interactions between t

The physical luction is most easily explained by
considering a gas. Consider-a gas | i Wi . exists a temperature gradient and
assume that there ; ‘no bulk motion. The ; f py the space between two

surfaces that are mgtcuned at different temperdturemds shown in Figure 2.1. We

associate thﬁ%ﬁn’}ﬂﬂxw ﬁ wmnﬁhe gas molecules in the

vicinity of the point. This energy is related t 0, the random trans slational motion, as

w8 e bkl Dbl AN L.

Moreover, higher temperatures are associated with higher molecular
energies, and when neighboring molecules collides, as they are constantly doing, a

transfer of energy from the more energetic to the less energetic molecules must



18

occur. In the presence of a temperature gradient, energy transfer by conduction
must then occur in the direction of decreasing temperature. This transfer is evident

from Figure 2.1.

Figure 2.1 fation of edt transfer with diffusion of

Y
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associdted with a higher temperature than those from below, in which case there

must be a net transfer of energy in the positive x direction. It may speak of the net

transfer of energy by random molecular motion as a diffusion of energy.
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The situation is much the same in liquids, although the molecules are
more closely spaced and the molecular interactions are stronger and more frequent.
Similarly, in a solid, conduction may be attributed to atomic activity in the form of

lattice vibrations. The modem view is to ascribe the energy transfer to lattice

waves induced by atomic motior :a nonconductor, the energy transfer is

@r it is also due to the transitional
a—d .

motion of the free elections=—We frea Want properties associated with

exclusnvely via these latti -...___;:,:_

conduction phenome

It is possible to processes in terms of appropriate rate

equations. These gquati bute the amount of energy being

transferred per uni ie trate equation is known as

Fourier's law. For mc one-dimensional plane wallaown in Figure 2.2, having a
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The heat flux q"y (W/m2) is the heat transfer rate in the x direction per
unit area perpendicular to the direction of transfer, and it is proportional to the

temperature gradient, dT/dx , in this direction. The proportionality constant k is a
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transport property known as the thermal conductivity (W/mK) and is a
characteristic of the material. The minus sign is a consequence of the fact that heat

is transferred in the direction of decreasing temperature.

sfer by conduction

Under th¢ steady ”'5'“ +'CONE shown in Figure 2.3, where the

temperature distriboi ' dient may be expressed as

]
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or q'x KTr-T))L = kATL
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steady-state longitudinal heat-flow

.

Note that this equatic ides 4 heat flu> that is, the rate of heat transfer

Figure 2.3

per unit area, The (W), through a plane wall of

area A is then the prod « = Aq'
therefore,
Fourier's -law_.i§’ phienomenolc is ~developed from observed
: L.TF Y] : .
phenomena rather-thia ples. Hence, we view the rate

equation as a genergzmon based on much expemﬂntdl evidence. For example,

consider thﬂ%g{e}%ﬁ ﬂe‘jeweﬂq THiglre 2.3 which shows

material hcwm end faces of different temperatures with Ty > Tp (AT). The
tempgtﬁ :l@iﬂ j m&m ’]dgrnﬂlﬂl‘apﬂnve x direction.
We are able to measure the heat transfer rate gy , and we seek to determine how gy
or Q depends‘ on the following variables : AT, the temperature difference; L or x,

the length; and A, the cross-sectional area.
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At normal temperature, k is independent of the shape and size of the
specimen measured, so that a unique value can be defined at any particular
temperature. However, for every non-metallic crystal of normal purity and
perfection there is some temperature below which the conductivity, as deduced

from normal measurements, is si

In general, the nductivity-o [ a solid is larger than that of a liquid,

which is larger than ' s ‘f‘ (ra \ _ re 2.4.
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Figure 2.4 Range of thermal conductivity for various states of matter at

normal temperature and pressure



2.4 The Measurement of Thermal Conductivity

In the simplest steady-state experimental arrangement, illustrated
schematically in Figure 2.3 heat is supplied at one end of the article of uniform

cross-sectional area A at a known or Q and is removed at the other end.

Thermometers are attac g the specimen separated by a

distance L, and the is measured. The thermal

conductivity is then
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2.5 al Conductivity of Materials
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consxderdnon Available technique may be divided into steady-state or transient
meth%ﬂt:lﬁq rrlicgu.\ %Jlmnj’arﬂﬂmzel at two different
positions. The accepted standard method of tester thermal conductivity of
insulation material utilizes the "guarded hot plate" principle. The analysis of
materials by guarded hot plate method has been successfully done for many

years. This method is quite accurate.
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Thermal conductivity of a homogeneous material is the rate of heat flow
under steady conditions, through unit area per unit temperature gradient in a
direction perpendicular to that area. The relationship can express by the above
equation. The method of establishing a fixed thermal difference across the

sample between two surfaces whose

sample is accomplished by placi

temperature is accurately

The cold / . \ ly. set and controlled by a

thermoelectric heat pu oportional controller. The hot

plate is also operated ~\,{ temperature. The heat flow

ow. transducer which produces an

through the sample is mie: &8 s “*heat
EMF that is proportional te, heat flowlper unit time and area through the
sample. ; / ' \
e o
2.6 Thermal cﬂlductlwty of two- phase aysm
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The conductxwty of 4« two-phashmatendl [25], depends on the
cOnd\aim:lﬁﬂrﬁlemumﬂ}g mﬂ ’f-xlaﬂ»ﬂnd geometry of
~ the filler material. In some cases the resistance in the interface between matrix
and filler may be of significant influence. However, such a material may be
considered to be a three-phase material with the interface as the third phase.

The following review of theories will not include interface phenomena.



A particularly simple case is when the filler phase consists of spheres,
fibres or rods arranged in the direction of conduction. The conductivity of such
materials is described by a parallel coupling of the resistance in the matrix and

the filler [15] :

In these equatighs P 1§ TESistiv 1d k is conductivity. The subscripts
e,c and d refer to the posite, - ma nd filler respectively. The volume

- fraction of filler materiali

(7

]
k i lﬁ’+kd(1¢)
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In thc case of a general gomposite mat aterial these mixture rules represent
the uﬁ n’]l@ ﬁlnjomum ’1’; m(EJe’]ra Ej: contrast of the

composite material is large, the mixture rules converge to the conductivities of

Geometric ﬂean Model :

the filler and matrix materials respectively. In this case the equations are useless

for the prediction of conductivity. The general case of a particulate filler of
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arbitrary size and shape is far more complex and no general theory has yet been

developed.

In this chapter are listed some theoretical, semi-empirical or empirical

Behrens Theoreti

The theoretic: vere bas \\ Id solution to the equation of
heat conduction for a ¢ 7 ! ‘;, 1 ort orhomblc symmetry. Solutions

were presented for elipti¢ filamer : j 1 rod lattice :

bj;) wherep = kg lke

U

Bf"gge"'a'ﬂ'%ﬂﬂ "I‘I‘ﬂ BINYINT
AN LMAANEIALL o

‘derived the following implicit equation for dilute suspensions of spheres in a

homogeneous medium :

1-¢ [ (kg-ke) / (kgke) 1 (ko/ke)'3
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Halpin-Tsai Theoretical Model [16]

For filaments of uniform cross-sectional area arranged in parallel, the

thermal conductivity parallel to the filaments was assumed to be :

ke
Using an equations and boundary
the transverse thermal

conditions to the

conductivity is :

AT

where »- y 7 il + ¢)
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and for circular or square fibers :
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Hamilton and Crosser Semi-Theoretical Model [17]

Hamilton and Crosser define the thermal conductivity of a two

component mixture as :

ke = kgl kg + hAREE Ln-1) ke + (ke - kg )]

| pr it
Il T
o w

whﬂ u{; ’}rsﬂ EJI%@:W b hfspherical particle Maxwell

showed anal txcally that n = enspherical pdlIu!leb Hamilton and

e DN HleNit
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where \ is the sphericity. The sphericity was defined as the ratio of the
surface area of a sphere, with a volume equal to that of the particle, to the

surface area of the particles.

Starting with an_glementary conduction. convection, and radiation heat
transfer analysis fe ‘\\ﬁ\\’r : Harding obtained a semi-

empirical relation.

ke=k cEs(1-0)+k go+(k pK,) 1 ‘; 24 'CrVg/¢[(Th+Tc+920)/ 100013
where Ej = ifehsiontess gy fact for heat conduction
\Z_ through I .*".

k m thermdl conduct1v1ty of d@

wf] 4 ¢ ARG Ao

geomettic ratio of surface ex d per unit foam
pesed p

aﬁwa\ﬂnmumqwmaﬂ

Vg = volume of gas in average cell
M = mean mole fraction of blowing agent in a cell
Cr = coefficient defining the rate of radiant energy transfer

through foam.



Leob Theoretical Model [16]

Leob derived a relationship for the effective thermal conductivity of

porous solid as a function of the cross-sectional and longitudinal pore fractions

and surface emissivity.

-

ke = kol 1-0 T TAGEOAT ke J(TRESRT ko (1 -/l

where :
| porosity
\ A,
DO Mty

ctor

_:"*73' stant
Tl J
= tcmperdture difference
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This model attempts tqcompensdte&)r radiation 1vhe direction parallel.

to hal mw. ﬁﬂ:ﬂrﬁmru m ;lg tm ﬂ\g ﬁd&' was incorporated

with a series-parallel analysis.
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Lewis and Nielsen Semi-Theoretical Model [18]

Lewis and Nielsen have presented a model for thermal conduction in
two-phase media by modifying the Halpin-Tsai equation to include the effect of

\ '\pdtlon or type of packing for a two- phdse

the shape of the particles and t

system. :
ke
m> 1
where B~ kq /ke +A)]
A geomse 1] pa cter reflecting the shape of
um packing fraction of the filler
The Lewis i troduction of the geometry-

dependent paramets A [19] This pdrameter takes-care of the fact that elongated

filler pd[‘thﬂ %ﬂ ﬁ}fﬂ Wﬂj W}H Qhﬂﬂ particles if the volume

ratio ¢ is cqual [20]. There is @& relation begecn the abpewatno of the particles
'cmd{ﬂlI m&alﬁdﬂ gegu um :I]:llmiglt;l angﬁl)t of a maximum
packing fraction of filler particles. The maximum packing fraction, ¢y, reflects
that it is impossible to load more filler material into the matrix than ¢p, valué.
Table 2.1 and 2.2 give some values of A and ¢p, for particles of different

shapes.



Table 2.1  Values for the shape parameter A in the Lewis and Nielsen semi-

theoretical model of conduction in composite system [21]

Type of dispersed phase Direction of heat flow A
Cubes Any 2.00
Spheres 1.50
Aggregated of spher 2.5/ ¢a )-1
Randomly orienteds6¢
. 1.58
Aspect ratio = 2 /
‘ .
Randomly oriented rods Al
L '%:is:_f 2.08
e
Aspect ratio = 4 P'?J_‘T-"
Randomly oriented rods
2.80
Aspect ratio =£ 7
Randomly oriente@ods
4.93
. ‘a Q/
Aspect ptig I 01 A BN D IONA S QAI O 1.
I ANEININE !i
Randomly oHented rod
andomly o epe rods ¢ Aﬂi"" j & B
ALRAANNIUNNTINY A E
9
Uniaxially oriented fibers Parallel to fibers 2L/D
Uniaxially oriented fibers Perpendicular to fibers 0.5




Table 2.2 Values for the maximum packing fraction in the Lewis and Nielsen

semi-theoretical model [21]

Particle Shape Type of Packing ¢m
Spheres \ 1 exagonal close 0.7405
Spheres | w- cubic 0.7405
Spheres % 0.6
Spheres 1 /// Aﬂ‘i\\ 0.524
Spheres / //? ,\&\\ 0.637

Rods or fibers / ‘ (i \ 0.907

Rods or fibers 0.785

Rods or fibers 0.82

Rods or fibe: _"F=m 0.52

ﬂ‘lJEJ’J‘VlEJﬂﬁWEJ’]ﬂi
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Maxwell Theoretical Model [21]

Maxwell used the potential theory to obtain an "exact" solution for the
conductivity of randomly distributed and non-interacting homogeneous spheres in

a homogeneous continuous medius

ke = kol Kk d -KewhtXg e “0(kd -k¢ )l
Norton Empirica

Norton's he following assumption. The

polymer matrix which etwork is so complex that it would

be impossible to_mode adiative energy transfer within the

foam. The therniald i'with a known gas content is

experimentally mémured Subtrdcng the theﬂal conductivity of the gas

assuming 1tﬂcﬂﬁxﬂs %%frﬁwﬂﬁ ﬂ vﬁffecuve conductivity of

the polymer gr that particular sgructure and enslty

ARIANN 3TN 111’1’1’37]8'151 d

k effpolymer = k measured - K gas

- The thermal conductivity of the foam with a different gas is then

assumed to be



35

k foam = K effpolymer * Kk gas

Peterson and Hermans Semi-Theoretical Model [16]

Progelhof and T one
y e

By curve fiff ng the expenmentdl data for several foamed plastics they

aigiifl T y WA
amam‘imm’l’lmmaﬂ

where A = k. /kq

and B is an empirical constant

T1e¥Aax89
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Ratcliffe Empirical Model [16]

He presents a geometric mean correlation for determination of thermal

conductivity of two-phase system as followed :

Springer and Tsai

The therm: y yposite with unidirectional filaments in

|
1

In the direction normal to the filament an % alogy between the response

e uiﬁaﬂ%gﬁ%&}w%wﬂﬂﬂ@dmg BT e
TAMAINITUANIINYAY
| ko = kg [( 1-spbyrab Jdy / Qaiyric, flg |



where s = maximum transverse dimension of filament, h = width of the
filament, and a,b = dimensions of elemental volume in which filament is

mounted.
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