การอนุพัทธ์ขั้นสูงและการอนุพัทธ์แบบจอร์แดนขั้นสูง

ของแกมมาริง

จุฬาลักษณ์ แก้วหวังสกูล : การอนุพัทธ์ขั้นสูงและการอนุพัทธ์แบบจอร์แดนขั้นสูงของแกม มาริง. (HIGHER DERIVATIONS AND JORDAN HIGHER DERIVATIONS OF Γ RINGS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ.ดร.ศจี เพียรสกุล, 66 หน้า.

ให้ M และ Γ เป็นกรุปสลับที่ภายใต้ารขวก ถ้ามีการส่ง . ซึ่งส่งจาก $M \times \Gamma \times M$ ไป ยัง M โดยแทน $a \cdot \gamma \cdot b$ ด้วย $a \gamma b$ โํ $\in \Gamma$ ซึ่งสอดคล้องสมบัติต่อไปนี้คือ สำหรับแต่ละ $a, b, c \in M$ และ $\Gamma_{i}(a)(i)(a+b) \gamma c=a \gamma c+b \gamma c$, $a(\gamma+\beta) c=a \gamma c+a \beta c$ และ g + $\quad b \quad a \quad \sim \circ$ ค M ว่า Γ-ริง กำหนดให้ M เป็น Γ สูง การอนุพัทธ์ขั้นสูงแบบจอร์ 11 M
 สนใจคือการหาเงื่อนไขที่เหมาะสมสำหร
(1) การอนุพัทธ์ขั้นสูง

(2) การอนุพัทธ์ขั้นสูงแบปอร์แดนแสะกเนนุกเบขนสูงของ ใi่ลของ Γ-ริงเป็นสิ่งเดียวกัน

ภาควิชา \qquad คณิตศาสตร์ \qquad สาขาวิชา \qquad คณิตศาสตร์ \qquad ปีการศึกษา. \qquad .2553 \qquad
\qquad
 แก้วหวังสาดด ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก.......gyeethmosley/p.
\#\#5272263123 : MAJOR MATHEMATICS
KEYWORDS : DERIVATION / JORDAN DERIVATION / HIGHER DERIVATION / JORDAN HIGHER DERIVATION / GENERALIZED HIGHER DERIVATION / JORDAN GENERALIZED HIGHER DERIVATION / Г-RINGS

JULALAK KAEWWANGSAKOON : HIGHER DERIVATIONS AND JORDAN HIGHER DERIVATICN) / INGS. ADVISOR : ASST. PROF. SAJEE PIANSKOOL, PL

Let M and Γ be ad ain \longrightarrow ro exists a map - sending $M \times \Gamma \times M$ into M, dentr \quad simply, $a \gamma b$ for all $a, b \in M$ and $\gamma \in \Gamma$, satisfying ure \quad, , , $a, b, c \in M$ and $\gamma, \beta \in \Gamma$, (i) $(a \gamma b) \beta c=a \gamma(b \beta, \quad(i) \quad$; $a \gamma(b+c)=a \gamma b+a \gamma$
 derivations, Jordan high A A derivations of U into M ar ger rivations, Jordan generalized higher derivations of M. Our r re finding appropriate conditions for a Γ-ring in order to o h

1. Jordan highei
a Γ-ring are the same,
2. Jordan higher derivations and higher derivations of an ideal of a Γ-ring

3. Jordan ge丹eralized higher derivations and generalized higher derivations จุหศคจงครณมมหาวิทยาลัย

Department :Mathematics...
Field of Study :Mathematics....

Advisor's Signaturejece...fomlyef.
\qquad 2010. \qquad

ACKNOWLEDGEMENTS

I am sincerely grateful to my advisor, Assistant Professor Dr. Sajee Pianskool for her consistent encouragement, invaluable comments and willingness to sacrifice her time to suggest and advice me throughout the completion of this thesis. Moreover, my thankfulnol/) Associate Professor Dr. Amorn Wasanawichit, the chairmar

Dr. Sureeporn Chaopraknoi and Assistant Professor + at Quvt \sim, the thesis commitee, for their suggestions and va

In particular, I wount $1 / \mathrm{r}$, 5 gratitude to the Development and Promotion financial support. my study.

CONTENTS

page
ABSTRACT (THAI) iv
ABSTRACT (ENGLISH) V
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION 1
II HIGHER DERIV IER DERIVATIONS OF Γ-RINGS 9
2.1 Essential Prop e 11 it er n. nd Jordan Higher Derivations of 1 9
2.2 Relationships wet 15
2.3 The Main Resul of IDotialationf ins 20
 40
3.1 Essential PDerivations o d40
3.2 The Main Result of JHDs and HDs of Ideals or Γ-Rings 42
 IZED HGGHER DERIVATIONS OF T-RINGS 54
 54 55
REFERENCES 65
VITA 66

CHAPTER I

INTRODUCTION

It is known that one of impor $)$ ic structures is a ring and there are many areas of researches re properties of rings have been investigated as well as pe ctu \longrightarrow so \longrightarrow ng with the corresponding properties. In 1957, I.N. 1 n the concept of derivations of rings. In fact, a derivatro $1 / 1$ d \rightarrow at a ring were defined. No

 $a, b \in R$. A Jordan deriv or of $\operatorname{mi} 2 \boldsymbol{2} R$ is a tive map $d: R \rightarrow R$ such
 a map $d: R \rightarrow R$ such that a 还 the addition.

One can see tha product of any a anc \sqrt{e}

5y at the value d of the uct of any a and b. A dally, a denvanon is a Jord derivation but not vice versa, see [5]. Naturally, hacuriosity thatewhen Jordan derivation is a deriva-
 characteristic different from 2 turnsout to be a derivation. Reaall that a ring R

Let us Give an obvious example of a derivation. Unsurprisingly, the zero map of any rings is, definitely, a derivation. The next example assures that a nonzero derivation of a given ring exists. Note that the familiar ring is the ring \mathbb{R} of real numbers.

Example 1. Let $S=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is differentiable $\}$. Define $d: S \rightarrow S$ by $d(f)=f^{\prime}$, the first derivative of f, for all $f \in S$. Clearly, d is a derivation of S.

Example 2. Let R be a nonzero ring and $a \in R$. Define $d: R \rightarrow R$ by $d(x)=$ $x a-a x$ for all $x \in R$. Then d is an additive map and $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. Thus d is a derivation of R.

Later, in 1988, M. Bresar [3] gav /)/rp point of view that a JD of a certain ring is also a derivation. $\mathrm{He}+1)$ "ondition " 2 -torsion free prime ring" can be replaced by " frese ring". A ring R is said to be 2-torsion free if $2 x=0$ in $\quad \mathrm{f}$ different from 2); mor rr \quad, 2 ,
 a Jordan triple derivatic J a $\quad R$, ditive map $d: R \rightarrow R$

 the result from Herstein th eachatainars free ring is a JTD (however, Herstein did not use the termini

Throughout this
M. Ferrero and C. F

gers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. ns of rings. Let $D=$ $\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ be a family of Iditive... $1 . \ldots$ where d_{0} is the identity map on R. Then D is a higher derivation (HD) of R if $d_{n}(a b)=\sum_{i+j=n} d_{i}(a) d_{j}(b)$ for all $a, b \in R$ คhq $\sum_{i+j=n} d_{i}(a) d_{j}(a)$ for all $a \in R$ and $n \in \mathbb{N}_{0}$ and a Jordan triple higher derivation
 example of a JHD which is not a HD was given by them. Then They proved that every JHD of a 2-torsion free ring is a JTHD and every JTHD of a 2-torsion free semiprime ring is a HD. That is every JHD of a 2-torsion free semiprime ring is a HD. Next, let us see an example of a HD.

Example 3. ([7]) Let R be a ring and $a \in R$. For $n \in \mathbb{N}_{0}$, define a map $d_{n}: R \rightarrow R$
by

$$
d_{n}(x)= \begin{cases}x, & \text { if } n=0 \\ (-1)^{n}\left(a^{n} x-a^{n-1} x a\right), & \text { if } n \neq 0\end{cases}
$$

for all $x \in R$. Thus the family $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ of additive maps is a higher derivation on R.

So far we have gathered some rech)rgarding that JDs of certain rings are derivations as well as JHDs studying analogous algeb uros is direction of doing research. It is the appropriate plar ent ings given by W.E. Barnes in [1]. For additive ar
 and $\gamma \in \Gamma$, satisfying th 0^{1}, $\mathrm{r}_{\text {cti }}^{\text {ti }} a, b, c \in M$ and $\gamma, \beta \in \Gamma$, Associative Law $(a \gamma b) \beta$.
 $a \gamma\left(b+{ }_{M} c\right)=a \gamma b+_{M} a \gamma c$,
then M is called a Γ-ring. Fromener M is a Γ-ring, both of the operations $+_{M}$ and $\frac{1}{0}$ will it should be clear from the context.

One can construct in -rimo
Example 4. Let $(R,+, \cdot)$ be a ring. Then R can be considered as a Γ-ring.
 Then, obviously, the map $d: M \times N \rightarrow M \rightarrow M$ defined by $(\mathcal{\sim}, b) \mapsto a \cdot \gamma \cdot b$
 when Γ is any additive subgroup of the group R.

On the other hand, a ring can be extracted from a given Γ-ring.
Example 5. Let M be a Γ-ring. Then M can be formed as a ring.
Solution. Note that $(M,+)$ is an abelian group. Fix $\gamma \in \Gamma$ and define a binary
operation \cdot on M by $a \cdot b=a \gamma b$ for any $a, b \in M$. Then (M, \cdot) is a semigroup and \cdot is distributive over + . Thus $(M,+, \cdot)$ is a ring.

The next example gives an idea that for a Γ-ring M, the abelian group Γ can be chosen from other abelian groups which is not a subgroup of the abelian group M.
Example 6. Let $(R,+, \cdot)$ be a ring $\left.\mathbf{v i l}^{1}\right)$ ntity and \mathbb{Z} be the set of all integers. Define a mapping from $R \times \mathbb{Z} \sim k, y) \mapsto x k y$ where $x k y=x(k y)$ for all $x, y \in R$ and $k \in \mathbb{Z}$, is $_{y^{\Gamma-1}} \Gamma=\mathbb{Z}$. Note here that for each $x, y \in R$ and $k \in \mathbb{Z}$

In particular, any
For each $m, n \in \mathbb{N}_{0, \ldots t}$ m Example 7. Let m, n $M_{n \times m}(R)$. It is known tr $\quad 1$ d Γ cizalia lia u_{1} under the usual addition of matrices. We define a a (the ususal multiplication C n properties of matrices.

The next two prod used in other chaptere

Proposition 8. Let $M \mathrm{l}$ a Γ-ring. Then

$$
\pm, x(k y)=(k x) y=k(x y) .
$$

$$
\begin{aligned}
a 0_{\Gamma} b & =a\left(0_{\Gamma}+0_{\Gamma}\right) b=a 0_{\Gamma} b+a 0_{\Gamma} b \\
a \gamma 0_{M} & =a \gamma\left(0_{M}+0_{M}\right)=a \gamma 0_{M}+a \gamma 0_{M} .
\end{aligned}
$$

and

The cancellation of the group M implies that

 center of a Γ-ring which will be referred later. A Γ-ring M is said to be commu-
 by $Z(M)$, $\&$ defined by $Z(M)=\{c \in M \mid c \gamma m=m \gamma c$ for all $m \in M$ and $\gamma \in \Gamma\}$.

In 1997, M. Sapanci and A. Nakajima [11] introduced a derivation and a Jordan derivation of a Γ-ring. For a Γ-ring M, an additive map of M is a map $d: M \rightarrow M$ such that $d(a+b)=d(a)+d(b)$ for all $a, b \in M$. An additive map $d: M \rightarrow M$ of a Γ-ring M is called a derivation of M if $d(a \alpha b)=d(a) \alpha b+a \alpha d(b)$
for all $a, b \in M$ and $\alpha \in \Gamma$ and a Jordan derivation (JD) of M if $d(a \alpha a)=d(a) \alpha a+$ $\operatorname{a\alpha d}(a)$ for all $a \in M$ and $\alpha \in \Gamma$. Notice that derivations and JDs of a Γ-ring are defined analogously to those of a ring. Moreover, derivations of a Γ-ring are JDs. They proved that JDs of particular Γ-rings are derivations. M. Soyturk [12] and M.A. Ozturk and Y.B. Jun [10] gave definitions of prime Γ-ring and semiprime Γ-ring, respectively, as follow: M is a prime Γ-ring if for any $a, b \in M$, $a \Gamma M \Gamma b=0$ implies that $a=0$ a $\quad \square$ is a semiprime Γ-ring if for any $a \in M, a \Gamma M \Gamma a=0 \mathrm{impli}=$ lear that a prime Γ-ring is a semiprime Γ-ring.

We give an example n^{+}erising from a derivation of a ring.
Example 10. Let R be a 19 2 Then R is a Γ-ring from F
for all $x, y \in R$ and $k \in \mathbb{Z}, \mathrm{i}$ llacis.
 of the Γ-ring R.

We observe that,
ied. While, derivations and JDs of Γ-rings have beer investigated. However,
 to those of rinos ideal of a Γ-ring. A right (left) ideal of a Γ-ring M is an additive subgroup U of M such that $U \Gamma M \subseteq U(M \Gamma U \subseteq U)$; moreover, if U is both a right and a left ideal of M, then U is called an ideal of M. Note that, for nonempty subsets A and B of a Γ-ring, the nonempty set $A \Gamma B$ is given by $A \Gamma B=\left\{\sum_{i=1}^{n} a_{i} \gamma_{i} b_{i} \mid n \in \mathbb{N}, a_{i} \in A\right.$,
$\gamma_{i} \in \Gamma, b_{i} \in B$ for all $\left.i\right\}$. This brought us to another objective of doing this research. In the same manner of the first aim, we give definitions of a HD and a JHD of an ideal of a Γ-ring and are interested in the analogous results of HDS and JHDs of an ideal of a ring proposed by C. Haetinger [8].

In 2004, Y. Ceven and M.A. Ozturk [4] introduced a generalized derivation and a Jordan generalized derivatia)/ -ring. For a Γ-ring M, an additive $\operatorname{map} f: M \rightarrow M$ is called $a \rightarrow$ ion (GD) of M if there exists a derivation $d: M \rightarrow M$ of at $\widehat{\langle }(x) \longrightarrow \quad, \quad y+x \gamma d(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$, a Jordan gen $d: M \rightarrow M$ of M sint $+\|=\sim=\sim$
 but not another way r \quad d $\quad \mathrm{p} \quad \underset{\mathrm{tl}}{\mathrm{tl}} \mathrm{S} \quad \mathrm{a} \Gamma$-ring satisfying some certain properties are G^{\top} res
 Γ-rings.

This thesis is separated into hapter I contains general definitions and results mainy lerfor the whole.

Chapter II pays tions of a Γ-ring. Som Jf then $r \ldots$ explo At the end, the main result stating that Jordanhigher derivations and higher derivations of specific T-ring are idef. .

Likewise Chapter II, higher deriyations and Jordan higher derivations of an
 in order tofobtain our aim which is the fact that Jordan higher derivations of an ideal of a specific Γ-ring are higher derivations.

Finally, we develop the notion of generalized derivations and Jordan generalized derivations to generalized higher derivations and Jordan generalized higher derivations, respectively, of a Γ-ring in Chaper IV. In the same fashion,
for a certain Γ-ring, its Jordan generalized higher derivations are generalized higher derivations along with other properties are given.

CHAPTER II

HIGHER DERIVATIONS AND JORDAN HIGHER DERIVATIONS OF Г-RINGS

Higher derivations and Jor
 of this thesis. Consequent rivenitions in the first section. Moreover, the major tool in the same section. Next $\begin{array}{ll}\text { section is focus on the r } & s \\ & \varepsilon-b) \\ \text { r }\end{array}$
 result is provided.

2.1 Essential Prope if, fontrax

Jordan Higher Deriv
We first provide de
 and a Jordan triple hiof

Definition 2.1.1. Let $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ be a family of additive mappings of a Γ-ring M (i.e., $d_{i}: M \rightarrow$ pqepeyef hop deltop ar wievngras the identity mapping. Then D is aid to be a higher derivation (HD) of M if
วจุหาลงมลณ์มหาวิทยยาลัย
a Jordan higher derivation (JHD) of M if

$$
d_{n}(a \gamma a)=\sum_{i+j=n} d_{i}(a) \gamma d_{j}(a) \quad \text { for all } a \in M, \gamma \in \Gamma \text { and } n \in \mathbb{N}_{0}
$$

and a Jordan triple higher derivation (JTHD) of M if

$$
d_{n}(a \gamma b \beta a)=\sum_{i+j+k=n} d_{i}(a) \gamma d_{j}(b) \beta d_{k}(a) \quad \text { for all } a, b \in M, \gamma, \beta \in \Gamma \text { and } n \in \mathbb{N}_{0} .
$$

It is clear that HDs are JHDs. Moreover, note that if D is a HD, then for any $a, b \in M, \gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$,
 JTHDs. However, the conv

Example 2.1.2. Let \mathbb{F} be a field Chapter I. Let $n \in \mathbb{N}$

for all $x \in \mathbb{F}$. It Pquasy to see that the famity of eaditive mappings $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ is a HD on the Γ aring. 9 a R. Then R is a Γ-ring from Example 6. To show that D is a HD of the Γ-ring R, let $x, y \in R$ and $k \in \mathbb{Z}$. Then

$$
d_{n}(x k y)=k d_{n}(x y)=k \sum_{i+j=n} d_{i}(a) d_{j}(b)=\sum_{i+j=n} d_{i}(a) k d_{j}(b) .
$$

Thus D is a HD of the Γ-ring R. Similarly, if D is a JHD of the ring R, then D is also a JHD of the Γ-ring R.

As mentioned above, Proposition 2.1.4 and Proposition 2.1.5 play important roles for the rest of this thesis.

Proposition 2.1.4. Assume that M is a 2 -torsion free semiprime Γ-ring. Let G_{1}, \ldots, G_{n} be additive groups, $\left.S: G_{1} \times \cdots \times \sim\right)$ T) $G_{1} \times \cdots \times G_{n} \rightarrow M$ be mappings which are additive in each are $x \in M, \gamma, \beta \in \Gamma$ and $a_{i} \in$
for all $x \in M, \gamma, \beta \in \Gamma$ and
 that $S, T: G_{1} \rightarrow M$ ane

 Observe that we nov

S an $x \beta T(a)=0=\mathcal{T}(a) \gamma x \beta S(a)$
ศนยวิทยทรัพยากร
for all $x \in M, \gamma, \boldsymbol{\Omega} \in \Gamma$ and $a \in G_{1}$. Now, let $x \in M, \gamma, \beta \in \Gamma$ and $a, b \in G_{1}$. Then

$$
\begin{aligned}
& =S(a) \gamma x \beta T(a)+S(a) \gamma x \beta T(b)+S(b) \gamma x \beta T(a)+S(b) \gamma x \beta T(b) \\
& =S(a) \gamma x \beta T(b)+S(b) \gamma x \beta T(a) .
\end{aligned}
$$

Consequently, $S(a) \gamma x \beta T(b)=-(S(b) \gamma x \beta T(a))$. Furthermore, we can see that

$$
\begin{aligned}
(S(a) \gamma x \beta T(b)) \delta y \sigma(S(a) \gamma x \beta T(b)) & =-(S(b) \gamma x \beta T(a)) \delta y \sigma(S(a) \gamma x \beta T(b)) \\
& =-S(b) \gamma x \beta(T(a) \delta y \sigma S(a)) \gamma x \beta T(b) \\
& =0
\end{aligned}
$$

for all $y \in M$ and $\delta, \sigma \in \Gamma$. Since M is semiprime, $S(a) \gamma x \beta T(b)=0$ as desired.
Case $n=2$. Assume that $S, T: T) \rightarrow M$ are mappings which additive in each argument such that S $a_{i} \in G_{i}$ for all $i=1,2$. and $\bar{T}(a)=T\left(a, b_{2}\right)$ for From the assumption,
for all $x \in M, \gamma, \beta$
 $S\left(a, b_{2}\right) \gamma x \beta T\left(b, b_{2}\right)=0$ for $m x$,

 $S^{\prime}, T^{\prime}: G_{2} \rightarrow M$ by $S^{\prime}(a)=\mathbb{C}\left(a_{1}, a\right)$ and $\left.T \mathcal{U}\right)=T\left(b_{1}, a\right)$ for all $a \in G_{2}$. Then S^{\prime} and T^{\prime} are addipive whends.

for all $x \in M, \gamma, \beta \in \Gamma$ and $a \in G_{2}$. Applying the basic step yields $S^{\prime}(a) \gamma x \beta T^{\prime}(b)=$ 0 , i.e., $S\left(a_{1}, a\right) \gamma x \beta T\left(b_{1}, b\right)=0$ for all $x \in M, \gamma, \beta \in \Gamma$ and $a, b \in G_{2}$. Hence $S\left(a_{1}, a\right) \gamma x \beta T\left(b_{1}, b\right)=0$ for all $x \in M, \gamma, \beta \in \Gamma, a_{1}, b_{1} \in G_{1}$ and $a, b \in G_{2}$.

For induction step, let $m \in \mathbb{N}$ and assume that for any $j \leq m$ if S, T :
$G_{1} \times \cdots \times G_{j} \rightarrow M$ are mappings which are additive in each argument and $S\left(a_{1}, \ldots, a_{j}\right) \gamma x \beta T\left(a_{1}, \ldots, a_{j}\right)=0$ for all $x \in M, \gamma, \beta \in \Gamma$ and $a_{i} \in G_{i}$ for all $i=1, \ldots, j$, then

$$
S\left(a_{1}, \ldots, a_{j}\right) \gamma x \beta T\left(b_{1}, \ldots, b_{j}\right)=0
$$

for all $x \in M, \gamma, \beta \in \Gamma$ and $a_{i}, b_{i} \in G_{i}$ for all $i=1, \ldots, j$. Next, we assume further that $\left.S, T: G_{1} \times \cdots \times G_{m+1}-1\right) /$ mappings which are additive in each argument and $S\left(a_{1}, \ldots, a_{m+1}\right) \quad=0$ for all $x \in M, \gamma, \beta \in \Gamma$ and $a_{i} \in G_{i}$ for all $i=1, \ldots, m=\bar{T}_{\dot{a}}\left(G \longrightarrow m_{m}\right) \times G_{m+1} \rightarrow M$ be defined by
and

 in $G_{1} \times \cdots \times G_{m}$ are
$G_{1} \times \cdots \times G_{m}$ and $a_{m}=\beta \in \Gamma,\left(a_{1}, \ldots, a_{m}\right) \in$
$\bar{S}\left(\left(a_{1}, \ldots, a_{m}\right), a_{m+1}\right), \beta \bar{T}\left(\left(a_{1}, \ldots, a_{m}\right), a_{m+1}\right)$

$$
\begin{aligned}
S\left(a_{1}, \ldots, a_{m}, a_{m+1}\right) \gamma x \beta T & \left(b_{1}, \ldots, b_{m}, b_{m+1}\right) \\
& =\bar{S}\left(\left(a_{1}, \ldots, a_{m}\right), a_{m+1}\right) \gamma x \beta \bar{T}\left(\left(b_{1}, \ldots, b_{m}\right), b_{m+1}\right)=0
\end{aligned}
$$

for all $x \in M, \gamma, \beta \in \Gamma$ and $a_{i}, b_{i} \in G_{i}$ for all $i=1, \ldots, m+1$.

Proposition 2.1.5. Let M be a 2 -torsion free semiprime Γ-ring. If $a, b \in M$ are such that $a \gamma x \beta b+b \gamma x \beta a=0$ for all $x \in M$ and $\gamma, \beta \in \Gamma$, then $a \gamma x \beta b=b \gamma x \beta a=0$ for all $x \in M$ and $\gamma, \beta \in \Gamma$.

Proof. Let $a, b \in M$ be such that $a \gamma x \beta b+b \gamma x \beta a=0$ for all $x \in M$ and $\gamma, \beta \in \Gamma$. Moreover, let $x, y \in M$ and $\gamma, \beta, \delta, \sigma \in \Gamma$. We consider $(a \gamma x \beta b) \delta y \sigma(a \gamma x \beta b)$ as follows:
 because M is 2-torsion free. Note that y, δ, σ are arbitrary and M is semiprime.

Now, we give examples of 2-torgion free semiprime Γ-ringse

Example 9.16 Let

Then \mathbb{F} is a Γ-ring. Since the characteristic of \mathbb{F} is not equal to 2 , the Γ-ring \mathbb{F} is 2-torsion free. Claim that \mathbb{F} is semiprime. Let $a \in \mathbb{F}$ be such that $a \mathbb{Z} \mathbb{F} a=0$. This implies that $a a=0$. Since \mathbb{F} has no zero divisors, $a=0$. Hence \mathbb{F} is semiprime. Therefore, \mathbb{F} is a 2 -torsion free semiprime Γ-ring.

2.2 Relationships between JHDs and JTHDs

We know from the previous section that, for a Γ-ring, HDs are JHDs and JTHDs; however, the explicit connections between JHDs and JTHDs have not been seen. Our aim of this section is proving that JHDs of a certain Γ-ring are JTHDs. To achieve this, we first need Proposition 2.2.1 and Proposition 2.2.2.

Throughout this section, let $D=-$ be a JHD of a Γ-ring M.
Proposition 2.2.1. For each

Proof. Let $a, b \in M, \gamma \in \mathrm{~T}$ JHD yields

$$
d_{n}((a+b) \gamma(a+b))
$$

$$
=\sum_{i+j=n} d_{i}(a+b) \gamma d_{j}(a
$$

$$
=\sum_{i+j=n}^{i+j=n}\left(d_{i}(a) \gamma \frac{(j) a)}{\text { a }}\right.
$$

$$
=\sum_{i+j=n} d_{i}(a) \gamma d_{j}\left(c_{-j}+\underset{i+j=n}{2}(a)+\sum_{i+j=n} d_{i}(b) \gamma d_{j}(b)\right.
$$

$$
=\sum_{i+j=n} d_{i}(a) \gamma d_{j}(a)+d_{n}(a \gamma b+b \gamma a)+\sum_{i+j=n} d_{i}(b) \gamma d_{j}(b) .
$$

Thus

$$
\begin{aligned}
0= & d_{n}((a+b) \gamma(a+b))-d_{n}((a+b) \gamma(a+b)) \\
= & \left(\sum_{i+j=n} d_{i}(a) \gamma d_{j}(a)+\sum_{i+j=n}\left(d_{i}(a) \gamma d_{j}(b)+d_{i}(b) \gamma d_{j}(a)\right)+\sum_{i+j=n} d_{i}(b) \gamma d_{j}(b)\right) \\
& -\left(\sum_{i+j=n} d_{i}(a) \gamma d_{j}(a)+d_{n}(a \gamma b+\gamma \gamma a)+\sum_{i+j=n} d_{i}(b) \gamma d_{j}(b)\right) \\
= & \sum_{i+j=n}\left(d_{i}(a) \gamma d_{j}(b)+d_{i}(a) .\right.
\end{aligned}
$$

This implies that

Proof. Let $a, b \in M$,

$$
d_{n}(a \beta b \gamma a+a \gamma b \beta a)=\text { Fa }
$$

We apply Proposition 2.2 .1 so that

$$
\begin{aligned}
& d(w)=d_{n}(a \beta(a \gamma b+b \gamma a)+(a \gamma b+b \gamma a) \beta a) \\
& =\sum_{i+j=n}\left(d_{i}(a) \beta d_{j}(a \gamma b+b \gamma a)+d_{i}(a \gamma b+b \gamma a) \beta d_{j}(a)\right) \\
& =\sum_{i+j=n} d_{i}(a) \beta d_{j}(a \gamma b+b \gamma a)+\sum_{i+j=n} d_{i}(a \gamma b+b \gamma a) \beta d_{j}(a)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i+j=n} d_{i}(a) \beta\left(\sum_{r+s=j}\left(d_{r}(a) \gamma d_{s}(b)+d_{r}(b) \gamma d_{s}(a)\right)\right) \\
& +\sum_{i+j=n}\left(\sum_{t+u=i}\left(d_{t}(a) \gamma d_{u}(b)+d_{t}(b) \gamma d_{u}(a)\right)\right) \beta d_{j}(a) \\
& =\sum_{i+j=n} d_{i}(a) \beta\left(\sum_{r+s=j} d_{r}(a) \gamma d_{s}(b)\right)+\sum_{i+j=n} d_{i}(a) \beta\left(\sum_{r+s=j} d_{r}(b) \gamma d_{s}(a)\right) \\
& +\sum_{i+j=n}\left(\sum_{t+u=i} d_{t}(n)\right. \\
& \begin{array}{l}
=\sum_{i+j=n} \sum_{r+s=j} d_{i \backslash u l u} \\
\quad+\sum_{i+j=n} \sum_{t+u=i}+3\left(a_{t}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We also obtain that }
\end{aligned}
$$

$$
\begin{aligned}
d_{n}(w) & =d_{n}(a \beta(a \gamma b+b \gamma a)+(a \gamma b+b \gamma a) \beta a) \\
& =d_{n}(a \beta a \gamma b+a \beta b \gamma a+a \gamma b \beta a+b \gamma a \beta a)
\end{aligned}
$$

$$
\begin{aligned}
& =d_{n}(a \beta a \gamma b+b \gamma a \beta a)+d_{n}(a \beta b \gamma a+a \gamma b \beta a) \\
& =d_{n}((a \beta a) \gamma b+b \gamma(a \beta a))+d_{n}(a \beta b \gamma a+a \gamma b \beta a) \\
& =\sum_{i+j=n}\left(d_{i}(a \beta a) \gamma d_{j}(b)+d_{i}(b) \gamma d_{j}(a \beta a)\right)+d_{n}(a \beta b \gamma a+a \gamma b \beta a) \\
& =\sum_{i+j=n} d_{i}(a \beta a) \gamma d_{j}(b)+\sum_{i+j=n} d_{i}(b) \gamma d_{j}(a \beta a)+d_{n}(a \beta b \gamma a+a \gamma b \beta a) \\
& =\sum_{i+j=n}\left(\sum_{p+q=i} d_{p}(a) \beta d_{c}()^{\prime}\right) \mid d_{i}(b) \gamma\left(\sum_{u+v=j} d_{u}(a) \beta d_{v}(a)\right) \\
& =\sum_{i+j=n} \sum_{p+q=i} d_{p}(a) \\
& +d_{n}(a \beta b \text { Tu }+
\end{aligned}
$$

$$
\begin{aligned}
& +d_{n}(a \beta b \gamma a \\
& =\sum_{i+j+k=n}\left(d_{i}(a) \beta d_{j}(a)\right. \text { 级 } \\
& \text { As a result, } \\
& 0=d_{n}(w)-d_{n}(w) \\
& =\left[\sum\right. \text { (คูนย์จิทยทรัพยากร } \\
& \text { + 2สาสงการณ์มหาวิท่ยาลัย } \\
& -\left[\sum_{i+j+k=n}^{9}\left(d_{i}(a) \beta d_{j}(b) \gamma d_{k}(b)+d_{i}(b) \gamma d_{k}(a) \beta d_{k}(a)\right)+d_{n}(a \beta b \gamma a+a \gamma b \beta a)\right] \\
& =\sum_{i+j+k=n}\left(d_{i}(a) \beta d_{j}(b) \gamma d_{k}(a)+d_{i}(a) \gamma d_{j}(b) \beta d_{k}(a)\right)-d_{n}(a \beta b \gamma a+a \gamma b \beta a) .
\end{aligned}
$$

Hence

$$
d_{n}(a \beta b \gamma a+a \gamma b \beta a)=\sum_{i+j+k=n}\left(d_{i}(a) \beta d_{j}(b) \gamma d_{k}(a)+d_{i}(a) \gamma d_{j}(b) \beta d_{k}(a)\right) .
$$

Next, the conclusion of this section ${ }^{\text {ing }}$ given. The requirement of a Γ-ring M to possess the property that ans is not only that M is 2 -torsion free but also the ability of \sim ging $\mathrm{b} \longrightarrow y$ elements γ and β in Γ.

Theorem 2.2.3. Let M urn \quad nit rinat $a \gamma b \beta c=a \beta b \gamma c$ for all $a, b, c \in M$ and $\gamma, \beta \in \cdots$ irnuon of M is a Jordan triple higher derivation of M.
 and $\gamma, \beta \in \Gamma$. It follows $/ \mathrm{CC}$

Making use of the a

$d_{n}\left(J_{\beta b \gamma} a\right)=\sum_{i+j+k=n} 2 d_{i}(a) \beta d_{j}(b) \prod_{i}(a)$
ศูนย์วิคยยมรัพยดคร
Snee ㅆุุหพคลงกรณ์มหาวิทยาลัย

$$
d_{n}(a \beta b \gamma a)=\sum_{i+j+k=n} d_{i}(a) \beta d_{j}(b) \gamma d_{k}(a) .
$$

Therefore, D is a JTHD.

2.3 The Main Result of JHDs and HDs of Γ-Rings

We present the first major result of doing this research in this section. In a ring, its JHDs are HDs provided that the ring is 2-torsion free semiprime and this can be proved via the fact that JHDs are JTHDs and JTHDs are HDs. Analogous to rings, we can show that JHDs and HDs of a Γ-ring M are identical provided that M is 2-torsion free semiprime ${ }^{\circ}$ / another condition for M must be required.

Throughout this sectin extend Proposition 2.2. is extended to be $\gamma b \beta$.

Proof. Let $a, b, c \in M, \gamma, \beta \in$ chandis, of JTHD yields

$$
\begin{aligned}
& \begin{array}{l}
=\sum_{i+j+k=n} J_{l_{i}(a+c) \gamma d_{j}(b) \beta d_{k}(a+c)}((a+c)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { จุหาลงกรณ์มหาวิทยาลัย } \\
& =\sum_{i+j+k=n} d_{i}(a) \gamma d_{j}(b) \beta d_{k}(a)+\sum_{i+j+k=n} d_{i}(c) \gamma d_{j}(b) \beta d_{k}(c) \\
& +\sum_{i+j+k=n}\left(d_{i}(a) \gamma d_{j}(b) \beta d_{k}(c)+d_{i}(c) \gamma d_{j}(b) \beta d_{k}(a)\right) .
\end{aligned}
$$

We also have

$$
\begin{aligned}
& d_{n}((a+c) \gamma b \beta(a+c)) \\
& \quad=d_{n}(a \gamma b \beta a+a \gamma b \beta c+c \gamma b \beta a+c \gamma b \beta c) \\
& \quad=d_{n}(a \gamma b \beta a)+d_{n}(a \gamma b \beta c+c \gamma b \beta a)+d_{n}(c \gamma b \beta c) \\
& \quad=\sum_{i+j+k=n} d_{i}(a) \gamma d_{j}(b) \beta r
\end{aligned}
$$

As a result,
$0=d_{n}((a+c) \gamma b \beta$

$$
=\sum_{i+j+k=n}\left(d_{i}(a)\right.
$$

Thus

Before going furthei, we would like to set up two types of elements of M and
 จุหาลงควณม์มหว วิทยาลัย

$$
[a, b, c]_{\gamma, \beta}=a \gamma b \beta c-c \gamma b \beta a .
$$

Obviously, $[a, b, a]_{\gamma, \beta}=0$ for all $a, b \in M$ and $\gamma, \beta \in \Gamma$. Besides, it follows that $\varphi_{n}(a, b, a)_{\gamma, \beta}=0$ for all $a, b \in M, \gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$ since D is a JTHD of M.

Next, we aim to show that $\varphi_{n}(a, b, c)_{\gamma, \beta}=0$ for all $a, b, c \in M, \gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$. However, the fact that $\varphi_{n}(a, b, c)_{\gamma, \beta}$ and $[a, b, c]_{\gamma, \beta}$ are additive in each argument is shown first, respectively.

Proposition 2.3.2. For each $a, b, c, x \in M$ and $\gamma, \beta, \zeta \in \Gamma$,
(i) $\varphi_{n}(a+x, b, c)_{\gamma, \beta}=\varphi_{n}(a, b, c)_{\gamma, \beta}+\varphi_{n}(x, b, c)_{\gamma, \beta}$,
(ii) $\left.\varphi_{n}(a, b+x, c)_{\gamma, \beta}=\varphi_{n}(a, b, c)_{\gamma, \beta}{ }^{\prime} \mid \boldsymbol{\gamma}, c\right)_{\gamma, \beta}$
(iii) $\varphi_{n}(a, b, c+x)_{\gamma, \beta}=\varphi_{n}(a, b$
(iv) $\varphi_{n}(a, b, c)_{\gamma+\zeta, \beta}=\varphi_{n}\left(a, \rho_{n}(\mathfrak{z}, b\right.$,
(v) $\varphi_{n}(a, b, c)_{\gamma, \beta+\zeta}=\varphi_{n}$

Proof. Let $a, b, c, x \in M$
(i) $\varphi_{n}(a+x, b, c)_{\gamma, \beta}$

$$
=d_{n}((a+x) \gamma b \beta c
$$

$$
+\left(d_{n}(x \gamma b)\right. \text { ch }
$$

$$
=d_{n}(a \gamma b \beta c+a \zeta b \beta c)-\sum_{i+j+k=n}\left(d_{i}(a) \gamma d_{j}(b) \beta d_{k}(c)+d_{i}(a) \zeta d_{j}(b) \beta d_{k}(c)\right)
$$

$$
\begin{aligned}
= & \left(d_{n}(a \gamma b \beta c)-\sum_{i+j+k=n} d_{i}(a) \gamma d_{j}(b) \beta d_{k}(c)\right) \\
& \quad+\left(d_{n}(a \zeta b \beta c)-\sum_{i+j+k=n} d_{i}(a) \zeta d_{j}(b) \beta d_{k}(c)\right) \\
= & \varphi_{n}(a, b, c)_{\gamma, \beta}+\varphi_{n}(a, b, c)_{\zeta, \beta}
\end{aligned}
$$

(v) is obtained similary to (iv).

Proposition 2.3.3. For each ${ }^{\circ}$
(i) $[a+x, b, c]_{\gamma, \beta}=[a, b, c]_{\gamma}$
(ii) $[a, b+x, c]_{\gamma, \beta}=[a, b, c \mid$
(iii) $[a, b, c+x]_{\gamma, \beta}=[a, b$
(iv) $[a, b, c]_{\gamma+\zeta, \beta}=[a, b, c]_{\gamma}$
(v) $[a, b, c]_{\gamma, \beta+\zeta}=[a, b$,

Proof. Let $a, b, c, x \in M$ an
(i) $[a+x, b, c]_{\gamma, \beta}$

(iv) $[a, b, c]_{\gamma+\zeta, \beta}$ ข

$$
\begin{aligned}
& =(a \emptyset b \beta c+a \zeta b \beta c)-(c \gamma b \beta a+c \zeta b \beta a) \\
& =(a \gamma b \beta c-\gamma b \beta a)+(a \zeta b \beta c+c \zeta b \beta a) \\
& =[a, b, c]_{\gamma, \beta}+[a, b, c]_{\zeta, \beta} .
\end{aligned}
$$

(v) is obtained similary to (iv).

Next proposition provides results needed to prove our main theorem.
Proposition 2.3.4. For each $a, b, c \in M, \gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$,
(i) $\varphi_{n}(a, b, c)_{\gamma, \beta}=-\varphi_{n}(c, b, a)_{\gamma, \beta}$,
(ii) $[a, b, c]_{\gamma, \beta}=-[c, b, a]_{\gamma, \beta}$,
(iii) $2 \varphi_{n}(a, b, c)_{\gamma, \beta}=d_{n}\left([a, b, c]_{\gamma, \beta}\right)+\sum_{i+j+k=n}\left[d_{i}(c), d_{j}(b), d_{k}(a)\right]_{\gamma, \beta}$.

Proof. Let $a, b, c \in M, \gamma, \beta \in \Gamma$ and $\left.)^{\prime}\right)$
(i) Applying Proposition 2.3.2
all $x, y \in M$ gives

$$
\begin{aligned}
0 & =\varphi_{n}((a+c), b \\
& =\varphi_{n}(a, b, a)_{\gamma, \beta} \\
& =0+\varphi_{n}(a, b, c \\
& =\varphi_{n}(a, b, c)_{\gamma, \beta}
\end{aligned}
$$

Thus $\varphi_{n}(a, b, c)_{\gamma, \beta}=$
(ii) is straightforward.
(iii) We obtain from

$$
\begin{aligned}
& 2 \varphi_{n}(a, b, c)_{\gamma, \beta}=\varphi_{n}(a, b]
\end{aligned}
$$

$=d_{n}(a \gamma b \beta c-c \gamma b \beta a)+\sum_{i+j+k=n}\left(d_{i}(c) \gamma d_{j}(b) \beta d_{k}(a)-d_{i}(a) \gamma d_{j}(b) \beta d_{k}(c)\right)$
$=d_{n}\left([a, b, c]_{\gamma, \beta}\right)+\sum_{i+j+k=n}\left[d_{i}(c), d_{j}(b), d_{k}(a)\right]_{\gamma, \beta}$.

The following series of propositions are main ideas for our main theorem in this chapter. We first show that

$$
\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma[a, b, c]_{\gamma, \beta}+[a, b, c]_{\gamma, \beta} \delta r \sigma \varphi_{n}(a, b, c)_{\gamma, \beta}=0 .
$$

Then this result is extended to the case that the elements a, b, c appeared in the terms $\varphi_{n}(a, b, c)_{\gamma, \beta}$ and $\left.[a, b, c]_{\gamma, \beta,}, \sim^{\gamma}\right) / / \gamma$ not be the same.

Proposition 2.3.5.
$m<n$, then
for all $a, b, c, r \in M$ and
Proof. Assume that $\varphi_{m} \mathrm{a}, \mathrm{F}$

 $=\sum_{i+p+q+l+k=n}{ }^{\text {and }}+d_{i}(a) \gamma d_{p}(b) \beta\left(\sum_{s+t+z=q}^{d_{i}(c)}\left(d_{s}(c) \delta d_{t}(r) \sigma d_{z}(c)\right) \gamma d_{l}(b) \beta d_{k}(a)\right.$

$$
+\sum_{i+p+q+l+k=n} d_{i}(c) \gamma d_{p}(b) \beta\left(\sum_{s+t+z=q} d_{s}(a) \delta d_{t}(r) \sigma d_{z}(a)\right) \gamma d_{l}(b) \beta d_{k}(a)
$$

$$
\begin{align*}
= & \sum_{i+p+s+t+z+l+k=n} d_{i}(a) \gamma d_{p}(b) \beta d_{s}(c) \delta d_{t}(r) \sigma d_{z}(c) \gamma d_{l}(b) \beta d_{k}(a) \\
& +\sum_{i+p+s+t+z+l+k=n} d_{i}(c) \gamma d_{p}(b) \beta d_{s}(a) \delta d_{t}(r) \sigma d_{z}(a) \gamma d_{l}(b) \beta d_{k}(a) . \tag{1}
\end{align*}
$$

On the other hand, it follows from Proposition 2.3.1 that

Let

Note that, for eadh $m<n, \varphi_{m}\left(a, b, c_{\gamma, \beta}=0\right.$ and $\varphi_{m}(c, b, a)_{\gamma, \beta}=0$,i.e.,

$$
\begin{align*}
& \text { จ } 9 \% \overbrace{m}(a \gamma b c)=\sum_{i+j+k=m}^{2} d_{i}(a) \gamma d_{j}(b) \partial_{d_{k}}(c) \text { and } \\
& d_{m}(c \gamma b \beta a)=\sum_{i+j+k=m} d_{i}(c) \gamma d_{j}(b) \beta d_{k}(a) . \tag{3}
\end{align*}
$$

Thus

$$
x=d_{n}(a \gamma b \beta c) \delta d_{0}(r) \sigma d_{0}(c \gamma b \beta a)+\sum_{\substack{u+v+w=n \\ u \neq n, w \neq n}} d_{u}(a \gamma b \beta c) \delta d_{v}(r) \sigma d_{w}(c \gamma b \beta a)
$$

$$
\begin{aligned}
& \quad+d_{0}(a \gamma b \beta c) \delta d_{0}(r) \sigma d_{n}(c \gamma b \beta a) \\
& =d_{n}(a \gamma b \beta c) \delta r \sigma c \gamma b \beta a+\sum_{u} d_{u}(a \gamma b \beta c) \delta d_{v}(r) \sigma d_{w}(c \gamma b \beta a)
\end{aligned}
$$

We can see that

$$
\begin{aligned}
\sum_{\substack{i+p+s+v+z+l+k=n \\
i+p+s \neq n, z+l+k \neq n}}\left(d_{i}(a) \gamma d_{p}(b) \beta d_{s}(c)\right) & \delta d_{v}(r) \sigma\left(d_{z}(c) \gamma d_{l}(b) \beta d_{k}(a)\right) \\
& -\sum_{\substack{u+v+w=n \\
u \neq n, w \neq n}} d_{u}(a \gamma b \beta c) \delta d_{v}(r) \sigma d_{w}(c \gamma b \beta a)=0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
0=(& \left.-\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma c \gamma b \beta a-a \gamma b \beta c \delta r \sigma \varphi_{n}(c, b, a)_{\gamma, \beta}\right) \\
& +\left(-\varphi_{n}(c, b, a)_{\gamma, \beta} \delta r \sigma a \gamma b \beta c-c \gamma b \beta a \delta r \sigma \varphi_{n}(a, b, c)_{\gamma, \beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & -\left(\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma c \gamma b \beta a+\varphi_{n}(c, b, a)_{\gamma, \beta} \delta r \sigma a \gamma b \beta c\right) \\
& -\left(a \gamma b \beta c \delta r \sigma \varphi_{n}(c, b, a)_{\gamma, \beta}+c \gamma b \beta a \delta r \sigma \varphi_{n}(a, b, c)_{\gamma, \beta}\right) \\
= & -\left(\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma c \gamma b \beta a-\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma a \gamma b \beta c\right) \\
& -\left(-a \gamma b \beta c \delta r \sigma \varphi_{n}(a, b, c)_{\gamma, \beta}+c \gamma b \beta a \delta r \sigma \varphi_{n}(a, b, c)_{\gamma, \beta}\right) \quad \text { (by Proposition 2.3.4) } \\
= & \varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma(a \gamma b \beta c-c \gamma b \beta a)+(a \gamma b \beta c-c \gamma b \beta a) \delta r \sigma \varphi_{n}(a, b, c)_{\gamma, \beta} \\
= & \varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma[a, b, c]_{\gamma, \beta}
\end{aligned}
$$

Proposition 2.3.6. L element $\varphi_{m}(a, b, c)_{\gamma, \beta}$

$$
\varphi_{n}\left(a_{1}, b_{1}, c_{1}\right)_{\gamma_{1}, \beta_{1}} \delta r \sigma\left[\cos ^{2}\right.
$$

for all $a_{i}, b_{i}, c_{i}, r \in M$ and
Proof. Assume that $\varphi_{m}(a, b, c)$ $b, c \in M, \gamma, \beta \in \Gamma$ and $m<n$. Proposition 2.3.5 yie ${ }^{\prime}$

for all $a, b, c, r \in M$ and $\gamma, \beta, \delta, \sigma \in \Gamma$. Let $S, T: M \times \Gamma \times M \times \Gamma \times M \rightarrow M$ be defined by

$$
S(a, \gamma, b, \beta, c)=\varphi_{n}(a, b, c)_{\gamma, \beta} \quad \text { and } \quad T(a, \gamma, b, \beta, c)=[a, b, c]_{\gamma, \beta}
$$

for all $a, b, c \in M$ and $\gamma, \beta \in \Gamma$. Proposition 2.3.2 and Proposition 2.3.3 show that both S and T are additive in each argument. Moreover, (1) provides that $S(a, \gamma, b, \beta, c) \delta r \sigma T(a, \gamma, b, \beta, c)=0$ for all $a, b, c, r \in M$ and $\gamma, \beta, \delta, \sigma \in \Gamma$. It, then, follows from Proposition 2.1.4 that
 $\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma d_{m}\left([a, b, c]_{\alpha, \beta}=d_{m}\left([a, b, \underset{,}{ }, \beta) \delta r \sigma \varphi_{n}\left(a, b, c_{\gamma, \beta}=0\right.\right.\right.$

for all $a, b, \boldsymbol{\ell}, r \in M, \gamma, \beta, \delta, \sigma \in \Gamma$ and $m<n$.
Proof. Assume that $\varphi_{m}(a, b, c)_{\gamma, \beta}=0$, i.e.,

$$
d_{m}(a \gamma b \beta c)=\sum_{i+j+k=n} d_{i}(a) \gamma d_{j}(b) \beta d_{k}(c)
$$

for all $a, b, c \in M, \gamma, \beta \in \Gamma$ and $m<n$. Let $a, b, c, r \in M, \gamma, \beta, \delta, \sigma \in \Gamma$ and $m<n$. Then

$$
\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma d_{m}\left([a, b, c]_{\gamma, \beta}\right)
$$

$$
=\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma d_{m}(a \gamma b \beta c-c \gamma b \beta a)
$$

$$
=\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma\left(d_{m}(a \gamma b \beta c)-d_{m}(c \gamma b \beta a)\right)
$$

$$
\left.=\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma\left(\ldots d_{i}(c) \gamma d_{j}(b) \beta d_{k}(a)\right)\right)
$$

$$
=\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \pi=
$$

$$
=\sum_{i+j+k=m} \varphi_{n}(a, b
$$

$$
=0
$$

where the last equation h 裉

To acheive that, Lemma 2.3 .8 and Lomma 2.39 合e required e
Lemma 2.9.8. Let M be a 2-torsion free semiprime Γ-ring. For each $n \in \mathbb{N}_{0}$, if $\varphi_{m}(a, b, c)_{\gamma, \beta}=0$ for all $a, b, c \in M, \gamma, \beta \in \Gamma$ and $m<n$, then

$$
\begin{aligned}
& \varphi_{n}(a, b, c)_{\gamma, \beta} \zeta s \alpha\left(\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma d_{n}\left([a, b, c]_{\gamma, \beta}\right)\right) \zeta s \alpha \varphi_{n}(a, b, c)_{\gamma, \beta} \\
&+\varphi_{n}(a, b, c)_{\gamma, \beta} \zeta s \alpha\left(d_{n}\left([a, b, c]_{\gamma, \beta}\right) \delta r \sigma \varphi_{n}(a, b, c)_{\gamma, \beta}\right) \zeta s \alpha \varphi_{n}(a, b, c)_{\gamma, \beta}=0
\end{aligned}
$$

for all $a, b, c, r, s \in M$ and $\gamma, \beta, \zeta, \alpha, \delta, \sigma \in \Gamma$.
Proof. We prove by induction on $n \in \mathbb{N}_{0}$. Note that the statement holds if $n=0$.
Let $n=1$ and assume that

It means that $\varphi_{0}(a, b$, $\gamma, \beta \in \Gamma$. As a result, t

For the induction s

Note that $d_{n}(0)=0$. V

$$
\begin{aligned}
& \left.+d_{i}\left([a, b, c]_{\gamma, \beta}\right) \delta d_{j}(r) \sigma d_{k}\left(\varphi_{n}(a, b, c)_{\gamma, \beta}\right)\right) .
\end{aligned}
$$

Moreover,

$$
=\sum_{i+j+k=n} \varphi_{n}(a, b, c)_{\gamma, \beta} \zeta_{s \alpha u u_{\gamma}+}
$$

$$
+\varphi_{n}(a, b, c)_{\gamma, \beta} \zeta \operatorname{sid}_{0}\left(\varphi_{n}(a \quad c)\right.
$$

$$
+[(\varphi_{n}(a, b, c)_{\gamma, \beta} \zeta \underbrace{a}]^{n}
$$

$$
+\sum_{\substack{i+(j+k)=n \\ i \neq n}}\left(\varphi_{n}(a, b, c)_{\gamma, \beta} \zeta\right] d_{i}([\omega, c, \cdots)
$$

จุหาลงกรณ่มหาวิทยจั่ย
for all $k<n$ and $i<n$. Consequently,

$$
\begin{aligned}
& 0=\varphi_{n}(a, b, c)_{\gamma, \beta} \zeta s \alpha\left[\sum _ { i + j + k = n } \left(d_{i}\left(\varphi_{n}(a, b, c)_{\gamma, \beta}\right) \delta d_{j}(r) \sigma d_{k}\left([a, b, c]_{\gamma, \beta}\right)\right.\right. \\
& \left.\left.+d_{i}\left([a, b, c]_{\gamma, \beta}\right) \delta d_{j}(r) \sigma d_{k}\left(\varphi_{n}(a, b, c)_{\gamma, \beta}\right)\right)\right] \zeta s \alpha \varphi_{n}(a, b, c)_{\gamma, \beta} \\
& =\sum_{i+j+k=n} \varphi_{n}(a, b, c)_{\gamma, \beta} \zeta s \alpha\left(d_{i}\left(\varphi_{n}(a, b, c)_{\gamma, \beta}\right) \delta d_{j}(r) \sigma d_{k}\left([a, b, c]_{\gamma, \beta}\right)\right) \zeta s \alpha \varphi_{n}(a, b, c)_{\gamma, \beta} \\
& \left.\left.\left.+\sum_{i+j+k=n} \varphi_{n}(a, b, c)_{\gamma, \beta} \zeta s \alpha\left(d_{i}\left([a, b,]^{\prime}\right)\right]\right) r\right)^{r} \sigma d_{k}\left(\varphi_{n}(a, b, c)_{\gamma, \beta}\right)\right) \zeta s \alpha \varphi_{n}(a, b, c)_{\gamma, \beta}
\end{aligned}
$$

$$
\begin{aligned}
0= & \varphi_{n}(a, b, c)_{\gamma, \beta} \zeta s \alpha \varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma\left(d_{n}\left([a, b, c]_{\gamma, \beta}\right) \zeta s \alpha \varphi_{n}(a, b, c)_{\gamma, \beta}\right) \\
& +\left(\varphi_{n}(a, b, c)_{\gamma, \beta} \zeta s \alpha d_{n}\left([a, b, c]_{\gamma, \beta}\right)\right) \delta r \sigma \varphi_{n}(a, b, c)_{\gamma, \beta} \zeta s \alpha \varphi_{n}(a, b, c)_{\gamma, \beta}
\end{aligned}
$$

Hence the statement holds as desired.

Lemma 2.3.9. Let M be a 2-torsion free semiprime Γ-ring and $n \in \mathbb{N}_{0}$. If the element $\varphi_{m}(a, b, c)_{\gamma, \beta}=0$ for all $\left.a, b, c \in \Lambda \supset\right)$ d $m<n$, then

Moreover, Proposition 2.3.6 yields

$$
2 \varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma \varphi_{n}(a, b, c)_{\gamma, \beta}=\varphi_{n}(a, b, c)_{\gamma, \beta} \delta r \sigma d_{n}\left([a, b, c]_{\gamma, \beta}\right)
$$

as desired. Similarly, the other result follows.

Lemma 2.3.10. Let M be a 2-torsion free semiprime Γ-ring. Then $\varphi_{n}(a, b, c)_{\gamma, \beta}=0$ for all $a, b, c \in M, \gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$.

Proof. We show this by induction on n. This is clear for the case $n=0$. For the induction step, assume that $\varphi_{m}(a, b, c)_{\gamma, \beta}=0$ for all $a, b, c \in M, \gamma, \beta \in \Gamma$ and $m<n$. Lemma 2.3.8 and Lemma 2.3.9 show that, for all $a, b, c, r, s \in M$ and γ, $\beta, \zeta, \alpha, \delta, \sigma \in \Gamma$,

for all $a, b, c, r, s \in M$ and γ, β, te that r, δ, σ are arbitary and M is semiprime,

for all $a, b, c, s \in M$ anc $, \beta, \zeta, \alpha \in 1$. Agam, because the semiprimeness of M and the arbitary choices $\delta \mathrm{f}$ = ζ, α,

คูนยยวิท่ยทรัพยากร จหาลงกรณูมหาวิทยาลัย
for all $a, b, \uparrow \in M$ and $\gamma, \beta \in \Gamma$.
Corollary 2.3.11. Assume that M is a 2-torsion free semiprime Γ-ring. Then

$$
d_{n}(a \gamma b \beta c)=\sum_{i+j+k=n} d_{i}(a) \gamma d_{j}(b) \beta d_{k}(c)
$$

for all $a, b, c \in M, \gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$.

Now we are ready to prove the main result. Nevertheless, the following theorem is required. This theorem provides that for a certain Γ-ring, its JTHDs are HDs.

Theorem 2.3.12. Let M be a 2-torsion free semiprime Γ-ring. Then every Jordan triple higher derivation of M is a higher d

Proof. Let $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ be $\sim M_{\mathbf{W}}$ ie induction on n in order to prove that $d_{n}(a \gamma b)=$.
clear for $n=0$.
\quad Assume for the ind $M, \gamma \in \Gamma$ and $m<n .1 \quad a \quad$?

Then

$$
0=\sum_{i+j+k=n} d_{i}(a \gamma b) \delta d_{j}(x) \sigma d_{k}(a \gamma b)-\sum_{p+q+s+t+v=n} d_{p}(a) \gamma d_{q}(b) \delta d_{s}(x) \sigma d_{t}(a) \gamma d_{v}(b)
$$

$$
\begin{aligned}
& =\left(d_{n}(a \gamma b)-\sum_{p+q=n} d_{p}(a) \gamma d_{q}(b)\right) \delta x \sigma a \gamma b \\
& +\left(\sum_{\substack{i+j+k=n \\
i \neq n, k \neq n}} d_{i}(a \gamma b) \delta d_{j}(x) \sigma d_{k}(a \gamma b)-\sum_{\substack{p+q+s+t+v=n \\
p+q \neq n, t+v \neq n}} d_{p}(a) \gamma d_{q}(b) \delta d_{s}(x) \sigma d_{t}(a) \gamma d_{v}(b)\right) \\
& +a \gamma b \delta x \sigma\left(d_{n}(a \gamma b)-\sum_{t+v=n} d_{t}(a) \gamma d_{v}(b)\right) .
\end{aligned}
$$

The induction hypothesis pro

Since x, δ, σ are arbitrary, n oh

 $S, T: M \times \Gamma \times M \rightarrow M$ by
 Proposition 2.1.4 so that

$$
\left(d_{n}\left(a_{1} \gamma_{1} b_{1}\right)-\sum_{p+q=n} d_{p}\left(a_{1}\right) \gamma_{1} d_{q}\left(b_{1}\right)\right) \delta x \sigma\left(a_{2} \gamma_{2} b_{2}\right)=0
$$

for all $a_{1}, b_{1}, x, a_{2}, b_{2} \in M$ and $\gamma_{1}, \gamma_{2}, \delta, \sigma \in \Gamma$. In particular, for any $x, y \in M$ and
$\beta, \delta, \sigma \in \Gamma$.

$$
\begin{aligned}
0 & =\left(d_{n}(a \gamma b)-\sum_{p+q=n} d_{p}(a) \gamma d_{q}(b)\right) \delta x \sigma\left(y \beta\left(\left(d_{n}(a \gamma b)-\sum_{p+q=n} d_{p}(a) \gamma d_{q}(b)\right) \delta x\right)\right) \\
& =\left(\left(d_{n}(a \gamma b)-\sum_{p+q=n} d_{p}(a) \gamma d_{q}(b)\right) \delta x\right) \sigma y \beta\left(\left(d_{n}(a \gamma b)-\sum_{p+q=n} d_{p}(a) \gamma d_{q}(b)\right) \delta x\right) .
\end{aligned}
$$

Note that y, σ, β are arbitrary and $)$ iprime. Hence for each $x \in M$ and $\delta \in \Gamma$, we see that

Especially, for each c
i.e.,

$$
\left.\left(d_{n}(a \gamma b)-\sum_{p+q=n} d_{p}(1) c d_{p}(a) \gamma d_{q}(b)\right)\right)=0,
$$

Observe, again, that c, \int are onclu similarly that
ศูนย์วิทยีทวัพยากร
*.. จุหาลงกรณ์มหาวิทยาลัย

$$
d_{n}(a \gamma b)=\sum_{p+q=n} d_{p}(a) \gamma d_{q}(b) .
$$

Then D is a HD.

Our main theorem is now provided.

Theorem 2.3.13. Let M be a 2-torsion free semiprime Γ-ring such that $a \gamma b \beta c=a \beta b \gamma c$ for all $a, b, c \in M$ and $\gamma, \beta \in \Gamma$. Then every Jordan higher derivation of M is a higher derivation of M.

Proof. Theorem 2.2.3 yields that every JHD of M is a JTHD. Theorem 2.3.12 shows that every JTHD of M is - quently, the conclusion that every

CHAPTER III

HIGHER DERIVATIONS AND JORDAN HIGHER DERIVATIONS OF IDEALS OF Γ-RINGS

There are two sections in
 section provides the definitions of a higher derivaticrivation of an ideal of a Γ ring. Moreover, some rec- $1 /$ ring proved by M. Soyturk
 ond section, we show th $1+\quad 25$

We begin with givir derivation of an ideare

Definition 3.1.1. Let U be an ideal of a Γ-ring M and $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ be a family of additive mappross fint
(into M) if จุุหาจงกรณมมหาวิทยาลัย
a Jordan higher derivation (JHD) of U (into M) if

$$
d_{n}(u \gamma u)=\sum_{i+j=n} d_{i}(u) \gamma d_{j}(u) \quad \text { for all } u \in U, \gamma \in \Gamma \text { and } n \in \mathbb{N}_{0}
$$

For a Γ-ring M and an ideal U of M, it is clear that a HD of U is a JHD of U. Let us have a close look at the difference of HDs (JHDs) of M and those of U. For a HD $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ of an ideal U of a Γ-ring M, the property that

$$
d_{n}(u \gamma v)=\sum_{i+j=n} d_{i}(u) \gamma d_{j}(v) \quad \text { for all } u, v \in U, \gamma \in \Gamma \text { and } n \in \mathbb{N}_{0}
$$

holds for arbitary elements of thi not necessary for the whole M as a HD of M.

Note that an ideal $\mathrm{n} \mathrm{h} \mathrm{h} \rightleftharpoons \quad$ also an ideal of the Γ-ring R defined in Example 6 wrb \quad ing with identity, U an ideal of R and $\Gamma=\mathbb{Z}$. Then $D \quad, \mathrm{a}$ al of the Γ-ring. It can be
 the Γ-ring R, respecti y .

The following prop i urây
Proposition 3.1.2. [12] LevT ea wanakilat id of M. If $U \subseteq Z(M)$, then M is commutative.

Proposition 3.1.3.

and $a \in M$. If $U \Gamma a=$
Proposition 3.1.4. [12] Let M be a prime Γ-ring, U be a nonzero ideal of M and

We extend Proposition 2.1.5 to the next proposition.

 of M. If $a, b \in M$ such that $a \gamma w \beta b+b \gamma w \beta a=0$ for all $w \in U$ and $\gamma, \beta \in \Gamma$, then $a \gamma w \beta b=b \gamma w \beta a=0$ for all $w \in U$ and $\gamma, \beta \in \Gamma$.Proof. Let $a, b \in M$ be such that $a \gamma w \beta b+b \gamma w \beta a=0$, i.e., $a \gamma w \beta b=-b \gamma w \beta a$ for
all $w \in U$ and $\gamma, \beta \in \Gamma$. Moreover, let $w, u \in U$ and $\gamma, \beta, \zeta, \lambda \in \Gamma$. We can see that

Thus $2(a \gamma w \beta b) \zeta u \lambda(a, \rho \sigma \quad i)^{\prime}$ torsion free. Hence implies that $(a \gamma w \beta b)$ that $a \gamma w \beta b=b \gamma w \beta a=\mathrm{r}$

3.2 The Main Result ith of Ideals of Γ-Rings

The steps of proofs for tho main result in Chap an ideal U into a Γ-rin $]^{\lambda .}$.

Let us summarize what we are going to prove where the arbitrary elements
 study what $\left.d_{n}(u \boldsymbol{\|})+v \gamma u\right)$ and $d_{n}(u \gamma v \beta u)$ are. Then extend this to $d_{n}(u \gamma v \beta w+$

$$
\begin{aligned}
\varphi_{n}(u, v)_{\beta} \gamma w \zeta[u, v]_{\beta}+[u, v]_{\beta} \gamma w \zeta \varphi_{n}(u, v)_{\beta} & =0 \\
\varphi_{n}(u, v)_{\beta} \gamma w \zeta[a, b]_{\lambda}=[a, b]_{\lambda} \gamma w \zeta \varphi_{n}(u, v)_{\beta} & =0 .
\end{aligned}
$$

Finally, the main result is obtained.

Proposition 3.2.1. For each $u, v, w \in U, \gamma \in \Gamma$ and $n \in \mathbb{N}_{0}$,

$$
d_{n}(u \gamma v+v \gamma u)=\sum_{i+j=n}\left(d_{i}(u) \gamma d_{j}(v)+d_{i}(v) \gamma d_{j}(u)\right) .
$$

Proof. The result follows from replaci)hy $u+v$ in the definition of a JHD of U into M and applying the simi
Proposition 3.2.2. Let $M \geq$ nf $1 \sim \Gamma \beta c=a \beta b \gamma c$ for all $a, b, c \in$ M and $\gamma, \beta \in \Gamma$. Then
for all $u, v \in U, \gamma, \beta \in \Gamma$

By Proposition 3.2.1

$$
\begin{aligned}
& d_{n}(x)=d_{n}\left(u \gamma\left(\beta_{2}+v \beta u\right)+\left(u \beta_{u}+v \beta u\right) \gamma u\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { จุหาลงคฺโสมมหหจจิทยาลัย } \\
& +\sum_{i+j=n}\left(\sum_{s+t=i}\left(d_{s}(u) \beta d_{t}(v)+d_{s}(v) \beta d_{t}(u)\right)\right) \gamma d_{j}(u)
\end{aligned}
$$

and

$$
\begin{aligned}
= & \sum_{i+j+k=n} d_{i}(u) \gamma d_{j}(u) \beta d_{k}(v)+\sum_{i+j+k=n} d_{i}(u) \gamma d_{j}(v) \beta d_{k}(u) \\
& +\sum_{i+j+k=n} d_{i}(u) \beta d_{j}(v) \gamma d_{k}(u)+\sum_{i+j+k=n} d_{i}(v) \beta d_{j}(u) \gamma d_{k}(u)
\end{aligned}
$$

$$
=\sum_{i+j+k=n}\left(d_{i}(u) \gamma d_{j}(u) \beta d_{k}(v)+d_{i}(v) \beta d_{j}(u) \gamma d_{k}(u)\right)
$$

$$
+\sum_{i+j+k=n}\left(d_{i}(u) \gamma d(v)\right)
$$

Since M is 2-torsion free, $\sum_{i+j+k=n} d_{i}(u) \gamma d_{j}(v) \beta d_{k}(u)-d_{n}(u \gamma v \beta u)=0$. Hence $d_{n}(u \gamma v \beta u)=\sum_{i+j+k=n} d_{i}(u) \gamma d_{j}(v) \beta d_{k}(u)$.

Proposition 3.2.3. Let M be a 2-torsion free Γ-ring and $a \gamma b \beta c=a \beta b \gamma c$ for all $a, b, c \in$
M and $\gamma, \beta \in \Gamma$. Then, for all $u, v, w \in U, \gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$,

$$
d_{n}(u \gamma v \beta w+w \gamma v \beta u)=\sum_{i+j+k=n}\left(d_{i}(u) \gamma d_{j}(v) \beta d_{k}(w)+d_{i}(w) \gamma d_{j}(v) \beta d_{k}(u)\right) .
$$

Proof. Let $u, v, w \in U, \gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$. By Proposition 3.2.2,
and

That is,

$$
d_{n}(u \gamma v \beta w+w \gamma v \beta u)=\sum_{i+j+k=n}\left(d_{i}(u) \gamma d_{j}(v) \beta d_{k}(w)+d_{i}(w) \gamma d_{j}(v) \beta d_{k}(u)\right) .
$$

For all $a, b \in M, u, v \in U, \gamma \in \Gamma$ and $n \in \mathbb{N}_{0}$, let

$$
\begin{aligned}
\varphi_{n}(u, v)_{\gamma} & =d_{n}(u \gamma v)-\sum_{i+j=n} d_{i}(u) \gamma d_{j}(v) \quad \text { and } \\
{[a, b]_{\gamma} } & =a \gamma b-b \gamma a .
\end{aligned}
$$

 $\varphi_{n}(a, b, c)_{\gamma, \beta}$ and $[a, b, c]_{\gamma, \beta}$ in C

Proposition 3.2.4. For all \longrightarrow, u, w and $n \in \mathbb{N}_{0}$,
(i) $\varphi_{n}(u+w, v)_{\gamma}=\varphi_{n}(u, v$
(ii) $\varphi_{n}(u, v+w)_{\gamma}=\varphi_{n}$ (u.2
(iii) $\varphi_{n}(u, v)_{\gamma+\beta}=\varphi_{n}(w, v)$
(iv) $\varphi_{n}(u, v)_{\gamma}=-\varphi_{n}(v)$
(v) $[a+c, b]_{\gamma}=[a, b]_{\gamma}$
(vi) $[a, b+c]_{\gamma}=[a, b]_{\gamma}+[$
(vii) $[a, b]_{\gamma+\beta}=[a, b]_{\gamma}+[a, b$
(viii) $[a, b]_{\gamma}=-[b, a]_{\gamma}$.

Proof. These can be

of Proposition 2.3.2,
Proposition 2.3.3 and 1

Proposition 3.2.5. Let Mबbea 2-torsion free D-ring, U be a nonzero ideal of $M, n \in$
 $u, v \in U, \beta \in \Gamma$ and $m<n$, then, for $l l$ u $u, w \in L$ and $\gamma, \beta, \zeta \in \Gamma$,

Proof. Assume that $\varphi_{m}(u, v)_{\beta}=0$ for all $u, v \in U, \beta \in \Gamma$ and $m<n$. Let
$u, v, w \in U$ and $\gamma, \beta, \zeta \in \Gamma$. By Proposition 3.2.2, we have
Let

$$
\begin{align*}
& \sum_{h+i+j+k+l=n} d_{h}(u) \beta d_{i}(v) \gamma d_{j}(w) \zeta d_{k}(v) \beta d_{l}(u)-a \\
&=-\left(\sum_{h+i+j+k+l=n} d_{h}(v) \beta d_{i}(u) \gamma d_{j}(w) \zeta d_{k}(u) \beta d_{l}(v)-b\right) . \tag{2}
\end{align*}
$$

Note that, for $m<n$, we have $\varphi_{m}(u, v)_{\beta}=0$ and $\varphi_{m}(v, u)_{\beta}=0$, i.e.,

$$
\begin{equation*}
d_{m}(u \beta v)=\sum_{i+j=m} d_{i}(u) \beta d_{j}(v) \quad \text { and } \quad d_{m}(v \beta u)=\sum_{i+j=m} d_{i}(v) \beta d_{j}(u) . \tag{3}
\end{equation*}
$$

Now,

Hence

$$
\begin{aligned}
\sum_{h+i+j+k+l=n} & d_{h}(u) \beta d_{i}(v) \gamma d_{j}(w) \zeta d_{k}(v) \beta d_{l}(u)-a \\
& =\left(\sum_{h+i=n} d_{h}(u) \beta d_{i}(v)-d_{n}(u \beta v)\right) \gamma w \zeta v \beta u
\end{aligned}
$$

(4)

Recall that $d_{n}(x)=a+b$. F

In order to make use of Proposition 2.1.4 to prove the next result, the semiprimeness of a Γ-ring is required.

Proposition 3.2.6. Let M be a 2-torsion free semiprime Γ-ring, U be a nonzero ideal of $M, n \in \mathbb{N}_{0}$ and $a \gamma b \beta c=a \beta b \gamma c$ for all $a, b, c \in M$ and $\gamma, \beta \in \Gamma$. If $\varphi_{m}(u, v)_{\beta}=0$ for all $u, v \in U, \beta \in \Gamma$ and $m<n$, then

$$
\begin{aligned}
& S(u, \beta, v)=\varphi_{\text {and }}(u, v)_{\beta} \text { and } T(u, \beta, v)=[u, v]_{\beta}
\end{aligned}
$$

for all $u, v \in U$ ind $\beta \in \Gamma$. Then S and T satisfy the hypothesis of Proposi-

$$
\varphi_{n}(u, v)_{\beta} \gamma w \zeta[a, b]_{\lambda}=0
$$

for all $u, v, w, a, b \in U$ and $\gamma, \beta, \zeta, \lambda, \in \Gamma$. Similarly, another result is obtained.

Proposition 3.2.7. Let M be a 2-torsion free prime Γ-ring, U be a nonzero ideal of M,
$n \in \mathbb{N}_{0}$ and $a \gamma b \beta c=a \beta b \gamma c$ for all $a, b, c \in M$ and $\gamma, \beta \in \Gamma$. If $\varphi_{m}(u, v)_{\beta}=0$ for all $u, v \in U, \gamma, \beta \in \Gamma$ and $m<n$, then, for all $u, v, w, a, b \in U$ and $\gamma, \beta, \zeta, \lambda \in \Gamma$,

$$
\varphi_{n}(u, v)_{\beta} \gamma w \zeta[a, b]_{\lambda}=[a, b]_{\lambda} \gamma w \zeta \varphi_{n}(u, v)_{\beta}=0 .
$$

Proof. This follows from Proposition 3.2.6 and the fact that a prime Γ-ring is also a semiprime Γ-ring.

Now, we are ready t lemma is given.
Lemma 3.2.8. Let M v cove Γ-ring, U be a nonzero
 derivation of U into M

Proof. Let $D=\left(d_{i}\right)_{i \in \mathbb{N}}$ a gind $14, \quad N \quad \omega \in U, \gamma \in \Gamma$ and $n \in \mathbb{N}_{0}$, Proposition 3.2.1 provide C

Since M is 2-torsion free, $d_{n}(u \gamma v)=\sum_{i+j=n} d_{i}(u) \gamma d_{j}(v)$. Hence D is a HD of U into M.

Theorem 3.2.9. Let M be a 2-torsion free prime Γ-ring, U be a nonzero ideal of M and
$a \gamma b \beta c=a \beta b \gamma c$ for all $a, b, c \in M$ and $\gamma, \beta \in \Gamma$. Then a Jordan higher derivation of U into M is a higher derivation of U into M.

Proof. Let $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ be a JHD of U into M. Lemma 3.2.8 shows that the statement holds if M is commutative. As a result, we assume that M is noncommutative.

To prove that D is a HD, we s' ${ }^{\prime}{ }^{\prime}{ }^{t} d_{n}(u \gamma v)=\sum_{i+j=n} d_{i}(u) \gamma d_{j}(v)$, i.e., $\varphi_{n}(u, v)_{\gamma}=0$ for all $u, v \in U-I_{0}$. This obviously holds when $n=0$. Now, let $n \in \mathbb{N}_{0}$ a $u, v \in U, \gamma \in \Gamma$ and m
for all $u, v, w, a, b \in U$ an \quad \& (ु) $\subset \in)^{\prime}$ orime and w, β, ζ are arbitrary, $\varphi_{n}(u, v)_{\gamma}=0$ for 1 $\lambda \in \Gamma$.
$\sum_{i+j=m} d_{i}(u) \gamma d_{j}(v)$ for all

Suppose that $[a, b]_{\lambda}=$, i.
 $[a \gamma m, b]_{\beta}=0$. Note

$$
\begin{aligned}
& \text { ศูนย์มิวขยู่ทรัพยากร }
\end{aligned}
$$

$$
\begin{aligned}
& =a \gamma(m \beta b-b \beta m)+0 \\
& \text { (by assumption) } \\
& =a \gamma[m, b]_{\beta} .
\end{aligned}
$$

Since a and γ are arbitrary, it means that $U \Gamma[m, b]_{\beta}=0$. By Proposition 3.1.3,
we have $[m, b]_{\beta}=0$. This shows that $[m, b]_{\beta}=0$ for all $b \in U, m \in M$ and $\beta \in \Gamma$. As a result, $U \subseteq Z(M)$. As a consequence of Proposition 3.1.2, M is commutative leading to a contradiction. Thus $\varphi_{n}(u, v)_{\gamma}=0$ for all $u, v \in U$ and $\gamma \in \Gamma$. Therefore D is a HD of U into M.

CHAPTER IV

GENERALIZED HIGHER DERIVATIONS AND JORDAN GENERALIZED HIGHER DERIVATIONS

In this chapter, we defin alized higher derivatic generalized derivation sake of the consistency chapter into two section \quad a the definition and simple

4.1 Definition

Only definitions of higher derivation o are results from Chapte II.
ation and a Jordan generries are extended from a tion of a Γ-ring. For the hesis, we still divide this

Definition 4.1.مदt M (i.e., $f_{i}: M \mathbb{\mathbb { N }} M$ preserves the addition for all i) where f_{0} is the identity
 is a higherqderivation $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ of M such that

$$
f_{n}(a \gamma b)=\sum_{i+j=n} f_{i}(a) \gamma d_{j}(b) \quad \text { for all } a, b \in M, \gamma \in \Gamma \text { and } n \in \mathbb{N}_{0}
$$

a Jordan generalized higher derivation (JGHD) of M if there is a higher derivation $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ of M such that

$$
f_{n}(a \gamma a)=\sum_{i+j=n} f_{i}(a) \gamma d_{j}(a) \quad \text { for all } a \in M, \gamma \in \Gamma \text { and } n \in \mathbb{N}_{0}
$$

It is clear that a GHD is a JGHD in general but the converse is not true. Observe that a GHD and a GJHГ with identity is also a GHD and a GJHD of a Γ-ring R where Γ

4.2 The Main Resiv: ~nธ of Γ-Rings

 HD of M such that f_{n} following results are ne

Proposition 4.2.1. For ear d

Proof. The result folle the proof of Proposition 2.2.1 by replacing oy $a+b$ in the detinition of a M.

Proof. The same process in the proof of Proposition 2.2.2 is applied. Let $a, b \in M$, $\gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$. We put $x=a \gamma(a \beta b+b \beta a)+(a \beta b+b \beta a) \gamma a$. By Proposi-
tion 4.2.1,

$$
f_{n}(a \gamma b \beta a+a \beta b \gamma a)=\sum_{i+j+k=n}\left(f_{i}(a) \gamma d_{j}(b) \beta d_{k}(a)+f_{i}(a) \beta d_{j}(b) \gamma d_{k}(a)\right) .
$$

Proposition 4.2.3. Let M be a 2-torsion free Γ-ring. Then

$$
f_{n}(a \gamma b \gamma a)=\sum_{i+j+k=n}\left(f_{i}(a) \gamma d_{j}(b) \gamma d_{k}(a)\right)
$$

for each $a, b \in M, \gamma \in \Gamma$ and $n \in \mathbb{N}_{0}$.

$$
\begin{aligned}
= & \sum_{i+j+k=n}\left(f_{i}(a) \gamma d_{j}(b) \gamma d_{k}(a)\right)+\sum_{i+j+k=n}\left(f_{i}(c) \gamma d_{j}(b) \gamma d_{k}(c)\right) \\
& +\sum_{i+j+k=n}\left(f_{i}(a) \gamma d_{j}(b) \gamma d_{k}(c)+f_{i}(c) \gamma d_{j}(b) \gamma d_{k}(a)\right)
\end{aligned}
$$

and

This implies that

Hence

$$
\begin{aligned}
0 & =f_{n}((a+c) \gamma b \gamma(a- \\
& =f_{n}(a \gamma b \gamma c+c \gamma b \gamma a)
\end{aligned}
$$

ศูนย์วิทยทรัพยากร

Proposition 4.2.5. For every $a, b, c \in M, \gamma, \beta \in \Gamma$ and $n \in \mathbb{N}_{0}$,
(i) $F_{n}(a+c, b)_{\gamma}=F_{n}(a, b)_{\gamma}+F_{n}(c, b)_{\gamma}$,
(ii) $F_{n}(a, b+c)_{\gamma}=F_{n}(a, b)_{\gamma}+F_{n}(a, c)_{\gamma}$,
(iii) $F_{n}(a, b)_{\gamma, \beta}=F_{n}(a, b)_{\gamma}+F_{n}(a, b)_{\beta}$,
(iv) $F_{n}(a, b)_{\gamma}=-F_{n}(b, a)_{\gamma}$.

Proof. These can be shown in the same way of the proof of Proposition 2.3.2 and Proposition 2.3.4.

Lemma 4.2.6. Let M be a 2-torsion free Γ-ring and $n \in \mathbb{N}_{0}$. If $F_{m}(a, b)_{\gamma}=0$ for all $a, b \in M, \gamma \in \Gamma$ and $m<n$, then, for all $a, b, x \in M$ and $\gamma, \beta \in \Gamma$,

Proof. Let $a, b, x \in M$ a HD D,

On the other haitd, applying Proppsition 4.2.4 and the definition of a HD D

$$
\begin{aligned}
& f_{n}((a \gamma b) \beta x \beta(b \gamma a)+(b \gamma a) \beta x \beta(a \gamma b)) \\
& \quad=\sum_{r+s+t=n}\left(f_{r}(a \gamma b) \beta d_{s}(x) \beta d_{t}(b \gamma a)+f_{r}(b \gamma a) \beta d_{s}(x) \beta d_{t}(a \gamma b)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\quad \sum \quad f(b) \gamma d_{u}(a) \beta d_{v}(x) \beta d_{y}(a) \gamma d_{k}(b) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{r+s+t=n} f_{r}(a \gamma b) \beta d_{s}(x) \beta\left(\sum_{p+q=t} d_{p}(b) \gamma d_{q}(a)\right) \\
& +\sum_{r+s+t=n} f_{r}(b \gamma a) \beta d_{s}(x) \beta\left(\sum_{p+q=t} d_{p}(a) \gamma d_{q}(b)\right) \\
= & \sum_{r+s+p+q=n} f_{r}(a \gamma b) \beta d_{s}(x) \beta d_{p}(b) \gamma d_{q}(a)+\sum_{r+s+p+q=n} f_{r}(b \gamma a) \beta d_{s}(x) \beta d_{p}(a) \gamma d_{q}(b) .
\end{aligned}
$$

Let
C

$$
\begin{aligned}
& \sigma f_{\mathrm{D}}(a \gamma b)=\sum \operatorname{fi}^{2}(a) \gamma d_{j}(b) . \\
& \text { ศุนยว่ทยทัรัพยากร }
\end{aligned}
$$

Now,

$$
\begin{aligned}
& =f_{n}(a \gamma b) \beta x \beta b \gamma a+\sum_{\substack{l+g+s+p+q=n \\
l+g \neq n}} f_{l}(a) \gamma d_{g}(b) \beta d_{s}(x) \beta d_{p}(b) \gamma d_{q}(a) .
\end{aligned}
$$

We can see that

$$
\begin{aligned}
& \quad \sum_{i+u+v+w+k=n} f_{i}(a) \gamma d_{u}(b) \beta d_{v}(x) \beta d_{w}(b) \gamma d_{k}(a)-y \\
& =\left(\sum_{\substack{i+u=n}} f_{i}(a) \gamma d_{u}(b) \beta x \beta b \gamma a+\sum_{\substack{i+u+v+w+k=n \\
i+u \neq n}} f_{i}(a) \gamma d_{u}(b) \beta d_{v}(x) \beta d_{w}(b) \gamma d_{k}(a)\right)-y
\end{aligned}
$$

$$
\left.=\sum_{i+u=n} f_{i}(a) \gamma d_{u}(b) \beta x \beta b \gamma a-\gamma\right) \mid \text {) } p b \gamma a
$$

$$
\begin{aligned}
& =\left(\sum_{i+u=n} f_{i}(a) \gamma d_{u}(\right. \\
& =-F_{n}(a, b)_{\gamma} \beta x \beta(b
\end{aligned}
$$

and, similarly,

$$
\begin{aligned}
& \text { ลุ } \\
& =F_{n}(a, b)_{\gamma} \beta x \beta(a \gamma b-b \gamma a) \\
& =F_{n}(a, b)_{\gamma} \beta x \beta[a, b]_{\gamma} .
\end{aligned}
$$

Lemma 4.2.7. Let M be a 2-torsion free semiprime Γ-ring and $n \in \mathbb{N}_{0}$. If the element $F_{m}(a, b)_{\gamma}=0$ for all $a, b \in M, \gamma \in \Gamma$ and $m<n$, then

$$
F_{n}(a, b)_{\gamma} \beta x \zeta[a, b]_{\gamma}=0
$$

for all $a, b, x \in M, \gamma, \beta, \zeta \in \Gamma$.
Proof. Let $a, b, x, y \in M$ and γ, \quad, 1 nma 4.2 provides

This implies that

Consequently,

where thê 9 a tequây
are arbitrary and M is semiprime,

$$
F_{n}(a, b)_{\gamma} \beta x \zeta[a, b]_{\gamma}=0
$$

Lemma 4.2.8. Let M be a 2-torsion free semiprime Γ-ring and $n \in \mathbb{N}_{0}$. If the element $F_{m}(a, b)_{\gamma}=0$ for all $a, b \in M, \gamma \in \Gamma$ and $m<n$, then

$$
F_{n}(a, b)_{\gamma} \beta x \zeta[u, v]_{\lambda}=0
$$

for all $a, b, x, u, v \in M$ and $\gamma, \beta, \zeta, \lambda \in \Gamma$.

for all $a, b, x, v, u \in M$,

Proof. This is obtained from Lemma 4.2.8 and the fact that primeness implies

Finally, the main theorem of thischapter is provided.
 generalized higher derivation of M is a generalized higher derivation of M.

Proof. Let $F=\left(f_{i}\right)_{i \in \mathbb{N}_{0}}$ be a JGHD of M. Then there is a HD $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ such that $f_{n}(a \gamma a)=\sum_{i+j=n} f_{i}(a) \gamma d_{j}(a)$. To prove that F is a GHD of M, it suffices to show that $f_{n}(a \gamma b)=\sum_{i+j=n} f_{i}(a) \gamma d_{j}(b)$ for all $a, b \in M, \gamma \in \Gamma$ and $n \in \mathbb{N}_{0}$.

We prove this by induction on n. First, notice that this holds when $n=0$ because f_{0} is the identity map. Now, let $n \in \mathbb{N}_{0}$ and assume that $f_{m}(a \gamma b)=$ $\sum_{i+j=m} f_{i}(a) \gamma d_{j}(b)$ for all $a, b \in M, \gamma \in \Gamma$ and $m<n$. Applying Corollary 4.2.9, we obtain that

$$
F_{n}(a, b)_{\gamma} \beta x \zeta[u, v]_{\lambda}=0
$$

for all $a, b, x, u, v \in M$ and $\gamma, \beta, \zeta, \mathcal{V})$ ince M is prime and x, β, ζ are arbitrary, $F_{n}(a, b)_{\gamma}=0$ for all a. and $\lambda \in \Gamma$. Suppose that or $[u, v]_{\lambda}=0$ for all $u, v \in M$ Then M is commutativ all $a, b \in M$ and $\gamma \in \Gamma$

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

REFERENCES

[1] Barnes, W.E.: On the Г-rings of Nobusawa, Pacific J. Math., 18, 411-422 (1966).
[2] Barnes, W.E.: Jordan derivations on semiprime rings, Amer. Math. Soc., 104, 1003-1006 (1988).
[3] Bresar, M.: Jordan mappings of comiprime rings, J. Algebra, 127, 218-228 (1989).
[4] Ceven, Y. and Ozturk, rings, Hacette. J. Math
[5] Cusack, J.M.: Jordantur? Anter. Math. Soc., 2(53), 321324 (1975).
[6] Ferrero, M. and I ctios st stein, Quaest. Math
[7] Ferrero, M. and H (1 Commu. Alg., 30(5)
[8] Haetinger, C.: High ivandravidie ic Soc. Brasil. Mat. Apl. Comput., 1, 141-145 (2002)
 1110 (1957).
[10] Ozturk, M.A. a
 prime Gamma rir
 , 233-242 (2004).
[11] Sapanci, M. and Nazkaiima, A.: Jordạy derivations on completely prime

[12] Soyturk, MथTThe commutativity in prime Gamma rings with derivation, Tr. J. Math., 18, 149-155 (1994).

VITA

