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CHAPTER I

INTRODUCTION AND PRELIMINARIES

For a set X, let |X| denote the cardinality of X. The set of positive integers,

the set of integers and the set of real numbers are denoted by N, Z and R,

respectively.

An element a of a semigroup S is called an idempotent of S if a2 = a. For a

semigroup S, let E(S) be the set of all idempotents of S, that is,

E(S) = {a ∈ S | a2 = a}.

An element a of a semigroup S is said to be regular if a = aba for some b ∈ S,

and we call S a regular semigroup if every element of S is regular. The set of all

regular elements of a semigroup S will be denoted by Reg(S), that is,

Reg(S) = {a ∈ S | a = aba for some b ∈ S}.

Consequently, E(S) ⊆ Reg(S). By an eventually regular element of a semigroup

S we mean an element a of S such that ak ∈ Reg(S) for some k ∈ N. If every

element of S is eventually regular, we call S an eventually regular semigroup.

Therefore a regular semigroup is eventually regular.

For an element a of a semigroup S, let < a > denote the subsemigroup of S

generated by a, that is,

<a> = {an | n ∈ N}.

We call S a periodic semigroup if <a> is finite for every a ∈ S. It is known that

for a ∈ S, if <a> is finite, then ak ∈ E(S) for some k ∈ N ([1], page 3-4). Since
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E(S) ⊆ Reg(S) for every semigroup S, it follows that every periodic semigroup

is eventually regular. In particular, every finite semigroup is eventually regular.

A partial transformation of a set X is a map from a subset of X into X. The

empty transformation 0 is the partial transformation with empty domain. Let

P (X) be the set of all partial transformations of X, that is,

P (X) = {α : A→ X | A ⊆ X}.

The identity map on a nonempty set A is denoted by 1A. Then 1A ∈ P (X) for

every nonempty subset A of X. In particular, 1X ∈ P (X). We denote the domain

and the range of α ∈ P (X) by domα and ranα, respectively. Also, for α ∈ P (X)

and x ∈ domα, the image of x under α is written by xα. The composition αβ of

α, β ∈ P (X) is defined as follows : αβ = 0 if ranα ∩ domβ = ∅, otherwise, αβ is

the usual composition of the functions α|(ranα∩ domβ)α−1 and β|(ranα∩ domβ)
. Then under

this composition, P (X) is a semigroup having 0 and 1X as its zero and identity,

respectively. Observe that for α, β ∈ P (X),

dom(αβ) = (ranα ∩ domβ)α−1 ⊆ domα,

ran(αβ) = (ranα ∩ domβ)β ⊆ ranβ,

x ∈ dom(αβ) ⇐⇒ x ∈ domα and xα ∈ domβ.

The semigroup P (X) is called the partial transformation semigroup on X. By a

transformation semigroup on X we mean a subsemigroup of P (X).

By a transformation of X we mean a map of X into itself. Let T (X) be the

set of all transformations of X. Then

T (X) = {α ∈ P (X) | domα = X}

which is a subsemigroup of P (X) containing 1X and it is called the full transfor-

mation semigroup on X. Let I(X) denote the set of all 1-1 partial transformations
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of X, that is,

I(X) = {α ∈ P (X) | α is 1-1}.

Then I(X) is a subsemigroup of P (X) containing 0 and 1X and it is called the

1-1 partial transformation semigroup on X or the symmetric inverse semigroup

on X.

It is well-known that all P (X), T (X) and I(X) are regular ([1], page 4) and

for α ∈ P (X), α2 = α (α ∈ E(P (X))) if and only if ranα ⊆ domα and xα = x

for all x ∈ ranα. Thus

E(T (X)) = {α ∈ T (X) | xα = x for all x ∈ ranα},

E(I(X)) = {1A | ∅ 6= A ⊆ X} ∪ {0}.

For a nonempty subset A of X and x ∈ X, let Ax denote the element of P (X)

with domain A and range {x}. Observe that Ax ∈ E(P (X)) if and only if x ∈ A,

in particular, Xa ∈ E(T (X)) for all a ∈ X.

For convenience, we sometimes write an element in P (X) by using a bracket

notation. For examples,

a b c

b b d

 stands for the transformation {(a, b), (b, b), (c, d)}.

A x

y x


x∈X\A

stands for α ∈ T (X) defined by

xα =


y if x ∈ A,

x if x ∈ X\A.

In the area of semigroups, the full transformation semigroup T (X) is con-

sidered very important. In 1975, J. S. Y. Symons [7] introduced the semigroup



4

T (X, X ′), ∅ 6= X ′ ⊆ X, under composition consisting of all mappings in T (X)

whose range are contained in X ′, that is,

T (X, X ′) = {α ∈ T (X) | ranα ⊆ X ′}.

Then Xa ∈ T (X, X ′) for all a ∈ X ′ and T (X, X ′) is a subsemigroup of T (X).

The semigroup T (X, X ′) can be considered as a generalization of T (X) since

T (X, X) = T (X). In fact, in 1966, K. D. Magrill [3] studied the semigroup

T (X, X ′) = {α ∈ T (X) | X ′α ⊆ X ′}

which is also a generalization of T (X) since T (X,X) = T (X). We can see that

1X ∈ T (X, X ′) but 1X /∈ T (X, X ′) if X ′ ( X. It is clearly seen that T (X, X ′) ⊆

T (X, X ′) ⊆ T (X).

For α ∈ P (X) and A ⊆ X, we let Aα stand for the set (A∩ domα)α (= {xα |

x ∈ A ∩ domα}).

In this research the semigroups P (X,X ′), P (X, X ′), I(X, X ′) and I(X,X ′)

are defined analogously, that is,

P (X, X ′) = {α ∈ P (X) | ranα ⊆ X ′}, P (X, X ′) = {α ∈ P (X) | X ′α ⊆ X ′},

I(X, X ′) = {α ∈ I(X) | ranα ⊆ X ′}, I(X, X ′) = {α ∈ I(X) | X ′α ⊆ X ′}.

Then P (X, X ′) ⊆ P (X, X ′) ⊆ P (X) and I(X, X ′) ⊆ I(X, X ′) ⊆ I(X). Since

P (X, X) = P (X, X) = P (X) and I(X,X) = I(X,X) = I(X), both P (X, X ′)

and P (X,X ′) are generalizations of P (X) while I(X, X ′) and I(X, X ′) are gen-

eralizations of I(X).

Next, let X be a poset. By a subchain of X we mean a subposet of X which

is also a chain. A point a ∈ X is said to be isolated if

for any x ∈ X, x ≤ a or x ≥ a =⇒ x = a,

and we call a subposet Y of X isolated if every point of Y is isolated in Y .

For α ∈ P (X), α is said to be regressive if
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xα ≤ x for all x ∈ domα.

A transformation semigroup on X is said to be regressive if all of its elements are

regressive. Let

PRE(X) = {α ∈ P (X) | α is regressive},

TRE(X) = {α ∈ T (X) | α is regressive},

IRE(X) = {α ∈ I(X) | α is regressive}.

Then PRE(X), TRE(X) and IRE(X) are respectively subsemigroups of P (X),

T (X) and I(X). Observe that 0 and 1X belong to PRE(X) and IRE(X) and 1X ∈

TRE(X). By a regressive transformation semigroup on X we mean a subsemigroup

of PRE(X).

Let X and Y be posets. A bijection ϕ : X → Y is called an order-isomorphism

if

for x1, x2 ∈ X, x1 ≤ x2 in X ⇔ x1α ≤ x2α in Y.

We say that X and Y are order-isomorphic if there is an order-isomorphism from

X onto Y .

Example 1.1. Let α : Z→ Z be defined by

xα = x− 1 for all x ∈ Z.

Then α is an element of PRE(Z), TRE(Z) and IRE(Z). Also, α is a bijection and

xαn = x− n for all x ∈ Z and n ∈ N

which implies that

x(αn)−1 = x + n for all x ∈ Z and n ∈ N.

Hence for every n ∈ N, (αn)−1 is not regressive, so it belongs to none of PRE(Z),

TRE(Z) and IRE(Z). If αn = αnβαn for some n ∈ N and β ∈ PRE(Z), then

β = (αn)−1 which is not regressive. This proves that α is not eventually regular.
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Some known results of regressive transformation semigroups are as follows: A.

Umar [5] has shown that if X is a finite chain, then the subsemigroup S = {α ∈

TRE(X) | |ranα| < |X|} of TRE(X) is generated by E(S), that is, for α ∈ S,

α = δ1δ2 . . . δk for some δ1, δ2, . . . , δk ∈ E(S), and S is not a regular semigroup if

|X| ≥ 3. Y. Kemprasit [2] showed that in any regressive transformation semigroup

on a poset, its idempotents and regular elements are identical.

Proposition 1.2. ([2]) If S(X) is a regressive transformation semigroup on a

poset X, then Reg(S(X)) = E(S(X)).

Y. Kemprasit ([2]) also characterized when PRE(X), TRE(X) and IRE(X) are reg-

ular semigroups as follows:

Theorem 1.3. ([2]) For a poset X, if S(X) is PRE(X) or IRE(X), then S(X) is

a regular semigroup if and only if X is isolated.

Theorem 1.4. ([2]) For a poset X, TRE(X) is a regular semigroup if and only if

for every subchain C of X, |C| ≤ 2.

A necessary and sufficient condition for PRE(X), TRE(X) and IRE(X) to be

eventually regular has been given in [2]. The next proposition was used as a

lemma to obtain this characterization. Both will be referred for our work.

Proposition 1.5. ([2]) If X is a poset and there is no positive integer n such

that |C| ≤ n for every subchain C of X, then there is a sequence of disjoint finite

subchains C1, C2, C3, . . . of X such that |C1| < |C2| < |C3| < . . . .

Theorem 1.6.([2]) Let X be a poset and let S(X) be PRE(X), TRE(X) or IRE(X).

Then S(X) is eventually regular if and only if there is a positive integer n such

that |C| ≤ n for every subchain C of X.
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A significant isomorphism theorem on full regressive transformation semi-

groups was given by A. Umar [6] in 1996 as follows:

Theorem 1.7. ([6]) If X and Y are chains, then TRE(X) ∼= TRE(Y ) if and only

if X and Y are order-isomorphic.

Notice that the converse of Theorem 1.7 is true for any posets X and Y as

follows:

Proposition 1.8. For posets X and Y , if ϕ : X → Y is an order-isomorphism,

then the map α 7→ ϕ−1αϕ is an isomorphism from TRE(X) onto TRE(Y ).

Proof. If α ∈ TRE(X) and y ∈ Y , then (yϕ−1)α ≤ yϕ−1. Since ϕ is an order-

isomorphism, yϕ−1αϕ ≤ yϕ−1ϕ = y. Thus ϕ−1αϕ ∈ TRE(Y ). Also, for α, β ∈

TRE(X), ϕ−1αβϕ = (ϕ−1αϕ)(ϕ−1βϕ), and if ϕ−1αϕ = ϕ−1βϕ, then α = β. For

λ ∈ TRE(Y ), we have ϕλϕ−1 ∈ TRE(X) and ϕ−1(ϕλϕ−1)ϕ = λ.

T. Saito, K. Aoki and K. Kajitori [4] have given necessary and sufficient con-

ditions for any posets X and Y so that TRE(X) ∼= TRE(Y ). Umar’s Isomorphism

Theorem became a special case of their result.

Example 1.9. (1) For each n ∈ N, Z is order-isomorphic to nZ through the map

x 7→ nx, by Theorem 1.7, TRE(Z) ∼= TRE(nZ).

(2) We have that TRE(R) ∼= TRE(R+) where R+ is the set of positive real

numbers because the map x 7→ ex is an order-isomorphism of R onto R+.

Due to the semigroup introduced by J. S. V. Symons [7], the semigroup studied

by K. D. Magrill [3] and those we define analogously, the following regressive

transformation semigroups are defined for a poset X and a subposet X ′ of X

analogously as follows:
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PRE(X, X ′) = {α ∈ PRE(X) | ranα ⊆ X ′},

PRE(X, X ′) = {α ∈ PRE(X) | X ′α ⊆ X ′},

TRE(X, X ′) = {α ∈ TRE(X) | ranα ⊆ X ′},

TRE(X, X ′) = {α ∈ TRE(X) | X ′α ⊆ X ′},

IRE(X, X ′) = {α ∈ IRE(X) | ranα ⊆ X ′},

IRE(X, X ′) = {α ∈ IRE(X) | X ′α ⊆ X ′}.

It is clear that

PRE(X, X ′) ⊆ PRE(X, X ′) ⊆ PRE(X), TRE(X, X ′) ⊆ TRE(X, X ′) ⊆ TRE(X),

IRE(X, X ′) ⊆ IRE(X, X ′) ⊆ IRE(X), PRE(X,X) = PRE(X, X) = PRE(X),

TRE(X, X) = TRE(X, X) = TRE(X) and IRE(X, X) = IRE(X, X) = IRE(X).

Observe that 0 belongs to PRE(X,X ′), PRE(X, X ′), IRE(X, X ′) and IRE(X, X ′)

and 1X belongs to PRE(X, X ′), TRE(X, X ′) and IRE(X, X ′). Moreover, TRE(X, X ′)

6= ∅ (or equivalently, TRE(X, X ′) is a subsemigroup of TRE(X)) if and only if

for every x ∈ X, x′ ≤ x for some x′ ∈ X ′. (*)

Then whenever we consider TRE(X, X ′), the condition (*) is always assumed.

Example 1.10. Let α : Z→ 2Z be defined by

xα =



0 if x = 2,

x if x ∈ 2Z\{2},

x− 1 if x /∈ 2Z.

Then α ∈ TRE(Z, 2Z). Suppose that TRE(Z, 2Z) has an identity element, say η.

Thus

βη = ηβ = β for every β ∈ TRE(Z, 2Z).
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Since 3η ≤ 3 and ranη ⊆ 2Z, 3η ≤ 2 which implies that (3η)α < 2. But

3α = 3ηα < 2, so it is contrary to the definition of α. Therefore TRE(Z, 2Z) has

no identity. Since TRE(Z) and TRE(2Z) have an identity, we conclude that

TRE(Z) = TRE(Z, Z) � TRE(Z, 2Z) � TRE(2Z, 2Z) = TRE(2Z).

In Chapter II, we deal with the regularity of the six regressive transforma-

tion semigroups introduced previously. The aim is to generalize Theorem 1.3 and

Theorem 1.4. Our proofs are independent to those given in [2] for Theorem 1.3

and Theorem 1.4. Then these two theorems become consequences of our obtained

results.

Eventual regularity of our target regressive transformation semigroups is stud-

ied in Chapter III. The purpose is to extend Theorem 1.6. We characterize in this

chapter when these regressive transformation semigroups are eventually regular.

For these characterizations, Proposition 1.5 and Theorem 1.6 are referred as tools.

Finally, some isomorphism theorems of two regressive transformation semi-

groups of the same kinds are determined in Chapter IV. The interesting iso-

morphism theorems obtained in this chapter are as follows: For chains X and

Y , a subchain X ′ of X and a subchain Y ′ of Y , if TRE(X, X ′) ∼= TRE(Y, Y ′),

then X ′ and Y ′ are order-isomorphic. This result generalizes Umar’s Isomor-

phism Theorem. For posets X and Y , X ′ a subposet of X and Y ′ a subposet

of Y , if PRE(X, X ′) ∼= PRE(Y, Y ′), then X ′ and Y ′ are order-isomorphic, also if

IRE(X, X ′) ∼= IRE(Y, Y ′), then X ′ and Y ′ are order-isomorphic. Some nice and

remarkable consequences of the later two isomorphism theorems are that for any

posets X and Y , PRE(X) ∼= PRE(Y ) if and only if X and Y are order-isomorphic

and IRE(X) ∼= IRE(Y ) if and only if X and Y are order-isomorphic.



CHAPTER II

REGULAR REGRESSIVE TRANSFORMATION

SEMIGROUPS

The purpose of this chapter is to generalize Theorem 1.3 and Theorem 1.4 by

considering the regularity of PRE(X, X ′), IRE(X, X ′), TRE(X, X ′), PRE(X, X ′),

IRE(X, X ′) and TRE(X, X ′). More interesting results are obtained.

Throughout this chapter, X denotes any poset and X ′ denotes any subposet

of X, otherwise stated.

2.1 Regularity of PRE(X, X ′), IRE(X, X ′), P (X, X ′) and

IRE(X, X ′)

Recall that if S(X) is PRE(X) or IRE(X), then S(X) is regular if and only if X

is isolated (Theorem 1.3). By the definition of regressive partial transformations

of X, it is clearly seen that

X is isolated ⇒ PRE(X) = IRE(X) = {1A | ∅ 6= A ⊆ X} ∪ {0}.

Theorem 2.1.1. Let S(X, X ′) be PRE(X,X ′) or IRE(X, X ′). Then the semigroup

S(X, X ′) is regular if and only if

(i) X ′ is isolated and

(ii) for any x ∈ X\X ′ and x′ ∈ X ′, either x < x′ or x and x′ are uncomparable.

Proof. Suppose first that X ′ is not isolated. Then there are a, b ∈ X ′ such that

a < b. Let α =

(
b

a

)
. Then α ∈ S(X, X ′) and α2 = 0, so α /∈ E(S(X, X ′)). By
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Proposition 1.2, α /∈ Reg(S(X, X ′)). Next, suppose that there are c ∈ X\X ′ and

d ∈ X ′ such that c > d. Thus β =

(
c

d

)
∈ S(X, X ′) and β2 = 0 6= β. Hence

β /∈ Reg(S(X, X ′)) by Proposition 1.2. This shows that if S(X, X ′) is a regular

semigroup, then (i) and (ii) hold.

For the converse, assume that (i) and (ii) hold. Let α ∈ S(X, X ′) and x ∈

domα. Then xα ≤ x and xα ∈ X ′. Because of (ii), x ∈ X ′, so by (i), xα =

x. This proves that α = 1domα, the identity map on domα. Hence α = α2 ∈

Reg(S(X, X ′)).

Therefore the theorem is proved.

Theorem 2.1.2. Let S(X, X ′) be PRE(X, X ′) or IRE(X, X ′). Then the semi-

group S(X, X ′) is regular if and only if

(i) X ′ is isolated,

(ii) X\X ′ is isolated and

(iii) for any x ∈ X\X ′ and x′ ∈ X ′, either x < x′ or x and x′ are uncomparable.

Proof. Recall that PRE(X, X ′) ⊆ PRE(X, X ′) and IRE(X, X ′) ⊆ IRE(X,X ′). By

Proposition 1.2 and Theorem 2.1.1, to prove the necessity part, it suffices to show

that if X\X ′ is not isolated, then there is a nonregular element in S(X, X ′).

Assume that there are a, b in X\X ′ such that a < b. Then γ =

(
b

a

)
∈ S(X, X ′)

and γ2 = 0 6= γ. Hence γ /∈ Reg(S(X, X ′)) by Proposition 1.2. Therefore if

S(X, X ′) is regular, then (i)-(iii) hold.

Conversely, assume that (i), (ii) and (iii) hold. Let α ∈ S(X, X ′) and x ∈

domα. Then xα ≤ x.

Case 1 : x ∈ X ′. Since X ′α ⊆ X ′, xα ∈ X ′. Because xα ≤ x, it follows from (i)

that xα = x.

Case 2 : x ∈ X\X ′. Since xα ≤ x, it follows from (iii) that xα ∈ X\X ′. But
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X\X ′ is isolated by (ii), thus xα = x.

This proves that α = 1domα, so α is regular.

Hence the proof is complete.

Theorem 1.3 is directly obtained from Theorem 2.1.1 or Theorem 2.1.2 when

X ′ = X.

Corollary 2.1.3. If S(X) is PRE(X) or IRE(X), then S(X) is a regular semi-

group if and only if X is isolated.

In general, a subsemigroup of a regular semigroup need not be regular. An

obvious example is that (R, +) is a regular semigroup (a group) and N is a sub-

semigroup of (R, +) which is not regular. However, PRE(X, X ′) and IRE(X,X ′)

are respectively subsemigroups of PRE(X, X ′) and IRE(X, X ′) and by Theorem

2.1.1 and Theorem 2.1.2, the regularity of PRE(X, X ′) [IRE(X, X ′)] implies the

regularity of its subsemigroup PRE(X, X ′) [IRE(X, X ′)]. In fact, it follows di-

rectly from Proposition 1.2 that any subsemigroup of a regular regressive partial

transformation semigroup on X is also regular.

Corollary 2.1.4. The following statements hold.

(i) If PRE(X, X ′) is a regular semigroup, then so is PRE(X, X ′).

(ii) If IRE(X, X ′) is a regular semigroup, then so is IRE(X, X ′).

Example 2.1.5. Let X and Y be posets, X ′ a subposet of X and Y ′ a subposet

of Y defined by the Hasse diagrams as follows:

s
s ss

s
s

a b

b

c

a

d

X : X ′ :

�
�

�

Z
Z

Z
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s
s s s

s
s

c

a

d

b
ba

Y ′ :Y :

By Theorem 2.1.1 and Theorem 2.1.2, PRE(X,X ′) and IRE(X, X ′) are regular but

neither PRE(X, X ′) nor IRE(X,X ′) are regular. Also, from these two theorems, we

have that all the semigroups, PRE(Y, Y ′), IRE(Y, Y ′), PRE(Y, Y ′) and IRE(Y, Y ′)

are regular. Note that by Corollary 2.1.3, none of PRE(X), IRE(X), PRE(Y ) and

IRE(Y ) is regular while all PRE(X ′), IRE(X ′), PRE(Y ′) and IRE(Y ′) are regular.

2.2 Regularity of TRE(X, X ′) and TRE(X, X ′)

In this section, we intend to generalize Theorem 1.4 stated that TRE(X) is

regular if and only if |C| ≤ 2 for every subchain C of X.

Theorem 2.2.1. The semigroup TRE(X,X ′) is regular if and only if for every

subchain C of X,

(i) |C ∩X ′| ≤ 2 and

(ii) if C∩X ′ 6= φ and C∩X ′ has an upper bound not in C∩X ′, then |C∩X ′| = 1.

Proof. Assume that every subchain C of X satisfies (i) and (ii). By Proposition

1.2, it suffices to show that every element of TRE(X, X ′) is an idempotent. Let

α ∈ TRE(X, X ′) and x ∈ X. Then x ≥ xα ≥ xα2 and xα, xα2 ∈ X ′.

Case 1 : x ∈ X ′. Then x, xα, xα2 ∈ X ′ and x ≥ xα ≥ xα2. It follows from (i)

that x = xα or xα = xα2. Hence xα = xα2.

Case 2 : x ∈ X\X ′. Consider the chain C = {xα, xα2} ⊆ X ′. Then x ∈ X\X ′

as is an upper bound of C. By (ii), |C| = 1, and thus xα = xα2.

We therefore conclude that xα = xα2 for all x ∈ X. Hence α is an idempotent.
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Conversely, suppose that there exists a chain C of X such that (1) |C∩X ′| ≥ 3

or (2) |C ∩X ′| ≥ 2 and C ∩X ′ has an upper bound in X\(C ∩X ′). In any cases,

we have a subchain a < b < c of X with a, b ∈ X ′. Recall that X ′ satisfies the

condition (*). Then for each x ∈ X, there exists x
′ ∈ X ′ such that x

′ ≤ x. Define

α : X → X by

α =

b c x

a b x
′


x∈X\{b,c}

.

Then α ∈ TRE(X, X ′). Since b ∈ ranα and bα = a 6= b, we have that α is not an

idempotent. By Proposition 1.2, α is not a regular element of TRE(X,X ′).

Hence if TRE(X,X ′) is regular, then (i) and (ii) hold.

Theorem 2.2.2. The semigroup TRE(X, X ′) is regular if and only if for every

subchain C of X,

(i) |C ∩X ′| ≤ 2,

(ii) |C ∩ (X\X ′)| ≤ 2,

(iii) if C∩X ′ 6= φ and C∩X ′ has an upper bound not in C∩X ′, then |C∩X ′| = 1

and

(iv) if C ∩ (X\X ′) 6= φ and C ∩ (X\X ′) has a lower bound not in C ∩ (X\X ′),

then |C ∩ (X\X ′)| = 1.

Proof. Assume that every chain C of X satisfies (i)-(iv). Let α ∈ TRE(X, X ′) and

x ∈ X. Then x ≥ xα ≥ xα2.

Case 1 : x ∈ X ′. Since X ′α ⊆ X ′, we have that all x, xα and xα2 belong to X ′.

It therefore follows from (i) that x = xα or xα = xα2, so xα = xα2.

Case 2 : x /∈ X ′ and xα ∈ X ′. Then xα2 ∈ X ′ since X ′α ⊆ X ′. We then deduce

from (iii) that xα = xα2.
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Case 3 : x /∈ X ′, xα /∈ X ′ and xα2 ∈ X ′. Then we have from (iv) that x = xα,

and hence xα = xα2.

Case 4 : x /∈ X ′, xα /∈ X ′ and xα2 /∈ X ′. It then follows from (ii) that x = xα

or xα = xα2 which implies that xα = xα2.

This shows that α2 = α, so α is a regular element of TRE(X, X ′).

For the converse, suppose that there exists a subchain C satisfying at least

one of the following conditions.

(1) |C ∩X ′| ≥ 3,

(2) |C ∩ (X\X ′)| ≥ 3,

(3) |C ∩X ′| ≥ 2 and C ∩X ′ has an upper bound not in itself,

(4) |C ∩ (X\X ′)| ≥ 2 and C ∩ (X\X ′) has a lower bound not in itself.

Case 1 : |C ∩ X ′| ≥ 3. Then there are a, b, c ∈ C ∩ X ′ such that a < b < c.

Define α : X → X by

α =

b c x

a b x


x∈X\{b,c}

.

Then α ∈ TRE(X) and X ′α = {a, b} ∪ (X ′\{b, c}) ⊆ X ′, so α ∈ TRE(X, X ′). But

b ∈ ranα and bα = a 6= b, so α2 6= α.

Case 2 : |C ∩ (X\X ′)| ≥ 3. Then e < f < g for some e, f, g ∈ C ∩ (X\X ′). Let

β =

f g x

e f x


x∈X\{f,g}

.

Then β ∈ TRE(X) and xβ = x for all x ∈ X ′, so β ∈ TRE(X,X ′). Since f ∈ ranβ

and fβ = e 6= f , β2 6= β.

Case 3 : |C ∩X ′| ≥ 2 and C ∩X ′ has an upper bound u ∈ X\(C ∩X ′). Then

k > h for some k, h ∈ C ∩X ′, and thus u > k > h. Let
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γ =

k u x

h k x


x∈X\{k,u}

.

Then γ ∈ TRE(X). If u ∈ X ′, then X ′γ = {h, k} ∪ (X ′\{k, u}) = X ′\{u} ⊆ X ′.

If u ∈ X\X ′, then X ′γ = {h} ∪ (X ′\{k}) = X ′\{k} ⊆ X ′. Therefore γ ∈

TRE(X, X ′). Since k ∈ ranγ and kγ = h 6= k, γ2 6= γ.

Case 4 : |C∩(X\X ′)| ≥ 2 and C∩(X\X ′) has a lower bound l ∈ X\(C ∩ (X\X ′)).

Then p > q for some p, q ∈ C ∩ (X\X ′), and so p > q > l. Let

λ =

q p x

l q x


x∈X\{p,q}

.

Then λ ∈ TRE(X). Since X ′ ⊆ X\{p, q}, X ′λ = X ′, thus λ ∈ TRE(X, X ′). But

q ∈ ranλ and qλ = l 6= q, so λ2 6= λ.

We therefore deduce from Proposition 1.2 that TRE(X, X ′) is not a regular semi-

group.

Remark 2.2.3. It can be easily seen from Theorem 2.2.2 that if the semigroup

TRE(X, X ′) is regular, then the following statements hold.

(i) Every subchain of X has length at most 4.

(ii) If C = {a, b, c, d} is a subchain of X such that a < b < c < d, then either

C ∩X ′ = {c, d} or C ∩X ′ = {b, d}.

We can see easily that Theorem 1.4 is a consequence of Theorem 2.2.1 and

Theorem 2.2.2.

Corollary 2.2.4. The semigroup TRE(X) is regular if and only if for every sub-

chain C of X, |C| ≤ 2.

Also, from Theorem 2.2.1 and Theorem 2.2.2 or from Proposition 1.2, we have

Corollary 2.2.5. If TRE(X, X ′) is a regular semigroup, then so is TRE(X, X ′).
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Example 2.2.6. Let X and Y be posets, X ′ a subposet of X and Y ′ a subposet

of Y defined by the following Hasse diagrams.

s

s
ss

s

s

s s
e

b

d

b

c

a

d e

X : X ′ :

�
�

�
�

S
S

S
S

�
�

�
�

�
�

�
�

S
S

S
S

s
s s ss s

s
s

c

c

e

a

d

b
de

Y ′ :Y :
#

#
#

c
c

c

By Theorem 2.2.1, TRE(X, X ′) is regular, and by Theorem 2.2.2, TRE(X,X ′) is

not regular and both TRE(Y, Y ′) and TRE(Y, Y ′) are regular.



CHAPTER III

EVENTUALLY REGULAR REGRESSIVE

TRANSFORMATION SEMIGROUPS

The purpose of this chapter is to charaterize when our target regressive trans-

formation semigroups are eventually regular. These characterizations will gener-

alize Theorem 1.6.

Throughout this chapter unless mentioned, X denotes any poset and X ′ de-

notes a subposet of X.

3.1 Eventual Regularity of PRE(X, X ′), IRE(X,X ′) and

TRE(X, X ′)

We first give a necessary and sufficient condition of PRE(X, X ′), IRE(X, X ′)

and TRE(X, X ′) to be eventually regular. This condition depends only on X ′.

Theorem 3.1.1. Let S(X, X ′) be PRE(X, X ′), IRE(X,X ′) or TRE(X, X ′). Then

S(X, X ′) is eventually regular if and only if there exists a positive integer n such

that |C| ≤ n for every subchain C of X ′.

Proof. To prove necessity, assume that S(X, X ′) is eventually regular. Based on

Theorem 1.6, it suffices to show that S(X ′, X ′) is eventually regular where

S(X ′, X ′) =



PRE(X ′, X ′) if S(X, X ′) = PRE(X, X ′),

IRE(X ′, X ′) if S(X, X ′) = IRE(X, X ′),

TRE(X ′, X ′) if S(X, X ′) = TRE(X, X ′).
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Let α ∈ S(X ′, X ′).

Case 1 : S(X, X ′) is PRE(X, X ′) or IRE(X, X ′). Then α ∈ S(X, X ′). Since

S(X, X ′) is eventually regular, αk ∈ Reg(S(X, X ′)) for some k ∈ N. By Proposi-

tion 1.2, αk ∈ E(S(X,X ′)). But αk ∈ S(X ′, X ′), so αk ∈ E(S(X ′, X ′)).

Case 2 : S(X,X ′) is TRE(X, X ′). By (*), for every x ∈ X, there is an x′ ∈ X ′

such that x′ ≤ x. Define β : X → X ′ by

xβ =


xα if x ∈ X ′,

x′ if x ∈ X\X ′.

Since α ∈ TRE(X ′), β is clearly an element of TRE(X, X ′) and β|X′ = α. But

TRE(X, X ′) is eventually regular, thus βk ∈ Reg(TRE(X,X ′)) for some k ∈ N,

and hence βk ∈ E(TRE(X, X ′)) by Proposition 1.2. But α = β|X′ ∈ TRE(X ′), so

αk ∈ E(TRE(X ′)).

It therefore follows from Theorem 1.6 that there exists an n ∈ N such that |C| ≤ n

for every subchain C of X ′.

To prove sufficiency, assume that there is an n ∈ N such that |C| ≤ n for every

chain C of X ′. To show that S(X,X ′) is eventually regular, let α ∈ S(X, X ′) and

x ∈ domαn+1. Then

x ≥ xα ≥ xα2 ≥ . . . ≥ xαn ≥ xαn+1.

Since ranα ⊆ X ′, xα ≥ xα2 ≥ . . . ≥ xαn ≥ xαn+1 is a subchain of X ′. We

have by assumption that xαi = xαi+1 for some i ∈ {1, 2, . . . , n}. Since x ∈

domαn+1, xαi ∈ domαn+1−i, so we have xαn+1 = (xαi)αn+1−i = (xαi+1)αn+1−i =

xαn+2. This proves that domαn+1 ⊆ domαn+2 and xαn+1 = xαn+2 for every

x ∈ domαn+1. But domαn+2 ⊆ domαn+1, so we have αn+1 = αn+2. Consequently,

αn+1 ∈ E(S(X, X ′)).

Hence the theorem is proved.
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The following corollary is obtained directly from Theorem 1.6 and Theorem

3.1.1.

Corollary 3.1.2. The following statements hold.

(i) PRE(X, X ′) is eventually regular if and only if PRE(X ′) is eventually regular.

(ii) IRE(X, X ′) is eventually regular if and only if IRE(X ′) is eventually regular.

(iii) TRE(X, X ′) is eventually regular if and only if TRE(X ′) is eventually regular.

Some easy consequences of Theorem 3.1.1 are as follows:

Corollary 3.1.3. If X ′ is a finite subposet of X, then all the semigroups PRE(X, X ′),

TRE(X, X ′) and IRE(X,X ′) are eventually regular.

Corollary 3.1.4. If X ′ is an infinite subchain of X, then none of the semigroups

PRE(X,X ′), TRE(X, X ′) and IRE(X,X ′) is eventually regular.

Example 3.1.5. Let X be a poset and X ′ a subposet of X defined by the following

Hasse diagrams.

s
s
s s

s
s
s

s
s
s
s
s

qqq q q
a13

a12

a11 a21

a22

a23

a24

a31

a32

a33

a34

a35

X :

s
s
s s

s
s

s
s
s

qqq q q
a13

a12

a11 a21

a22

a23

a31

a32

a33

X ′ :

Notice that X and X ′ satisfy the property (*). We deduce from Theorem 3.1.1

that all PRE(X, X ′), IRE(X, X ′) and TRE(X, X ′) are eventually regular. We give

a remark that from Theorem 1.6, TRE(X) is not eventually regular but TRE(X ′)

is eventually regular.
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3.2 Eventual Regularity of PRE(X, X ′), IRE(X, X ′) and

TRE(X, X ′)

In this section, we give a characterization determining when PRE(X, X ′),

IRE(X, X ′) and TRE(X, X ′) are eventually regular. The next theorem shows

that this characterization depends only on X but not on X ′, and it is the same

as that given for being eventual regularity of PRE(X), IRE(X) and TRE(X). To

obtain this result, the following obvious fact is also needed and the proof is omit-

ted.

Lemma 3.2.1. Let S be a semigroup with Reg(S) = E(S) and T a subsemigroup

of S. Then for a ∈ T , if a is an eventually regular element of S, then a is an

eventually regular element of T . Hence if S is eventually regular, then so is T .

Theorem 3.2.2. Let S(X, X ′) be PRE(X,X ′), TRE(X, X ′) or IRE(X, X ′). Then

S(X, X ′) is eventually regular if and only if there is a positive integer n such that

|C| ≤ n for every subchain C of X.

Proof. To prove sufficiency, assume that there is a positive integer n such that

|C| ≤ n for every subchain C of X. Then by Theorem 1.6, all PRE(X), TRE(X)

and IRE(X) are eventually regular. But since PRE(X,X ′), TRE(X,X ′) and

IRE(X, X ′) are respectively subsemigroups of PRE(X), TRE(X) and IRE(X), we

have by Proposition 1.2 and Lemma 3.2.1 that all the semigroups PRE(X, X ′),

TRE(X, X ′) and IRE(X, X ′) are eventually regular.

To prove necessary by contrapositive, suppose that there is no n ∈ N such that

|C| ≤ n for every subchain C of X. By Proposition 1.5, there exists a sequence

of disjoint finite subchains C1, C2, C3, . . . of X such that |C1| < |C2| < |C3| < . . ..

Therefore we deduce that there is a sequence k1, k2, k3, . . . of N such that

k1 < k2 < k3 < . . . and
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|Ck1 ∩X ′| < |Ck2 ∩X ′| < |Ck3 ∩X ′| < . . . or

|Ck1 ∩ (X\X ′)| < |Ck2 ∩ (X\X ′)| < |Ck3 ∩ (X\X ′)| < . . .

Let Di = Cki
for every i ∈ N. Then |D1 ∩X ′| < |D2 ∩X ′| < |D3 ∩X ′| < . . . or

|D1 ∩ (X\X ′)| < |D2 ∩ (X\X ′)| < |D3 ∩ (X\X ′)| < . . . .

Case 1 : |D1 ∩ X ′| < |D2 ∩ X ′| < |D3 ∩ X ′| < . . . . We may assume that

|D1 ∩X ′| > 1. For each i ∈ N, let

Di ∩X ′ =
{

x′i1 , x
′
i2
, . . . , x′ili

}
where x′i1 < x′i2 < . . . < x′ili

.

Then 1 < l1 < l2 < . . . . Define α :
∞⋃
i=1

((Di ∩X ′)\
{
x′i1 | i ∈ N

}
)→ X by

x′ijα = x′ij−1
for all i ∈ N and j ∈ {2, 3, . . . , li}. (1)

Thus α ∈ IRE(X ′) and if m ∈ N, then lk > 2m for some k ∈ N. By (1),

x′klk
∈ domα2m ⊆ domαm and

x′klk
α2m = x′klk−2m

< x′klk−m
= x′klk

αm.

This shows that

for every m ∈ N, there is an element a ∈ domα2m such that aαm 6= aα2m. (2)

Hence αm 6= α2m for every m ∈ N, that is, αm /∈ E(IRE(X ′)) for every m ∈ N. By

Proposition 1.2, α is not an eventually regular element of IRE(X ′). But IRE(X ′)

is a subsemigroup of PRE(X, X ′) and IRE(X, X ′), so by Lemma 3.2.1, α is not

eventually regular in PRE(X, X ′) and IRE(X, X ′). Define β : X → X by

xβ =


xα if x ∈ domα,

x otherwise.

Then β ∈ TRE(X, X ′) since X ′β = ((X ′∩domα)∪(X ′\domα))β = (X ′∩domα)α∪

(X ′\domα) ⊆ X ′. To show that βm 6= β2m for every m ∈ N, let m ∈ N be
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fixed. By (2), there is an element a ∈ domα2m such that aαm 6= aα2m. Then

a, aα, . . . , aα2m−1 ∈ domα. It follows from the definition of β that

aβ = aα, aαβ = aα2, . . . , aα2m−1β = aα2m.

Consequently, aβm = aαm and aβ2m = aα2m which imply that aβm 6= aβ2m, so

βm 6= β2m. Therefore βm /∈ E(TRE(X, X ′)) for every m ∈ N. Hence we deduce

from Proposition 1.2 that β is not an eventually regular element of TRE(X, X ′).

Case 2 : |D1∩ (X\X ′)| < |D2∩ (X\X ′)| < |D3∩ (X\X ′)| < . . . . By considering

X\X ′ as X ′ in Case 1, we also have a map λ ∈ IRE(X\X ′) satisfying the property

that

for every m ∈ N, there is an element a ∈ domλ2m such that aλm 6= aλ2m. (3)

This implies by Proposition 1.2 that λ is not an eventually regular element

of IRE(X\X ′). But IRE(X\X ′) is clearly a subsemigroup of IRE(X, X ′) and

PRE(X, X ′). By Lemma 3.2.1, λ is not eventually regular in IRE(X, X ′) and

PRE(X, X ′). Define µ : X → X by

xµ =


xλ if x ∈ domλ,

x if x ∈ X\domλ.

Since X ′ ⊆ X\domλ, xµ = x for all x ∈ X ′, so µ ∈ TRE(X, X ′). From (3) and

the definition of µ, we can prove similary as in Case 1 that µm 6= µ2m for every

m ∈ N. Thus by Proposition 1.2, µ is not eventually regular in TRE(X,X ′).

Therefore the theorem is completely proved.

From Theorem 1.6 and Theorem 3.2.2, we have

Corollary 3.2.3. The following statements hold.

(i) PRE(X, X ′) is eventually regular if and only if PRE(X) is eventually regular.
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(ii) IRE(X, X ′) is eventually regular if and only if IRE(X) is eventually regular.

(iii) TRE(X, X ′) is eventually regular if and only if TRE(X) is eventually regular.

Also, the next result follows directly from Theorem 3.2.2.

Corollary 3.2.4. If X is an infinite chain, then none of the semigroups PRE(X, X ′),

IRE(X, X ′) and TRE(X, X ′) is eventually regular.

Example 3.2.5. Let X and X ′ be defined as in Example 3.1.5. By Theorem 3.2.2,

PRE(X, X ′), IRE(X, X ′) and TRE(X, X ′) are not eventually regular. However, all

of PRE(X, X ′), IRE(X,X ′) and TRE(X, X ′) are eventually regular.



CHAPTER IV

ISOMORPHISM THEOREMS OF REGRESSIVE

TRANSFORMATION SEMIGROUPS

We first intend to generalize Umar’s Theorem (Theorem 1.7) stated that for

chains X and Y , TRE(X) ∼= TRE(Y ) if and only if X and Y are order-isomorphic.

In fact, some other interesting isomorphism theorems are also provided in this

chapter.

4.1 Elementary Results

Some required elementary results are provided in this section. These results

will be referred later.

Proposition 4.1.1. Let X be a poset, X ′ a subposet of X and let S(X,X ′) be

PRE(X,X ′) or IRE(X,X ′). Then the following statements are equivalent.

(i) S(X, X ′) has an identity.

(ii) For all a ∈ X\X ′ and b ∈ X ′, either a < b or a and b are uncomparable.

(iii) S(X, X ′) = S(X ′), that is,

PRE(X, X ′) = PRE(X ′) if S(X, X ′) = PRE(X, X ′) and

IRE(X, X ′) = IRE(X ′) if S(X, X ′) = IRE(X, X ′).

Proof. (i)⇒(ii). To prove by contrapositive, assume that there are a ∈ X\X ′ and

b ∈ X ′ such that a > b. Then

(
a

b

)
∈ S(X, X ′). If α ∈ S(X, X ′), then ranα ⊆ X ′,

so a /∈ ranα which implies that α

(
a

b

)
= 0 6=

(
a

b

)
.
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This shows that S(X, X ′) has no identity.

(ii)⇒(iii). Suppose that (ii) holds. Clearly, PRE(X ′) ⊆ PRE(X, X ′) and

IRE(X ′) ⊆ IRE(X, X ′). Let α be an element of PRE(X, X ′) and x ∈ domα.

Then xα ≤ x and xα ∈ X ′. By (ii), x must be an element of X ′. Hence

α ∈


PRE(X ′) if α ∈ PRE(X, X ′),

IRE(X ′) if α ∈ IRE(X, X ′).

Therefore (iii) is proved.

(iii)⇒(i). Obvious.

Proposition 4.1.2. Let X be a chain and X ′ a proper subchain of X. If the

semigroup TRE(X, X ′) has an identity, then the following statements hold.

(i) minX exists.

(ii) For all a ∈ X\X ′ and b ∈ X ′\{minX}, a < b.

Proof. Let η be the identity of TRE(X,X ′). By the property (*), for every x ∈ X,

there exists an element x′ ∈ X ′ such that x′ ≤ x.

Suppose that X has no minimum element. From the above reason, X ′ has no

minimum element. Let a ∈ X\X ′. Then a > aη ∈ X ′, so a > aη > b for some

b ∈ X ′. Define α : X → X ′ by

xα =



aη if x = a,

b if x = aη,

x′ otherwise.

Then α ∈ TRE(X, X ′), so αη = ηα = α. Hence b = (aη)α=aα = aη, a contra-

diction. This shows that (i) holds, that is, minX exists. By (*), minX ′=minX.

Suppose that there are a ∈ X\X ′ and b ∈ X ′\{minX} such that a > b. Then
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a > b > minX. Define β : X → X ′ by

xβ =



b if x = a,

minX if x ∈ X ′,

x′ otherwise.

Then β ∈ TRE(X, X ′) and thus βη = ηβ = β. Since aη ∈ X ′, aηβ = minX.

Hence b = aβ = aηβ = minX, a contradiction. Therefore (ii) is proved.

The following result is similar to Proposition 1.8. The proof is analogous to

that of Proposition 1.8 and we shall omit it

Proposition 4.1.3. Let X and Y be posets, X ′ a subposet of X and Y ′ a subposet

of Y . If there is an order-isomorphism ϕ : X → Y such that X ′ϕ = Y ′, then

α 7→ ϕ−1αϕ is an isomorphism of PRE(X, X ′) onto PRE(Y, Y ′), of IRE(X, X ′)

onto IRE(Y, Y ′) and of TRE(X, X ′) onto TRE(Y, Y ′).

Example 4.1.4. Let n ∈ N. Then ϕ : Z → nZ defined by xϕ = nx for all

x ∈ Z is an order-isomorphism and (mZ)ϕ = mnZ for all m ∈ N. It follows from

Proposition 4.1.3 that

PRE(Z, mZ) ∼= PRE(nZ, mnZ), IRE(Z, mZ) ∼= IRE(nZ, mnZ),

TRE(Z, nZ) ∼= TRE(nZ, mnZ)

for all m, n ∈ N.

The converse of Proposition 4.1.3 is not necessary true even when X and

Y are chains. To see this, let X and Y be finite chains such that |X| 6= |Y |.

Then |TRE(X, {minX})| = 1 = |TRE(Y, {minY })|. Hence TRE(X, {minX}) and

TRE(Y, {minY }) are isomorphic but X and Y are not order-isomorphic. A non-

trival example can be seen in the last part of Section 4.2.
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4.2 Isomorphism Theorems of TRE(X, X ′)

We shall prove in this section that for chains X and Y , a subchain X ′ of X

and a subchain Y ′ of Y , if TRE(X, X ′) ∼= TRE(Y, Y ′), then X ′ and Y ′ are order-

isomorphic. This result and Proposition 4.1.3 generalize Umar’s Isomorphism

Theorem (Theorem 1.7). Our idea of the proof is based on the proof of Theorem

1.7 given by A. Umar [6].

An order-ideal of a poset X is a nonempty subset A of X having the following

property:

for x ∈ X, x ≤ a for some a ∈ A implies x ∈ A.

Also, for a subposet X ′ of X, an order-ideal of X ′ is a nonempty subset B of X ′

having the following property:

for x ∈ X ′, x ≤ b for some b ∈ B implies x ∈ B.

Lemma 4.2.1. Let X ′ be a subposet of a poset X. If α ∈ E(TRE(X, X ′)) is such

that ranα is an order-ideal of X ′, then αE(TRE(X, X ′)) ⊆ E(TRE(X, X ′)).

Proof. Let β ∈ E(TRE(X, X ′)) and let x ∈ X. Then xαβ ≤ xα. Since xαβ ∈ X ′,

xα ∈ ranα and ranα is an order-ideal of X ′, it follows that xαβ ∈ ranα. But

α ∈ E(TRE(X, X ′)), so xαβα = xαβ. Since β2 = β, we have xαβ = (xαβ)β =

(xαβα)β = x(αβ)2. We then deduce that αβ ∈ E(TRE(X,X ′)).

Lemma 4.2.2. Let X and Y be chains, X ′ a subchain of X, Y ′ a subchain of Y

and ϕ : TRE(X,X ′)→ TRE(Y, Y ′) an isomorphism. Then for α ∈ E(TRE(X,X ′)),

ranα is an order-ideal of X ′ if and only if ran(αϕ) is an order-ideal of Y ′.

Proof. Let α ∈ E(TRE(X, X ′)). Assume that ran(αϕ) is not an order-ideal of Y ′.

Then there are y1, y2 ∈ Y ′ such that y1 < y2, y2 ∈ ran(αϕ) and y1 /∈ ran(αϕ), so
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y1(αϕ) < y1. (1)

Define β : Y → Y ′ by

yβ =



y1 if y ≥ y1,

y if y ∈ Y ′ and y < y1,

y(αϕ) if y ∈ Y \Y ′ and y < y1.

Then β ∈ TRE(Y, Y ′). Since y2 > y1 and y2 ∈ ran(αϕ), we have

y1 = y2β ∈ ran((αϕ)β). (2)

If y ∈ Y is such that y ≥ y1, then yβ2 = y1β = y1 = yβ. If y ∈ Y ′ and y < y1,

then yβ2 = y = yβ. Next, let y ∈ Y \Y ′ be such that y < y1. Then yβ = y(αϕ) ≤

y < y1. Since y(αϕ) ∈ Y ′ and y < y1, we have yβ2 = (y(αϕ))β = y(αϕ) = yβ.

This shows that β ∈ E(TRE(Y, Y ′)). Then β = γϕ for some γ ∈ E(TRE(X, X ′)).

But y1(αϕ)β ≤ y1(αϕ) < y1 by (1) and y1 ∈ ran((αϕ)β) by (2), so we have

(αγ)ϕ = (αϕ)(γϕ) = (αϕ)β /∈ E(TRE(Y, Y ′)). Hence αγ /∈ E(TRE(X, X ′)). By

Lemma 4.2.1, this proves that ranα is not an order-ideal of X ′.

Since ϕ−1 : TRE(Y, Y ′)→ TRE(X, X ′) is an isomorphism, the converse follows

from the above proof.

Observe that the range of the map β defined in the proof of Lemma 4.2.2

is also an order-ideal of Y ′ whose maximum element is y1. To be more precise,

ranβ = {y ∈ Y ′ | y ≤ y1}. It can be easily seen that for any a ∈ X, {x ∈ X | x ≤

a} is an order-ideal of X whose maximum element is a. For ease in writing, it

will be denoted by (← a]X . Therefore, for any subposet X ′ of X and a ∈ X ′,

(← a]X′ = (← a]X ∩X ′ is the order-ideal of X ′ whose maximum element is a.

The following lemmas are required. The first one is obvious.

Lemma 4.2.3. Let X be a poset and K = {(← a]X | a ∈ X}. Partially order K

by inclusion. Then the map a 7→ (← a]X is an order-isomorphism of X onto K.
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Lemma 4.2.4. Let X ′ be a subchain of a chain X. Then for every a ∈ X ′, there

exists a map α ∈ E(TRE(X,X ′)) such that ranα = (← a]X′.

Proof. By (*), for every x ∈ X, there is an element x′ ∈ X ′ such that x′ ≤ x. Let

a ∈ X ′ and define α : X → X ′ by

xα =



a if x ≥ a,

x if x ∈ X ′ and x < a,

x′ if x ∈ X\X ′ and x < a.

Then α ∈ E(TRE(X, X ′)) and ranα = (← a]X′ .

Lemma 4.2.5. Let X ′ be a subposet of a poset X. Then for each α ∈ TRE(X, X ′),

there is an element α∗ ∈ E(TRE(X, X ′)) such that ranα∗=ranα and αα∗ = α.

Proof. Let α ∈ TRE(X, X ′). Define α∗ : X → X ′ by

xα∗ =


x if x ∈ ranα,

xα if x ∈ X\ranα.

Thus α∗ ∈ TRE(X, X ′). Let x ∈ X. Then xα ∈ ranα, so xαα∗ = xα. If x ∈ ranα,

then x(α∗)2 = x = xα∗. If x ∈ X\ranα, then x(α∗)2 = (xα)α∗ = xα = xα∗.

This shows that αα∗ = α and (α∗)2 = α∗. It is clear by the definition of α∗ that

ranα∗=ranα.

Lemma 4.2.6. Let X and Y be chains, X ′ a subchain of X, Y ′ a subchain of Y ,

R1 = {ranα | α ∈ TRE(X, X ′)} and R2 = {ranα | α ∈ TRE(Y, Y ′)}. Partially or-

der R1 and R2 by inclusion. Let ϕ : TRE(X, X ′)→ TRE(Y, Y ′) be an isomorphism

and ϕ : R1 → R2 defined by (ranα)ϕ = ran(αϕ) for all α ∈ TRE(X,X ′). Then

the following statements hold.

(i) ϕ is an order-isomorphism of R1 onto R2.

(ii) ({(← a]X′ | a ∈ X ′})ϕ = {(← b]Y ′ | b ∈ Y ′}.
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Proof. Let α∗ be defined as in Lemma 4.2.5 for α ∈ TRE(X, X ′) or α ∈ TRE(Y, Y ′).

(i) Let α ∈ TRE(X, X ′) be arbitrary fixed. By Lemma 4.2.5, α∗ ∈ E(TRE(X, X ′)),

ranα∗=ranα and αα∗ = α,

and (αϕ)∗ ∈ E(TRE(Y, Y ′)),

ran(αϕ)∗ = ran(αϕ) and (αϕ)(αϕ)∗ = αϕ.

Since (αϕ)(α∗ϕ) = αϕ, it follows that

ran(αϕ)∗ = ran(αϕ) ⊆ ran(α∗ϕ)

and since (αϕ)∗ϕ−1 ∈ E(TRE(X, X ′)), ranα∗ = ranα = ran(αϕϕ−1) ⊆ ran((αϕ)∗ϕ−1).

This implies that α∗((αϕ)∗ϕ−1) = α∗. Thus (α∗ϕ)(αϕ)∗ = α∗ϕ, and so

ran(α∗ϕ) ⊆ ran(αϕ)∗.

This proves that

for every α ∈ TRE(X, X ′), ran(α∗ϕ) = ran(αϕ)∗. (1)

Next, to show that ϕ is an order-isomorphism of R1 onto R2, let α, β ∈

TRE(X, X ′). Then

ranα ⊆ ranβ ⇔ ranα∗ ⊆ ranβ∗

⇔ α∗β∗ = α∗ since α∗, β∗ ∈ E(TRE(X, X ′))

⇔ (α∗ϕ)(β∗ϕ) = α∗ϕ

⇔ ran(α∗ϕ) ⊆ ran(β∗ϕ)

⇔ ran(αϕ)∗ ⊆ ran(βϕ)∗ from (1)

⇔ ran(αϕ) ⊆ ran(βϕ) (2)

and hence

ranα = ranβ ⇔ ran(αϕ) = ran(βϕ). (3)
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We therefore conclude from (3) that ϕ is well-defined and one-to-one and from (2)

that ϕ is order-preserving. Clearly, ϕ is onto since ϕ : TRE(X, X ′) → TRE(Y, Y ′)

is onto.

(ii) Let a ∈ X ′. By Lemma 4.2.4, there is a map α ∈ E(TRE(X, X ′)) such

that ranα = (← a]X′ . Since (← a]X′ is an order-ideal of X ′, by Lemma 4.2.2,

ran(αϕ) is an order-ideal of Y ′. To show that ran(αϕ) = (← e]Y ′ for some

e ∈ Y ′, let b ∈ ran(αϕ). Then (← b]Y ′ ⊆ ran(αϕ). If (← b]Y ′ = ran(αϕ),

then we are done. Assume that (← b]Y ′ ( ran(αϕ). By Lemma 4.2.4, there is a

map β ∈ E(TRE(Y, Y ′)) such that ranβ = (← b]Y ′ . Let γ ∈ E(TRE(X, X ′)) be

such that γϕ = β. Hence ran(γϕ) ( ran(αϕ). We therefore have from (i) that

ranγ ( ranα. Also, by Lemma 4.2.2, ranγ is an order-ideal of X ′. Let c ∈ ranγ.

Then (← c]X′ ⊆ ranγ ( (← a]X′ , so c < a. By the property (*), for every x ∈ X,

there is an element x′ ∈ X ′ such that x′ ≤ x. Define λ : X → X ′ by

xλ =



c if x ≥ a,

x if x ∈ X ′ and x < a,

x′ if x ∈ X\X ′ and x < a.

Clearly, λ ∈ E(TRE(X, X ′)) and ranλ = (← a]X′\{a} ( (← a]X′ = ranα. By

(i), ran(λϕ) ( ran(αϕ). Let d ∈ ran(αϕ)\ran(λϕ). Then ran(λϕ) ( (← d]Y ′

⊆ ran(αϕ), and by Lemma 4.2.4, ranη = (← d]Y ′ for some η ∈ E(TRE(Y, Y ′)). Let

µ ∈ E(TRE(X, X ′)) be such that µϕ = η. Thus ran(λϕ) ( ran(µϕ) ⊆ ran(αϕ)

which implies by (i) that (← a]X′\{a} = ranλ ( ranµ ⊆ ranα = (← a]X′ .

Consequently, ranµ = ranα, and from (i), ran(µϕ) = ran(αϕ). Hence (←

a]X′ϕ =ran(αϕ) = ran(η) = (← d]Y ′ . It means that for any α ∈ E(TRE(X, X ′))

such that ranα is an order-ideal of X ′ with max(ranα) exists, then ran(αϕ) is also

an order-ideal of Y ′ with max(ran(αϕ)) exists.

By considering ϕ−1 instead of ϕ, from the above proof, we have that for ev-
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ery d ∈ Y ′, there are η ∈ E(TRE(Y, Y ′)) and a ∈ X ′ such that ranη = (← d]Y ′ and

ran(ηϕ−1) = (← a]X′ , and hence (← a]X′ϕ =(ran(ηϕ−1))ϕ=ran((ηϕ−1)ϕ)=ranη =

(← d]Y ′ .

Therefore the lemma is proved.

Theorem 4.2.7. Let X and Y be chains, X ′ a subchain of X and Y ′ a subchain

of Y . If TRE(X, X ′) ∼= TRE(Y, Y ′), then X ′ and Y ′ are order-isomorphic.

Proof. From Lemma 4.2.6 (ii), the chains {(← a]X′ | a ∈ X ′} and {(← b]Y ′ | b ∈

Y ′} under inclusion are order-isomorphic. But by Lemma 4.2.3, {(← a]X′ | a ∈

X ′} is order-isomorphic to X ′ and {(← b]Y ′ | b ∈ Y ′} is order-isomorphic to Y ′.

Hence X ′ and Y ′ are order-isomorphic.

Since TRE(X) = TRE(X, X) for every chain X, we have that Umar’s Isomor-

phism Theorem is a consequence of Theorem 4.2.7 and Proposition 4.1.3.

Corollary 4.2.8. For chains X and Y , TRE(X) ∼= TRE(Y ) if and only if X and

Y are order-isomorphic.

Unlike Umar’s Isomorphism Theorem, the necessary condition in Theorem

4.2.7 is not sufficient. An example is given below

Example 4.2.9. Let X = {1, 2, 3} be a chain under the natural order, X1 = {1, 2}

and X2 = {1, 3}. Then X1 and X2 are order-isomorphic subchains of X but

TRE(X, X1) =


1 2 3

1 1 1

 ,

1 2 3

1 1 2

 ,

1 2 3

1 2 2


 and

TRE(X, X2) =


1 2 3

1 1 1

 ,

1 2 3

1 1 3




are not isomorphic.
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Example 4.2.9 shows that being order-isomorphic of subchains X1 and X2 of a

finite chain X is not sufficient for the corresponding regressive full transformation

semigroups to be isomorphic. In fact, the next theorem shows that they must be

equal. The following lemma is required.

Lemma 4.2.10. Let X be a poset with a minimum element and X1 and X2

subposets of X. If ϕ : TRE(X, X1) → TRE(X, X2) is an isomorphism, then the

following statements hold.

(i) For α ∈ E(TRE(X, X1)) and n ∈ N, |ranα| = n⇔ |ran(αϕ)| = n.

(ii) For n ∈ N,

| {α ∈ E(TRE(X, X1)) | |ranα| = n} | = | {α ∈ E(TRE(X, X2)) | |ranα| = n} |.

Proof. (i) By the property (*), minX ∈ X1 and minX ∈ X2. Note that XminXα =

XminX for all α ∈ TRE(X, X1) ∪ TRE(X, X2). It is easily seen that if α ∈

TRE(X,X1)∪TRE(X, X2) is such that |ranα| = 1, then α = XminX ∈ E(TRE(X,X1))

∩E(TRE(X, X2)). Let β ∈ TRE(X, X1) be such that βϕ = XminX . Since XminXβ =

XminX , we have

XminXϕ = (XminXβ)ϕ = ((XminX)ϕ)XminX = XminX .

This shows that (i) holds for n = 1.

Assume that k > 1 and for n ∈ N with n < k, |ranα| = n ⇔ |ran(αϕ)| = n

for all α ∈ E(TRE(X,X1)). Let β ∈ E(TRE(X, X1)) be such that |ranβ| = k.

Then βϕ ∈ E(TRE(X, X2)) and by assumption, |ran(βϕ)| ≥ k. Let a1, a2, . . . , ak

be distinct elements in ran(βϕ) with ak = minX. Since βϕ ∈ E(TRE(X, X2)), it

follows that

X =

(
k⋃

i=1

ai(βϕ)−1

)
∪

 ⋃
x∈ran(βϕ)

x/∈{a1,a2,...,ak}

x(βϕ)−1

 (1)

which is a disjoint union. Since x(βϕ) = x for all x ∈ ran(βϕ), we have
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x ∈ x(βϕ)−1 for all x ∈ ran(βϕ). (2)

Also,

for all x ∈ ran(βϕ), x ≤ y for all y ∈ x(βϕ)−1 (3)

since βϕ is regressive. Define γ : X → X2 by

xγ =


ai if x ∈ ai(βϕ)−1 for i = 1, 2, . . . , k,

minX if x ∈
⋃

y∈ran(βϕ)
y/∈{a1,a2,...,ak}

y(βϕ)−1.

From (1), γ is well-defined and from (3), γ is regressive. By the definition of γ,

ranγ = {a1, a2, . . . , ak = minX} ⊆ X2. By (2), aiγ = ai for all i ∈ {1, 2, . . . , k}.

Thus γ ∈ E(TRE(X, X2)) and |ranγ| = k. Since ranγ = {a1, a2, . . . , ak} ⊆

ran(βϕ) and ai(βϕ) = ai for all i, it follows that γ(βϕ) = γ. Thus (γϕ−1)β =

γϕ−1 which implies that ran(γϕ−1) ⊆ ranβ. Since |ranγ| = k, by assumption

|ran(γϕ−1)| ≥ k. But |ranβ| = k and ran(γϕ−1) ⊆ ranβ, so

ran(γϕ−1) = ranβ. (4)

If i ∈ {1, . . . , k} and x ∈ ai(βϕ)−1, then

x(βϕ)γ = aiγ = ai = xγ.

If x ∈ y(βϕ)−1 for some y ∈ ran(βϕ) with y /∈ {a1, a2, . . . , ak}, then x, y ∈ y(βϕ)−1

by (2), then by the definition of γ,

x(βϕ)γ = yγ = minX = xγ.

It follows from (1) that (βϕ)γ = γ, and hence

β(γϕ−1) = γϕ−1. (5)

Therefore for every x ∈ X,

x(γϕ−1) = xβ(γϕ−1) from (5)

= xβ from (4) and since γϕ−1 ∈ E(TRE(X, X1)).
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We deduce that γϕ−1 = β and thus βϕ = γ. Therefore |ran(βϕ)| = |ranγ| = k.

If β ∈ E(TRE(X, X1)) is such that |ran(βϕ)| = k, it can be shown analogously

that |ran((βϕ)ϕ−1)| = k, so |ranβ| = k.

Therefore (i) is proved.

(ii) Let n ∈ N. Since ϕ : TRE(X, X1) → TRE(X, X2) is an isomorphism, by

(i), ϕn : {α ∈ E(TRE(X,X1)) | |ranα| = n} → {α ∈ E(TRE(X, X2)) | |ranα| = n}

defined by αϕn = αϕ for all α ∈ E(TRE(X, X1)) is a bijection.

Hence (ii) is proved.

Theorem 4.2.11. Let X be a finite chain and X1 and X2 subchains of X. Then

TRE(X, X1) ∼= TRE(X, X2) if and only if X1 = X2.

Proof. The sufficiency part is immediate. To prove the necessity part, assume that

TRE(X, X1) and TRE(X, X2) are isomorphic. By Theorem 4.2.7, |X1| = |X2|. Let

X = {x1, x2, . . . , xn} and x1 < x2 < . . . < xn. By the property (*), x1 ∈ X1 ∩X2.

Then x1α = x1 for every α ∈ TRE(X, X1) ∪ TRE(X, X2). To show that X1 = X2,

suppose instead that X1 6= X2. Since X1 and X2 are finite and |X1| = |X2|, it

follows that X1\X2 6= φ and X2\X1 6= φ. Since (X1\X2) ∩ (X2\X1) = φ, either

min(X1\X2) < min(X2\X1) or min(X2\X1) < min(X1\X2). Let

xk = min{min(X1\X2), min(X2\X1)}.

Then k < n. Since x1 ∈ X1 ∩X2, 1 < k < n. Without loss of generality, assume

that xk = min(X1\X2). For x ∈ X1 with x < xk, if x /∈ X2, then x ∈ X1\X2

which is contrary to that x < xk = min(X1\X2). For x ∈ X2 with x < xk, if

x /∈ X1, then x ∈ X2\X1, so x ≥ min(X2\X1) > xk, a contradiction. Hence

{x ∈ X1 | x < xk} = {x ∈ X2 | x < xk}. Let A = {x ∈ X1 | x < xk}. Then

x1 ∈ A. Since A ⊆ X1∩X2, it follows that the sets {α ∈ E(TRE(X, X1)) | ranα ⊆

A and |ranα| ≤ 2} and {α ∈ E(TRE(X, X2)) | ranα ⊆ A and |ranα| ≤ 2} are



37

identical. Let m be its cardinality, that is,

m = |{α ∈ E(TRE(X, X1)) | ranα ⊆ A and |ranα| ≤ 2}|

= |{α ∈ E(TRE(X, X2)) | ranα ⊆ A and |ranα| ≤ 2}|. (1)

We can see that for t ∈ {2, . . . , n} and α ∈ E(TRE(X)),

ranα = {x1, xt} ⇔ {x1, . . . , xt−1}α = {x1}, xtα = xt

and {xt+1, . . . , xn}α ⊆ {x1, xt}.

Consequently,

For t ∈ {2, . . . , n}, |{α ∈ E(TRE(X)) | ranα = {x1, xt}}| = 2n−t. (2)

Hence

|{α ∈ E(TRE(X, X1)) | |ranα| ≤ 2}|

≥ |{α ∈ E(TRE(X, X1)) | ranα ⊆ A and |ranα| ≤ 2}|

+|{α ∈ E(TRE(X,X1)) | ranα = {x1, xk}}|

= m + 2n−k. from (1) and (2) (3)

Since xk /∈ X2, X2 = A ∪ ({xk+1, . . . , xn} ∩X2), and hence

|{α ∈ E(TRE(X, X2)) | |ranα| ≤ 2}|

= |{α ∈ E(TRE(X,X2)) | ranα ⊆ A and |ranα| ≤ 2}|+

|{α ∈ E(TRE(X, X2)) | ranα = {x1, x} for some x ∈ {xk+1, . . . , xn} ∩X2}|

≤ m + 2n−(k+1) + 2n−(k+2) + . . . + 2 + 1 from (1) and (2)

= m + 2n−k
(

1
2

+ 1
22 + . . . + 1

2n−k

)
< m + 2n−k. (4)

From (3) and (4), we have

|{α ∈ E(TRE(X, X1)) | |ranα| ≤ 2}| > |{α ∈ E(TRE(X, X2)) | |ranα| ≤ 2}|. (5)
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Since X is finite and TRE(X, X1) and TRE(X, X2) are isomorphic, by Lemma

4.2.10 (ii),

|{α ∈ E(TRE(X, X1)) | |ranα| ≤ 2}| = |{α ∈ E(TRE(X, X2)) | |ranα| ≤ 2}|. (6)

Therefore (5) and (6) yield a contradiction.

Hence the theorem is completely proved.

The following example shows that Theorem 4.2.11 need not hold if X is an

infinite chain.

Example 4.2.12. Consider the chain Z. We have that Z− 6= Z− ∪ {0} and

TRE(Z, Z−) ∼= TRE(Z, Z− ∪ {0}) by Proposition 4.1.3 since ϕ : Z→ Z defined by

xϕ = x + 1 is an order-isomorphism and Z−ϕ = Z− ∪ {0}.

The next theorems characterizes when TRE(X, X ′) is isomorphic to TRE(X)

and when TRE(X, X ′) is isomorphic to TRE(X ′) when X ′ is a subchain of a chain

X. Since both TRE(X) and TRE(X ′) have an identity, Proposition 4.1.2 is also a

tool for these characterizations.

Lemma 4.2.13. Let X be a chain and X ′ a subchain of X. If minX exists and

a < b for all a ∈ X\X ′ and b ∈ X ′\{minX}, then for all α ∈ TRE(X, X ′) and

a ∈ X\X ′, aα = minX.

Proof. Let α ∈ TRE(X, X ′) and a ∈ X\X ′. Then a > aα ∈ X ′, so by assumption,

aα=minX.

Theorem 4.2.14. Let X be a chain and X ′ a proper subchain of X. Then

TRE(X, X ′) ∼= TRE(X) if and only if the following statements hold.

(i) X ′ and X are order-isomorphic.

(ii) minX exists and a < b for all a ∈ X\X ′ and b ∈ X ′\{minX}.
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Proof. Assume that TRE(X, X ′) and TRE(X) are isomorphic. Then TRE(X,X ′)

and TRE(X) have an identity. By Theorem 4.2.7, X ′ and X are order-isomorphic.

By Proposition 4.1.2, minX exists and a < b for all a ∈ X\X ′ and b ∈ X ′\{minX}.

Recall that minX=minX ′.

For the converse, assume that (i) and (ii) hold. Let ϕ : X → X ′ be an order-

isomorphism. Then (minX)ϕ = minX. For α ∈ TRE(X), define α′ : X → X ′

by

xα′ =


x(ϕ−1αϕ) if x ∈ X ′,

minX if x ∈ X\X ′.

We can see from the proof of Proposition 1.8 that α′ ∈ TRE(X, X ′). Let ϕ :

TRE(X)→ TRE(X, X ′) be defined by

αϕ = α′ for all α ∈ TRE(X).

Let α, β ∈ TRE(X) and x ∈ X.

Case 1: x ∈ X\X ′. Then x(αβ)′ = minX and xα′β′ = (minX)β′ = minX.

Case 2: x ∈ X ′. Then xϕ−1αϕ ∈ X ′, and thus x(αβ)′ = x(ϕ−1αβϕ) =

x(ϕ−1αϕ)(ϕ−1βϕ) = xα′β′.

Therefore ϕ is a homomorphism.

To show that ϕ is one-to-one, let α, β ∈ TRE(X) be such that α′ = β′. Then

x(ϕ−1αϕ) = x(ϕ−1βϕ) for all x ∈ X ′ which implies that

xϕ−1α = xϕ−1β for all x ∈ X ′.

Since X ′ϕ−1 = X, it then follows that xα = xβ for all x ∈ X, we conclude that

α = β.

Finally, to show that ranϕ = TRE(X, X ′), let β ∈ TRE(X, X ′). Then ϕβϕ−1 ∈
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TRE(X). Since (minX)β = minX, by Lemma 4.2.13, xβ = minX for all x ∈

(X\X ′) ∪ {minX}. Hence

x(ϕβϕ−1)′ =


x(ϕ−1(ϕβϕ−1)ϕ) = xβ if x ∈ X ′,

minX = xβ if x ∈ X\X ′.

Therefore the theorem is completety proved.

Theorem 4.2.15. Let X be a chain and X ′ a proper subchain of X. Then

TRE(X, X ′) ∼= TRE(X ′) if and only if minX exists and a < b for all a ∈ X\X ′

and b ∈ X ′\{minX}.

Proof. The necessary part follows directly from Proposition 4.1.2.

Conversely, assume that minX exists and a < b for all a ∈ X\X ′ and b ∈

X ′\{minX}. Define ϕ : TRE(X, X ′)→ TRE(X ′) by

αϕ = α|X′ , the restriction of α to X ′, for all α ∈ TRE(X, X ′).

Let α, β ∈ TRE(X, X ′). If x ∈ X ′, then xα ∈ X ′, so x(αβ)|X′ = xαβ = x(α|X′β|X′ ).

Thus ϕ is a homomorphism. To show that ϕ is one-to-one, assume that α|X′ = β|X′ .

Then xα = xβ for all x ∈ X ′. If x ∈ X\X ′, then by assumption and Lemma

4.2.13, xα = minX = xβ. Therefore α = β. Finally, let λ ∈ TRE(X ′). Define

µ : X → X ′ by

xµ =


xλ if x ∈ X ′,

minX if x ∈ X\X ′.

Then µ ∈ TRE(X,X ′) and µ|X′ = λ. Hence ϕ is an isomorphism of TRE(X, X ′)

onto TRE(X ′).

Therefore the theorem is proved.

Example 4.2.16. We can easily see that the map ϕ : [0,∞) → {0} ∪ (1,∞)
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defined by

xϕ =


0 if x = 0,

x + 1 if x > 0

is an order-isomorphism. Also, the subchain {0} ∪ (1,∞) of [0,∞) satisfies the

necessity parts of Theorem 4.2.14 and Theorem 4.2.15. We therefore have from

Theorem 4.2.14 and Theorem 4.2.15 that

TRE([0,∞)) ∼= TRE([0,∞), {0} ∪ (1,∞)) ∼= TRE({0} ∪ (1,∞)).

In fact, that TRE([0,∞)) ∼= TRE({0}∪ (1,∞)) can be considered as a consequence

of Umar’s Isomorphism Theorem. It is easy to check that {0}∪ [1,∞) and [0,∞)

are not order-isomorphic. However, the subchain {0} ∪ [1,∞) of the chain [0,∞)

satisfies the necessity part of Theorem 4.2.15. Consequently,

TRE([0,∞)) � TRE([0,∞), {0} ∪ [1,∞)) ∼= TRE({0} ∪ [1,∞)).

4.3 Isomorphism Theorems of PRE(X, X ′) and IRE(X, X ′)

The aim of this section is to give necessary conditions for that PRE(X, X ′) ∼=

PRE(Y, Y ′) and IRE(X,X ′) ∼= IRE(Y, Y ′) where X and Y are posets, X ′ is a

subposet of X and Y ′ is a subposet of Y . Consequently, we characterize when

PRE(X) ∼= PRE(Y ) and when IRE(X) ∼= IRE(Y ).

The following two lemmas are required.

Lemma 4.3.1. Let X and Y be posets, X ′ a subposet of X and Y ′ a subposet of

Y . Then the following statements hold.

(i) If ϕ : IRE(X, X ′)→ IRE(Y, Y ′) is an isomorphism, then

for every a ∈ X ′, there exists an a ∈ Y ′ such that(
a

a

)
ϕ=

(
a

a

)
.
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(ii) If ϕ : PRE(X, X ′)→ PRE(Y, Y ′) is an isomorphism, then

for every a ∈ X ′, there exists an a ∈ Y ′ and A ⊆ Y \Y ′ such that(
a

a

)
ϕ=

(
A ∪ {a}

a

)
.

Proof. (i) Let a ∈ X ′. Then

(
a

a

)
ϕ ∈ E(IRE(Y, Y ′))\{0}. Let a ∈ ran

((
a

a

)
ϕ

)
.

Thus a ∈ dom

((
a

a

)
ϕ

)
and a

((
a

a

)
ϕ

)
= a. Consequently,

(
a

a

)((
a

a

)
ϕ

)
=

(
a

a

)
which implies that ((

a

a

)
ϕ−1

)(
a

a

)
=

(
a

a

)
ϕ−1.

Thus ∅ 6= ran

((
a

a

)
ϕ−1

)
⊆ {a} and so ran

((
a

a

)
ϕ−1

)
= {a}. But

(
a

a

)
ϕ−1 ∈

E(IRE(X, X ′)), thus

(
a

a

)
ϕ−1 =

(
a

a

)
. Hence

(
a

a

)
ϕ =

(
a

a

)
.

Therefore (i) is proved.

(ii) Let a ∈ X ′ and a ∈ ran

((
a

a

)
ϕ

)
. As can be seen from the proof in (i)

that

(
a

a

)
ϕ−1 = Ba for some nonempty subset B of X containing a, so

(
a

a

)
=

Baϕ. Hence((
a

a

)
ϕ

)(
a

a

)
=

((
a

a

)
ϕ

)
(Baϕ) =

((
a

a

)
Ba

)
ϕ =

(
a

a

)
ϕ

which implies that ran

((
a

a

)
ϕ

)
⊆ {a}, so ran

((
a

a

)
ϕ

)
= {a}. Since

(
a

a

)
ϕ ∈

E(PRE(Y, Y ′)) and ran

((
a

a

)
ϕ

)
= {a}, it follows that

(
a

a

)
ϕ = Ca for some C ⊆ Y and a ∈ C. (1)

But ϕ−1 : PRE(Y, Y ′)→ PRE(X, X ′), so from the above proof, we deduce that

for every y ∈ Y ′,

(
y

y

)
ϕ−1 = Kz for some K ⊆ X and z ∈ K. (2)
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If d ∈ C ∩ Y ′, then from (2),

(
d

d

)
ϕ−1 = De for some D ⊆ X and e ∈ D. Since

(
d

a

)
=

(
d

d

)
Ca =

(
d

d

)((
a

a

)
ϕ

)
,

we have

0 6=
(

d

a

)
ϕ−1 =

((
d

d

)
ϕ−1

)(
a

a

)
= De

(
a

a

)

which implies that e = a. Hence

(
d

a

)
ϕ−1 = Da and a ∈ D. Hence Da ∈

E(PRE(X, X ′)) and Daϕ =

(
d

a

)
∈ E(PRE(Y, Y ′)). Consequently, d = a.

This shows that C ∩ Y ′ = {a}. We therefore deduce from (1) that(
a

a

)
ϕ=

(
A ∪ {a}

a

)
for some A ⊆ Y \Y ′.

Hence (ii) is proved.

Lemma 4.3.2. Let X and Y be posets, X ′ a subposet of X and Y ′ a subposet of

Y . Then the following statements hold.

(i) If ϕ : IRE(X,X ′)→ IRE(Y, Y ′) is an isomorphism, then θ : X ′ → Y ′ defined

by aθ = a in (i) of Lemma 4.3.1 for all a ∈ X ′ is an order-isomorphism.

(ii) If ϕ : PRE(X, X ′)→ PRE(Y, Y ′) is an isomorphism, then θ : X ′ → Y ′ defined

by aθ = a in (ii) of Lemma 4.3.1 for all a ∈ X ′ is an order-isomorphism.

Proof. (i) Since ϕ is 1-1, θ is clearly 1-1. Let b ∈ Y ′. By Lemma 4.3.1 (i),(
b

b

)
ϕ−1 =

(
c

c

)
for some c ∈ X ′. Thus

(
c

c

)
ϕ =

(
b

b

)
. But

(
c

c

)
ϕ =

(
c

c

)
, so

cθ = c = b. Hence θ in (i) is bijective.

Next, let a, b ∈ X ′ be such that a < b. Then

(
b

a

)
∈ I(X, X ′) and(

b

b

)(
b

a

)(
a

a

)
=

(
b

a

)
.

Thus
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((
b

b

)
ϕ

)((
b

a

)
ϕ

)((
a

a

)
ϕ

)
=

(
b

a

)
ϕ,

and so (
b

b

)((
b

a

)
ϕ

)(
a

a

)
=

(
b

a

)
ϕ.

Consequently,

(
b

a

)
ϕ =

(
b

a

)
∈ IRE(Y, Y ′), so a < b since

(
b

a

)
/∈ E(IRE(X, X ′)).

(ii) Let a1, a2 ∈ X ′ be such that a1 = a2. Then(
a1

a1

)
ϕ =

(
A1 ∪ {a1}

a1

)
and

(
a2

a2

)
ϕ =

(
A2 ∪ {a2}

a2

)
for some A1, A2 ⊆ Y \Y ′.

Thus ((
a1

a1

)(
a2

a2

))
ϕ =

((
a1

a1

)
ϕ

)((
a2

a2

)
ϕ

)
=

(
A1 ∪ {a1}

a1

)(
A2 ∪ {a2}

a2

)
=

(
A1 ∪ {a1}

a2

)
6= 0 since a1 = a2,

so

(
a1

a1

)(
a2

a2

)
6= 0 which implies that a1 = a2. This proves that θ is 1-1. Next,

let b ∈ Y ′. By Lemma 4.3.1 (ii),

(
b

b

)
ϕ−1 =

(
B ∪ {c}

c

)
for some B ⊆ X\X ′ and

c ∈ X ′. Then (
c

c

)((
b

b

)
ϕ−1

)
=

(
c

c

)(
B ∪ {c}

c

)
=

(
c

c

)
,

and thus ((
c

c

)
ϕ

)(
b

b

)
=

(
c

c

)
ϕ.

By Lemma 4.3.1 (ii),

(
c

c

)
ϕ =

(
C ∪ {c}

c

)
for some C ⊆ Y \Y ′. Now we have(

C ∪ {c}
c

)(
b

b

)
=

(
C ∪ {c}

c

)
. This implies that b = c. Hence θ is bijective.

Finally, let a, b ∈ X be such that a < b. Then(
b

b

)(
b

a

)(
a

a

)
=

(
b

a

)
.

It follows from Lemma 4.3.1 (ii) that there are A, B ⊆ Y \Y ′ such that
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(
B ∪ {b}

b

)((
b

a

)
ϕ

)(
A ∪ {a}

a

)
=

(
b

a

)
ϕ 6= 0.

We therefore conclude that (
b

a

)
ϕ =

(
B ∪ {b}

a

)
.

But

(
B ∪ {b}

a

)
∈ PRE(Y, Y ′) and

(
b

a

)
/∈ E(PRE(X, X ′)), so we have a < b.

Hence this lemma is proved.

From Lemma 4.3.2, we have

Theorem 4.3.3. Let X and Y be posets, X ′ a subposet of X and Y ′ a subposet

of Y . Then:

(i) If PRE(X, X ′) ∼= PRE(Y, Y ′), then X ′ and Y ′ are order-isomorphic.

(ii) If IRE(X, X ′) ∼= IRE(Y, Y ′), then X ′ and Y ′ are order-isomorphic.

The following interesting consequence follows directly from Theorem 4.3.3 and

Proposition 4.1.3.

Corollary 4.3.4. Let X and Y be posets. Then the following statements hold.

(i) PRE(X) ∼= PRE(Y ) if and only if X and Y are order-isomorphic.

(ii) IRE(X) ∼= IRE(Y ) if and only if X and Y are order-isomorphic.

Theorem 4.3.5. Let X and Y be posets, X ′ a subposet X. Then

(i) PRE(X, X ′) ∼= PRE(Y ) if and only if

(1.1) X ′ and Y are order-isomorphic and

(1.2) for every a ∈ X\X ′ and b ∈ X ′, either a < b or a and b are uncomparable.

(ii) IRE(X, X ′) ∼= IRE(Y ) if and only if

(2.1) X ′ and Y are order-isomorphic and

(2.2) for every a ∈ X\X ′ and b ∈ X ′, either a < b or a and b are uncomparable.



46

Proof. (i) Assume that PRE(X, X ′) ∼= PRE(Y ). Then PRE(X, X ′) has an identity,

so (1.2) holds by Proposition 4.1.1. Also, (1.1) follows from Theorem 4.3.3 (i)

Conversely, assume that (1.1) and (1.2) hold. By (1.2) and Proposition 4.1.1,

PRE(X,X ′) = PRE(X ′). From (1.1) and Corollary 4.3.4 (i), PRE(X ′) ∼= PRE(Y ).

Hence PRE(X, X ′) ∼= PRE(Y ).

(ii) It can be proved similarly by Proposition 4.1.1, Theorem 4.3.3 (ii) and

Corollary 4.3.4 (ii)

Example 4.3.6. We have that Z and 2Z are order-isomorphic, N and 2N are

order-isomorphic but 2Z and 2N are not order-isomorphic. Therefore we deduce

from Theorem 4.3.3, Corollary 4.3.4 and Theorem 4.3.5 that

PRE(2Z) ∼= PRE(Z) � PRE(Z, 2Z) � PRE(2Z, 2N) ∼= PRE(N),

IRE(2Z) ∼= IRE(Z) � IRE(Z, 2Z) � IRE(2Z, 2N) ∼= IRE(N).

This example also shows that the converses of both Theorem 4.3.3 (i) and Theorem

4.3.3 (ii) are not generally true.
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