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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

For a set X, let | X| denote the cardinality of X. The set of positive integers,
the set of integers and the set of real numbers are denoted by N, Z and R,
respectively.

An element a of a semigroup S is called an idempotent of S if a®> = a. For a

semigroup S, let F(S) be the set of all idempotents of S, that is,
E(Sy={a€ S |a®=a}.

An element a of a semigroup S is said to be regular if a = aba for some b € S,
and we call S a reqular semigroup if every element of S is regular. The set of all

regular elements of a semigroup S will be denoted by Reg(S), that is,
Reg(S) ={a € S | a= aba for some b € S}.

Consequently, F(S) C Reg(S). By an eventually reqular element of a semigroup
S we mean an element a of S such that a® € Reg(S) for some k € N. If every
element of S is eventually regular, we call" S ‘an ‘eventually reqular semigroup.
Therefore a regular semigroup is eventually regular.

For an element a of a semigroup S, let < a > denote the subsemigroup of S
generated by a, that is,

<a>={a"|n e N}

We call S a periodic semigroup if <a> is finite for every a € S. It is known that

for a € S, if <a> is finite, then a* € E(S) for some k € N ([1], page 3-4). Since



E(S) C Reg(S) for every semigroup S, it follows that every periodic semigroup

is eventually regular. In particular, every finite semigroup is eventually regular.
A partial transformation of a set X is a map from a subset of X into X. The

empty transformation 0 is the partial transformation with empty domain. Let

P(X) be the set of all partial transformations of X, that is,
P(X)={a: A—>X |ACX}.

The identity map on a nonempty set A is denoted by 14. Then 14 € P(X) for
every nonempty subset A of X. In particular, 1x € P(X). We denote the domain
and the range of & € P(X) by doma and rana, respectively. Also, for a € P(X)
and x € doma, the image of  under a is written by xa. The composition af of
a, # € P(X) is defined as follows : a8 = 0 if rana N domf = &, otherwise, af3 is

the usual composition of the functions Q| o doms and [ Then under

Ya—1 ranan domp) *

this composition, P(X) is a semigroup having 0 and 1x as its zero and identity,

respectively. Observe that for a;, § € P(X),

dom(ap) = (rananNndomB)a' C doma,
ran(af) = (ranaNdomf)3 C ranf,

¢ edom(af). <= - z € doma and za-€ domf.

The semigroup P(X) is called thepartial transformation semigroup on X. By a
transformation semigroup on X we mean a subsemigroup of P(X).
By a transformation of X we mean a map of X into itself. Let T'(X) be the

set of all transformations of X. Then
T(X)={ae P(X)|doma = X}

which is a subsemigroup of P(X) containing 1x and it is called the full transfor-

mation semigroup on X . Let I(X) denote the set of all 1-1 partial transformations



of X, that is,

I(X)={ae P(X)|ais 1-1}.

Then I(X) is a subsemigroup of P(X) containing 0 and 1x and it is called the
1-1 partial transformation semigroup on X or the symmetric inverse semigroup
on X.

It is well-known that all P(X), T(X) and I(X) are regular ([1], page 4) and
for « € P(X), o® = a (e € B(P(X))) if and only if rana C doma and za = z

for all x € rana. Thus

E(T(X)) ={a e T(X) | za =z for all x € rana},

E@(X)) ={Ls |'2 A € X} U{0}.

For a nonempty subset A of X and x € X, let A, denote the element of P(X)
with domain A and range {x}. Observe that A, € F(P(X)) if and only if x € A,
in particular, X, € E(T(X)) for all a € X.

For convenience, we sometimes write an element in P(X) by using a bracket

notation. For examples,

a b c
stands for the transformation {(a,b), (b,0), (¢,d)}.
b b d
A x
stands for av € T'(X) defined by
* zeX\A

y if x €A,

rTo =

r if ze X\A

In the area of semigroups, the full transformation semigroup 7'(X) is con-

sidered very important. In 1975, J. S. Y. Symons [7] introduced the semigroup



T(X,X'), @ # X’ C X, under composition consisting of all mappings in T'(X)

whose range are contained in X', that is,
T(X,X') ={aeT(X) | rana C X'}

Then X, € T'(X,X') for all a € X’ and T(X, X’) is a subsemigroup of 7'(X).
The semigroup 7'(X, X’) can be considered as a generalization of T'(X) since

T(X,X)=T(X). In fact, in 1966, K. D. Magrill [3] studied the semigroup
T(X,X") = {a e T(X) | X'aC X'}

which is also a generalization of T'(X) since T'(X, X) = T(X). We can see that
lx € T(X,X') but 1x ¢ T(X, X') if X' € X. Tt is clearly seen that T(X, X") C
T(X,X") CT(X).

For a € P(X) and A C X, we let Aa stand for the set (AN doma)a (= {za |
r € ANdoma}).

In this research the semigroups P(X, X"), P(X,X’), I(X,X’) and I(X, X")

are defined analogously, that is,

P(X,X")={a€ P(X) | rana C X'}, P(X,X')={ac P(X) | X'a C X'},

(X, X")={ael(X)|rana C X'}, I(X,X") ={a € I(X)] X'a CX'}.

Then P(X,X') C P(X,;X') CP(X) and I(X;X") C I(X, X' I(X). Since

) €
P(X,X) =P(X;X) = P(X)and I[(X,X) = [(X,X) =1(X), both P(X, X")
and P(X, X") are generalizations of P(X) while I(X,X') and I(X, X') are gen-
eralizations of I(.X).
Next, let X be a poset. By a subchain of X we mean a subposet of X which

is also a chain. A point a € X is said to be isolated if
forany x € X, r<aorx>a=— r=a,

and we call a subposet Y of X isolated if every point of Y is isolated in Y.

For a € P(X), a is said to be regressive if



za <z for all x € doma.

A transformation semigroup on X is said to be regressive if all of its elements are
regressive. Let

Prp(X)={a € P(X) | «is regressive},

Tre(X) ={a € T(X) | «is regressive},

Irp(X) = {a € I(X) | a is regressive}.
Then Prp(X), Tre(X) and Ige(X) are respectively subsemigroups of P(X),
T(X) and I(X). Observe that 0 and 1y belong to Pgrg(X) and Igg(X) and 1x €
Tre(X). By a regressive transformation semigroup on X we mean a subsemigroup
of Pre(X).

Let X and Y be posets. A bijection ¢ : X — Y is called an order-isomorphism
if
forzi, 20 € X, 21 <a9in X & ria<xzoainy.

We say that X and Y are order-isomorphic if there is an order-isomorphism from

X onto Y.

Example 1.1. Let o : Z — Z be defined by
za=x—1 _foralzeZ.
Then « is an element of Prp(Z), Trr(Z) and Igre(Z). Also, a is a bijection and
o' =x—m  forall r € Ziand ne N
which implies that
r(@)'=xz+n forallz€Z andn €N.

Hence for every n € N, (a™)~! is not regressive, so it belongs to none of Prg(Z),
Tre(Z) and Igrp(Z). If o™ = o"Ba™ for some n € N and § € Prg(Z), then

B = (a™)~! which is not regressive. This proves that « is not eventually regular.



Some known results of regressive transformation semigroups are as follows: A.
Umar [5] has shown that if X is a finite chain, then the subsemigroup S = {« €
Tre(X) | [ranal < |X|} of Tre(X) is generated by E(S), that is, for a € 5,
a = 010y ... 0 for some 01,09, ...,0; € E(S), and S is not a regular semigroup if
| X| > 3. Y. Kemprasit [2] showed that in any regressive transformation semigroup

on a poset, its idempotents and regular elements are identical.

Proposition 1.2. ([2]) If S(X) is a regressive transformation semigroup on a

poset X, then Reg(S(X)) = E(S(X)).

Y. Kemprasit ([2]) also characterized when Prg(X), Tre(X) and Igre(X) are reg-

ular semigroups as follows:

Theorem 1.3. ([2]) For a poset X, if S(X) is Prp(X) or Igrp(X), then S(X) is

a reqular semigroup if and only if X is isolated.

Theorem 1.4. ([2]) For a poset X, Trp(X) is a reqular semigroup if and only if

for every subchain C of X, |C] < 2.

A necessary and sufficient condition for Prp(X), Trr(X) and Igg(X) to be
eventually regular has been given in [2]. The next proposition was used as a

lemma to obtain this characterization. Both will be referred for our work.

Proposition 1.5. ([2]) If X is a poset and there is no positive integer n such
that |C| < n for every subchain C' of X, then there is a sequence of disjoint finite

subchains Cy,Ca,Cs, ... of X such that |Cy] < |Ca] < |Cs] < ... .

Theorem 1.6.([2]) Let X be a poset and let S(X) be Prg(X), Trr(X) or Irp(X).
Then S(X) is eventually reqular if and only if there is a positive integer n such

that |C| < n for every subchain C' of X.



A significant isomorphism theorem on full regressive transformation semi-

groups was given by A. Umar [6] in 1996 as follows:

Theorem 1.7.([6]) If X and Y are chains, then Trp(X) = Tre(Y) if and only

if X and'Y are order-isomorphic.

Notice that the converse of Theorem 1.7 is true for any posets X and Y as

follows:

Proposition 1.8. For posets X and Y, if ¢ : X — Y is an order-isomorphism,

then the map o — o= taw is an isomorphism from Trp(X) onto Tre(Y).

Proof. If a € Trp(X) and y € YV, then (yp 'a < yp~!. Since ¢ is an order-
isomorphism, yp~tay < yo o = y. Thus ¢ 'ap € Tre(Y). Also, for a, €
Tre(X), ¢ 'aby = (¢ ap)(p ' Bp), and if plap = ' By, then a = (. For
A € Tre(Y), we have pAp ™! € Try(X) and = (pAp™ ) = A. O

T. Saito, K. Aoki and K. Kajitori [4] have given necessary and sufficient con-
ditions for any posets X and Y so that Trp(X) = Tre(Y). Umar’s [somorphism

Theorem became a special case of their result.

Example 1.9. (1) Foreach n € N; Z is order-isomorphic to nZ through the map
x +— nzx, by Theorem 1.7, Trp(Z) = Tre(nZ).
(2) We have that Trg(R) = Tre(R") where R is the set of positive real

numbers because the map x — e” is an order-isomorphism of R onto RT.

Due to the semigroup introduced by J. S. V. Symons [7], the semigroup studied
by K. D. Magrill [3] and those we define analogously, the following regressive
transformation semigroups are defined for a poset X and a subposet X’ of X

analogously as follows:



| ranae C X'},

)

={a € Prp(X) | X'a C X'},
) | rana € X'},
)

| X'a C X'},

It is clear that

Prp(X,X') C Ppp(X,X") C Ppp(X), Tre(X,X") C Trp(X,X') C Tre(X),
Irp(X, X") CIpp(X,X') C Izp(X), Pre(X,X)= Pre(X,X) = Prp(X),

TRE<X,X) = TRE(X,X) = TRE(X) and [RE'(XaX) = TRE(X,X) = [RE'(X)

Observe that 0 belongs to Prp(X, X'), Pre(X, X'), Irp(X,X") and Igrp(X, X')
and 1y belongs to Pre(X, X'), Tre(X, X") and [rp(X, X'). Moreover, Trp(X, X')

# @& (or equivalently, Trr (X, X’) is a subsemigroup of Trg(X)) if and only if
forevery € X, ' <z for some z’ € X'. (*)
Then whenever we consider Trg(X, X'), the condition (*) is always assumed.

Example 1.10. Let a: Z - 27 be defined by

p

0 if =2,

ra =9 g if o e2Z\{2},

(v -1 if z¢2Z

Then o € Tgrr(Z,27). Suppose that Trg(Z,27) has an identity element, say 7.
Thus

Bn =npB = for every 5 € Trp(Z,27).



Since 3n < 3 and rann C 27, 3n < 2 which implies that (3n)a < 2. But
3a = 3na < 2, so it is contrary to the definition of o. Therefore Trg(Z,27Z) has

no identity. Since Trg(Z) and Tgrgr(27Z) have an identity, we conclude that
Tre(Z) = Tre(Z,7) 2 Tre(Z,27) 2 Tre(22,27) = Trp(27Z).

In Chapter II, we deal with the regularity of the six regressive transforma-
tion semigroups introduced previously. The aim is to generalize Theorem 1.3 and
Theorem 1.4. Our proofs are independent to these given in [2] for Theorem 1.3
and Theorem 1.4. Then these two theorems become consequences of our obtained
results.

Eventual regularity of our target regressive transformation semigroups is stud-
ied in Chapter III. The purpose is to extend Theorem 1.6. We characterize in this
chapter when these regressive transformation semigroups are eventually regular.
For these characterizations, Proposition 1.5 and Theorem 1.6 are referred as tools.

Finally, some isomorphism theorems of two regressive transformation semi-
groups of the same kinds are determined in Chapter [V. The interesting iso-
morphism theorems obtained in this chapter are as follows: For chains X and
Y, a subchain X’ of X and a subchain Y’ of Y, if Tre(X,X') = Tre(Y,Y’),
then X’ and Y’ are order-isomorphic.  This result generalizes Umar’s Isomor-
phism Theorem. For posets X and Y, X’ a subposet of X and Y’ a subposet
of Y, if Prp(X,X") = Prp(Y,Y"), then X' and Y are order-isomorphic, also if
Irp(X, X') = Igp(Y,Y’), then X’ and Y’ are order-isomorphic. Some nice and
remarkable consequences of the later two isomorphism theorems are that for any
posets X and Y, Prg(X) = Pre(Y) if and only if X and Y are order-isomorphic

and Igp(X) = Igp(Y) if and only if X and Y are order-isomorphic.



CHAPTER II
REGULAR REGRESSIVE TRANSFORMATION

SEMIGROUPS

The purpose of this chapter is to generalize Theorem 1.3 and Theorem 1.4 by
considering the regularity of Prp(X, X"), Izp(X, X"), Tre(X,X'), Pre(X,X'),
Irp(X, X') and Trp(X,X'). More interesting results are obtained.

Throughout this chapter, X denotes any poset and X’ denotes any subposet

of X, otherwise stated.

2.1 Regularity of Ppp(X, X"), Izp(X,X'), P(X,X') and

Ipp(X, X"

Recall that if S(X) is Pre(X) or Izg(X), then S(X) is regular if and only if X
is isolated (Theorem 1.3). By the definition of regressive partial transformations

of X, it is clearly seen that
X is isolated = Prp(X) =Igrp(X)={1l4 | @ # A C X}U{0}.

Theorem 2.1.1. Let S(X, X') be Prp(X, X') or Irg(X, X').  Then the semigroup
S(X, X") is reqular if and only if
(i) X' is isolated and

(ii) for anyx € X\X' and 2’ € X', either x < 2’ or x and 2’ are uncomparable.

Proof. Suppose first that X’ is not isolated. Then there are a,b € X’ such that

a<b Let a= (b) Then a € S(X,X’) and a® = 0, so a ¢ F(S(X,X")). By

a



11

Proposition 1.2, o ¢ Reg(S(X, X’)). Next, suppose that there are ¢ € X\ X’ and

c
d

B ¢ Reg(S(X,X’)) by Proposition 1.2. This shows that if S(X, X’) is a regular

d € X’ such that ¢ > d. Thus 3 = ( )E S(X,X') and 52 = 0 # (3. Hence
semigroup, then (i) and (ii) hold.

For the converse, assume that (i) and (ii) hold. Let v € S(X,X’) and = €
doma. Then za < x and za € X'. Because of (ii), x € X', so by (i), za =
x. This proves that o = lgoma, the identity map on doma. Hence o = o? €
Reg(S(X,X")).

Therefore the theorem is proved. O

Theorem 2.1.2. Let S(X,X') be Prp(X,X') or Irg(X,X'). Then the semi-
group S(X, X") is reqular if and only if

(i) X' is isolated,

(i) X\X' is isolated and

(iii) for any x € X\X' and 2" € X', either v < x’ or x and 2’ are uncomparable.

Proof. Recall that Prp(X, X') € Prp(X, X’) and Ipp(X, X') C Irp(X, X'). By
Proposition 1.2 and Theorem 2.1.1, to prove the necessity part, it suffices to show
that if X\ X’ is not isolated, then there is a nonregular element in S(X, X").
Assume that there are @, b in X\ X' such that @ < 0. Then v = (2) € S(X, X"
and 72 = 0 # v. Hence v ¢ Reg(S(X,X")) by Proposition1.2. Therefore if
S(X,X') is regular, then (i)-(iii) hold.

Conversely, assume that (i), (ii) and (iii) hold. Let o € S(X, X’) and z €

doma. Then za < x.

Case 1 : 2z € X' Since X'a C X', za € X'. Because za < z, it follows from (i)

that za = x.

Case 2 : z € X\X'. Since za < z, it follows from (iii) that zo € X\ X’. But
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X\ X' is isolated by (ii), thus za = z.

This proves that o = 14oma, SO @ is regular.

Hence the proof is complete. O]

Theorem 1.3 is directly obtained from Theorem 2.1.1 or Theorem 2.1.2 when

X' =X.

Corollary 2.1.3. If S(X) is Prp(X) or Igp(X), then S(X) is a regular semi-

group if and only if X is isolated.

In general, a subsemigroup of a regular semigroup need not be regular. An
obvious example is that (R, +) is a regular semigroup (a group) and N is a sub-
semigroup of (R, +) which is not regular. However, Prp(X, X’) and Igrg(X, X')
are respectively subsemigroups of Prp(X, X’) and Izp(X, X’) and by Theorem
2.1.1 and Theorem 2.1.2, the regularity of Prp(X, X’) [Irg(X,X')] implies the
regularity of its subsemigroup Prp(X,X') [[gr(X,X’)]. In fact, it follows di-
rectly from Proposition 1.2 that any subsemigroup of a regular regressive partial

transformation semigroup on X is also regular.

Corollary 2.1.4. The following statements hold.
(i) If Pre(X,X") is a reqular semigroup, then so is Prp(X, X').

(ii) If Irp(X, X') is a reqular semigroup, then so-is Irp(X, X').

Example 2.1.5. Let X and Y be posets, X’ a subposet of X and Y’ a subposet

of Y defined by the Hasse diagrams as follows:

(23
o
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[ 2S]
o

By Theorem 2.1.1 and Theorem 2.1.2, Prg(X, X') and Igp(X, X’) are regular but
neither Prp(X, X") nor I pp(X, X') are regular. Also, from these two theorems, we
have that all the semigroups, Pra(Y,Y"), Irp(Y,Y"), Pre(Y,Y") and Irp(Y,Y")
are regular. Note that by Corollary 2.1.3, none of Prp(X), Irp(X), Pre(Y) and

Irp(Y) is regular while all Prp(X'), Irp(X'), Pre(Y’) and Igrp(Y') are regular.

2.2 Regularity of Trp(X, X') and Tprp(X, X’)

In this section, we intend to generalize Theorem 1.4 stated that Trg(X) is

regular if and only if |C'| < 2 for every subchain C' of X.

Theorem 2.2.1. The semigroup Trp(X, X") is reqular if and only if for every
subchain C' of X,
(i) |CNX'| <2 and

(ii) if CNX' # ¢ and CNX" has an upper bound notin CNX', then |CNX'| = 1.

Proof. Assume that-every subchain ¢ of X satisfies (i) and (ii). By Proposition
1.2, it suffices to show that every element of Tgrr(X, X’) is an idempotent. Let

a € Trp(X, X") and z € X. Then z > za > va? and za,xa? € X',

Case 1 : r € X'. Then z,za,za® € X' and z > za > za?. Tt follows from (i)

that £ = za or xav = xa?. Hence za = xa.

Case 2 : z € X\X’. Consider the chain C' = {za,za?} C X’. Then x € X\ X'

as is an upper bound of C. By (ii), |C| = 1, and thus za = za?.

We therefore conclude that xa = za? for all € X. Hence « is an idempotent.
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Conversely, suppose that there exists a chain C' of X such that (1) |[CNX'| >3
or (2) |[CNX'| >2and C'NX'has an upper bound in X\(C N X’). In any cases,
we have a subchain a < b < ¢ of X with a,b € X’'. Recall that X’ satisfies the
condition (*). Then for each 2 € X, there exists ' € X’ such that #° < x. Define

a: X — X by

zeX\{b,c}
Then o € Trp(X, X”). Since b € rana and ba = a # b, we have that « is not an

idempotent. By Proposition 1.2, «v is not a regular element of Trg(X, X').

Hence if Tre(X, X') is regular, then (i) and (ii) hold. O

Theorem 2.2.2. The semigroup T pp(X, X') is regular if and only if for every

subchain C' of X,

(i) 1CNX']<2,

(i) |CN(X\X)[ <2,

(i11) if CNX' # ¢ and CNX" has an upper bound not in CNX', then |CNX'| =1
and

(iv) if CN(X\X') # ¢ and C N (X\X') has a lower bound not in C N (X\X'),

then |C.A(X\XY) = 1.

Proof. Assume that every chain C'of X satisfies(i)-(iv). Let a € Trp(X, X’) and

x € X. Then z > za > zao?:

Case 1 : x € X'. Since X'a C X', we have that all x, za and za? belong to X'.

It therefore follows from (i) that x = za or za = xa?, so ra = za?.

Case 2 : z ¢ X’ and za € X'. Then za? € X’ since X'a C X’. We then deduce

from (iii) that xa = za?.
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Case 3 : v ¢ X', za ¢ X' and za? € X'. Then we have from (iv) that = = za,

and hence xa = za?.

Case 4 : v ¢ X', xa ¢ X' and za? ¢ X'. Tt then follows from (ii) that » = z«

or za = xa? which implies that za = za?.

This shows that o? = «, so a is a regular element of Trz(X, X').

For the converse, suppose that there exists a subchain C' satisfying at least
one of the following conditions.
(1) [CNnX']=3,
(2) [N (X\X7)| =3,
(3) |CNX'|>2and CN X' has an upper bound not in itself,
(4)

4) |CN(X\X')| =2 and C N (X\X’) has a lower bound not in itself.

Case 1 : [C N X'| > 3. Then there are a,b,c € C' N X’ such that a < b < c.

Define a: X — X by

zeX\{b,c}
Then a € Trp(X) and X'a = {a,b} U (X'\{b,c}) C X', so a € Tgrp(X, X'). But

b € rana and ba = a # b, 50 o> # a.
Case 2 : |CN(X\X')| > 3. Thene < f < g for somee, f,g € CN(X\X'). Let
Lig ¥

e T
! zeX\{f.9}
Then 3 € Trp(X) and 23 = z for all z € X', so B € Tre(X, X'). Since f € ran3

and f3 =e# f, > # 5.

8=

Case 3 : |[CNX'| > 2 and C'N X’ has an upper bound v € X\(C' N X'). Then

k > h for some k,h € C' N X', and thus v > k > h. Let
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k u x
’7:
h k
zeX\{k,u}
Then v € Tre(X). If u € X', then X'y = {h,k} U (X'\{k,u}) = X"\{u} C X"
If u e X\X', then X'y = {h} U (X"\{k}) = X'\{k} C X’. Therefore v €

Tre(X,X'). Since k € rany and ky = h # k, 7> # 7.
Case 4 : |CN(X\X')| > 2and CN(X\X’) hasalower bound [ € X\ (C N (X\X")).
Then p > ¢ for some p,q € C'N(X\X'), and so p > g > [. Let

g bz
[

A:

zeX\{p,a}

Then A € Trp(X). Since X' € X\{p,q}, X'\ = X', thus A\ € Tgp(X, X’). But

q € ran) and g\ = [ # ¢, s0 \? # A\

We therefore deduce from Proposition 1.2 that Tz (X, X') is not a regular semi-

group. O

Remark 2.2.3. It can be easily seen from Theorem 2.2.2 that if the semigroup
Tre(X, X') is regular, then the following statements hold.

(i) Every subchain of X has length at most 4.

(ii) If C = {a,b,c,d} is a subchain of X such that a <b < ¢ < d, then either

CNX ={cd} or CNX"={b,d}.

We can see easily that Theorem 1.4 is a consequence of Theorem 2.2.1 and

Theorem 2.2.2.

Corollary 2.2.4. The semigroup Trg(X) is reqular if and only if for every sub-

chain C of X, |C| < 2.
Also, from Theorem 2.2.1 and Theorem 2.2.2 or from Proposition 1.2, we have

Corollary 2.2.5. If Trp(X, X') is a regular semigroup, then so is Trp(X, X').
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Example 2.2.6. Let X and Y be posets, X’ a subposet of X and Y’ a subposet

of Y defined by the following Hasse diagrams.

a b
b
X : c X' /I
d e
d e
a b
% v ¢ § ¢
c
e d

By Theorem 2.2.1, Trp(X, X’) is regular, and by Theorem 2.2.2, Trp(X, X') is

not regular and both Trg(Y,Y") and Trp(Y,Y’) are regular.



CHAPTER III
EVENTUALLY REGULAR REGRESSIVE

TRANSFORMATION SEMIGROUPS

The purpose of this chapter is to charaterize when our target regressive trans-
formation semigroups are eventually regular. These characterizations will gener-
alize Theorem 1.6.

Throughout this chapter unless mentioned, X denotes any poset and X’ de-

notes a subposet of X.

3.1 Eventual Regularity of Prp(X, X’'), Irpp(X,X’') and

Tre(X, X')

We first give a necessary and sufficient condition of Prp(X, X'), Irp(X, X')

and Tgrr(X, X’) to be eventually regular. This condition depends only on X’.

Theorem 3.1.1. Let S(X, X') be Prp(X,X'), Tre (X, X') or Trep(X, X'). Then
S(X, X") is eventually reqular if and only if there exists a positive integer n such

that |C| < n for every subchain C' of X'.

Proof. To prove necessity, assume that S(X, X’) is eventually regular. Based on

Theorem 1.6, it suffices to show that S(X’, X”) is eventually regular where

(

Pre(X', X') if S(X,X') = Prp(X, X"),

SX'X') = Inp(X', X") if S(X,X') = Inp(X,X'),

| Trp(X', X') i S(X, X) = Thu(X, X').
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Let a € S(X', X").

Case 1 : S(X,X') is Prp(X,X’) or Igg(X,X’). Then a € S(X,X’). Since
S(X, X") is eventually regular, o* € Reg(S(X, X')) for some k € N. By Proposi-

tion 1.2, o* € E(S(X, X’)). But of € S(X’, X'), so o* € E(S(X', X")).

Case 2 : S(X,X') is Tre(X, X"). By (*), for every z € X, there is an 2’ € X’

such that 2’ < x. Define g : X — X’ by

za if relX/,
xf =
o iz e X\ X

Since o € Tre(X'), B is clearly an element of TRp(X,X’) and 3., = a. But
Tre(X, X') is eventually regular, thus 3% € Reg(Trp(X,X’)) for some k € N,
and hence 3% € E(Tgrp(X, X)) by Proposition 1.2. But o = |, € Trp(X’), so

ar € BE(Trp(X")).

It therefore follows from Theorem 1.6 that there exists an n € N such that |C| <n
for every subchain C' of X".

To prove sufficiency, assume that there is an n € N such that |C| < n for every
chain C of X'. To show that S(X, X’) is eventually regular, let a € S(X, X’) and

z € doma™ ™. Then

T > o > ot > > ra” > ra™t.
Since'rana C X', za > za? > ... > wa™ > xa! is a subchain of X’. We
have by assumption that za' = za'™ for some ¢ € {1,2,...,n}. Since z €
doma" ™ za' € doma™ 7 so we have za" ™! = (za')a" 1 = (zatTa" T =
xa™t2. This proves that doma™*! C doma™? and za"™' = xa™*? for every

x € doma™™!. But doma™? C doma™™!, so we have o™t = a"+?2

. Consequently,
a" e B(S(X, X)).

Hence the theorem is proved. O]
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The following corollary is obtained directly from Theorem 1.6 and Theorem

3.1.1.

Corollary 3.1.2. The following statements hold.

(i) Pre(X,X') is eventually reqular if and only if Prp(X') is eventually reqular.
(i) Irp(X,X') is eventually reqular if and only if Irp(X') is eventually reqular.
(11i) Tre(X, X') is eventually reqular if and only if Tre(X') is eventually reqular.

Some easy consequences of Theorem 3.1.1 are as follows:

Corollary 3.1.3. If X' is a finite subposet of X, then all the semigroups Prr(X, X'),

Tre(X, X') and Igp(X, X') are eventually reqular.

Corollary 3.1.4. If X' is an infinite subchain of X, then none of the semigroups

Pre(X, X", Tre(X, X") and Izp(X,X") is eventually regular.

Example 3.1.5. Let X be a poset and X’ a subposet of X defined by the following

Hasse diagrams.

a3s

24 34

a3 23 a33

X : a2 22 asz
a11 a21 a3y

ai3 a23 a33

X! - ai2 22 32
a1 21 a31

Notice that X and X’ satisfy the property (*). We deduce from Theorem 3.1.1
that all Prg(X, X"), Irp(X, X’) and Trr(X, X') are eventually regular. We give
a remark that from Theorem 1.6, Trg(X) is not eventually regular but Trg(X’)

is eventually regular.
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3.2 Eventual Regularity of Prp(X,X'), Izpp(X,X’) and

Tre(X, X"

In this section, we give a characterization determining when Pgrp(X,X’),
Ipp(X,X') and Tgrg(X,X') are eventually regular. The next theorem shows
that this characterization depends only on X but not on X', and it is the same
as that given for being eventual regularity of Pgrp(X), Irg(X) and Tre(X). To
obtain this result, the following obvious fact is also needed and the proof is omit-

ted.

Lemma 3.2.1. Let S be a semigroup with Reg(S) = E(S) and T a subsemigroup
of S. Then for a € T, if a is an eventually regular element of S, then a is an

eventually reqular element of T'. Hence if S is eventually regular, then so is T.

Theorem 3.2.2. Let S(X, X') be Ppp(X,X"), Tre(X,X') or Irp(X,X'). Then
S(X, X') is eventually reqular if and only if there is a positive integer n such that

|C| < n for every subchain C' of X.

Proof. To prove sufficiency, assume that there is a positive integer n such that
|C| < n for every subchain C' of X. Then by Theorem 1.6, all Prg(X), Tre(X)
and Irgp(X) are eventually regular.. But since Prp(X,X'), Tre(X,X’) and
Irp(X, X') are respectively subsemigroups of Prp(X), Tre(X) and Irp(X), we
have by Proposition 1.2 and Lemma 3.2.1 that all the semigroups Pzz(X, X'),
Tre(X,X') and Ipp(X, X') are eventually regular.

To prove necessary by contrapositive, suppose that there is no n € N such that
|C| < n for every subchain C' of X. By Proposition 1.5, there exists a sequence
of disjoint finite subchains C, Cy, Cs, ... of X such that |C1] < |Cy| < |Cs] < .. ..

Therefore we deduce that there is a sequence kq, ko, k3, ... of N such that

k1<k2<k3<...and
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1Cr, N X'| < |Cr, N X' < |Cr, N X'| < ... 0r

[Cry 0 (XA\XT)] < |Cr, N (XAXT)] < Gy N (XX <.

Let D; = Cy, for every i € N. Then |D; N X'| < |DoNX'| < |DsNX'| <...or

D) N (X\X)| < | Do N (X\X')| < |Ds N (X\X')] < ...

Case 1 : |IDiNX'| < |DynX'| < |Dsn0 X'| < .... We may assume that

|D; N X'| > 1. For each i € N, let

] - / / / / / /
D;,NX = {xil,xh,...,xili} where z}, <z}, <...< i, -

e 9]

Then 1 < ly <lp < ...+ Define a : | J(D;n X")\{a}, | i € N}) — X by

="

i a=qx; . forallie Nand jc{23,...,[} (1)

Thus a € Igp(X’') and if m € N, then [, > 2m for some £ € N. By (1),
x}czk € doma®™ C doma™ and

2 / ! m

/ | — * _
xklka — xk’lk—Zm < xklk—m - .TklkOé .

This shows that

for every m € N there is an element a € doma®™ such that aa™ # aa®™.  (2)

Hence a™ # o®™ for every'm € N, that is, o™ ¢ F(Irgp(X')) for every m € N. By
Proposition 1.2, a is not an eventually regular element of Irp(X’). But Izp(X’)
is a subsemigroup of Prp(X, X') and Izp(X, X"), so by Lemma 3.2.1, a is not
eventually regular in Prp(X, X') and Tzp(X, X'). Define 8 : X — X by

ra if x € doma,

xf =

x  otherwise.

Then 8 € Tre(X, X') since X'3 = ((X’Ndoma)U(X"\doma))s = (X'Ndoma)aU

(X"\doma) € X’. To show that 3™ # °™ for every m € N, let m € N be
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fixed. By (2), there is an element a € doma®™ such that aa™ # aa®™. Then

a,aq, . ..,ac*™ ! € doma. It follows from the definition of 3 that
af = ao,aaf3 = ac?, ..., ac® 13 = aa”™.

Consequently, af™ = aa™ and a3*™ = aa®™ which imply that a8™ # af*™, so
p™ # ™. Therefore ™ ¢ E<TRE(X7 X)) for every m € N. Hence we deduce

from Proposition 1.2 that 3 is not an eventually regular element of T g (X, X').

Case 2 : |[D;N(X\X')| < |Dan(X\X')| < |[Dsn(X\X")| < .... By considering
X\ X" as X' in Case 1, we also have a map A € Ipp(X\X') satisfying the property

that
for every m € N, there is an element @ € domA*™ such that a\™ # aA\?™.  (3)

This implies by Propesition 1.2 that A is not an eventually regular element
of Irp(X\X'). But Izp(X\X') is clearly a subsemigroup of Izp(X,X’) and
Prp(X,X’"). By Lemma 3.2.1, A is not eventually regular in Izz(X,X’) and
Pre(X,X"). Define pi: X — X by

A iz € domA,

Ty =

x if x € X\domA.
Since X' C X\dom)\, zp = x for all # € X', so u € Trp(X,X’). From (3) and
the definition of u, we can prove similary as in Case 1 that u™ # p?™ for every
m € N. Thus by Proposition 1.2, u is not eventually regular in T gz (X, X').

Therefore the theorem is completely proved. O]
From Theorem 1.6 and Theorem 3.2.2, we have

Corollary 3.2.3. The following statements hold.

(i) Pre(X,X') is eventually regular if and only if Prg(X) is eventually reqular.
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(ii) Trp(X,X') is eventually regular if and only if Irp(X) is eventually reqular.

(iii) Tre(X,X') is eventually reqular if and only if Tre(X) is eventually reqular.
Also, the next result follows directly from Theorem 3.2.2.

Corollary 3.2.4. If X is an infinite chain, then none of the semigroups Prp(X, X'),

Irp(X,X'") and Tre(X, X') is eventually reqular.

Example 3.2.5. Let X and X’ be defined as in Example 3.1.5. By Theorem 3.2.2,
Pre(X, X", Irp(X, X") and T gy (X, X') are not eventually regular. However, all

of Prp(X,X'"), Ire(X,X") and Tgrp(X, X’) are eventually regular.



CHAPTER IV
ISOMORPHISM THEOREMS OF REGRESSIVE

TRANSFORMATION SEMIGROUPS

We first intend to generalize Umar’s Theorem (Theorem 1.7) stated that for
chains X and Y, Trp(X) = Tre(Y) if and only if X and Y are order-isomorphic.
In fact, some other interesting isomorphism theorems are also provided in this

chapter.

4.1 Elementary Results

Some required elementary results are provided in this section. These results

will be referred later.

Proposition 4.1.1. Let X be a poset, X" a subposet of X and let S(X,X') be
Pre(X,X') or Irp(X, X"). Then the following statements are equivalent.
(i) S(X,X") has an identity.
(ii) For all a € X\X" and b € X', either a < b or a and b are uncomparable.
(111) S(X, X") = S(X"), that s,

Pro(X,X') = Pap(X') if S(X,X') = Pru(X,X') and

Irp(X, X") = 1gre(X") if S(X,X') =Ire(X,X).
Proof. (i)=-(ii). To prove by contrapositive, assume that there are a € X\ X’ and

b € X’ such that a > b. Then (Z) € S(X,X'). If a € S(X, X'), then rana C X',

so a ¢ rana which implies that « (Z) =0# (Z)
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This shows that S(X, X’) has no identity.

(ii)=-(iii). Suppose that (i) holds. Clearly, Prp(X’') C Prp(X,X’) and
Irp(X') C Igp(X,X’). Let a be an element of Prp(X,X’) and 2 € doma.
Then za < x and zao € X', By (ii),  must be an element of X'. Hence

PRE(X,) if OZEPRE(X,X,),
a €

]RE<X/) if CYE[RE(X,X,).
Therefore (iii) is proved.

(iii)=-(i). Obvious. O

Proposition 4.1.2. Let X be a chain and X' a proper subchain of X. If the
semigroup Trr(X, X') has an identity, then the following statements hold.
(i) minX exists.

(1t) For all a € X\X'" and b € X"\{minX}, a <b.

Proof. Let n be the identity of Trp(X, X"). By the property (*), for every z € X
there exists an element &’ € X’ such that &’ < z.
Suppose that X has no minimum element. From the above reason, X’ has no

minimum element. Let a € X\X’. Then a > an € X', so a > an > b for some

b € X'. Define a: X — X' by

p
an -if x =a,

T =906 if x=an,

' otherwise.
\

Then a € Tgrp(X, X’), so an = na = a. Hence b = (an)a=aa = an, a contra-
diction. This shows that (i) holds, that is, minX exists. By (*), minX'=minX.

Suppose that there are a« € X\ X’ and b € X'\{minX} such that a > b. Then
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a>b>minX. Define §: X — X’ by

(

b if z=a,
/=4 minX if ze X,

| ' otherwise.

Then 8 € Tre(X,X’) and thus fn = nB = (. Since an € X', anff = minX.

Hence b = af = anf = minX, a contradiction. Therefore (ii) is proved. O]

The following result is similar to Proposition 1.8. The proof is analogous to

that of Proposition 1.8 and we shall omit it

Proposition 4.1.3. Let X and Y be posets, X' a subposet of X and Y’ a subposet
of Y. If there is an order-isomorphism o : X — Y such that X'¢ = Y’, then
a — o rap is an isomorphism of Prp(X,X") onto Prp(Y,Y"), of Irp(X, X’)

onto Irp(Y,Y") and of Tre(X, X") onto Tre(Y,Y').

Example 4.1.4. Let n € N. Then ¢ : Z — nZ defined by z¢ = nzx for all
x € Z is an order-isomorphism and (mZ)p = mnZ for all m € N. It follows from

Proposition 4.1.3 that

PRE(Z,TI’LZ) a3 PRE(nZ,ng), IRE(Z,mZ) = IRE(TLZ,ng),

TRE(Z, HZ) = TRE(HZ, ng)
for all m,n € N.

The converse of Proposition 4.1.3 is not necessary true even when X and
Y are chains. To see this, let X and Y be finite chains such that |X| # |Y].
Then |Tre(X,{minX})| = 1 = |Tre(Y,{minY})|. Hence Tre(X,{minX}) and
Tre(Y,{minY}) are isomorphic but X and Y are not order-isomorphic. A non-

trival example can be seen in the last part of Section 4.2.



28
4.2 Isomorphism Theorems of Trp(X, X')

We shall prove in this section that for chains X and Y, a subchain X’ of X
and a subchain Y’ of Y, if Trp(X, X') = Tre(Y,Y"), then X’ and Y’ are order-
isomorphic. This result and Proposition 4.1.3 generalize Umar’s Isomorphism
Theorem (Theorem 1.7). Our idea of the proof is based on the proof of Theorem
1.7 given by A. Umar [6].

An order-ideal of a poset X is a nonempty subset A of X having the following

property:
for x € X, x < a for some a € A implies x € A.

Also, for a subposet X’ of X, an order-ideal of X' is a nonempty subset B of X’

having the following property:
for x € X', & < b for some b € B implies x € B.

Lemma 4.2.1. Let X' be a subposet of a poset X. If &« € E(Trp(X, X)) is such

that rana is an order-ideal of X', then aE(Trp(X,X")) C E(Trr(X, X’)).

Proof. Let § € E(Trr(X,X’)) and let € X. Then zaf < za. Since zaf € X',
ra € rana and ranc is an- order-ideal of X', it follows that xaf € rana. But
a € E(Trp(X,X")), so zafa = zaf. Since 4% = 3, we have raf = (zaf3)8 =

(rafBa)B = z(afB)? We then deduce that a8 € B(Tre(X, X")) O

Lemma 4.2.2. Let X and Y be chains, X' a subchain of X, YY" a subchain of Y
and ¢ : Trp(X, X') — Tre(Y,Y") an isomorphism. Then for a € E(Trp(X, X)),

rana is an order-ideal of X' if and only if ran(a) is an order-ideal of Y'.

Proof. Let o € E(Trp(X, X')). Assume that ran(ay) is not an order-ideal of Y.

Then there are y1,y2 € Y’/ such that y; < ys, y2 € ran(ay) and y; ¢ ran(ayp), so
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yi(ap) <. (1)
Define 8:Y — Y’ by
n if y>u,
yb =19y if yeY andy <y,
\y(agp) if yeY\Y' andy < y.

Then € Tre(Y,Y’). Since y» > y, and y» € ran(ayp), we have
Yr= y28 € ran((ap)f)- (2)
If y € Y is such that y > y;, then yB> = 18 =y = yB. If y € Y and y < v,
then y3? = y = yB3. Next, let y € Y\Y’ be such that y < y;. Then y8 = y(ay) <
y < 1. Since y(ap) €Y' and y < y;, we have y3° = (y(ap))f = y(ap) = yb.
This shows that § € E(Tgre(Y,Y")). Then 8 = yp for some v € E(Trp(X, X")).
But yi(ap)B < yi(ap) < yi by (1) and yi € ran((ap)B) by (2), so we have
(a7)p = (ap)(vp) = (ap)B & E(TRrp(Y,Y")). Hence ay ¢ E(Trp(X,X')). By

Lemma, 4.2.1, this proves that rana is not an order-ideal of X".
Since ¢ : Trp(Y,Y") — Trp(X, X') is an isomorphism, the converse follows

from the above proof. ]

Observe that the range of the map ( defined in the proof of Lemma 4.2.2
is also an order-ideal of ¥’ whose maximum element is y;. To be more precise,
ranf = {y €Y' |y <wi}. It can be easily seen that forrany a € X, {z € X |z <
a} is an order-ideal of X whose maximum element is a. For ease in writing, it
will be denoted by (« a]x. Therefore, for any subposet X’ of X and a € X',
(« a]lx = (« a]x N X' is the order-ideal of X’ whose maximum element is a.

The following lemmas are required. The first one is obvious.

Lemma 4.2.3. Let X be a poset and K = {(«+ a]x | a € X}. Partially order K

by inclusion. Then the map a — (< a|x is an order-isomorphism of X onto K.
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Lemma 4.2.4. Let X' be a subchain of a chain X. Then for every a € X', there

exists a map o € E(Trp(X, X)) such that rana = («— alx/.

Proof. By (*), for every x € X, there is an element 2’ € X’ such that 2/ < z. Let

a € X' and define o : X — X' by

(

aN N kLA,

TQ x if reX andzx < a,

K;16’ if xe€ X\X'and z < a.

Then a € E(Tre(X, X)) and rana = (<« a|x. O

Lemma 4.2.5. Let X' be a subposet of a poset X. Then for each o € Trp(X, X'),

there is an element of € E(Trp(X, X)) such that ranc* =rana and ao™ = «.

Proof. Let a € Tre(X, X'). Define o* : X — X’ by

x if x € rana,

za if z € X\rana.

Thus o € Tre(X, X'). Let € X. Then za € rana, so raa* = xa. If z € rana,
then z(a*)? = z = za*. If x € X\rana, then z(a*)* = (za)a* = za = za*.

This shows that aa* = a and (a*)? = o*. It is clear by the definition of a* that

rana*=ranc. O

Lemma 4.2.6. Let X and Y be chains, X" a subchain of X, Y a subchain of Y,
Ry ={rana | a € Tre(X, X")} and Ry = {rana | a € Trp(Y,Y")}. Partially or-
der Ry and Ry by inclusion. Let ¢ : Trp(X, X') — Tre(Y,Y’) be an isomorphism
and @ : Ry — Ry defined by (ranc)p = ran(ayp) for all o € Tre(X, X'). Then
the following statements hold.

(i) @ is an order-isomorphism of Ry onto Rs.

(1) {(—alx [ ae X'Np={(—=0y [beY'}
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Proof. Let a* be defined as in Lemma 4.2.5 for a € Trg(X, X') or a € Tre(Y,Y’).
(i) Let @ € Trr(X, X') be arbitrary fixed. By Lemma 4.2.5, o* € E(Tre(X, X")),
rana*=rana and aa® = «,
and (ap)* € E(Trp(Y,Y")),
ran(ap)* = ran(ap) and (ap)(ap)* = ap.
Since (ap)(a*p) = ayp, it follows that
ran(ap)” = ran(ap) C ran(a*y)
and since (ap)*¢™! € E(Trp(X, X)), rana* = rana = ran(ape ™) C ran((ap)*p™1).
This implies that a*((ap)*¢™ ') = a*. Thus (a*¢)(ap)* = a*e, and so
ran(a*p) C ran(ap)*.
This proves that
for every o € Trp(X, X'), ran(a*p) = ran(ap)*. (1)
Next, to show that © is an order-isomorphism of R; onto R, let o, €

TRE(X, XI) Then

rana C ranf < rana” C rang”
Sipatpl=at since o, 3* € E(Tre(X, X"))
& (a"p)(B) =a'p
< ran(a’p) C ran(G )
< ran(ap)” Cran(fye)* from (1)

< ran(ap) Cran(fy) (2)

and hence

rana = ranf < ran(ayp) = ran(fy). (3)
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We therefore conclude from (3) that % is well-defined and one-to-one and from (2)
that © is order-preserving. Clearly, ¥ is onto since ¢ : Trp(X, X') — Tre(Y,Y”)
1s onto.

(ii) Let @ € X’. By Lemma 4.2.4, there is a map o € E(Trg(X,X’)) such
that rana = (« a]yxs. Since («— a]x is an order-ideal of X', by Lemma 4.2.2
ran(aw) is an order-ideal of Y'. To show that ran(ap) = (« €]y for some
e € Y let b € ran(ap). Then (« bly» C ran(ayp). If (« by = ran(ayp),
then we are done. Assume that (+ b]ys C ran(ay). By Lemma 4.2.4, there is a
map 3 € E(Tgr(Y,Y’)) such that ranff = (« bly.. Let v € E(Trr(X,X’)) be
such that y¢ = . Hence ran(y¢) € ran(ap). We therefore have from (i) that
rany C rana. Also, by Lemma 4.2.2; ranv is an order-ideal of X'. Let ¢ € ranvy.
Then (« ¢|x: C rany C («— a]xs, so ¢ < a. By the property (*), for every z € X,

there is an element x" € X’ such that &’ < x. Define A : X — X' by

.
P11t

TA=49z if reX andz<a,

\x’ if ze€ X\X"and z < a.

Clearly, A € E(Trp(X,X’)) and ran\ = (« a]x/\{a} € (<« a]x = rana. By
(i), ran(Ap) C ran(agp). Let d €'ran(ap)\ran(Ag).  Then ran(Ap) C («— d]y
C ran(a), and by Lemma 4.2.4, rann = («+ d|y. for some n € E(Trp(Y,Y")). Let
€ E(Tre(X, X")) be such that pp = n. Thus ran(A\p) C ran(up) C ran(ap)
which implies by (i) that (<« a]x/\{a} = ran\ C rany C rana = («— a]x.
Consequently, rany = rana, and from (i), ran(ue) = ran(ay). Hence («+—
alxp =ran(ap) = ran(n) = (< d]y,. It means that for any o € F(Trg(X, X))
such that rana is an order-ideal of X’ with max(ran«) exists, then ran(ap) is also
an order-ideal of Y with max(ran(ap)) exists.

By considering ¢! instead of ¢, from the above proof, we have that for ev-
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ery d € Y/ there are n € E(Tgrr(Y,Y’)) and a € X’ such that ranny = («+ d]y+ and
ran(ng~") = (< alxs, and hence («— a]x@ =(ran(ny~"))p=ran((ne~")p)=rany =
(<— d]y/.

Therefore the lemma is proved. O

Theorem 4.2.7. Let X and Y be chains, X' a subchain of X and Y’ a subchain

of Y. If Tre(X, X") 2 Tre(Y,Y'), then X' and Y' are order-isomorphic.

Proof. From Lemma 4.2.6 (ii), the chains {(«— a]x/ | a € X'} and {(« b]y, | b €
Y’} under inclusion are order-isomorphic. But by Lemma 4.2.3, {(« a|x/ | a €
X'} is order-isomorphic to X" and {(« bly+ | b € Y'} is order-isomorphic to Y.

Hence X’ and Y’ are order-isomorphic. H

Since Trr(X) = Tre(X, X) for every chain X, we have that Umar’s Isomor-

phism Theorem is a consequence of Theorem 4.2.7 and Proposition 4.1.3.

Corollary 4.2.8. For chains X and Y, Trp(X) = Tre(Y) if and only if X and

Y are order-isomorphic.

Unlike Umar’s Isomorphism Theorem, the necessary condition in Theorem

4.2.7 is not sufficient. An example is given below

Example 4.2.9. Let X = {1,2, 3} be a chainunder the natural order, X; = {1,2}

and Xy = {1;3}. Then X, and X, are order-isomorphic subchains of X but

1 2 3 1 2 3 1 2 3
TRE<X X1>_ s s and

1 11 11 2 1

2 2
1 2 3) 1 2 3)}
Tre(X, Xs) =

are not isomorphic.
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Example 4.2.9 shows that being order-isomorphic of subchains X; and X5 of a
finite chain X is not sufficient for the corresponding regressive full transformation
semigroups to be isomorphic. In fact, the next theorem shows that they must be

equal. The following lemma is required.

Lemma 4.2.10. Let X be a poset with a minimum element and X, and X,
subposets of X. If ¢ : Tre(X, X1) — Tre(X, Xs) is an isomorphism, then the
following statements hold.

(i) Fora € E(Trp(X,X1)) and n € N, |ranc| = n < |ran(ap)| = n.

(i) For n € N,

|[{a € E(Trp(X,X1)) | |rana| =n} | = |{a € E(Tre(X, X3)) | |ranal =n}]|.

Proof. (i) By the property (¥*), minX € X; and minX € X,. Note that X, ya =
Xminx for all a € Trp(X, X)) U Tre(X,Xs5). It is easily seen that if a €
Tre(X, X1)UTge(X, X3) is such that [rana| = 1, then o = Xinx € E(Tre(X, X1))
NE(Tre(X, Xs3)). Let f € Trp(X, X1) be such that Sy = Xpyinx. Since Xyinx 5 =

Xminx, we have

Xininx® = (Xminx )¢ = ((Xminx ) 0) Xininx = Xminx-
This shows that (i) holds for n'="1.

Assume that k> 1 and for n € N with n <k, [rana| = n & |ran(ap)| = n
for all.aw € 'E(Tpr(X, X1)).Let B € E(Trr(X,;X;)) be such that (|[ranfs| = k.
Then Gy € E(Trr(X, X2)) and by assumption, |ran(B¢)| > k. Let a1, as, ..., ax
be distinct elements in ran(fGy) with a; = minX. Since fp € E(Tgrp(X, Xs)), it
follows that

X = (U ai(ﬁ¢)1> U U =) (1)

z€ran(Bp)
r¢{a1,az2,....ar}

which is a disjoint union. Since z((¢) = x for all x € ran(fBy), we have
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€ x(fp)t  forall z € ran(Byp). (2)
Also,
for all z € ran(By), x <y for all y € z(Byp)~* (3)
since [ is regressive. Define v: X — X3 by

a; if z€a(Bp)! fori=1,2,... k,

€T =
! minX if z € U y(Bp)t.

y€ran(By)
L y¢{a1,a2,....ar}

From (1), v is well-defined and from (3), 7 is regressive. By the definition of 7,
rany = {ay,aq, ... ,a;, = minX} C Xo. By (2), a;7 = q; for all i € {1,2,... k}.
Thus v € E(Trp(X, Xs)) and |rany| = k. Since rany = {ay,aq,...,a5} C

ran(By) and a;(Bp) = a; for all i, it follows that ¥(8p) = 7. Thus (y¢1)38 =
v~ ! which implies that ran(ye~') C ran3. Since |rany| = k, by assumption

lran(yp~!)| > k. But |rang] = k and ran(yg ') C rang, so

ran(yp 1) =rang. (4)
Ifi € {1,...,k} and o € a;(Bp) ', then

z(Bp)y =ary = a; = zv.

If v € y(Bp)~* for some y € ran(By) with y & {a1; as, ..., ax}, thenz,y € y(Byp)~!

by (2), then by the definition of 7,
T(Pp)y = yy =minX =27,
It follows from (1) that (8¢)y = 7, and hence
Blye™) =ye~". (5)
Therefore for every x € X,

(v ') =aB(ye”!)  from (5)

=z from (4) and since yo ! € E(Trp(X, X1)).
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We deduce that y¢~! = 3 and thus B¢ = v. Therefore [ran(3p)| = |rany| = k.

If 6 € E(Tre(X, X1)) is such that [ran(S¢)| = k, it can be shown analogously
that |ran((8¢)e™')| =k, so [ranf| = k.

Therefore (i) is proved.

(ii) Let n € N. Since ¢ : Tre(X, X;) — Tre(X, X3) is an isomorphism, by
(i), pn : {a € E(Tre(X, X1)) | lrana| = n} — {a € E(Tgrp(X, X3)) | |rana| = n}
defined by ap, = ap for all @ € E(Trr(X, X1)) is a bijection.

Hence (ii) is proved. O

Theorem 4.2.11. Let X be a finite chain and X1 and Xo subchains of X. Then

TRE(X, Xl) = TRE(X, XQ) Zf and OHZy ZfX1 = XQ.

Proof. The sufficiency part is immediate. To prove the necessity part, assume that
Tre(X, X;) and Tgrr(X, X3) are isomorphic. By Theorem 4.2.7, | X;| = | X5|. Let
X ={x1,29,...,2,} and 2y < 75 < ... < x,. By the property (*), 1 € X7 N Xs.
Then z1a0 = 2 for every av € Trp(X, Xq) UTgre(X, X5). To show that X; = X,
suppose instead that X # X5. Since Xj and X, are finite and | X;| = |X5|, it
follows that X1\ X5 # ¢ and X5\ X # ¢. Since (X;\X2) N (X2\X1) = ¢, either

min(X;\Xz) < min(X,\X;) or min(X\X;) < min(X;\X3). Let
x = min{min(X;\ X5), min(X>\ X3) }.

Then k < n.-Since z1 € X1 N X5, 1. < k <n. Without loss of generality, assume
that z; = min(X;\Xs). For z € X with © < x4, if x ¢ Xy, then z € X7\ X5
which is contrary to that z < z; = min(X;\Xs). For z € X, with z < zy, if
x ¢ X, then x € X5\Xy, so x > min(X,\X;) > z, a contradiction. Hence
{reXi|o<at={reXo| oz <o} Let A= {2 € Xy | x < zx}. Then
x1 € A. Since A C X; N Xy, it follows that the sets {o € E(Tgrr(X, X1)) | rana C

A and |rana| < 2} and {a € E(Tre(X,X?)) | ranae C A and |rana| < 2} are
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identical. Let m be its cardinality, that is,

m = [{a € E(Tre(X, X1)) | rana C A and |rana| < 2}|

= |{a € E(Tre(X, X3)) | rana C A and |rana| < 2}/ (1)

We can see that for ¢ € {2,...,n} and a € E(Tgrr(X)),

rana = {xy, &} < {21, .., Ber fa = {1}, 100 = 24
and {z;11,. .., o C {1, 2}
Consequently,
Fort € {2,...,n}, {a € E(Tre(X)) | rana = {x1,2;:}}| = 2" (2)
Hence

Ha € E(Tre(X, X31)) | |ranal < 2}
> {a € E(Tre(X, X1)) | rana C A and |rana| < 2}
+{a € E(Tre(X, X1)) | rana = {xy, xx }}

=m+ 27" from (1) and (2) (3)
Since zy ¢ Xo, Xo = AU ({k+1, ..., 2,} N Xs), and hence

{o € E(Tgp(X, X)) | [rana| < 2}
= |{a € E(Tre(X, X3)) | rana C A and |rana| < 2}|+
H{a € B(Trep(X, X5)) | ranc = {x1, x} for;some & € {xpay, i, 2,1 N Xo}
<m2n kD pon=(k+2) 4941 from (1) and (2)
2 (3 b )

<m+ 2"k (4)
From (3) and (4), we have

Ha € E(Trr(X, X1)) | ranal < 2}| > {a € E(Tre(X, X2)) | [rana| < 2}|. (5)
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Since X is finite and Trg(X, X;) and Tgre(X, Xs) are isomorphic, by Lemma

4.2.10 (ii),

Ha € E(Tre(X, X1)) | rana| < 2}| = [{a € E(Tre(X, X3)) | [rana| < 2}|. (6)

Therefore (5) and (6) yield a contradiction.

Hence the theorem is completely proved. O

The following example shows that Theorem 4.2.11 need not hold if X is an

infinite chain.

Example 4.2.12. Consider the chain Z. We have that Z~ # Z~ U {0} and
Tre(Z,77) = Tre(Z,7-U{0}) by Proposition 4.1.3 since ¢ : Z — Z defined by

xp = x + 1 is an order-isomorphism and Z~¢ = Z~ U {0}.

The next theorems characterizes when Trg(X, X') is isomorphic to Trg(X)
and when Trg(X, X') is isomorphic to Trr(X’) when X’ is a subchain of a chain
X. Since both Trr(X) and Tgrr(X’) have an identity, Proposition 4.1.2 is also a

tool for these characterizations.

Lemma 4.2.13. Let X be a chain and X' a subchain of X. If minX exists and
a < b for alla ¢ X\X' and b € X'\{minX}, then for all o« € Trp(X,X') and

a € X\X', aa = minX.

Proof. Let o € Trp(X, X') and a € X\X'. Thena > aa € X', s0 by assumption,

ac=minX. N

Theorem 4.2.14. Let X be a chain and X' a proper subchain of X. Then
Tre(X, X') 2 Tre(X) if and only if the following statements hold.
(i) X' and X are order-isomorphic.

(11) minX ezists and a <b for alla € X\X' and b € X'\{minX}.
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Proof. Assume that Tre(X, X') and Tre(X) are isomorphic. Then Tgrp(X, X’)
and Tre(X) have an identity. By Theorem 4.2.7, X’ and X are order-isomorphic.
By Proposition 4.1.2, min X exists and a < bforalla € X\ X’ and b € X"\{minX }.
Recall that min X=minX".

For the converse, assume that (i) and (ii) hold. Let ¢ : X — X’ be an order-
isomorphism. Then (minX)p = minX. For a € Trp(X), define o : X — X'
by

w(ptap) if reX',
o0
min X if re X\X'
We can see from the proof of Propesition 1.8 that o/ € Tgrr(X,X’). Let 3 :
Tre(X) — Tre(X, X') be defined by
ap=da  forall a € Trp(X).
Let a, f € Trp(X) and x € X.

Case 1: z € X\X'. Then z(af) = minX and 2o/ = (minX)s = minX.

Case 2: x € X'. Then zp 'ap € X', and thus z(af8) = z(p'abBp) =
z(e~ ap) (¢! Bp) = .
Therefore ¥ is a homomorphism.

To show that @ is one-to-one, let «, f € Trr(X) be such that o/ = ’. Then

(e ap) = (o1 Byp) for all z € X' which implies that
ro la =2p713 for all z € X'.

Since X'p~! = X, it then follows that za = 2 for all x € X, we conclude that

a=p.
Finally, to show that ranp = Trp(X, X'), let 3 € Tre(X, X’). Then pBp~! €
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Tgre(X). Since (minX)F = minX, by Lemma 4.2.13, 25 = minX for all z €
(X\X’) U {minX}. Hence

L, |EeT i eBeTe) =af iz e X
z(pPyp ) =

minX = xf3 it zeX\X".

Therefore the theorem is completety proved. O

Theorem 4.2.15. Let X be a chain and X' a proper subchain of X. Then
Tre(X, X') = Tre(X') if and only if minX exists and a <b for all a € X\ X'

and b € X'\{minX}.

Proof. The necessary part follows directly from Proposition 4.1.2.
Conversely, assume that minX exists and a < b for all ¢ € X\ X' and b €

X"\{minX}. Define ¢ : Tgpp(X, X') — Trr(X') by
ap = a|,, the restriction of a to X', for all o € Trp(X, X').

Let o, 8 € Tre(X,X'). lf x € X', then za € X', so z(afB),, = vaf = z(o,,B,.)
Thus ¢ is a homomorphism. To show that ¢ is one-to-one, assume that o, = 3|,
Then xa = z( for all x € X'. If © € X\ X', then by assumption and Lemma
4213, za = minX = xB. Therefore a = (. Finally, let A\ € Trr(X’). Define
w:X — X' by

TA if xeX/,
Ty =
minX if ze X\X"

Then p € Tre(X, X’) and p, = A. Hence ¢ is an isomorphism of Trp(X, X')
onto Tre(X").

Therefore the theorem is proved. O

Example 4.2.16. We can easily see that the map ¢ : [0,00) — {0} U (1,00)
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defined by

0 if x=0,
Tp =
z+1 if >0

is an order-isomorphism. Also, the subchain {0} U (1,00) of [0, 00) satisfies the

necessity parts of Theorem 4.2.14 and Theorem 4.2.15. We therefore have from

Theorem 4.2.14 and Theorem 4.2.15 that
Tre([0,00)) = Trp([0,00),{0} U (1,00)) = Trp({0} U (1,00)).

In fact, that Tre([0,00)) = Tre({0} U (1,00)) can be considered as a consequence
of Umar’s Isomorphism Theorem. It is easy to check that {0} U[1, c0) and [0, 00)
are not order-isomorphic. However, the subchain {0} U [1, 00) of the chain [0, c0)

satisfies the necessity part of Theorem 4.2.15. Consequently,

Tre([0,00)) # Tra([0,00), {0} U {1, 00)) = Tre({0} U [1, 00)).

4.3 Isomorphism Theorems of Ppp(X,X') and Irp(X, X')

>~

The aim of this section is to give necessary conditions for that Prp(X, X’)
Pre(Y,Y') and Irp(X,X') = Ige(Y,Y’) where X and Y are posets, X' is a
subposet of X and Y’ 'is a subposet of Y. Consequently, we characterize when
Prp(X) = Pre(Y) and when Igrg(X) = Igp(Y).

The following two lemmas are required.

Lemma 4.3.1. Let X and Y be posets, X' a subposet of X and Y’ a subposet of
Y. Then the following statements hold.
(i) If o : Irp(X,X") — Irp(Y,Y") is an isomorphism, then

for every a € X', there exists ana € Y’ such that

()~(2)
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i) If o : Pre(X, X') — Pre(Y,Y') is an isomorphism, then
(i) If ¢

for every a € X', there exists ana € Y’ and A CY\Y’ such that
a Au{a
() ("5)
a a
v e E(Irp(Y,Y')\{0}. Let @ € ran((Z) @).
( )cp) a. Consequently,
a
a

(A0
Thus @ #ran((Z)gp—) £ (oA ran(( )go ) — {a}. But (Z)gpl E
E(Ing(X, X)), thus (g) 2 ( ) Hence ( >¢ (;)

Therefore (i) is proved.

Proof. (i) Let a € X'. Then ( )

ThusdEdom(( ) ) and @

SIS
S

which implies that

S

(ii) Let a € X" and @ € ran((a) go). As can be seen from the proof in (i)
a

that <2) ¢! = B, for some nonempty subset B of X containing a, so (2) =
a a

B,p. Hence

()2 (@A) ma () - ()
VL e[ i ()<

) ) = {a}, it follows that

which implies that ran ((

ISEERS]

E(Prg(Y,Y")) and ran((

SIS

<a><p:(7a for some C CY anda € C. (1)
a
But o1 : Pre(Y,Y’) — Prp(X, X’), so from the above proof, we deduce that

for every y € Y7, (z) o '=K, forsome K C X and z € K. (2)
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d
d

(o) = (3)er= () (C)e)

Ifde CNY’, then from (2), ( o' =D, for some D C X and ¢ € D. Since

we have

d
which implies that e = a. Hence (M) ot =D, and a € D. Hence D, €
a

E(Prp(X,X")) and D,p = (d> € B(Pgp(Y,Y")). Consequently, d = a.

a
This shows that CAY' = {a}. We therefore deduce from (1) that

(Z) = (A U‘{E}) for some A C Y'\Y".

a

Hence (ii) is proved. O

Lemma 4.3.2. Let X and Y be posets, X' a subposet of X and Y’ a subposet of

Y. Then the following statements hold.

(i) If o : Irp(X, X") — Igp(Y,Y") is an isomorphism, then 6 : X' — Y defined
by ad =@ in (i) of Lemma 4.3.1 for all a € X' is an order-isomorphism.

(i) If ¢ : Pre(X, X'y — Pre(Y,Y") is an isomorphism; then 6 : X' — Y defined

by af =@ in (ii) of Lemma 4.3.1 for all a € X' is an order-isomorphism.

Proof. (i) Since g is 1-1, 0 is clearly 1-1. Let'b € Y'. By Lemma 4.3.1 (i),

(D)o = (<) forsome e e x 1 ()= (7). B (o= (0). o

c) = =10b. Hence 6 in (i) is bijective.

ol ol

b
Next, let a,b € X' be such that a < b. Then (
a

()G -()

) € I(X,X’) and

Thus
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and so

(5 () () - ()
Consequently, <Z>¢ = (2) € Igp(Y,Y’),soa < b since (Z) ¢ E(Irp(X,X")).

(ii) Let a1,ay € X' be such that @ = @y. Then

() (B (e

a1 a1 Qa2 a2

() o= (EE))
= ")

_ ) # 0 since a; = ao,

Thus

SO (Ch) (GQ) # 0 which implies that a; = as. This proves that 6 is 1-1. Next,
ay a9

let b € Y'. By Lemma 4.3.1 (ii), (Z) gzl = (B = {C}) for some B C X\ X’ and
c

() (6)2) - () - ()
(£ (- (4

By Lemma 4.3.1 (ii), (C> © = (O U_{C}) for some C' C Y'\Y’. Now we have
c ¢

(C U_{C}) (Z) = (C U_{C}). This implies that b = ¢. Hence 6 is bijective.
c

c
Finally, let a,b € X be such that a < b. Then

() ()G - ()

It follows from Lemma 4.3.1 (ii) that there are A, B C Y'\Y” such that

c € X'. Then

and thus
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() (57 = ()0
We therefore conclude that
()e=("3")

But (B U_{E}) € Pre(Y,Y") and ( > E(Prp(X,X")), so we have @ < b.

a

Hence this lemma is proved. O

From Lemma 4.3.2, we have

Theorem 4.3.3. Let X and Y be posets, X' a subposet of X and Y' a subposet
of Y. Then:
(i) If Pre(X,X') = Pre(Y,Y"'), then X' and Y' are order-isomorphic.

(i) If Irp(X, X') 2 Irp(Y,Y'), then X' and Y are order-isomorphic.

The following interesting consequence follows directly from Theorem 4.3.3 and

Proposition 4.1.3.

Corollary 4.3.4. Let X and Y be posets. Then the following statements hold.
(i) Pre(X) = Prp(Y) if and only if X and Y are order-isomorphic.

(ii) Irp(X) = Irg(Y) if and only if X and Y are order-isomorphic.

Theorem 4.3.5. Let X andY be posets, X' a subposet X. Then
(i) Prp(X;X') = Prp(Y) . if and only if

(1.1) X" and'Y" are order-isomorphic and

(1.2) for everya € X\ X' andb € X', eithera < b ora and b are uncomparable.
(i) Ipp(X,X') = Irp(Y) if and only if

(2.1) X" and Y are order-isomorphic and

(2.2) for everya € X\X' andb € X', either a < b ora and b are uncomparable.
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Proof. (i) Assume that Prp(X, X') = Prg(Y). Then Prg(X, X’) has an identity,
so (1.2) holds by Proposition 4.1.1. Also, (1.1) follows from Theorem 4.3.3 (i)
Conversely, assume that (1.1) and (1.2) hold. By (1.2) and Proposition 4.1.1,
Prp(X,X") = Prp(X’). From (1.1) and Corollary 4.3.4 (i), Pre(X') = Pre(Y).
Hence Pre(X, X') = Prp(Y).
(ii) It can be proved similarly by Proposition 4.1.1, Theorem 4.3.3 (ii) and

Corollary 4.3.4 (ii) O

Example 4.3.6. We have that Z and 2Z are order-isomorphic, N and 2N are
order-isomorphic but 27 and 2N are not order-isomorphic. Therefore we deduce

from Theorem 4.3.3, Corollary 4.3.4 and Theorem 4.3.5 that

Pre(22) =2 Prp(Z) 2 Prp(Z,27.) % Pre(27,2N) = Prp(N),

Irp(2Z) 2 Tnp(Z) % 1pp(Z,27) 2 Inp(2Z, 2N) = Inp(N).

This example also shows that the converses of both Theorem 4.3.3 (i) and Theorem

4.3.3 (ii) are not generally true.
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