การศึกษาทางพฤกษเคมีของลำต้นพลับยอดดำ

นางสาว บัณฑิตา บำรุง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชพฤกษศาสตร์ ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2554 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the Graduate School.

PHYTOCHEMICAL STUDY OF DIOSPYROS COLLINSAE STEMS

Miss Buntita Bumroong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Program in Pharmaceutical Botany Department of Pharmacognosy and Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2011 Copyright of Chulalongkorn University

Thesis Title	PHYTOCHEMICAL STUDY OF DIOSPYROS COLLINSAE
	STEMS
Зу	Miss Buntita Bumroong
Field of Study	Pharmaceutical Botany
Thesis Advisor	Witchuda Thanakijcharoenpath, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Intis languet Dean of the Faculty of

(Associate Professor Pintip Pongpech, Ph.D.) Pharmaceutical Sciences

THESIS COMMITTEE

1

Celelit K Chairman

(Professor Kittisak Likhitwitayawuid, Ph.D.)

Unterinda Thanakijahanangah Thesis Advisor

(Witchuda Thanakijcharoenpath, Ph.D.)

S. Amoypo C. Examiner

(Associate Professor Surattana Amnuoypol, Ph.D.)

Rult Sullin Examiner

(Associate Professor Rutt Suttisri, Ph.D.)

Uthen Starophin External Examiner

(Associate Professor Uthai Sotanaphun, Ph.D.)

บัณฑิตา บำรุง : การศึกษาทางพฤกษเคมีของลำต้นพลับยอดดำ. (PHYTOCHEMICAL STUDY OF *DIOSPYROS COLLINSAE* STEMS)

อ. ที่ปรึกษาวิทยานิพนธ์หลัก : อ.ดร.วิชชุดา ธนกิจเจริญพัฒน์, 162 หน้า.

จากการศึกษาทางพฤกษเคมีของลำต้นพลับยอดดำ (วงศ์ Ebenaceae) สามารถแยก ได้สารในกลุ่มไตรเทอร์ปีนอยด์ 4 ชนิด คือ friedelin, lupeol, betulin และ betulinic acid และ สารในกลุ่มสติลบินอยด์ 2 ชนิด คือ diptoindonesin D และ diptoindonesin G รวมทั้งสาร ผสมของ β-sitosterol กับ stigmasterol การพิสูจน์โครงสร้างทางเคมีของสารที่แยกได้ทำโดย อาศัยการวิเคราะห์เชิงสเปกตรัมด้วย UV, IR, MS และ NMR ร่วมกับการเปรียบเทียบกับข้อมูลที่ เคยมีรายงานมาก่อนแล้ว สาร diptoindonesin G แสดงฤทธิ์ต้านเชื้อมาลาเรีย *Plasmodium falciparum* โดยมีค่า IC₅₀ เท่ากับ 6.88 ไมโครกรัมต่อมิลลิลิตร และแสดงฤทธิ์เป็นพิษต่อ เซลล์มะเร็งปอดของมนุษย์ชนิด NCI-H187 และเซลล์มะเร็งเต้านมของมนุษย์ชนิด MCF-7 โดย มีค่า IC₅₀ เท่ากับ 1.94 และ 43.28 ไมโครกรัมต่อมิลลิลิตรตามลำดับ การศึกษานี้ได้ให้ หลักฐานที่แสดงถึงการสร้างสารในกลุ่มสติลบินอยด์ของพืชสกุล *Diospyros* เป็นครั้งแรก

ภาควิชา เกล้ชเวทและเกล้ชพฤกษศาสตร์	ลายมือชื่อนิสิต / / / / /
ลาขาวิชา เกล้ชพฤกษศาสตร์	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลักวิ.การกจ
ปีการศึกษา 2554	

iv

5176626033 : MAJOR PHARMACEUTICAL BOTANY

KEYWORDS : DIOSPYROS COLLINSAE / TRITERPENOIDS / STEROIDS / STILBENOIDS

BUNTITA BUMROONG : PHYTOCHEMICAL STUDY OF *DIOSPYROS COLLINSAE* STEMS. ADVISOR : WITCHUDA THANAKIJCHAROENPATH, Ph.D., 162 pp.

Phytochemical study of the stems of *Diosyros collinsae* Craib (family Ebenaceae) led to the isolation of four triterpenoids, namely friedelin, lupeol, betulin and betulinic acid, two stilbenoids, diptoindonesin D and diptoindonesin G, together with a mixture of β -sitosterol and stigmasterol. Identification of the isolated compounds has been accomplished by spectroscopic analyses, including UV, IR, MS and NMR, and comparison with previously reported data. Diptoindonesin G exhibited antimalarial activity against *Plasmodium falciparum* with an IC₅₀ value of 6.88 µg/ml as well as cytotoxic activity against human small-cell lung cancer (NCI-H187) and breast adenocarcinoma (MCF-7) cell lines with IC₅₀ values of 1.94 and 43.28 µg/ml, respectively. The present study provided the first evidence for the production of stilbenoids in *Diospyros* Species.

Department : Pharmacognosy and	Student's Signature. Butita P2.
Pharmaceutical Botany	
Field of Study : Pharmaceutical Botany	Advisor's Signature. Witchuda T.
Academic Year : 2011	

V

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my thesis advisor, Dr. Witchuda Thanakijcharoenpath of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University. I greatly appreciate her valuable advice, kindness, patience, and constant encouragement throughout my research study.

I would like to thank the members of my thesis committee, including Professor Dr. Kittisak Likhitwitayawuid, Associate Professor Dr. Surattana Amnuoypol, Associate Professor Dr. Rutt Suttisri, and Associate Professor Dr. Uthai Sotanaphun, for their critical review and constructive suggestions for this master thesis.

I would like to thank Dr. Chirayupin Chandraprasong of Suan Luang Rama IX Public Park for providing the plant for this study, and Associate Professor Dr. Rapepol Bavovada for his valuable suggestion on the plant.

I would like to thank, all staff members and other graduate students of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their assistance, friendship and kind support throughout the period of my study.

I am grateful for the partial financial support from Graduate School, Chulalongkorn University, to conduct my research work.

Finally, I wish to express my special and deepest appreciation to my family for their love, understanding and encouragement.

CONTENTS

					Page
ABS	TRA	СТ (Т	HAI)		iv
ABS	TRA	CT (E	NGLISH	H)	v
ACK	(NO	WLED	GEMEN	VTS	vi
CON	ITE	NTS			vii
LIST	OF	TABL	ES		x
LIST	OF	FIGU	RES		xii
LIST	OF	SCHE	MES		xv
LIST	OF	ABBF	REVIATI	ONS	xvi
СНА	PTE	R			
I	IN	TROD	UCTION	Ν	1
11	H	STORI	CAL		6
	1.	Cher	nical C	onstituents of <i>Diospyros</i> Species	6
	2.	Biolo	gical a	nd Pharmacological Activities of Diospyros Species	42
Ш	ΕX	PERIN	IENTAL		48
	1.	Sour	ce of Pl	ant Material	48
	2.	Gene	eral Tec	hniques	48
		2.1	Chrom	natographic Technique	48
			2.1.1	Thin-Layer Chromatography (TLC)	48
			2.1.2	Column Chromatography (CC)	49
		2.2	Spectr	оѕсору	49
			2.2.1	Ultraviolet (UV) Spectra	49
			2.2.2	Infrared (IR) Spectra	50
			2.2.3	Mass Spectra	50
			2.2.4	Proton and Carbon-13 Nuclear Magnetic Resonance	
				(¹ H and ¹³ C) Spectra	50

vii

CHAPTER			Page		
		2.3	Melting	g Points	50
		2.4	Solven	ts	51
	3.	Extra	action a	nd Isolation	51
		3.1	Extract	tion	51
		3.2	Isolatio	n	51
			3.2.1	Isolation of Compounds from the Hexane Extract	53
				3.2.1.1 Isolation of Compound DC-1	53
				3.2.1.2 Isolation of Compound DC-2 and Compound	
				DC-3	54
				3.2.1.3 Isolation of Compound DC-4	55
			3.2.2	Isolation of Compounds from the CH ₂ Cl ₂ Extract	57
				3.2.2.1 Isolation of Compound DC-5	57
				3.2.2.2 Isolation of Compound DC-4	58
			3.2.3	Isolation of Compounds from the EtOAc Extract	58
				3.2.3.1 Isolation of Compound DC-4	59
				3.2.3.2 Isolation of Compound DC-6	59
				3.2.3.3 Isolation of Compound DC-7	60
	4.	Phys	ical and	Spectral Data of Isolated Compounds	64
		4.1	Compo	ound DC-1 (Friedelin)	64
		4.2	Compo	ound DC-2 (Lupeol)	64
		4.3	Compo	bund DC-3 (a Mixture of β -Sitosterol and Stigmasterol).	65
		4.4	Compo	ound DC-4 (Betulinic acid)	65
		4.5	Compo	ound DC-5 (Betulin)	66
		4.7	Compo	ound DC-6 (Diptoindonesin G)	67
		4.8	Compo	ound DC-7 (Diptoindonesin D)	67
	5.	Dete	rminatic	on of Biological Activities	68
		5.1	Determ	ination of Cytotoxic Activity	68

VIII

- 1-

-

CHA	PTE	R			Page
			5.1.1	Determination of Cytotoxic Activity against NCI-	
				H187, KB and MCF-7Cell Lines	68
			5.1.2	Determination of Cytotoxic Activity against Vero Cell	
				Line	69
		5.2	Deterr	nination of Antimalarial Activity	69
IV	RE	SULT	S AND I	DISCUSSION	71
	1.	lden	tificatior	n of Compound DC-1 (Friedelin)	71
	2.	lden	tificatior	n of Compound DC-2 (Lupeol)	74
	3.	Iden	tificatior	n of Compound DC-3 (a Mixture of β -Sitosterol and	
		Stig	masterc	bl)	77
	4.	lden	tificatior	n of Compound DC-4 (Betulinic acid)	80
	5.	lden	tificatior	n of Compound DC-5 (Betulin)	83
	6.	Iden	tificatior	n of Compound DC-6 (Diptoindonesin G)	86
	7.	lden	tificatior	n of Compound DC-7 (Diptoindonesin D)	91
	8.	Cyto	toxicity	and Antimalarial Activity of Compound DC-6	95
V	СС	NCLU	JSION		97
REFI	ERE	NCES	•••••		98
APP	END	IX			110
VITA					162

ix

......

.

LIST OF TABLES

Table		Page
1	Distribution of naphthoquinones and naphthalene derivatives in the	
	genus Diospyros	8
2	Distribution of triterpenoids in the genus <i>Diospyros</i>	13
3	Biological and pharmacological activities of extracts from Diospyros	
	species	43
4	Combined fractions from the hexane extract	53
5	Combined fractions from DH02	54
6	Combined fractions from DH03	55
7	Combined fractions from CH ₂ Cl ₂ extract	57
8	Combined fractions from DD02	58
9	Combined fractions from EtOAc extract	59
10	Combined fractions from DE02	60
11	Combined fractions from DE04	60
12	Combined fractions from DE042	61
13	1 H (500 MHz) and 13 C (125 MHz) NMR assignments of compound DC-1	
	(in CDCl ₃) and the reported 13 C NMR assignment of friedelin (in CDCl ₃)	73
14	1 H (500 MHz) and 13 C (125 MHz) NMR assignments of compound DC-1	
	(in CDCI ₃) and the reported 13 C NMR assignment of lupeol (in CDCI ₃)	76
15	¹³ C (125 MHz) NMR assignments of compound DC-3 (in CDCl ₃),	
	$\beta\text{-sitosterol}$ (in $\text{CDCl}_{\scriptscriptstyle 3})$ and stigmasterol (in $\text{CDCl}_{\scriptscriptstyle 3})$	78
16	1 H (500 MHz) and 13 C (125 MHz) NMR assignments of compound DC-1	
	(in CDCI ₃) and the reported 13 C NMR assignment of betulinic acid	
	(in CDCl ₃)	82
17	1 H (500 MHz) and 13 C (125 MHz) NMR assignments of compound DC-1	
	(in CDCl ₃) and the reported 13 C NMR assignment of betulin (in CDCl ₃)	85
18	¹ H (500 MHz) and ¹³ C (125 MHz) NMR assignments of compound DC-6	

Table		Page
	(DMSO- d_6) and diptoindonesin G (acetone- d_6)	90
19	1 H (500 MHz) and 13 C (125 MHz) NMR assignments of compound DC-7	
	(acetone- d_6) and diptoindonesin D (acetone- d_6)	94
20	Cytotoxic activity of the tested compounds	95
21	Antimalarial activity of the tested compounds	95

.

.

LIST OF FIGURES

.

Figure	
1	Diospyros collinsae Craib
2	IR spectrum of compound DC-1 (KBr)
3	¹ H NMR (500 MHz) spectrum of compound DC-1 (in CDCl ₃)
4a	^{13}C NMR (125 MHz) spectrum of compound DC-1 (in CDCl_3)
4b	13 C NMR (125 MHz) spectrum of compound DC-1 (in CDCl ₃)
	(expanded)
5	ESI Mass spectrum of compound DC-1
6	IR spectrum of compound DC-2 (KBr)
7a	1 H NMR (500 MHz) spectrum of compound DC-2 (in CDCl ₃)
7b	1 H NMR (500 MHz) spectrum of compound DC-2 (in CDCl $_{3}$)
	(expanded)
8a	$^{\rm 13}{\rm C}$ NMR (125 MHz) spectrum of compound DC-2 (in CDCl_3)
8b	13 C NMR (125 MHz) spectrum of compound DC-2 (in CDCl ₃)
	(expanded)
9	IR spectrum of compound DC-3 (KBr)
10	¹ H NMR (500 MHz) spectrum of compound DC-3 (in $CDCI_3$)
11a	¹³ C NMR (125 MHz) spectrum of compound DC-3 (in CDCl ₃)
11b	13 C NMR (125 MHz) spectrum of compound DC-3 (in CDCI ₃)
	(expanded)
12	IR spectrum of compound DC-4 (KBr)
13a	¹ H NMR (500 MHz) spectrum of compound DC-4 (in CDCl ₃)
13b	1 H NMR (500 MHz) spectrum of compound DC-4 (in CDCl ₃)
	(expanded)
14a	¹³ C NMR (125 MHz) spectrum of compound DC-4 (in CDCl ₃)
14b	¹³ C NMR (125 MHz) spectrum of compound DC-4 (in CDCl ₃)
	(expanded)

xiii

Figure		Page
15a	¹ H NMR (500 MHz) spectrum of compound DC-5 (in CDCl ₃)	130
15b	¹ H NMR (500 MHz) spectrum of compound DC-5 (in CDCl ₃)	
	(expanded)	131
16a	13 C NMR (125 MHz) spectrum of compound DC-5 (in CDCl ₃)	132
16b	13 C NMR (125 MHz) spectrum of compound DC-5 (in CDCl ₃)	
	(expanded)	133
17	UV spectrum of compound DC-6	134
18	IR spectrum of compound DC-6 (KBr)	135
19a	¹ H NMR (500 MHz) spectrum of compound DC-6 (in $CDCl_3$)	136
19b	1 H NMR (500 MHz) spectrum of compound DC-6 (in CDCl ₃)	
	(expanded)	137
20	¹ H- ¹ H COSY spectrum of compound DC-6 (in DMSO- d_6) (expanded)	138
21	¹³ C NMR (125 MHz) spectrum of compound DC-6 (in DMSO- d_6)	139
22	HSQC spectrum of compound DC-6 (in DMSO- d_6) (expanded)	140
23a	HMBC spectrum of compound DC-6 (in DMSO- <i>d</i> ₆) (expanded)	141
23a	HMBC spectrum of compound DC-6 (in DMSO-d ₆) (expanded)	142
23a	HMBC spectrum of compound DC-6 (in DMSO-d ₆) (expanded)	143
23a	HMBC spectrum of compound DC-6 (in DMSO- d_6) (expanded)	144
23a	HMBC spectrum of compound DC-6 (in DMSO- d_6) (expanded)	145
24	HRESI Mass spectrum of compound DC-6	146
25	UV spectrum of compound DC-7	147
26	IR spectrum of compound DC-7 (KBr)	148
27a	¹ H NMR (500 MHz) spectrum of compound DC-7 (in acetone- d_6)	149
27b	¹ H NMR (500 MHz) spectrum of compound DC-7 (in acetone- d_6)	
	(expanded)	150
28	¹ H- ¹ H COSY Spectrum of compound DC-7 (in acetone- d_6) (expanded).	151
29	13 C NMR (125 MHz) Spectrum of compound DC-7 (in acetone- d_6)	152
30a	HSQC Spectrum of compound DC-7 (in acetone- d_6) (expanded)	153

Fig	ure		Page
3(0b	HSQC Spectrum of compound DC-7 (in acetone-d ₆) (expanded)	154
30	0c	HSQC Spectrum of compound DC-7 (in acetone- d_6) (expanded)	155
3	1a	HMBC Spectrum of compound DC-7 (in acetone- d_6) (expanded)	156
3	1b	HMBC Spectrum of compound DC-7 (in acetone- d_6) (expanded)	157
3	1c	HMBC Spectrum of compound DC-7 (in acetone- d_6) (expanded)	158
3	1d	HMBC Spectrum of compound DC-7 (in acetone- d_6) (expanded)	159
3	1e	HMBC Spectrum of compound DC-7 (in acetone- d_6) (expanded)	160
32	2	HRESI Mass spectrum of compound DC-7	161

_

_

LIST OF SCHEMES

1......

Scheme				
1	Extraction of <i>D. collinsae</i> stems	52		
2	Isolation of compounds from the hexane extract of D. collinsae			
	stems	56		
3	Isolation of compounds from the CH2Cl2 extract of D. collinsae			
	stems	62		
4	Isolation of compounds from the EtOAc extract of D. collinsae			
	stems	63		

LIST OF ABBREVIATIONS

α	=	Alpha
β	=	Beta
br s	-	Broad singlet (for NMR spectra)
°C	=	Degree Celsius
Calcd	=	Calculated
CC	=	Column chromatography
CDCI ₃	=	Deuterated chloroform
CH_2CI_2	=	Dichloromethane
cm	÷	Centimeter
cm ⁻¹	=	Reciprocal centimeter (unit of wave number)
¹³ C NMR	=	Carbon-13 Nuclear Magnetic Resonance
CPM _τ	=	Count per minute of treated
CPM _U	=	Count per minute of untreated
2D NMR	=	Two dimensional Nuclear Magnetic Resonance
d	=	Doublet (for NMR spectra)
dd	=	Doublet of doublets (for NMR spectra)
ddd	=	Doublet of doublets of doublets (for NMR spectra)
DMSO-d ₆	=	Deuterated dimethyl sulfoxide
δ	=	Chemical shift
3	=	Molar absorptivity
ESI-MS	=	Electrospray Ionization Mass Spectrometry
EtOAc	=	Ethyl acetate
FU _c	=	Fluorescent unit from treated
FU _r	=	Fluorescent unit from untreated
g	=	Gram
h	=	Hour
¹ H NMR	=	Proton Nuclear Magnetic Resonance

¹ H- ¹ H COSY	=	Homonuclear (Proton-Proton) Correlation Spectroscopy
HMBC	=	Heteronuclear Multiple Bond Correlation
HR	=	High Resolution
HSQC	=	Heteronuclear Single Quantum Coherence
Hz	=	Hertz
IC ₅₀	=	Median Inhibitory Concentration
IR	=	Infrared Spectrum
J	=	Coupling constant
KBr	=	Potassium bromide
Kg	=	Kilogram
L	=	Liter
λ_{max}	=	Wavelength at maximal absorption
μg	=	Microgram
µg/ml	=	Microgram per milliliter
μΙ	=	Microliter
$[M]^{^{+}}$	=	Molecular ion
т	=	Multiplet (for NMR spectra)
MeOH	=	Methanol
mg	=	Milligram
MHz	=	Megahertz
MIC	=	Minimum inhibitory concentration
min	=	Minute
ml	=	Milliliter
mm	=	Millimeter
mp	Ξ	Melting point
MS	=	Mass Spectrometry
MW	=	Molecular weight
m/z	=	Mass to charge ratio
Na	=	Sodium

\mathbf{V}_{max}	=	Wave number at maximal absorption
nm	=	Nanometer
NMR	=	Nuclear Magnetic Resonance
NOESY	=	Nuclear Overhauser Enhancement Spectroscopy
ppm	=	Part-per-million
S	÷	Singlet (for NMR spectra)
t	=	Triplet (for NMR spectra)
td	=	Triplet of doublets (for NMR spectra)
TLC	=	Thin Layer Chromatography
UV	=	Ultraviolet

_

_

CHAPTER I

The genus *Diospyros*, which includes several plants of medicinal importance, is the largest genus of the family Ebenaceae. The genus contains about 450-500 species of deciduous and evergreen shrubs and trees. Plants of this genus are mainly found in the tropics with a few in the subtropics. The characteristic features of *Diospyros* plants, described by Phengklai (1981), are as follows.

"Trees or shrubs, dioecious, sometimes monoecious or polygamous; mostly unarmed; all parts often turning blackish when dry. *Leaves* distichous, and mostly reflexed, penninerved. *Inflorescences* cymose or fasciculate, axillary or ramiflorous, rarely cauliflorous, or flowers solitary. *Flowers* actinomorphic. *Calyx* more or less deeply lobed, persistent and usually accrescent in fruit; lobes valvate or imbricate in bud. *Corolla* gamopetalous, caduceus; segments patent, contorted in bud. *Stamens* $6^{-\infty}$, free, or in pairs, on the base of corolla-tube, or in bundles on receptacle; anthers basifixed, 2-locular, longituditionally dehiscent. *Rudimentary ovary* usually present in male flowers. *Staminodes* usually present in female flowers. *Ovary* superior, (3-)4(-16)-locular; ovules 1(-2) in each locule, pendulous; styles 1-5. *Fruit* indehiscent, fleshy, dry or woody, 1-many-seeded; endosperm ruminate or smooth."

Sixty eight *Diospyros* species found in Thailand have been recorded as follows. (กรมป่าไม้, สำนักงานวิชาการป่าไม้, ส่วนพฤกษศาสตร์ป่าไม้, พ.ศ. 2544; Phengklai, 2005).

- 1. Diospyros andamanica (Kurz) Bakh. var. aequabilis Bakh.
- 2. D. apiculata Hiern
- 3. D. areolata King & Gamble
- 4. D. bambuseti Fletcher
- 5. D. bejaudii Lec.
- 6. D. borneensis Hiern
- 7. D. brandisiana Kurz

- 8. D. buxifolia (Bl.) Hiern
- 9. D. castanea Fletcher
- 10. D. cauliflora Bl.
- 11. D. coaetanea (Craib) Fletcher
- 12. D. collinsae Craib
- 13. D. confertiflora (Hiern) Bakh.
- 14. D. curranii Merr.
- 15. D. curraniopsis Bakh.
- 16. D. dasyphylla Kurz
- 17. D. decandra Lour.
- 18. D. dictyoneura Hiern
- 19. D. diepenhorstii Miq.
- 20. D. dumetorum W. W. Sm.
- 21. D. ehretioides Wall. ex G. Don
- 22. D. ferrea (Willd.) Bakh. var. ferrea (Willd.) Bakh.
- 23. D. ferrea (Willd.) Bakh. var. littorea (R.Br.) Bakh.
- 24. D. filipendula Pierre ex Lec.
- 25. D. frutescens Bl.
- 26. D. fulvopilosa Fletcher
- 27. D. glandulosa Lace
- 28. D. gracillis Fletcher
- 29. D. hasseltii Zoll.
- 30. D. insidiosa Bakh.
- 31. D. kaki L. (exotic plant)
- 32. D. kerrii Craib
- 33. D. kurzii Hiern
- 34. D. lanceifolia Roxb.
- 35. D. latisepala Ridl.
- 36. D. longipilosa Phengklai

- 37. D. malabarica (Desr.) Kostel. var. malabarica Kostel.
- 38. D. malabarica (Desr.) Kostel. var. siamensis (Hochr.) Phengklai
- 39. D. martabanica C.B. Clarke
- 40. D. mollis Griff.
- 41. D. montana Roxb.
- 42. D. oblonga Wall. ex G. Don
- 43. D. pendula Hasselt ex Hassk.
- 44. D. philippensis A. DC. (exotic plant)
- 45. D. phuketensis Phengklai
- 46. D. pilosanthera Blanco
- 47. D. pilosula (A. DC.) Hiern
- 48. D. pubicalyx Bakh.
- 49. D. pyrrhocarpa Miq.
- 50. D. ranongensis Phengklai
- 51. D. rhodocalyx Kurz
- 52. D. rubra Lec.
- 53. D. scalariformis Fletcher
- 54. D. scortechinii King & Gamble
- 55. D. sumatrana Miq.
- 56. D. tahanensis Bakh.
- 57. D. thaiensis Phengklai
- 58. D. toposia Buch-Ham. var. toposia Buch-Ham.
- 59. D. toposia Buch-Ham. var. toposioides (King & Gamble) Phengklai
- 60. D. transitoria Bakh.
- 61. D. trianthos Phengklai
- 62. D. truncata Zoll. ex Moritzi
- 63. D. undulata Wall. ex G. Don var. cratericalyx (Craib) Bakh.
- 64. D. undulata Wall. ex G. Don var. undulata Wall.
- 65. D. variegata Kurz

- 66. D. venosa Wall. ex A. DC.
- 67. D. wallichii King & Gamble
- 68. D. winitii Fletcher

Diospyros plants have long been known for their medicinal properties. Many of them have been employed for the treatment of various disorders and diseases in several countries. In Thailand, the most well-known example is *D. mollis*, known in Thai as "Ma kluea" (มะเกลีอ), the fruit of which is used as an anthelmintic. Several isolated compounds as well as extracts from *Diospyros* species have been found to exhibit interesting biological activities. Therefore, *Diospyros* can be considered as one of the interesting plant genera for phytochemical investigation.

The subject of this study, *Diospyros collinsae* Craib, is a *Diospyros* plant endemic to Thailand. Its Thai vernacular name is "Phlap yot dam" (พลับยอดด้า). Morphological description of this plant, according to Phengklai (1981), is as follows.

"Evergreen tree, up to 6 m high; terminal bud with black hairs. *Leaves* oblong, oblanceolate, 15-23 by 4-6 cm, base obtuse or slightly acute, apex acute to acuminate, rarely rounded, coriaceous, glabrous except for sparsely blackish hairs along midrib and nerves on lower surface; lateral veins 9-12 pairs, arched and anastomosing well away from the margin, conspicuous on both sides; reticulation fine, prominent on upper surface, conspicuous on lower surface; petiole 1-1.4 cm long, sparsely pilose later glabrescent. *Male flowers* cymose, 4-merous; pedicel ± 4 mm long, tomentose. *Calyx* ovoid, 4-6 mm long, divided to one sixth, tomentose outside, glabrous inside. *Corolla* urceolate or ovoid, 6-8 mm long, divided to a quarter, pubescent outside, glabrous inside. *Stamens* 14-20, glabrous. *Rudimentary ovary* sericeous. *Female fowers* and *fruit* unknown."

D. collinsae Craib is one of Thai *Diospyros* species with no previous phytochemical report. This study was therefore conducted in order to investigate the

chemical constituents of the stems of this plant. The result obtained would contribute to the knowledge on chemical nature of the genus *Diospyros*, thus providing useful information in the fields of phytochemistry and chemotaxonomy.

С

E

Figure 1. *Diospyros collinsae* Craib A) Tree, B) Leaves, C) Flowers, D) Terminal buds, E) Fruits

CHAPTER II HISTORICAL

1. Chemical Constituents of Diospyros Species

A number of *Diospyros* species have been phytochemically investigated, revealing a wide range of phytochemicals as their chemical constituents. These phytochemicals include naphthoquinones and naphthalene derivatives, triterpenoids, steroids, flavonoids, coumarins, tannins, and others. Of these, naphthoquinones and triterpenoids are widely found and considered as major constituents of *Diospyros* plants. The presence of these two groups of compounds in the genus *Diospyros* is summarized as below.

1.1 Naphthoquinones

The genus *Diospyros* is a rich source of 1,4-naphthoquinones, while only a few 1,2-naphthoquinones have been found. The former type of quinones can be used as chemotaxonomic markers of the genus. Almost all 1,4-naphthoquinones found in *Diospyros* plants are derivatives of plumbagin (1) and 7-methyljuglone (2), both of which are widely distributed in the genus. Partially reduced quinone derivatives have also been isolated. Both monomeric and oligomeric forms of 1,4-naphthoquinones can also be found. The majority of the compounds are of the oligomeric group which includes dimers, trimers, and tetramers.

1,2-naphthoquinones

1,4-naphthoquinones

1.2 Triterpenoids

Triterpenoids are widespread in the genus *Diospyros*. Almost all of the compounds found in this genus contain the pentacyclic skeleton. Pentacyclic triterpenoids frequently found in *Diospyros* plants belong to three types: lupanes, ursanes and oleananes. The most common type is the lupanes, of which the major derivatives are lupeol, betulin and betulinic acid. The ursanes are represented by α -amyrin and ursolic acid, while the oleananes is represented by oleanolic acid. Few derivatives of other pentacyclic types have been isolated from *Diospyros* plants. Tetracyclic triterpenoids are relatively rare in the genus *Diospyros*. So far, all isolated compounds of this group belong to the lanostane type.

lupane type

oleanane type

ursane type

lanostane type

Chemical compounds found in *Diospyros* species has been compiled (Mallavadhani *et al.*, 1998). The present work provides further compilation of data reported in the literature since 1998, dealing with naphthalene-based aromatics, including naphthoquinones and naphthalene derivatives, and triterpenoids, as shown in Tables 1 and 2, respectively.

Compound	Species	Reference
1.1 Naphthoquinones		
plumbagin (1)	D. anisandra	Borges-Argáez et al., 2007
	D. assimilis	Ganapaty et al., 2006
	D. canaliculata	Kuete <i>et al.</i> , 2009
	D. crassiflora	Талдтого <i>et al.</i> , 2006
	D. greeniwayi	Khan and Rwekika, 1998
	D. maritima	Higa <i>et al.</i> , 2002
	D. novoguinensis	Khan and Timi, 1999c
	D. olen	Evans <i>et al.</i> , 1999
	D. sylvatica	Ganapaty et al., 2004
7-methyljuglone (2)	D. greeniwayi	Khan and Rwekika, 1998
	D. hallierii	Khan and Timi, 1999a
	D. lycioides	Cai <i>et al.</i> , 2000
	D. mafiensis	Khan and Rwekika, 1999
	D. novoguianensis	Khan and Timi, 1999c
	D. paniculata	Sinha, Bansal and Pattnaik,
		2009

Table 1. Distribution of naphthoquinones and naphthalene derivatives in the genus Diospyros

 ∞

Compound	Species	Reference
7-methyljuglone (2)	D. virginiana	Wang et al., 2011
2,3-epoxyplumbagin (3)	D. maritima	Higa <i>et al.</i> , 2002
6-hydroxy-5-methoxy-2-methyl-1,4-naphthoquinone (4)	D. maritima	Chang, Huan and Kuo, 2007
shinanolone (5)	D. virginiana	Wang et al.,2011
epi-isoshinanolone (6)	D. maritima	Chang et al., 2009
canaliculatin (7)	D. canaliculata	Tangmouo et al., 2005
cyclocanaliculatin (8)	D. crassiflora	Tangmouo <i>et al.</i> , 2006
crassiflorone (9)	D. crassiflora	Tangmouo <i>et al</i> ., 2006
mamegakinone (10)	D. chamaethamnus	Costa <i>et al.</i> ,1998
	D. lycioides	Li, Van der Bijl and Wu, 1998
biramentaceone (11)	D. chamaethamnus	Costa <i>et al.,</i> 1998
	D. novoguianensis	Khan and Timi, 1999c
3,3'-biplumbagin (12)	D. maritima	Higa et al., 2002
methylene-3,3'-biplumbagin (13)	D. maritima	Higa <i>et al</i> ., 2002
3,8'-biplumbagin (14)	D. maritima	Higa <i>et al</i> ., 2002
diospyrin (15)	D. assimilis	Ganapaty et al., 2006
	D. glandulosa	Theerachayanan et al., 2007

Table 1. Distribution of naphthoguinones and naphthalene derivatives in the denus Diosp

Compound	Species	Reference
diospyrin (15)	D. montana	Ravishankara <i>et al.</i> , 2000
	D. piscatoria	Adeniyi et al., 2000
	D. rhodocalyx	Theerachayanan et al., 2007
	D. sylvatica	Ganapaty et al., 2004
	D. virginiana	Wang et al., 2011
isodiospyrin (16)	D. chamaethammus	Costa <i>et al.</i> , 1998
	D. ehretioides	Prajoubklang et al., 2005
	D. greeniwayi	Khan and Rwekika, 1998
	D. mafiensis	Khan and Rwekika, 1999
	D. piscatoria	Adeniyi et al., 2000
	D. sylvatica	Ganapaty et al., 2004
	D. virginiana	Wang et al., 2011
8'-hydroxyisodiospyrin (17)	D. assimilis	Ganapaty et al., 2006
2-ethoxy-8'-hydroxyisodiospyrin (18)	D. maritima	Chang et al., 2007
3-ethoxy-8'-hydroxyisodiospyrin (19)	D. maritima	Chang et al., 2007
habinone (20)	D. greeniwayi	Khan and Rwekika, 1998
lemuninol A (21)	Diospyros sp.	Okuyama et al.,1999

 Table 1. Distribution of naphthoquinones and naphthalene derivatives in the genus Diospyros (continued)

Compound	Species	Reference
diosquinone (22)	D. chamaethamnus	Costa et al.,1998
undulatanone (23)	D. undulata var. cratericalyx	Aoonpakh, 2001
	D. wallichii	Abdul-Wahab et al., 2010
isodiospyrol A (24)	D. ehretioides	Prajoubklang et al., 2005
diosindigo A (25)	D. canaliculata	Kuete et al., 2009
	D. crassiflora	Kuete et al., 2009
	D. greeniwayi	Khan and Rwekika, 1998
	D. mafiensis	Khan and Rwekika, 1999
	D. sylvatica	Ganapaty et al., 2004
	D. villosiuscula	Khan and Timi, 1999b
diosindigo B (26)	D. villosiuscula	Khan and Timi, 1999b
xylospyrin (27)	D. chamaethammus	Costa et al., 1998
bisisodiospyrin (28)	D. maritima	Chang et al., 2007
	D. piscatoria	Adeniyi et al., 2000
diospyrone (29)	D. canaliculata	Tangmouo et al., 2005
	D. chamaethammus	Costa <i>et al.,</i> 1998
6",8'-bisdiosquinone (30)	D. mafiensis	Khan and Rwekika, 1999

Table 1.	Distribution of napl	nthoquinones and	naphthalene	derivatives in	the aenus	Diospyros	(continued)
	Broth Batton Of Hap						1 /

 $\stackrel{\frown}{\rightharpoonup}$

Compound	Species	Reference
6-[2-(7-methyljuglonyl)]isoxylospyrin (31)	D. chamaethamnus	Costa et al., 1999
1.2 Naphthalene derivatives		
,6,8-trimethoxy-3-methyl-1-naphthol (32)	D. kaki	Matsushita et al., 2010
-hydroxy-5-methoxy-2-naphthaldehyde (33)	D. assimilis	Ganapaty et al., 2006
	D. kaki	Matsushita et al., 2010
-hydroxy-3,5-dimethoxy-2-naphthaldehyde (34)	D. assimilis	Ganapaty et al., 2006
-hydroxy-5,6-dimethoxy-2-naphthaldehyde (35)	D. kaki	Matsushita et al., 2010
l-hydroxy-5,6-dimethoxynaphthalene-2-carbaldehyde)	D. virginiana	Wang et al., 2011
hydroxy-5,8-dimethoxy-2-naphthaldehyde (36)	D. kaki	Matsushita et al., 2010
,8-dihydroxy-5-methoxy-2-naphthaldehyde (37)	D. kaki	Matsushita et al., 2010
-hydroxy-4-methoxy-2-naphthaldehyde (38)	D. assimilis	Ganapaty et al., 2006
-hydroxymethyl-1,5-dimethoxynaphthalen-4-ol (39)	D. wallichii	Abdul-Wahab et al., 2010
liospyrosonaphthoside (40)	D. angustifolia	Pathak, Kulshreshtha and
		Maurya, 2004
,2'-bis-hydroxymethyl-1,1',5,5'-tetramethoxy-3,3'-	D. wallichii	Abdul-Wahab et al., 2010
inaphthalen-4,4'-diol (41)		

Compound	Species	Reference
1. Lupane type		
lupeol (42)	D. canaliculata	Dzoyem et al., 2011
	D. crassiflora	Tangmouo <i>et al.</i> , 2006
	D. glandulosa	Thanakijcharoenpath and
		Theanphong, 2007
	D. greeniwayi	Khan and Rwekika, 1998
	D. hallierii	Khan and Timi, 1999a
	D. maritima	Higa <i>et al.</i> , 2002
	D. mespiliformis	Mohamed <i>et al.</i> , 2009
	D. ranongensis	Reutrakul et al., 2010
	D. rhodocalyx	Theerachayanan et al., 2007
	D. rubra	Prachayasittikul et al., 2009
	D. undulata var. cratericalyx	Aoonpakh, 2001
	D. villosiuscula	Khan and Timi, 1999b
	D. virginiana	Wang et al., 2011
lupeol acetate (43)	D. rubra	Prachayasittikul et al., 2009
lupeol caffeate (44)	D. maritima	Chang and Kuo, 1999

Table 2. Distribution of triterpenoids in the genus Diospyros

Compound	Species	Reference
3-(Z)-coumaroyllupeol (45)	D. maritima	Chang and Kuo, 1998
lupenone (46)	D. canaliculata	Tangmouo et al., 2005
	D. crassiflora	Tangmouo et al., 2006
	D. mespiliformis	Mohamed et al., 2009
	D. rubra	Prachayasittikul et al., 2009
betulin (47)	D. mespiliformis	Mohamed et al., 2009
	D. paniculata	Sinha et al., 2009
	D. rubra	Prachayasittikul et al., 2009
	D. undulata var. cratericalyx	Aoonpakh, 2001
	D. virginiana	Wang et al., 2011
28-O-acetylbetulin (48)	D. maritima	Chang <i>et al</i> ., 2009
	D. rubra	Prachayasittikul <i>et al</i> ., 2009
(E)-betulin-3β-p-coumarate (49)	D. maritima	Chang <i>et al.</i> , 2009
(Z)-betulin-3 β -p-coumarate (50)	D. maritima	Chang et al., 2009
3-(E)-coumaroyl-28-palmitoylbetulin (51)	D. maritima	Chang and Kuo, 1999
3-(Z)-coumaroyl-28-palmitoylbetulin (52)	D. maritima	Chang and Kuo, 1998

 Table 2. Distribution of triterpenoids in the genus Diospyros (continued)

Compound	Species	Reference	
3-(E)-feruloyI-28-palmitoyIbetulin (53)	D. maritima	Chang and Kuo, 1998	
3-(E)-coumaroylbetulin-28-yl	D. maritima	Kuo and Chang, 2000	
ethylnonanedioate (54)			
3-(E)-coumaroylbetulin-28-yl	D. maritima	Kuo and Chang, 2000	
ethylsuccinate (55)			
3-(E)-coumaroylbetulin-28-yl	D. maritima	Kuo and Chang, 2000	
ethyl (2R)-2-hydroxysuccinate (56)			
12,13-didehydro-20,29-dihydrobetulin (57)	D. virginiana	Wang <i>et al.</i> , 2011	
betulinaldehyde (58)	D. discolor	Chen <i>et al.</i> , 2007	
	D. maritima	Chang et al., 2009	
	D. rhodocalyx	Theerachayanan et al., 2007	
	D. virginiana	Wang et al., 2011	
3-(E)-coumaroylbetulinaldehyde (59)	D. maritima	Chang and Kuo, 1999	
betulinic acid (60)	D. angustifolia	Pathak et al., 2004	
	D. canaliculata	Tangmouo <i>et al.</i> , 2005	
	D. crassiflora	Tangmouo <i>et al</i> ., 2006	
	D. decandra	Nareeboon et al., 2006	

 Table 2. Distribution of triterpenoids in the genus Diospyros (continued)

Compound	Species	Reference
betulinic acid (60)	D. discolor	Chen et al., 2007
	D. greeniwayi	Khan and Rwekika, 1998
	D. mafiensis	Khan and Rwekika, 1999
	D. maritima	Chang <i>et al.</i> , 2009
	D. mespiliformis	Mohamed et al., 2009
	D. virginiana	Wang et al., 2011
betulinic acid acetate (61)	D. maritima	Chang et al., 2009
3-O-betulinic acid p-coumarate (62)	D. maritima	Chang et al., 2009
3-oxo-20(29)-lupen-28-oic acid (63)	D. maritima	Chang et al., 2009
2. Ursane type		
α-amyrin (64)	D. kaki	Chen <i>et al.</i> , 2002
	D. melanoxylon	Mallavadhani, Panda and
		Rao, 2001
α-amyrin palmitate (65)	D. blancoi	Ragasa <i>et al.</i> , 2009
α -amyrin palmitoleate (66)	D. blancoi	Ragasa <i>et al.</i> , 2009

 Table 2. Distribution of triterpenoids in the genus Diospyros (continued)

Compound	Species	Reference	
uvaol (67)	D. kaki	Chen <i>et al.</i> , 2002	
	D. melanoxylon	Mallavadhani et al., 2001	
ursaldehyde (68)	D. discolor	Chen et al., 2007	
ursolic acid (69)	D. glandulosa	Thanakijcharoenpath and	
		Theanphong, 2007	
	D. kaki	Chen et al., 2002	
	D. melanoxylon	Mallavadhani et al., 2001	
	D. ranongensis	Reutrakul et al., 2010	
	D. virginiana	Wang et al., 2011	
19 α-hydroxy ursolic acid (70)	D. kaki	Chen et al., 2002	
(pomolic acid)		Thuong <i>et al.</i> , 2008	
pomolic acid methyl ester (71)	D. melanoxylon	Mallavadhani et al., 2001	
24-hydroxy ursolic acid (72)	D. kaki	Fan and He, 2006	
24-hydroxy-3- <i>epi</i> -ursolic acid (73)	D. kaki	Thuong <i>et al.</i> , 2008	
19 α,24-dihydroxy ursolic acid (74)	D. kaki	Chen <i>et al.</i> , 2002	
19α,24-dihydroxyurs-12-en-3-on-28-oic acid (75)	D. kaki	Thuong <i>et al.</i> , 2008	
rotungenic acid (76)	D. kaki	Thuong <i>et al.</i> , 2008	

Table 2	. Distribution	of triterpenoids	in the genus	Diospyros	(continued)
---------	----------------	------------------	--------------	-----------	-------------

Compound	Species	Reference	
barbinervic acid (77)	D. kaki	Thuong et al., 2008	
coussaric acid (78)	D. kaki	Thuong et al., 2008	
3α , 19α -dihydroxyurs-12-en-24, 28-dioic acid (79)	D. kaki	Thuong et al., 2008	
3α , 19α -dihydroxyurs-12, 20(30)-dien-24, 28-dioic acid (80)	D. kaki	Thuong et al., 2008	
corsolic acid (81)	D. melanoxylon	Mallavadhani et al., 2001	
$2\alpha, 3\beta, 19\alpha$ -trihydroxy-11-oxours-12-en-24,28-dioic acid (82)	D. decandra	Sutthivaiyakit et al., 2012	
2α,3β,19α-trihydroxy-28-1'-β-D-[glucopyranosyl-(1" \rightarrow 6')-	D. decandra	Sutthivaiyakit et al., 2012	
glucopyranosyl]-urs-12-en-24,28-dioic acid (83)			
kakidiol (84)	D. kaki	Chen, Wang and Jia, 2009	
kakisaponin A (85)	D. kaki	Chen et al., 2009	
kakisaponin B (86)	D. kaki	Chen et al., 2009	
kakisaponin C (87)	D. kaki	Chen et al., 2009	
18,19- <i>seco</i> -3β-hydroxy-urs-12-en-18-one (88)	D. kaki	Chen, Ren and Yu, 2012	
2α,3β-dihydroxy-18,19-seco-19-	D. decandra	Sutthivaiyakit et al., 2012	
oxours-11,13(18)-dien-24,28-dioic acid (89)			

 Table 2. Distribution of triterpenoids in the genus Diospyros (continued)
Compound	Species	Reference
2α , 3β -dihydroxy-19-nor-11-oxo-20-dimethylurs-12-en-24, 28-dioic	D. decandra	Sutthivaiyakit et al., 2012
acid (2 α ,3 β -dihydroxy-19-nor-11-oxoolean-12-en-24,28-dioic acid)		
90)		
2-Oxo-3 β ,19α-dihydroxy-24-nor-urs-12-en-28-oic acid (91)	D. decandra	Nareeboon et al., 2006
2-oxo-3β,19α,22α-trihydroxy-24-nor-urs-12-en-28-oic acid (92)	D. decandra	Nareeboon et al., 2006
β -oxo-2,19 α , 22 α -trihydroxy-24-nor-urs1,4,12-trien-28-oic acid (93)	D. decandra	Nareeboon et al., 2006
-oxo-19α,22α-dihydroxy-3,24-dinor-2,4-secours-12-en-2,28-dioic	D. decandra	Nareeboon et al., 2006
cid (94)		
9a,22a-dihydroxy-24-nor-2,3-seco-urs-12-en-2,3,28-trioic acid	D. decandra	Nareeboon et al., 2006
rimethyl ester (95)		
3. Oleanane type		
3-amyrin (96)	D. angustifolia	Pathak <i>et al.,</i> 2004
	D. glandulosa	Thanakijcharoenpath and
		Theanphong, 2007
	D. maritima	Higa <i>et al.</i> , 2002
	D. melanoxylon	Mallavadhani <i>et al.</i> ,2001

 Table 2. Distribution of triterpenoids in the genus Diospyros (continued)

Compound	Species	Reference
β-amyrin palmitate (97)	D. blancoi	Ragasa <i>et al.</i> , 2009
β -amyrin palmitoleate (98)	D. blancoi	Ragasa <i>et al.</i> , 2009
oleanolic acid (99)	D. glandulosa	Thanakijcharoenpath and
		Theanphong, 2007
	D. kaki	Thuong <i>et al</i> ., 2008
	D. melanoxylon	Mallavadhani et al.,2001
24-hydroxy-3- <i>epi</i> -oleanolic acid (100)	D. kaki	Thuong <i>et al.</i> , 2008
3β -acetoxyolean-12-en-28-oic acid (101)	D. maritima	Chang <i>et al.</i> , 2009
spathodic acid (102)	D. kaki	Thuong <i>et al.</i> , 2008
maslinic acid methyl ester (103)	D. melanoxylon	Mallavadhani et al.,2001
3-β-hydroxy-28,19β-oleanolide (104)	D. angustifolia	Pathak <i>et al.,</i> 2004
diospyrosooleanolide (105)	D. angustifolia	Pathak, Kulshreshtha and
		Maurya, 2004

 Table 2. Distribution of triterpenoids in the genus Diospyros (continued)

Compound	Species	Reference
4. Taraxerane type		
3β-hydroxytaraxastan-28, 20β-olide (106)	D. maritima	Chang et al., 2009
5. Fridelane type		
Friedelin (107)	D. glandulosa	Thanakijcharoenpath and
		Theanphong, 2007
	D. maritima	Higa <i>et al.</i> , 2002
	D. angustifolia	Pathak, Kulshreshtha and
		Maurya, 2004
4. Lanostane type		
24-ethyl-3β-methoxylanost-9(11)-en-25-ol (108)	D. discolor	Chen <i>et al.</i> , 2007
3β-methoxy-24-methylenelanost-9(11)-en-25-ol (109)	D. discolor	Chen <i>et al.</i> , 2007
3β-methoxy-25-methyl-24-methylenelanost-9(11)-en-21-ol (110)	D. discolor	Chen <i>et al.</i> , 2007
3 β -methoxy-24-methyllanosta-9(11),25-dien-24-ol (111)	D. discolor	Chen <i>et al.</i> , 2007

 Table 2. Distribution of triterpenoids in the genus Diospyros (continued)

B. A. J. B.		R	R
	plumbagin (1)	Н	CH_3
ОНО	7-methyl juglone (2)	CH_3	1-1

2.3-epoxyplumbagin (3)

6-hydroxy-5-methoxy-2-methyl-

1,4-naphthoquinone (4)

epi-isoshinanolone (6)

cyclocanaliculatin (8)

canaliculatin (7)

shinanolone (5)

crassiflorone (9)

biramentaceone (11)

methylene-3,3'-biplumbagin (13)

3,3'-biplumbagin (12)

3,8'-biplumbagin (14)

С

ŌН

8'-hydroxyisodiospyrin (17) 2-ethoxy-8'-hydroxyisodiospyrin (18) 3-ethoxy-8'-hydroxyisodiospyrin (19) habinone (20)

lemuninol A (21)

Isodiospyrol A (24)

diosindigo B (26)

undulatanone (23)

diosindigo A (25)

xylospyrin (27)

bisisodiospyrin (28)

diospyrone (29)

6",8'-bisdiosquinone (30)

6-[2-(7- methyljuglonyl)]isoxylospyrin (31)

5,6,8-trimethoxy-3-methyi-1-naphthol (32)

	R_1	R_2	R_3	R₄	R_5
4-hydroxy-5-methoxy-2-	Н	ОН	OCH_3	Н	Н
naphthaldehyde (33)					
4-hydroxy-3,5-dimethoxy-2-	OCH_3	ОН	OCH_3	Н	Н
naphthaldehyde (34)					
4-hydroxy-5,6-dimethoxy-2-	н	ОН	OCH3	OCH3	Н
naphthaldehyde (35)					
4-hydroxy-5,8-dimethoxy-2-	Н	ОН	OCH_3	Н	OCH3
naphthaldehyde (36)					
4,8-dihydroxy-5-methoxy-2-	Н	ОН	OCH3	Н	ОН
naphthaldehyde (37)					
5-hydroxy-4-methoxy-2-	Н	OCH ₃	ОН	н	Н
naphthaldehyde (38)					

2-hydroxymethyl-1,5-dimethoxynaphthalen-4-ol (39)

diospyrosonaphthoside (40)

2,2'-bis-hydroxymethyl-1,1',5,5'-tetramethoxy-3,3'-binaphthalen-4,4'-diol

	R,	R_2
iupeoi (42)	OH	Сн _э
lupeol acetate (43)	OCOCH ₃	CH_3
lupenone (46)	-0	CH_3
betulin (47)	ОН	CH_2OH
28-O-acetylbetulin (48)	ОН	CH ₂ OCOCH ₃
betulinaldehyde (58)	ОН	СНО
betulinic acid (60)	ОН	СООН
betulinic acid acetate (61)	OCOCH ₃	СООН
3-oxo-20(29)-lupen-28-oic acid (63)	=O	СООН

lupeol caffeate (44)

	R ₁	R ₂	R_3
3-(Z)-coumaroyllupeol (45)	——————————————————————————————————————	н	CH ³
(E)-betulin-3β- <i>p</i> -coumarate (49)	Н	——————————————————————————————————————	CH ₂ OH
(Z)-betulin-3 β -p-coumarate (50)	— — Он	Н	CH ₂ OH
3-(E)-coumaroylbetulinaldehyde (59)	Н	ОН	СНО

- 3-(E)-coumaroylbetulin-28-yl
- ethylnonanedioate (54)
- 3-(E)-coumaroylbetulin-28-yl
- ethylsuccinate (55)
- 3-(E)-coumaroylbetulin-28-yl
- ethyl (2R)-2-hydroxysuccinate (56)

- $R = CH_2OCOCH_2(CH_2)_5CH_2CO_2CH_2CH_3$
- $\mathbf{R} = CH_2OCOCH_2CH_2CO_2CH_2CH_3$
- $\mathbf{R} = CH_2OCOCHOHCH_2CO_2CH_2CH_3$

12,13-didehydro-20,29-dihydrobetulin (57)

3-O-betulinic acid p-coumarate (62)

	R ₁	R_2
α-amyrin (64)	ОН	CH_3
α -amyrin palmitate (65)	OCO(CH ₂) ₁₄ CH ₃	CH_3
α -amyrin palmitoleate (66)	$OCO(CH_2)_7 CH=CH(CH_2)_5 CH_3$	CH_3
uvaol (67)	OH	CH ₂ OH
ursaldehyde (68)	ОН	СНО
ursolic acid (69)	OH	СООН

19 α -hydroxy ursolic acid (70) $\mathbf{R} = \text{COOH}$

(pomolic acid)

pomolic acid methyl ester (71)

-

 $\mathbf{R} = COOCH_3$

	R,	R_2	R_3	R_4
24-hydroxy ursolic acid (72)	β-ОН	CH ₂ OH	Н	α -CH ₃
24-hydroxy-3- <i>epi</i> -ursolic acid (73)	α-ΟΗ	CH ₂ OH	Н	α -CH ₃
19α,24-dihydroxy ursolic acid (74)	β-ΟΗ	CH ₂ OH	ОН	α -CH ₃
19α,24-dihydroxyurs-12-en-3-on-28-oic acid (75)	= O	CH ₂ OH	ОН	α -CH ₃
rotungenic acid (76)	β-ОН	CH ₂ OH	ОН	α -CH ₃
barbinervic acid (77)	α-ΟΗ	CH ₂ OH	ОН	α -CH ₃
coussaric acid (78)	α-ΟΗ	CH_2OH	OH	$= CH_2$
3α , 19α -dihydroxyurs-12-en-24, 28-dioic acid (79)	a-OH	COOH	ОН	a-COOH
3α,19α-dihydroxyurs-12,20(30)-dien-24,28-dioic acid (80)	α-ΟΗ	СООН	ОН	= CH ₂

corsolic acid (81)

$2\alpha, 3\beta, 19\alpha$ -trihydroxy-11-oxours-12-en-24,28-dioic acid (82)	= 0	Н
2α,3β,19α-trihydroxy-28-1′-β-□ -[glucopyranosyl-(1″→6′)-	Н	Glc-Glc
glucopyranosyl]-urs-12-en-24,28-dioic acid (83)		

kakidiol (84)

 R_2

 R_1

kakisaponin A (85)

kakisaponin C (87)

18,19-seco-3β-hydroxy-urs-12-en-18-one (88)

2α,3β-dihydroxy-18,19-seco-19-oxours-11,13(18)-dien-24,28-dioic acid (89)

 2α , 3β -dihydroxy-19-nor-11-oxo-20-dimethylurs-12-en-24, 28-dioic acid

 $(2\alpha, 3\beta$ -dihydroxy-19-nor-11-oxoolean-12-en-24,28-dioic acid) (90)

 37

3-oxo-2,19α, 22α-trihydroxy-24nor-urs-1,4,12-trien-28-oic acid (93)

4-oxo-19α,22α-dihydroxy-3,24-dinor-2,4-secours-12-en-2,28-dioic acid (94)

 19α ,22 α -dihydroxy-24-nor-2,3-seco-urs-12-en-2,3,28-trioic acid trimethyl ester (95)

	R,	R_2
β-amyrin (96)	ОН	СН ³
β-amyrin palmitate (97)	OCO(CH ₂) ₁₄ CH ₃	CH_3
β -amyrin palmitoleate (98)	OCO(CH ₂) ₇ CH=CH(CH ₂) ₅ CH ₃	CH_3
oleanolic acid (99)	ОН	СООН
3β-acetoxyolean-12-en-28-oic acid (101)	OCOCH ₃	СООН

	R_1	R_2	R ₃	R4
24-hydroxy-3- <i>epi</i> -oleanolic acid (100)	н	α-OH	CH ₂ OH	СООН
spathodic acid (102)	н	β-ОН	CH ₂ OH	соон
maslinic acid methyl ester (103)	ОН	β-ΟΗ	СH3	COOCH ₃

 $3-\beta-hydroxy-28,19\beta-oleanolide$ (104)

39

diospyrosooleanolide (105)

3β-hydroxytaraxastan-28, 20β-olide (106)

friedelin (107)

	R_1	R_2	R_3
24-ethyl-3β-methoxylanost-9(11)-en-25-ol (108)	CH ₃	CH2CH3	ОН
3β-methoxy-24-methylenelanost-9(11)-en-25-ol (109)	CH_3	= CH ₂	ОН
3β-methoxy-25-methyl-24-methylenelanost-9(11)-en-21-ol (110)	CH ₂ OH	$= CH_2$	CH_3

3β-methoxy-24-methyllanosta-9(11),25-dien-24-ol (111)

41

2. Biological and Pharmacological Activities of Diospyros Species

Medicinal uses of certain *Diospyros* plants have been known for a long time. A number of them have been investigated for their biological and pharmacological activities. Several extracts and isolated compounds from the plants have been found to exhibit interesting activities. Mallavadhani *et al.* (1998) have reviewed pharmacological activities of *Diospyros* species, publishing in 1998. Biological and pharmacological activities of extracts from the plants, reported in the literature since 1998, are summarized here in Table 3.

Species	Plant part	Biological activity	Reference
D. abyssinica	n.i.	Antioxidant	Ma ga et al., 2006
		15-Lipoxygenase inhibitory	Maiga et al., 2006
D. anisandra	Leaves, Roots, Stem bark	Antimicrobial	Borges-Argáez et al., 2007
D. barteri	All parts	Antiviral	Moody, Robert and Hughes, 2002
	Leaves	Antimicrobial	Oluremi, Osungunna and Ogbole, 2010
D. canaliculata	n.i.	Antifungal	Dzoyem et al., 2011
D. cordifolia	Bark	Antitumor	Das et al., 2011
	Stem bark	Analgesic	Das et al. 2010
		Anti-inflammatory	Das et al. 2010
D. digyna	Fruits	Antioxidant	Yania, Gutierrez-Orozco and Leon, 2011
D. discolor	Bark, Fruits, Leaves	Antioxidant	Kumar et al., 2006
D. ebenum	Leaves	Antibacterial	Baravalia et al., 2009
		Antioxidant	Baravalia et al., 2009

 Table 3. Biological and pharmacological activities of extracts from Diospyros species

n.i. = not indicated

Species	Plant part	Biological activity	Reference
D. fischeri	Root	Anticonvulsant	Moshi <i>et al.</i> , 2007b
	Stem bark	Anticonvulsant	Moshi <i>et al.</i> , 2007a
D. kaki	Calyx	Anticancer	Jo <i>et al.</i> , 2011
	Fruits	Antigenotoxic	Jang <i>et al.</i> , 2010
		Antioxidant	Jang <i>et al.</i> , 2010
	Leaves	Anticoagulant	Sa, Kim and Choi, 2005
		Antithrombotic	Sa et al., 2005
		Neuroprotective	Bei <i>et al.</i> , 2007
	Peels	Cytotoxic	Kawase et al., 2003
	n.i.	Antidiabetic	Lee, Chung and Lee, 2006.
	n.i.	Antioxidant	Kim <i>et al.</i> , 2011
		Anti-inflammatory	Kim <i>et al.</i> , 2011

 Table 3. Biological and pharmacological activities of extracts from *Diospyros* species (continued)

Species	Plant part	Biological activity	Reference
D. lotus	Fruits	Antioxidant	Loizzo et al., 2009
		Antiproliferative	Loizzo et al., 2009
	Fruits	Antidiabetic	Azadbakhta et al., 2010
D. malabarica	Bark	Antioxidant	Kumar <i>et al.</i> , 2006
D. melanoxylon	Bark	Anticandidal	Rath <i>et al.</i> , 2009
		Antihyperglycemic	Jadhav, Masirkar and Deshmukh, 2009
	Leaves	Analgesic	Devi et al., 2010
		Antipyretic	Devi et al., 2010
		Diuretic	Devi <i>et al.</i> , 2010
	Roots, Stem heartwood,	Antiplasmodial	Kantamreddi and Wright, 2008
	Stem bark		
D. mespiliformis	Fruits	Antioxidant	Ndhlala et al., 2008
	Leaves	Antibacterial	Dangoggo <i>et al</i> ., 2012
	Stem bark	Analgesic	Adzu <i>et al.</i> , 2002a

 Table 3. Biological and pharmacological activities of extracts from *Diospyros* species (continued)

45

Species	Plant part	Biological activity	Reference
D. mespiliformis	Stem bark	Anti-inflammatory	Adzu et al., 2002a
		Antimalarial	Adzu et al., 2002a
		Antipyretic	Adzu et al., 2002a
		Neuroactive	Adzu et al., 2002b
D. monbutensis	All parts	Antiviral	Moody, Robert and Hughes, 2002
D. peregrina	Fruits, Root,	Antimicrobial	Dewanjee et al., 2007a
	Stem bark		
	Bark	Antitumor	Venu et al., 2011
	Fruits	Anthelmintic	Dewanjee et al., 2007b
	Stem bark	Antiplasmodial	Kantamreddi and Wright, 2008
D. preussi	Seed oil	Antioxidant	Okonkwo and Okonkwo, 2009
D. rubra	Stem	Antimalarial	Prachayasittikul <i>et al</i> ., 2009
D. sylvatica	Roots	Antiplasmodial	Ganapaty et al., 2004
		Antitermitic	Kantamreddi and Wright, 2008
	Stem bark, Stem heartwood	Antiplasmodial	Kantamreddi and Wright, 2008

Table 3. Biological and pharmacological activities of extracts from *Diospyros* species (continued)

Species	Plant part	Biological activity	Reference
D. tomentosa	Stem bark	Antiplasmodial	Kantamreddi and Wright, 2008
D. variegata	Stem	Analgesic	Trongsakul et al., 2003
		Antipyretic	Trongsakul et al., 2003
		Anti-inflammatory	Trongsakul <i>et al.</i> , 2003
D. wallichii	Fruits, Leaves	Antibacterial	Nematollahi, Aminimoghadamfarouj and
			Wiart, 2011
		Antioxidant	Nematollahi et al., 2011

 Table 3. Biological and pharmacological activities of extracts from Diospyros species (continued)

47

CHAPTER III EXPERIMENTAL

1. Source of Plant Material

The stems of *Diospyros collinsae* Craib (Ebenaceae) were collected from Suan Luang Rama IX Public Park, Bangkok, Thailand, in June 2009. The plant material was identified by Dr. Chirayupin Chandraprasong of Suan Luang Rama IX Public Park.

2. General Techniques

2.1 Chromatographic Technique

2.1.1 Thin-Layer Chromatography (TLC)

Technique	One dimension, ascending
Adsorbent	Silica gel 60 F ₂₅₄ (E. Merck) precoated plates
Layer thickness	0.2 mm
Solvent system	Various solvent systems depending on materials to be separated
Distance	7 cm
Temperature	25-35 °C (Laboratory temperature)
Detection	1) Visual detection under daylight
	2) Ultraviolet light (254 and 365 nm)
	3) Spraying with 10% sulfuric acid in ethanol and heating at
	110 °C for 5-10 minutes
	4) Spraying with anisaldehyde-sulfuric acid reagent and heating
	at 110 °C for 5-10 minutes
	5) Liebermann-Burchard reagent

2.1.2 Column Chromatography (CC)

Column	Flat bottom glass column (various diameters)
Adsorbent	Silica gel 60 (No. 9385, E. Merck) particle size 0.040-0.063 nm
	(230 - 400 mesh ASTM)
Packing method	Wet packing
Solvent system	Various solvent systems depending on materials to be separated
Sample loading	1) The sample was dissolved in a small amount of organic
	solvent, mixed with a small quantity of adsorbent, triturated,
	dried and then applied on the top of the column.
	2) The sample was dissolved in a small volume of the eluent,
	then applied on the top of the column.
Detection	Fractions were examined by TLC observed under daylight and
	UV light at the wavelengths of 254 and 365 nm. The TLC plate
	was then sprayed with 10% sulfuric acid in ethanol and/or
	anisaldehyde-sulfuric acid reagent and heated at 110 °C for 5-10
	minutes. Fraction of similar chromatographic patterns were
	combined

2.2 Spectroscopy

2.2.1 Ultraviolet (UV) Spectra

UV spectra were recorded on a Shimadzu UV-160A spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.2.2 Infrared (IR) Absorption Spectra

IR spectra (KBr disc) were recorded on a Perkin Elmer FT-IR 1760X spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University).

2.2.3 Mass Spectra

Electrospray Ionization (ESI) mass spectra were recorded on a Micromass LCT mass spectrometer (National Center for Genetic Engineering and Biotechnology, BIOTEC, Thailand).

2.2.4 Proton and Carbon 13 Nuclear Magnetic Resonance (¹H- and ¹³C-NMR) Spectra

The ¹H NMR (500 Hz) and ¹³C NMR (125 Hz) spectra were recorded on a JEOL JNM-A500, Varian Unity INOVA (Scientific and Technological Research Equipment Center, Chulalongkorn University).

The NMR solvents used in this study included $DMSO-d_6$, $CDCl_3$ and acetoned₆. Chemical shifts were presented in ppm scale, using the chemical shift of the solvent as the reference signal.

2.3 Melting Points

Melting points were recorded on a Fisher-Johns melting point apparatus (Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.4 Solvent

Throughout this work, all organic solvents were of commercial grade and were redistilled prior to use.

3. Extraction and Isolation

3.1 Extraction

Dried, powdered stems of *D. collinsae* (1.4 kg) were extracted with 95% EtOH by maceration (5 x 30 L, 3 days each) and then filtered. The filtrates were combined and evaporated under reduced pressure to give 154 g of crude ethanolic extract (11% of dry weight). The crude extract (150 g) was suspended in aqueous MeOH and partitioned with hexane (5 x 3 L) and then evaporated to dryness under reduced pressure to give a hexane extract (6.24 g, 0.46% of dry weight). The aqueous MeOH layer was further partitioned with CH_2Cl_2 (5 x 3 L) and then EtOAc (5 x 3 L) to give a CH_2Cl_2 extract (14.0 g, 1.03% of dry weight) and an EtOAc extract (16.7 g, 1.22% of dry weight) together with an aqueous MeOH extract (110 g, 8.07% of dry weight).

Scheme 1. Extraction of D. collinsae stems

3.2 Isolation

3.2.1 Isolation of Compounds from the Hexane Extract

A portion of the hexane extract (3.0 g) was separated on a silica gel column (100 g, 5 x 13 cm), eluted with solvent mixtures of increasing polarity from hexane – CH_2Cl_2 (9:1) to CH_2Cl_2 – MeOH (9:1). One hundred 50-ml fractions were collected and combined according to their TLC patterns into four major fractions (DH01-DH04) as shown in Table 4. The column was then washed down with MeOH.

Table 4. Combined fractions from the hexane extract

Fraction	Number of eluates	Weight (mg)
DH01	1-24	159.7
DH02	25-40	141.6
DH03	41-70	370.0
DH04	71-100	795.6
MeOH eluate		1520

3.2.1.1 Isolation of Compound DC-1

Fraction DH02, which gave a major yellow spot on TLC under detection with anisaldehyde-sulfuric acid reagent, was selected for further investigation. The fraction, when dissolved in hexane, was separated into soluble and insoluble parts. The insoluble part was purified by recrystallization in MeOH to give compound DC1 as colorless needles (13.1 mg). The soluble part (128.5 mg) was submitted to further purification on a silica gel column (5 g, 2 cm x 13 cm), eluted with hexane-CH₂Cl₂ (1:1). Seventy 10-ml fractions were collected and then combined according to their TLC patterns into four major fractions (DH021-DH024) as shown in Table 5. The column was then washed down with MeOH.

Fraction	Number of eluates	Weight (mg)
DH021	1-15	16.4
DH022	16-40	28.6
DH023	42-56	15.7
DH024	57-70	29.3
MeOH eluate		27.5

Table 5. Combined fractions from DH02

Compound DC-1 was obtained from fraction DHO22 as colorless needless (5.4 mg) by recrystallization in MeOH. The compound gave a purple color upon detection with Liebermann-Burchard reagent.

3.2.1.2 Isolation of Compounds DC-2 and DC-3

Fraction DH03 (370 mg) was separated on a silica gel column (75 g, 2.5×23 cm) using hexane – CH_2Cl_2 (1:1) as the eluent. Sixty 20-ml fractions were collected and then combined according to their TLC patterns into three fractions (DH031 – DH033) as shown in Table 6. The column was then washed down with MeOH.
Fraction	Number of eluates	Weight (mg)
DH031	1-30	34.3
DH032	31-45	30.1
DH033	46-60	120.8
MeOH eluate		173.2

Fraction DH033, which gave a single red-violet spot on TLC under detection with 10% sulfuric acid in ethanol, yielded compound DC-2 as colorless needles (120.8 mg) after removal of the eluent. The compound gave a purple color upon detection with Liebermann-Burchard reagent The MeOH eluate, which gave a large pink-violet spot upon TLC investigation with 10% sulfuric acid in ethanol, was purified by recrystallization in MeOH to give compound DC-3 as colorless needles (6.4 mg). The compound gave a green color upon detection with Liebermann-Burchard reagent

3.2.1.3 Isolation of Compound DC-4

Fraction DH04 (795.6 mg) gave a major red-violet spot on TLC upon detection with 10% sulfuric acid in ethanol. This fraction was recrystallized in MeOH to give compound DC-4 as white amorphous powder (202.7 mg). The compound gave a purple color upon detection with Liebermann-Burchard reagent.

Scheme 2. Isolation of compounds from the hexane extract of *D. collinsae* stems

3.2.2 Isolation of Compounds from the CH_2CI_2 Extract

A portion of the CH_2Cl_2 extract (4.0 g) was separated on a silica gel column (120 g, 5 x 15.4 cm), eluted with CH_2Cl_2 – MeOH mixtures of increasing polarity from CH_2Cl_2 – MeOH (1:0) to CH_2Cl_2 – MeOH (87:13). Seventy 50-ml fractions were collected and then combined according to their TLC patterns into six major fractions (DD01-DD06) as shown in Table 7. The column was then washed down with MeOH.

Table 7.	Combined	fractions	from	CH ₂ Cl ₂	extract
----------	----------	-----------	------	---------------------------------	---------

Fraction	Number of eluates	Weight (mg)
DD01	1-20	150.1
DD02	21-24	389.1
DD03	25-39	1501.3
DD04	40-49	45.8
DD05	50-60	67.2
DD06	61-70	59.1
MeOH eluate		1780

3.2.2.1 Isolation of Compound DC-5

Fraction DD02 (389.1 mg) was submitted to further purification on a silica gel column (30 g, 2 x 22 cm), using $CH_2CI_2 - MeOH$ (99:1) as the eluent. Seventy-one 20-ml fractions were collected and combined according to their TLC patterns into four major fractions (DD021 – DD024), as shown in Table 8. The column was then washed down with MeOH.

Fraction	Number of eluates	Weight (mg)
DD021	1-15	25.8
DD022	16-19	30.2
DD023	30-40	83.2
DD024	41-71	126.4
MeOH eluate		108.9

Table 8. Combined fractions from DD02

Fraction DD023, which gave a single red-violet spot on TLC upon detection with 10% sulfuric acid in ethanol, yielded compound DC-5 as white powder (83.2 mg) after removal of the eluent. The compound gave a purple color upon detection with Liebermann-Burchard reagent.

3.2.2.2 Isolation of Compound DC-4

Fractions DD03 and DD024, which gave identical, major red-violet spot on TLC upon detection with 10% sulfuric acid in ethanol, were combined together. The pooled fraction was then purified by recrystallization in methanol to give compound DC-4 as white amorphous powder (457.4 mg).

3.2.3 Isolation of Compounds from the EtOAc Extract

A portion of the EtOAc extract (10.0 g) was subjected to a silica gel column (400 g, 10 x 14 cm), eluted with CH_2CI_2 – MeOH mixtures of increasing polarity from CH_2CI_2 – MeOH (95:5) to CH_2CI_2 – MeOH (7:3). One hundred and twenty eight 50-ml fractions were collected and then combined according to their TLC patterns into six major

fractions (DE01-DE06) as shown in Table 9. The column was then washed down with methanol.

Fraction	Number of eluates	Weight (mg)
DE01	1-34	1300
DE02	35-55	247.7
DE03	56-80	389.3
DE04	81-95	1200
DE05	96-109	2569.3
DE06	110-128	2192.7
MeOH eluate		2080

Table 9. Combined fractions from EtOAc extract

3.2.3.1 Isolation of Compound DC-4

Fraction DE01 (1.3 g), which gave a major red-violet spot on TLC upon detection with 10% sulfuric acid in ethanol, was purified by recrystallization in MeOH to give an additional amount of compound DC-4 (242.4 mg).

3.2.3.2 Isolation of Compound DC-6

Fraction DE02 (247.7 mg), was further separated on a silica gel column (15 g, 2 x 11 cm) eluted with CH_2CI_2 – MeOH (95:5). Sixty two 20-ml fractions were collected and then combined into four major fractions (DE021-DE024) as shown in Table 10. The column was then washed down with methanol.

Fraction	Number of eluates	Weight (mg)
DE021	1-7	12.7
DE022	8-24	14.4
DE023	25-30	17.1
DE024	31-62	32.6
MeOH eluate		168.5

Table 10. Combined fractions from DE02

Fraction DE022, which gave a single pink-violet spot on TLC upon detection with anisaldehyde-sulfuric acid reagent, was removed of the eluent to yield compound DC-6 as orange powder (14.4 mg).

3.2.1.2 Isolation of Compound DC-7

Fraction DE04 was chromatographed on a silica gel column (50 g, 2.5x14 cm), using CH_2CI_2 – MeOH (92:8) as the eluent. Fifty-four 25 ml-fractions were collected and then combined according to their TLC patterns into five major fractions (DE041 - DE045) as shown in Table 11. The column was then washed down with methanol.

Table 11. Combined fractions from DE04

Fraction	Number of eluates	Weight (mg)
DE041	1-14	9.3
DE042	15-19	14.2
DE043	20-25	165.2
DE044	26-37	245
DE045	38-54	138.7
MeOH eluate		608.5

Fraction DE042 (14.2 mg) was further separated on a silica gel column (15 g, 2 × 11 cm) eluted with $CH_2CI_2 - MeOH$ (9:1). Fifty 5 ml-fractions were collected and then combined according to their TLC patterns into three major fractions (DE0421-DE0423) as shown in Table 12.

Table 12. Combined fractions from L	DE042	
--	-------	--

Fraction	Number of eluates	Weight (mg)
DE0421	1-25	2.7
DE0422	26-36	8.3
DE0423	37-50	2.1

Fraction DE0422, which gave a single pink-violet spot on TLC upon detection with anisaldehyde-sulfuric acid reagent, yielded compound DC-7 as a brown amorphous solid (8.3 mg) after removal of the eluent.

CH₂Cl₂ extract (4.0 g)

Scheme 3. isolation of compounds from the CH_2CI_2 extract of *D. collinsae* stems

Scheme 4. Isolation of compounds from the EtOAc extract of D. collinsae stems

63

4. Physical and Spectral Data of Isolated Compounds

4.1 Compound DC-1 (Friedelin)

Appearance	Colorless needles (methanol)
Solubility	Soluble in hexane and chloroform
Melting point	262-263 °C
IR v_{max} cm ⁻¹ (KBr)	3431, 2928, 2869, 1716, 1457 and 1389
	(Figure 2).
$^{1}\text{H-}$ NMR (δ ppm, 500 MHz, CDCl_3)	0.70 (3H, s), 0.85 (3H, s), 0.85 (3H, d, J = 6.6
	Hz), 0.93 (3H, s), 0.98 (3H, s), 0.99 (3H, s), 1.03
	(3H, s), 1.16 (3H, s), 1.66 (1H, m), 1.94 (1H, m),
	2.25 (2H, m), 2.25 (2H, m), 2.37 (1H, d, J = 2.0,
	5.0, 12.0 Hz) (Table 13 and Figure 3).
13 C- NMR (δ ppm, 125 MHz, CDCl ₃)	6.8, 14.6, 17.9, 18.2, 18.7, 20.2, 22.3, 28.2, 30.0,
	30.5, 31.8, 32.1, 32.4, 32.8, 35.0, 35.3, 35.6,
	36.0, 37.4, 38.3, 39.2, 39.7, 41.3, 41.5, 42.1, 42.8,
	53.1, 58.2, 59.5 and 213.3 (Table 13 and Figures
	4a-4b).
ESI-MS m/z	427.39 [M+H] ⁺ (Figure 5).

4.2 Compound DC-2 (Lupeol)

Appearance	Colorless needles (methanol)
Solubility	Soluble in chloroform
Melting point	214-215 °C
IR v_{max} cm ⁻¹ (KBr)	3411, 2928, 1464, 1455, 1381, 1014 and 882
	(Figure 6).
¹ H- NMR (δ ppm, 500 MHz, CDCl ₃)	0.74 (3H, s), 0.77 (3H, s), 0.81 (3H, s), 0.92 (3H,
	s), 0.95 (3H, s), 1.01 (3H, s), 1.66 (3H, s), 2.36

	(1H, <i>m</i>), 3.17 (1H, <i>dd</i> , <i>J</i> = 11.4, 4.7 Hz), 4.55 (1H,
	dd, J = 2.4, 1.4 Hz) and 4.67 (1H, d, J = 2.4 Hz)
	(Table 14 and Figures 7a-7b).
$^{\rm 13}\text{C-}$ NMR (δ ppm, 125 MHz, CDCl_3)	14.5, 15.4, 16.0, 16.1, 18.0, 18.3, 19.3, 20.9, 25.1,
	27.4, 27.4, 28.0, 29.8, 34.3, 35.6, 37.2, 38.0, 38.7,
	38.9, 40.0, 40.8, 42.8, 43.0, 48.0, 48.3, 50.4, 55.3,
	79.0, 109.3 and 151.0 (Table 14 and Figures 8a-
	8b).

4.3 Compound DC-3 (a Mixture $\beta\textsc{-Sitosterol}$ and Stigmasterol)

Appearance	Colorless needles (methanol)
Solubility	Soluble in chloroform
IR v _{max} cm ⁻¹ (KBr)	3430, 2959, 2869, 1728, 1465, 1321 and 1061
	(Figure 9).
$^{1}\text{H-}$ NMR (δ ppm, 500 MHz, CDCl_3)	0.66 (3H, s), 0.76-0.86 (9H), 0.90 (3H, d, J = 6.6
	Hz), 0.99 (3H, s), 3.50 (1H, m) , 5.01 (1H, dd, J =
	15.1, 8.7 Hz), 5.13 (1H, <i>dd</i> , <i>J</i> = 15.1, 8.7 Hz) and
	5.33 (1 H, <i>d</i> , <i>J</i> = 5.2 Hz) (Figure 10).
$^{\rm 13}\text{C-}$ NMR (§ ppm, 125 MHz, CDCl_3)	11.9, 12.0, 18.8, 19.0, 19.4, 19.8, 21.1, 23.1, 24.3,
	26.1, 28.2, 29.2, 31.7, 31.9, 31.9, 33.9, 36.1, 36.5,
	37.3, 39.8, 42.3, 42.3, 45.8, 50.1, 56.1, 56.8, 71.8,
	121.7, 129.3, 138.3 and 140.8 (Table 15 and
	Figures 11a-11b).

4.4 Compound DC-4 (Betulinic acid)

Appearance	White amorphous powder (methanol)
Solubility	Soluble in chloroform and methanol
Melting point	295-296 °C

IR v_{max} cm ⁻¹ (KBr)	3436, 2943, 1689, 1453, 1376, 1032 and 883
	(Figure 12).
¹ H- NMR (δ ppm, 500 MHz, CDCl ₃)	0.73 (3H, s), 0.80 (3H, s), 0.92 (3H, s), 0.94 (3H,
	s), 0.96 (3H, s), 1.67 (3H, s), 2.97 (1H, m) 3.17
	(1H, dd, J = 11.4, 4.8 Hz), 4.59 (1H, dd, J = 2.0,
	1.5 Hz) and 4.72 (1H, <i>d</i> , <i>J</i> = 2.0 Hz)
	(Table 16 and Figures 13a-13b).
$^{\rm 13}\text{C-}$ NMR (δ ppm, 125 MHz, CDCl_3)	14.7, 15.3, 16.0, 16.1, 18.3, 19.4, 20.8, 25.5, 27.4,
	28.0, 29.7, 30.5, 32.1, 34.3, 37.0, 37.2, 38.4, 38.7,
	38.9, 40.7, 42.4, 46.9, 49.3, 50.5, 55.3, 56.3, 79.0,
	109.7, 150.4 and 179 (Table 16 and Figures 14a-
	14b).

4.5 Compound DC-5 (Betulin)

Appearance	Colorless needles (methanol)
Solubility	Soluble in chloroform and methanol
Melting point	251-252 °C
$^{1}\text{H-}$ NMR (δ ppm, 500 MHz, CDCl_3)	0.74 (3H, s), 0.80 (3H, s), 0.95 (3H, s), 0.96 (3H,
	s),1.0 (3H, s), 1.66 (3H, s), 2.36 (1H, m), 3.16
	(1H, dd, J = 11.4, 4.8 Hz), 3.31 (1H, d, J =10.9
	Hz) 3.78 (1H, d, J = 10.9 Hz) 4.56 (1H, dd, J =
	2.2, 1.5 Hz) and 4.66 (1H, d , $J = 2.2$ Hz) (Table
	17 and Figures 15a-15b).
$^{\rm 13}\text{C-}$ NMR (§ ppm, 125 MHz, CDCl_3)	14.7, 15.3, 16.0, 16.1, 18.3, 19.1, 20.8, 25.2,
	27.0, 27.4, 28.0, 29.7, 34.0, 34.2, 37.1, 37.3, 38.7,
	38.8, 39.1, 40.9, 42.7, 47.8, 47.8, 48.7, 50.4, 55.3,
	60.5, 79.0, 109.7, and 150.5 (Table 17 and
	Figures 16a-16b).

4.6 Compound DC-6 (Diptoindonesin G)

Appearance	Orange powder		
Solubility	Soluble in methanol		
Melting point	186-187 °C		
UV λ_{max} (MeOH) nm	210, 248, 285 and 360 (Figure 17).		
IR v_{max} cm ⁻¹ (KBr)	3391, 2922, 1614, 1585, 1466, 1406,		
	1230, 1041 and 825 (Figure 18).		
¹ H- NMR (δ ppm, 500 MHz, DMSO- $d_{ m 6}$)	6.27 (1H, d, J = 2.2 Hz), 7.0 (1H, d, J =		
	8.7 Hz), 7.08 (1H, d, J = 2.2 Hz), 7.34		
	(1H, d, J = 1.7 Hz), 7.37 (1H, d, J = 1.7		
	Hz), 7.73 (1H, d , J = 8.7 Hz) and 14.13		
	(1H, s) (Table 18 and Figures 19a-19b).		
$^{^{13}}\text{C-}\text{NMR}(\delta\text{ppm, 125}\text{MHz, DMSO-}d_{\scriptscriptstyle 6})$	102.9, 103.6, 104.9, 107.9, 108.2, 111.0,		
	116.8, 121.0, 124.1, 124.8, 131.2, 134.8,		
	153.2, 157.1, 157.9, 160.2, 164.9, 167.2		
	and 186.8 (Table 18 and Figure 21).		
HRESI -MS <i>m/z</i>	359.0563 [М-Н] ⁺ (Figure 24) .		

4.7 Compound DC-7 (Diptoindonesin D)

Appearance	Brown amorphous solid	
Solubility	Soluble in methanol	
Melting point	186-187 °C	
$\left[\alpha\right]^{20}{}_{D}$	- 130° (c 0.015; MeOH)	
UV λ_{max} (MeOH) nm	207, 224, 245, 275 and 371 (Figure 25).	
IR v _{max} cm ⁻¹ (KBr)	3433, 2922, 1608, 1514, 1384, 1273 and	
	468 (Figure 26).	
¹ H- NMR (δ ppm, 500 MHz, acetone- d_{6})	5.89 (1H, s), 6.38 (1H, d, J = 2.4 Hz), 6.63	
	(2H, d, J = 8.9 Hz), 6.68 (2H, d, J = 8.9	

	Hz), 6.80 (1H, d, J = 2.5 Hz), 6.90 (1H, d,
	J = 2.5 Hz), 6.92 (1H, d, J = 2.4 Hz) and
	13.70 (1H, s) (Table 19 and Figures 27a-
	27b).
¹³ C- NMR (δ ppm, 125 MHz, acetone- d_6)	55.2, 107.1, 107.5, 110.2, 111.2, 111.6,
	113.2, 116.2, 128.9, 130.5, 139.6, 142.8,
	156.8, 157.0, 158.8, 165.4, 167.4, 196.8
	and 197.3 (Table 19 and Figures 29a-
	29b).
HRESI -MS m/z	$377.0662 [M-H]^+$ (Figure 32).

5. Determination of Biological Activities

Assays for cytotoxic and antimalarial activities were performed at the National Center for Genetic Engineering and Biotechnology, BIOTEC, Pathumthani, Thailand.

5.1 Cytotoxic Activity

5.1.1 Cytotoxic activity Against NCI-H187, KB and MCF-7 Cell Lines

The cytotoxic activity of the isolated compound (DC-7) against human small cell lung carcinoma (NCI-H187, ATCC CRL-5804), epidermoid carcinoma of oral cavity (KB, ATCC CCL-17) and breast adenocarcinoma (MCF-7, ATCC HTB-22) cell lines was determined by Resazurin microplate assay (Brien *et al.*, 2000). Ellipticine, doxorubicin and tamoxifen were used as the positive control, and 0.5 % DMSO as the negative control. Briefly, NCI-H187 and MCF-7 cells were diluted to 9×10^4 cells/ml and KB cells were diluted to 7×10^4 cells/ml in fresh medium. Successively, 5 µl of the test sample diluted in 5 % DMSO and 45 µl of the cell suspension were added to microwell plates. The plates were incubated at 37° C in 5% CO₂ for 5 days (for NCI-H187) or 3

days (for KB and MCF-7). Then, 12.5 μ l of 62.5 μ l/ml resazurin solution were added to each well. The plates were incubated at 37°C for 4 hours. Fluorescence signals were measured at the excitation and emission wavelengths of 530 nm and 590 nm, respectively. The percent inhibition of cell growth was calculated by the following equation:

whereas FU_{τ} and FU_{c} were the mean fluorescent unit from treated and untreated conditions, respectively.

5.1.2 Cytotoxic Activity against Vero Cell Line

The cytotoxic activity of the isolated compound (DC-7) against African green monkey kidney cell line (Vero, ATCC CCL-81) was determined by Green fluorescent protein (GFP) detection (Hunt *et. al.*, 1999). Ellipticine and 0.5% DMSO were used as the positive and negative controls, respectively. In brief, 45 μ l of the cell suspension (3.3 x 10⁴ cells/ml) were added to each well of microwell plates containing 5 μ l of the test compound previously diluted in 0.5% DMSO. The plate was then incubated at 37°C in 5% CO₂ for 4 days. Fluorescence signals were measured, using Spectra Max M5 microplate reader (Molecular Devices, USA) in the bottom-reading mode, at the excitation and emission wavelengths of 485 nm and 535 nm, respectively. The fluorescence signal at day 4 was subtracted with the background fluorescence at day zero. The percent inhibition of cell growth was calculated by the same equation as in **5.1.1**. If cell viability was more than 50%, the IC₅₀ value was reported as inactive. If cell viability was less than 50%, the IC₅₀ value was reported from two-fold serial dilution.

5.2 Antimalarial Activity

Plasmodium falciparum (K1, multidrug resistant strain) was cultivated *in vitro*, according to Trager and Jensen (1976), in RPMI 1640 medium containing 20 mM

HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid), 32 mM NaHCO₃ and 10% heat activated human serum with 3% erythrocytes, in humidified 37° C incubator with 3% CO₂. Cultures were passaged with fresh mixture of erythrocytes and medium for every day to maintain cell growth.

Quantitative assessment of *in vitro* antimalarial activity of the isolated compound (DC-7) was determined by microculture radioisotope techniques based upon the methods described by Desjardins *et al.* (1979). Dihydroartemisinine and mefloquine were used as the positive control, and 0.1 % DMSO as the negative control. Briefly, a mixture of 200 μ l of 1.5% erythrocytes with 1% parasitemia at the early ring stage was pre-exposed to 25 μ l of the medium containing the test sample dissolved in 1% DMSO (0.1% final concentration) for 24 hours. Subsequently, 25 μ l of [³H] hypoxanthine (Amersham, USA) in culture medium (0.5 μ Ci) was added to each well and the plates were incubated for an additional 24 hours. Levels of incorporated radioactive labeled hypoxanthine, indicating parasite growth, were determined using the Top Count microplate scintillation counter (Packard, USA). The percentage of parasite growth was calculated using the signal count per minute of treated (CPM_T) and untreated conditions (CPM_L), by the following equation.

% parasite growth = $CPM_T/CPM_1 \times 100$

CHAPTER IV RESULTS AND DISCUSSION

Phytochemical investigation of the hexane, CH_2CI_2 and EtOAc extracts of the dried stems of *D. collinsae* led to the isolation of seven chemical constituents. The identification of the isolated compounds was achieved through spectroscopic analysis, and confirmed by comparison with literature values. The details are as follows.

1. Identification of Compound DC-1 (Friedelin)

Compound DC-1 was obtained as colorless needles. This compound gave purple color to Liebermann-Burchard reagent, suggesting that it was a triterpenoid. Its IR spectrum (Figure 2) exhibited a strong absorption at 1716 cm⁻¹, indicating the presence of a carbonyl functionality in its molecule.

The ¹H NMR spectrum of DC-1 (Figure 3) showed eight methyl signals which were indicative of the friedelane skeleton. These signals included a doublet due to one secondary methyl at δ 0.85 ppm (J = 6.6 Hz, H-23) and singlets due to seven tertiary methyls at δ 0.70 (H-24), 0.85 (H-25), 0.93 (H-29), 0.98 (H-26), 0.99 (H-30), 1.03 (H-27) and 1.16 (H-28) ppm. Other signals appeared in the range of δ 1.00 - 2.50 ppm.

The ¹³C NMR spectrum (Figures 4a-4b) displayed 30 carbon signals, supportive of the triterpenoid nature. The most downfield signal at δ 213.3 ppm suggested the presence of a keto functionality in the molecule of DC-1. ¹³C NMR data of the compound were then compared with those of friedelin, a typical friedelane derivative with 3-keto substituent (Akihisa *et al.*, 1992), and found to be in full agreement. The comparison allowed the 30 carbon signals of DC-1 to be differentiated into eight methyl signals at δ 6.8 (C-23), 14.6 (C-24), 17.9 (C-25), 18.7 (C-27), 20.2 (C-26), 31.8 (C-30), 32.1 (C-28), and 35.0 (C-29) ppm; eleven methylene signals at δ 18.2 (C-7), 22.3 (C-1), 30.5 (C-12),

32.4 (C-15), 32.8 (C-21), 35.3 (C-19), 35.6 (C-11), 36.0 (C-16), 39.2 (C-22), 41.3 (C-6) and 41.5 (C-2) ppm; four methine signals at δ 42.8 (C-18), 53.1 (C-8), 58.2 (C-4) and 59.5 (C-10) ppm; and seven quaternary signals at δ 28.2 (C-20), 30.0 (C-17), 37.4 (C-9), 38.3 (C-14), 39.7 (C-13), 42.1 (C-5) and 213.3 (C-3) ppm. Comparison of ¹³C-NMR assignments of DC-1 and friedelin is shown in Table 13. The assignment of some proton signals of DC-1 is also shown in the same table.

The information mentioned above indicated that DC-1 was friedelin. The identification was also confirmed by the ESI mass spectrum (Figure 5), where a pseudomolecular peak $[M+H]^+$ at m/z 427.39, corresponding to the molecular formula of $C_{30}H_{50}O$, was observed. DC-1 was therefore identified as friedelin. The structure of the compound is shown below.

friedelin (107)

The presence of friedelin in *Diospyros* species has been previously documented. The compound has been found to exhibit various biological activities eg. cytotoxic (Zheng, 1994), antifungal (Duraipandiyan, Gnanasekar and Ignacimuthu, 2010), anti-inflammatory, analgesic and antipyretic activities (Antonisamy, Duraipandiyan and Ignacimuthu, 2011).

	DC-1		Friedelin*
position	δ_{H} (ppm) (mult., J in Hz)	$\delta_{\rm C}^{}({\rm ppm})$	$\delta_{\rm C}^{}$ (ppm)
1	1.66 (<i>m</i>), 1.94 (<i>m</i>)	22.3	22.3
2	2.37 (ddd, 2.0, 5.0, 12.0),	41.5	41.5
	2.25 (<i>m</i>)		
3	-	213.3	213.2
4	2.25 (<i>m</i>)	58.2	58.2
5	-	42.1	42.1
6	-	41.3	41.3
7	-	18.2	18.2
8	-	53.1	53.1
9	-	37.4	37.4
10	-	59.5	59.4
11	_	35.6	35.6
12	-	30.5	30.5
13	-	39.7	39.7
14	-	38.3	38.3
15	-	32.4	32.4
16	-	36.0	36.0
17	-	30.0	30.0
18	1.52 (<i>m</i>)	42.8	42.8
19	-	35.3	35.3
20	~	28.2	28.1
21	-	32.8	32.7
22	-	39.2	39.2
23	0.85 (<i>d</i> , 6.6)	6.8	6.8
24	0.70 (s)	14.6	14.6
25	0.85 (s)	17.9	17.9
26	0.98 (s)	20.2	20.2
27	1.03 (<i>s</i>)	18.7	18.6
28	1.16 (<i>s</i>)	32.1	32.1
29	0.93 (<i>s</i>)	35.0	35.0
30	0.99 (s)	31.8	31.8

Table 13. ¹H (500 MHz) and ¹³C (125 MHz) NMR assignments of compound DC-1 (in $CDCI_3$) and the reported ¹³C NMR assignment of friedelin (in $CDCI_3$)

* Akihisa *et al.*, 1992

>

2. Identification of Compound DC-2 (Lupeol)

Compound DC-2 was obtained as colorless needles which gave purple color to Liebermann-Burchard reagent, suggesting its triterpenoid nature. The presence of the hydroxyl substituent in the molecule of DC-2 was suggested by an absorption band at 3410 cm⁻¹, displayed in the IR spectrum (Figure 6).

The ¹H NMR spectrum of DC-2 (Figures 7a-7b) showed a pair of broad singletlike signals (1 H each) at δ 4.55 (*dd*, *J* = 2.4, 1.4 Hz) and 4.67 (*d*, *J* = 2.4 Hz) ppm. Such resonances are characteristic of a lupane-type triterpenoid, corresponding to exomethylene protons (H-29) in the isopropenyl side chain on ring D of the lupane skeleton. Seven tertiary methyls of the compound were observed as three-proton singlets at δ 0.74 (H-24), 0.77 (H-28), 0.81 (H-25), 0.92 (H-27), 0.95 (H-23), 1.01 (H-26), and 1.66 (H-30) ppm. A doublet of doublets at δ 3.17 ppm (1H, *J* = 11.4, 4.7 Hz), assignable to the hydroxymethine proton (H-3), pointed out that DC-2 was a triterpenoid alcohol.

The ¹³C NMR spectrum (Figures 8a-8b) exhibited 30 carbon signals, supporting that DC-2 was a triterpenoid. The presence of the exomethylene moiety in the molecule was represented by a pair of downfield signals at δ 109.3 (C-29) and 151.0 (C-20) ppm, while a signal at δ 79.0 ppm was assignable to the hydroxyl-substituted methine carbon (C-3). ¹³C-NMR data of DC-2 were found to be in full agreement with the reported values for lupeol (Reynolds *et al.*, 1986), a common triterpenoid alcohol of the lupane type. Comparison of ¹³C-NMR assignments of DC-2 and lupeol, together with ¹H NMR assignment of DC-2, is shown in Table 14.

The information mentioned above are in accordance with the chemical structure of lupeol. Therefore, DC-2 was identified as lupeol. The structure of the compound is shown below.

lupeol (42)

Lupeol has been found in various plants, including *Diospyros* species. Some interesting bioactivities of the compound have been reported eg. anti-inflammatory (Fernandez *et al.*, 2001), anti-arthritic (Geetha and Varalakshmi, 2001), cytotoxic (Wada, lida and Tanaka, 2001), chemopreventive and anti-neoplastic activities (Chaturvedi, Bhui and Shukla, 2008).

	DC-2		Lupeol*
position	δ_{H} (ppm) (mult.,J in Hz)	δ _C (ppm)	$\delta_{C}^{}(ppm)$
1	-	38.7	38.7
2	-	27.4	27.4
3	3.17 (<i>dd</i> , 11.4, 4.7)	79.0	78.9
4	-	38.9	38.8
5	-	55.3	55.3
6	-	18.3	18.3
7	-	34.3	34.2
8	-	40.8	40.8
9	-	50.4	50.4
10	-	37.2	37.1
11	-	20.9	20.9
12	-	25.1	25.1
13	-	38.0	38.0
14	-	42.8	42.8
15	-	27.4	27.4
16	-	35.6	35.5
17	-	43.0	43.0
18	-	48.3	48.2
19	2.36 (<i>m</i>)	48.0	47.9
20	-	151.0	150.9
21	-	29.8	29.8
22	_	40.0	40.0
23	0.95 (<i>s</i>)	28.0	28.0
24	0.74 (<i>s</i>)	15.4	15.4
25	0.81 (<i>s</i>)	16.1	16.1
26	1.01 (<i>s</i>)	16.0	15.9
27	0.92 (<i>s</i>)	14.5	14.5
28	0.77 (s)	18.0	18.0
29	4.55 (dd, 2.4, 1.4)	109.3	109.3
	4.67 (<i>d</i> , 2.4)		
30	1.66 (s)	19.3	19.3

Table 14. ¹H (500 MHz) and ¹³C (125 MHz) NMR assignments of compound DC-2 (in $CDCI_3$) and the reported ¹³C NMR assignment of lupeol (in $CDCI_3$)

* Reynolds et al., 1986

3. Identification of Compound DC-3 (a Mixture of β -Sitosterol and Stigmasterol)

Compound DC-3 was obtained as colorless needles. It gave positive green color with Liebermann-Burchard reagent, indicative of the steroid skeleton. The IR spectrum (Figure 9) showed a hydroxyl absorption band at 3430 cm⁻¹.

The ¹H and ¹³C NMR spectra of DC-3 (Figures 10, 11a-11b) provided evidences which indicated that DC-3 was a mixture of β -sitosterol and stigmasterol. In both spectra, signals for β -sitosterol were prominent while those for stigmasterol were hardly observed. The signals not labeled with their exact for stigma steroid were chemical shifts. In addition, the integration values for certain proton signals due to stigmasterol, which were distinguishable from signals due to β -sitosterol, were not given. Therefore, it could be deduced that β -sitosterol was a major component of DC-3 and the relative amount of stigmasterol in the compound was very small.

In the ¹H NMR spectrum (Figure 10), methyl signals of the two steroids were observed in the range of δ 0.60 - 1.20 ppm. An olefinic signal of the tri-substituted double bond at δ 5.33 ppm (1 H, *d*, *J* = 5.2 Hz) and a methine proton multiplet at δ 3.50 ppm were attributable to H-6 and H-3 of both β -sitosterol and stigmasterol. Two double doublets at δ 5.01 (*J* = 15.1, 8.7 Hz, H-22) and 5.13 (*J* = 15.1, 8.7 Hz, H-23) ppm were indicative of stigmasterol.

In the ¹³C NMR spectrum (Figures 11a-11b), the carbon signal due to the oxygenated C-3 of both β -sitosterol and stigmasterol was observed at δ 71.8 ppm. The signals at δ 140.8 and 121.7 ppm could be assigned to olefinic C-5 and C-6 of the two compounds. Two less intense olefinic signals appearing around δ 138 and 129 ppm were assignable to C-22 and C-23 of stigmasterol.

Therefore, DC-3 was determined to be a mixture of β -sitosterol and stigmasterol, of which the major component was β -sitosterol. The two steroids are common

phytosterols widely distributed in the plant kingdom and frequently occur together. Comparison of the ¹³C NMR data of DC-3 with the reported data of β -sitosterol and stigmasterol (De-Eknamkul and Potduang, 2003) is shown in Table 15.

 β -sitosterol

stigmasterol

Table 15. ¹³C (125 MHz) NMR assignments of compound DC-3 (in CDCl₃), β -sitosterol (in CDCl₃) and stigmasterol (in CDCl₃)

Position	δ _C (ppm)		
FOSILION	DC-3*	β-sitosterol**	stigmasterol**
1	37.3	37.2	37.2
2	31.7	31.6	31.6
3	71.8	71.8	71.8
4	42.3	42.2	42.3
5	140.8	140.7	140.7
6	121.7	121.7	121.7
7	31.9	31.9	31.9
8	31.9	31.9	31.9
9	50.1	50.1	50.1
10	36.5	36.5	36.6
11	21.1	21.1	21.1
12	39.8	39.7	39.7

Desition	δ _C (ppm)			
Position	DC-3*	β-sitosterol**	stigmasterol**	
13	42.3	42.3	42.3	
14	56.8	56.7	56.8	
15	24.3	24.3	24.3	
16	28.2, (29.0)	28.2	28.9	
17	56.1	56.0	55.9	
18	12.0	11.8	12.0	
19	19.4	19.4	19.4	
20	36.1, (40.5)	36.1	40.5	
21	18.8, (21.1)	18.8	21.1	
22	33.9, (138.3)	33.9	138.3	
23	26.1, (129.3)	26.0	129.2	
24	45.8, (51.2)	45.8	51.2	
25	29.2, (31.9)	29.1	31.9	
26	19.8, (21.1)	19.8	21.2	
27	19.0	19.0	19.0	
28	23.1, (25.5)	23.0	25.4	
29	11.9	12.0	12.2	

Table 15. ¹³C (125 MHz) NMR assignments of compound DC-3 (in CDCl₃), β -sitosterol (in CDCl₃) and stigmasterol (in CDCl₃) (continued)

*Chemical shifts in parenthesis are estimated values for certain carbons of stigmasterol, the signals of which were obviously observed at different chemical shifts from those for β -sitosterol.

**De-Eknamkul and Potduang, 2003

4. Identification of Compound DC-4 (Betulinic acid)

Compound DC-4 was obtained as white amorphous powder. The compound gave purple color when sprayed with Liebermann-Burchard reagent, suggestive of the triterpenoid nucleus. The presence of hydroxyl and carbonyl groups in the molecule of DC-4 was suggested by absorption bands at 3436 and 1689 cm⁻¹, respectively, in the IR spectrum (Figure 12).

In the ¹H NMR spectrum (Figures 13a-13b), characteristic proton signals for a lupane-type triterpenoid with the isopropenyl group were observed at δ 4.59 (*dd*, *J* = 2.0, 1.5 Hz, H-29) and 4.72 (*d*, *J* = 2.0 Hz, H-29) ppm. The signal of the hydroxymethine proton (H-3) was discernible as a doublet of doublet at δ 3.17 (*J* =11.4, 4.8 Hz) ppm. The ¹H NMR spectrum of DC-4 was similar to that of DC-2 except for the absence of one methyl singlet, suggesting that DC-4 was a derivative of DC-2, of which one methyl group on the basic skeleton was replaced by another functional group.

The ¹³C NMR spectrum (Figures 14a-14b) exhibited 30 carbon signals. Comparison of this spectrum with that of DC-2 indicated that one methyl signal of DC-2 was replaced by a carbonyl signal of DC-4 which was observed at δ 179.7 ppm (C-28). ¹³C NMR data of DC-4 was then compared with those of betulinic acid (Siddiqui *et al.*, 1988) and found to be in full agreement. ¹³C NMR assignments of DC-4 and betulinic acid, together with ¹H NMR assignment of DC-4, are shown in Table 16.

DC-4 was, therefore, identified as betulinic acid. The structure of the compound is shown below.

betulinic acid (60)

Betulinic acid can be found widely in the genus *Diospyros*. Several biological activities of the compounds have been reported, eg. antibacterial (Chandramu *et al.*, 2003), anti-inflammatory (Del. Recio *et al.*, 1995), anti-HIV (Hashimoto *et al.*, 1997), and anticancer (Fulda, 2008) activities. The compound has been found to exert remarkable anticancer effects and considered to be promising in cancer drug development.

	DC-4		Betulinic acid*
position	δ_{H} (ppm) (mult.,J in Hz)	δ _C (ppm)	δ _C (ppm)
1	-	38.7	38.7
2	-	27.4	27.4
3	3.17 (<i>dd</i> , 11.4, 4.8)	79.0	78.9
4	-	38.9	38.8
5	-	55.3	55.3
6	-	18.3	18.3
7	-	34.3	34.3
8	-	40.7	40.7
9	-	50.5	50.5
10	-	37.2	37.2
11	-	20.8	20.8
12	-	25.5	25.5
13	-	38.4	38.4
14	-	42.4	42.4
15	-	30.5	30.5
16	-	32.1	32.1
17	-	56.3	56.3
18	-	46.9	46.8
19	2.97 (<i>m</i>)	49.3	49.2
20	-	150.4	150.3
21	-	39.7	39.7
22	-	37.0	37.0
23	0.92 (<i>s</i>)	28.0	27.9
24	0.73 (s)	15.3	15.3
25	0.80 (s)	16.0	16.0
26	0.94 (<i>s</i>)	16.1	16.1
27	0.96 (<i>s</i>)	14.7	14.7
28	-	179.7	180.5
29	4.59 (<i>dd</i> , 2.0, 1.5)	109.7	109.6
	4.72 (<i>d</i> , 2.0)		
30	1.67 (s)	19.4	19.4

Table 16. 1 H (500 MHz) and 13 C (125 MHz) NMR assignments of compound DC-4 (inCDCl3) and the reported 13 C NMR assignment of betulinic acid (in CDCl3)

*Siddiqui et al., 1988

5. Identification of Compound DC-5 (Betulin)

Compound DC-5 was obtained as colorless needles. Its triterpenoid nature was suggested by the positive result (purple color) with Liebermann-Burchard reagent. The ¹H-NMR spectrum (Figures 15a-15b) exhibited characteristic proton signals of a lupane-type triterpenoid with the isopropenyl group at δ 4.56 (*dd*, *J* = 2.2, 1.5 Hz, H-29) and 4.66 (*d*, *J* = 2.2 Hz, H-29) ppm. A signal of the hydroxymethine proton (H-3) at δ 3.16 (*dd*, *J* = 11.4, 4.8 Hz, H-3) ppm was also observed. The ¹H-NMR spectrum of DC-5, like that of DC-4, is similar to that of DC-2. Two prominent differences, observed in the spectrum of DC-5, are the absence of one methyl singlet and the addition of a pair of doublets (*J* = 10.9 Hz) at δ 3.31 and 3.78 ppm.

The ¹³C-NMR spectrum of DC-5 (Figures 16a-16b), when compared with that of DC-2, indicated the absence of one methyl signal and an additional hydroxymethylene signal at δ 60.5 ppm (C-28). The above information suggested that DC-5 was a derivative of DC-2, of which one methyl group was replaced by a primary alcoholic group. Comparison of ¹³C-NMR data of DC-5 with those of betulin (Tinto, Blair and Alli, 1992) indicated full agreement of their data. ¹H and ¹³C NMR assignments of DC-5 and betulin, together with ¹H-NMR assignment of DC-5, are shown in Table 17.

Therefore, DC-5 was identified as betulin. The structure of the compound is shown below.

betulin (47)

Betulin is one of the lupane-type triterpenoids frequently found in *Diospyros* species. The compound has been shown to exhibit various biological activities, eg. antimycobacterial (Cantrell, Franzblau and Fisher *et al.*, 2001), anti-inflammatory (Del. Recio *et al.*, 1995) and antitumor (Rzeski *et al.*, 2009) activities.

position	DC-5	Betulin*	
	$\delta_{_{ m H}}$ (ppm) (mult.,J in Hz)	δ _c (ppm)	δ _c (ppm)
1	_	38.7	38.8
2	_	27.4	27.2
3	3.16 (<i>dd</i> , 11.4, 4.8)	79.0	78.9
4	-	38.8	38.9
5	-	55.3	55.3
6	-	18.3	18.3
7	-	34.2	34.3
8	-	40.9	40.9
9	-	50.4	50.4
10	-	37.1	37.2
11	-	20.8	20.9
12	-	25.2	25.3
13	-	37.3	37.3
14	-	42.7	42.7
15	-	27.0	27.0
16	-	29.1	29.2
17	-	47.8	47.8
18	-	48.7	48.8
19	2.36 (<i>m</i>)	47.8	47.8
20	~	150.5	150.6
21	-	29.7	29.8
22	-	34.0	34.0
23	0.95 (<i>s</i>)	28.0	28.0
24	0.74 (s)	15.3	15.4
25	0.80 (s)	16.1	16.1
26	1.00 (s)	16.0	16.0
27	0.96 (<i>s</i>)	14.7	14.8
28	3.31 (<i>d</i> , 10.9),	60.5	60.2
	3.78 (d, 10.9)		
29	4.56 (<i>dd</i> , 2.2, 1.5),	109.7	109.6
	4.66 (<i>d</i> , 2.2)		
30	1.66 (<i>s</i>)	19.1	19.1

Table 17. ¹H (500 MHz) and ¹³C (125 MHz) NMR assignments of compound DC-5 (in $CDCI_3$) and the reported ¹³C NMR assignment of betulin (in $CDCI_3$)

*Tinto,Blair and Alli, 1992

6. Identification of Compound DC-6 (Diptoindonesin G)

Compound DC-6 was obtained as orange powder. Its UV spectrum (Figure 17) exhibited absorption maxima at 210, 248, 285 and 360 nm. The IR spectrum (Figure 18) showed an OH band at 3391 cm⁻¹, together with absorption bands for the aromatic group at 1614, 1585 and 1466 cm⁻¹.

In the ¹H NMR spectrum (Figures 19a-19b) six doublets, due to a total of eight protons, were observed in the aromatic region, together with a singlet at δ 14.13 ppm. This information suggested that DC-6 was a phenyl derivative with a chelated hydroxyl group, containing eight aromatic protons. The ¹H-¹H COSY spectrum (Figure 20) was helpful in clarifying the couplings of the aromatic signals. A pair of reciprocally coupled signals at δ 6.27 (*d*, *J* = 2.2 Hz, H-3") and 7.08 (*d*, *J* = 2.2 Hz, H-5"), as well as that at δ 7.34 (*d*, *J* = 1.7 Hz, H-7) and 7.37 (*d*, *J* = 1.7 Hz, H-5), suggested that DC-6 contained two 1, 2, 3, 5- tetrasubstituted phenyl moieties in the molecule. The rest of the aromatic signals, two doublets at δ 7.00 (2 H each, *J* = 8.7 Hz, H-3'/5') and 7.73 ppm (2 H each, *J* = 8.7 Hz, H-2'/6'), indicated the presence of a *p*-substituted phenyl moiety.

The ¹³C NMR spectrum (Figure 21) exhibited 19 carbon signals, two of which (δ 116.8, 131.2 ppm) were distinctly higher than the others. These two signals were thus assignable to two pairs of equivalent carbons in the *p*-substituted phenyl ring (C-2'/6' and C-3'/5'). Through analysis of the ¹³C NMR data with the aid of HSQC experiment (Figure 22), DC-6 was revealed to contain 21 carbons including 8 methine and 13 quaternary ones. The most downfield signals at δ 186.8 ppm indicated the presence of a keto function.

Data obtained from the HMBC experiment led to the connection of the substructures of DC-6, suggesting the structure of the 2-arylbenzofuran

diptoindonesin G for the compound. The structure of diptoindonesin G is shown below.

diptoindonesin G

In the HMBC spectrum (Figures 23a-23e), a correlation between the proton signal at δ 14.13 (2"-OH) and the carbonyl signal at δ 186.8 ppm (Figure 23e) was observed, indicating the presence of the benzoyl moiety. The attachment of this moiety to the benzofuran skeleton at C-3 and C-4 was confirmed by a correlation between the proton signal at δ 7.08 (H-5") and the carbon signal at δ 108.2 (C-3) ppm (Figure 23a), together with a correlation between the proton signal at δ 7.37 (H-5) and the carbonyl signal at δ 186.8 ppm (Figure 23b). The attachment of the *p*hydroxyphenyl group at C-2 was confirmed by a correlation between the proton signal at δ 7.73 (H-2'/6') and the carbon signal at δ 157.1 (C-2) ppm (Figure 23b).

key HMBC correlations of DC-6

Comparison of ¹H and ¹³C NMR data of DC-6 with those reported for diptoindonesin G (Juliawaty et al., 2009) indicated that the data of the two compounds were mainly in agreement, except for the assignments for C-4, C-6, C-7a and C-6". The difference due to C-6 and C-7a was their reversed chemical shift assignments (DC-6 : δ_{C-6} 157.9, δ_{C-7a} 153.2 ; reported values : δ_{C-6} 154.0, δ_{C-7a} 158.3). The assignments for C-6 and C-7a of DC-6 were based on data obtained from the HMBC spectrum where the correlations of the carbon signal at δ 157.9 (C-6) ppm with the proton signals at δ 7.37 (H-5) and 7.34 (H-7) ppm, as well as the correlation of the carbon signal at δ 153.2 (C-7a) ppm with the proton signal at δ 7.34 (H-7) ppm, were clearly observed (Figure 23b). (In the published paper of Juliawaty et al., the correlations of H-7 with C-6 and C-7a were reported but the correlation of H-5 with any of these two carbons was not documented.) The assignments for C-4 and C-6", which could not be accomplished through HMBC analysis, were based on 13 C NMR data of hopeachinol A, a 2-arylbenzofuran derivative structurally related to diptoindonesin G. C-4 (& 124.8 ppm) and C-6" (& 134.8 ppm) were assigned according to the chemical shift assignments for their corresponding carbons which were C-2c (δ 126.3 ppm) and C-9a (δ 135.6 ppm) of hopeachinol A, respectively (Ge et al., 2010).

hopeachinol A

The identity of DC-6 was also confirmed by the HRESIMS spectrum (Figure 24) where a pseudomolecular ion $[M-H]^+$ at m/z 359.0563 were observed, indicative of the molecular formula of $C_{21}H_{12}O_6$.

All above information is in accordance with that of diptoindonesin G. Therefore, DC-6 was identified as diptoindonesin G, a stilbenoid previously isolated from the stem bark of *Hopea mengarawan* (Tanaka, *et al.*, 2000) and the stems and twings of *H. chinensis* (Ge *et al.*, 2010) of the family Dipterocarpaceae.

Many stilbenoids have been found in plants of certain families such as Vitaceae, Leguminosae and Dipterocarpaceae (Tanaka *et al.*, 2000). However, their presence in *Diospyros* plant, has never been previously reported. Some stilbenoids have been found to exhibit interesting bioactivities including chemopreventive (Jang *et al.*, 1997) and hepatoprotective (Oshima *et al.*, 1995) activities. Diptoindonesin G has been demonstrated to possess immunosuppressive activity in the assay using a con A induced proliferation of mouse splenic lymphocytes (T cells) (Ge *et al.*, 2010).

Position	DC-6		Diptoindonesin G*	
	$δ_{H}$ (ppm) (mult., <i>J</i> in Hz)	δ _C (ppm)	$\delta_{\mathrm{H}}^{}$ (ppm) (mult.,J in Hz)	$\delta_{ m C}^{} ({ m ppm})$
2	-	157.1	-	157.5
3	-	108.2	-	109.1
За	-	124.1	-	125.9
4	-	124.8	-	135.6
5	7.37 (d, 1.7)	107.9	7.53 (<i>d</i> , 1.5)	108.1
6	-	157.9	-	154.0
7	7.34 (d, 1.7)	104.9	7.34 (<i>d</i> , 1.5)	104.6
7a	-	153.2	-	158.3
1'	-	121.0	-	122.4
2'/6'	7.73 (d, 8.7)	131.2	7.83 (d, 8.8)	131.5
3'/5'	7.00 (d, 8.7)	116.8	7.10 (<i>d</i> , 8.8)	116.9
4'	-	160.2	-	160.5
C=O	-	186.8	-	187.8
1″	-	111.0	-	112.1
2″	_	167.2	-	168.4
3″	6.27 (d, 2.2)	102.9	6.36 (<i>d</i> , 2.2)	103.2
4"	-	164.9	~	164.7
5″	7.08 (d, 2.2)	103.6	7.25 (d, 2.2)	103.6
6″	-	134.8	-	139.3
6-OH	-	-	9.30 (br s)	~
4'-OH	-	-	9.30 (br s)	-
4″OH	-	-	9.30 (br s)	-
2"-OH	14.13 (s)	-	14.18 (s)	-

Table 18. ¹H (500 MHz) and ¹³C (125 MHz) NMR assignments of compound DC-6 (DMSO- d_6) and diptoindonesin G (acetone- d_6)

* Juliawaty et al., 2009
7. Identification of Compound DC-7 (Diptoindonesin D)

Compound DC-7 was obtained as a brown amorphous solid. Its UV spectrum (Figure 25) exhibited absorption maxima at 207, 224, 245, 275 and 371 nm. The IR spectrum (Figure 26) showed absorption bands at 33433, 2922, 1608, 1514 cm⁻¹, suggesting the presence of hydroxyl and aryl groups in the molecule.

The ¹H NMR spectrum of DC-7 (Figures 27a-27b) displayed a set of six aromatic signals in the region of δ 6.30 - 7.00 ppm. A pair of doublets at δ 6.38 (J = 2.4 Hz, H-12b) and 6.92 (J = 2.4 Hz H-14b), as well as another pair at δ 6.80 (J = 2.5 Hz, H-12a) and 6.90 (J = 2.5 Hz, H-14a) ppm, represented a pair of proton signals *meta*-coupled to each other. This was supported by their correlation in the ¹H-¹H COSY spectrum (Figure 28). These signals suggested the presence of two 1,2,3,5 - tetrasubstituted phenyl moieties in the molecule of DC-7. The presence of another moiety, a p – substituted phenyl ring, could be deduced from the two other doublets (2 H each, J = 8.9 Hz) at δ 6.63 (H-3b/5b) and 6.68 (H-2b/6b) ppm. In addition to aromatic signals, two singlets at δ 5.89 and 13.70 ppm were observed. The latter indicated the presence of a chelated hydroxyl group.

In the ¹³C NMR spectrum (Figure 29) nineteen carbon signals were recorded. According to the HSQC spectrum (Figure 30a-30c), these could be classified into seven signals of methane carbon (δ 107.1, 107.5, 110.2, 113.2, 116.2 and 128.9 ppm.) and twelve signals of quaternary carbons (δ 111.2, 111.6, 130.5, 139.6, 142.8, 156.8, 157.0, 158.8, 165.4, 167.4, 196.8 and 197.3 ppm.). Based on their intensity, two methine carbons signals at δ 116.2 and 128.9 ppm were attributable to two pairs of equivalent carbons in the *p*-substituted phenyl ring. DC-7 was thus expected to contain 21 carbons. The two most downfield signals at δ 196.8 and 197.3 ppm. Indicated the presence of two keto groups. The ¹H and ¹³C NMR data of DC-7 were compared and found to be in full agreement with the reported values for the stilbenoid diptoindonesin D (Chatsumpun, Sritularak and Likhitwitayawuid, 2010) as shown in Table 19, suggesting that DC-7 was diptoindonesin D.

diptoindonesin D

Data obtained from the HMBC experiment (Figures 31a-31e) supported such proposed structure. The location of one of the carbonyl groups between the two tetrasubstituted phenyl rings was confirmed by a correlation between the proton signal at δ 6.90 ppm (H-14a) and the carbonyl signal at 197.3 ppm (C-8a) (Figure 31b), and by the presence of the chelated hydroxyl group attached to C-11b, which indicated by a correlation between the proton signal at δ 167.4 ppm (C-11b) (Figure 31e). The location of the other carbonyl group at C-8b was confirmed by correlations of the both proton signals at δ 5.89 (H-7b) and 6.92 (H-14b) ppm with the carbonyl signal at δ 196.8 ppm (C-8b) (Figure 31b).

key HMBC correlations of DC-7

Information obtained from the HRESIMS spectrum (Figure 32) supported the established identity of DC-7 as diptoindonesin D. The spectrum displayed a pseudomolecular ion $[M-H]^+$ at m/z 377.0662, indicative of the molecular formula of $C_{21}H_{14}O_7$. According to all above information, DC-7 was identified as diptoindonesin D.

Diptoindonesin D possesses two stereoisomeric forms due to the chiral carbon at position 7b. DC-7 has been proven to be (-) form, according to its specific rotation $([\alpha]_{D} = -130^{\circ})$. (+) Diptoindonesin D has been reported as being isolated from the stem bark of *Hopea dryocalanoides* (Dipterocarpaceae) (Sahidin, *et al.*, 2005) and the stem wood of *Millettia leucantha* (Leguminosae) (Chatsumpun, et al., 2010).

	DC-7		Diptoindonesin D*		
position	$\delta_{ m H}$ (ppm) (mult.,J in Hz)	$\delta_{C}^{}(\text{ppm})$	$\delta_{\rm H}$ (ppm) (mult.,J in Hz)	δ _C (ppm)	
8a	-	197.3	-	197.4	
9a	-	142.8	-	142.8	
10a	-	111.2	-	111.2	
11a	-	156.8	-	156.8	
12a	6.80 (<i>d</i> , 2.5)	107.5	6.79 (d, 2.5)	107.5	
13a	-	158.8	-	158.8	
14a	6.90 (<i>d</i> , 2.5)	110.2	6.90 (<i>d</i> , 2.5)	110.2	
1b	-	130.5	-	130.5	
2b,6b	6.68 (<i>d</i> , 8.9)	128.9	6.68 (d, 9)	128.9	
3b,5b	6.63 (d, 8.9)	116.2	6.63 (<i>d</i> , 9)	116.2	
4b	-	157.0	-	157.0	
7b	5.89 (s)	55.2	5.88 (s)	55.2	
8b	-	196.8	-	196.7	
9b	-	139.6	-	139.6	
10b	-	111.6	-	111.7	
11b	-	167.4	-	167.3	
12b	6.38 (d, 2.4)	107.1	6.38 (d, 2.5)	107.0	
13b	_	165.4	-	165.2	
14b	6.92 (<i>d</i> , 2.4)	113.2	6.92 (<i>d</i> , 2.5)	113.1	
11b-OH	13.70 (s)		13.69 (s)		

Table 19. ¹H (500 MHz) and ¹³C (125 MHz) NMR assignments of compound DC-7 (acetone- d_6) and diptoindonesin D (acetone- d_6)

*Chatsumpun, et al., 2010

8. Cytotoxic and Antimalarial Activities of Compound DC-6

The cytotoxic and antimalarial activities of the isolated compound DC-6 (diptoindonesin G) were investigated. The results obtained are shown in Tables 20 and Table 21, respectively.

Compound	IC ₅₀ (μg /ml)				
Compound	NCI-H187	KB	MCF-7	Vero Cell	
DC-6	1.94	> 50	43.28	> 50	
Ellipticine	0.71	1.14	-	1.98	
Doxorubicin	0.54	0.35	8.82	-	
Tamoxifen	-	-	9.47	-	

Table 20. Cytotoxic activity of the test compounds

Table 21. Antimalarial activity of the test compounds

Compound	IC ₅₀ (μΜ)	
DC-6	19.11 (6.88 μg/ml)	
Dihydroartemisinin	1.25×10^{-3}	
Mefloquine	24.5×10^{-3}	

As shown in Table 20, DC-6 exhibited cytotoxic activity against human small-cell lung cancer (NCI-H187) and breast adenocarcinoma (MCF-7) cell lines, but was inactive against epidermoid carcinoma (KB) cell line. The compound was considered strongly active against the NCI-H187 cell line ($IC_{50} = 1.94 \ \mu g \ ml$), though its activity was not as strong as those of ellipticine and doxorubicin. Its activity against the MCF-7 cell line ($IC_{50} = 43.28 \ \mu g \ ml$) was considered weak. The compound appeared to be inactive against Vero cells, suggesting its selective cytotoxicity on the cancerous cells as compared to normal ones.

The result shown in Table 21 indicated that DC-6 exhibited antimalarial activity against *Plasmodium falciparum* K1 strain. Although its activity was not distinguished, especially when compared with those of dihydroartemisinin and mefloquine, the selectivity of the compound, as indicated by the lack of cytotoxicity against Vero cells, may be considered as point of interest for further detailed investigation on antimalarial activity of the compound.

CHAPTER V CONCLUSION

Phytochemical investigation of the stems of *Diospyros collinsae* Craib led to the isolation of seven compounds. These compounds include four triterpenoids, namely friedelin, lupeol, betulin and betulinic acid, and two stilbenoids, diptoindonesin D and diptoindonesin G, and a mixture of β -sitosterol and stigmasterol. The isolation of diptoindonesins D and G in the present work gave the first evidence for the occurrence of stilbenoids in the genus *Diospyros*.

The stilbenoid diptoindonesin G has been found to exhibit antimalarial activity and cytotoxic activities against NCI-H187 and MCF cancer cell lines, while the compound appeared to be non-cytotoxic to normal cells.

REFERENCES

<u>ภาษาไทย</u>

กรมป่าไม้, สำนักงานวิชาการป่าไม้, ส่วนพฤกษศาสตร์ป่าไม้, ชื่อพรรณไม้ในประไทย (ชื่อ พฤกษศาสตร์-ชื่อพื้นเมือง). กรุงเทพมหานคร พ.ศ. 2544.

ภาษาอังกฤษ

- Abdul-Wahab, S., Chatchanok, K., Chanita, P., Akkharawit, K. and Supreeya, Y. 2010. Naphthalene derivatives from *Diospyros wallichii*. <u>Can. J. Chem.</u> 88(9): 922-927.
- Adeniyi, B. A., Fong, H. H., Pezzuto, J. M., Luyengi, L. and Odelola, H. A. 2000.
 Antibacterial activity of diospyrin, isodiospyrin and bisisodiospyrin from the root of *Diospyros piscatoria* (Gurke) (Ebenaceae). <u>Phytother. Res</u>. 14(2):112-117.
- Adzu, B., Amos, S., Dzarma, S., Muazzam, I. and Gamaniel, K. S. 2002a.
 Pharmacological evidence favouring the folkloric use of *Diospyros mespiliformis* Hochst in the relief of pain and fever. <u>J. Ethnopharmacol.</u> 82(2-3): 191-195.
- Adzu, B., Amos, S., Muazzam, I., Inyang, U. S. and Gamaniel, K. S. 2002b. Neuropharmacological screening of *Diospyros mespiliformis* in mice. <u>J.</u> <u>Ethnopharmacol.</u> 83(1-2): 139-143.
- Akihisa, T., Yamamoto, K., Tamura, T., Kimura, Y., Lida, T., Nambara, T. and Chang, F.
 C. 1992. Triterpenoid ketones from *Lingnania chungii* McClure: arborione, friedelin and glutinone. <u>Chem. Pharm. Bull.</u> 40(3): 789-791.
- Antonisamy, P., Duraipandiyan, V. and Ignacimuthu, S. 2011. Anti-inflammatory, analgesic and antipyretic effects of friedelin isolated from *Azima tetracantha* Lam. in mouse and rat models. <u>J. Pharm. Pharmacol.</u> 63: 1070-1077.
- Aoonpakh, J. 2001. Phytochemical study of *Diospyros undulata* var. *cratericalyx*.
 Master's Thesis, Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.
- Azadbakhta, M., Safapour, S., Ahmadi, A., Ghasemi, M. and Shokrzadeh, M. 2010. Anti-diabetic effects of aqueous fruits extract of *Diospyros lotus* L. on

streptozotocin-induced diabetic rats and the possible morphologic changes in the liver, kidney and heart. J. Pharmacognosy Phytother. 2(2): 10-16.

- Baravalia, Y., Kaneria, M., Vaghasiya, Y., Parekh, J. and Chanda, S. 2009. Antioxidant and antibacterial activity of *Diospyros ebenum* Roxb. leaf extracts. <u>Turk. J. Biol.</u> 33(2): 159-164.
- Bei, W., Peng, W., Zang, L., Xie, Z., Hu, D. and Xu, A. 2007. Neuroprotective effects of a standardized extract of *Diospyros kaki* leaves on MCAO transient focal cerebral ischemic rats and cultured neurons injured by glutamate or hypoxia. <u>Planta Med.</u> 73(7): 636-643.
- Borges-Argaez, R., Canche-Chay, C. I., Pena-Rodríguez, L. M., Said-Fernandez, S. and Molina-Salinas, G. M. 2007. Antimicrobial activity of *Diospyros anisandra*. Fitoterapia 78(5): 370–372.
- Brien, J. O., Wilson, I., Orton, T. and Pognan, F. 2000. Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. <u>Eur.</u> J. <u>Biochem.</u> 267: 5421-5426.
- Cai, L.; Wei, G. X.; van der Bijl, P. and Wu, C. D. 2000. Namibian chewing stick, Diospyros lycioides, contains antibacterial compounds against oral pathogens. <u>J.</u> <u>Agric. Food Chem.</u> 48 (3): 909-914.
- Cantrell, C. L., Franzblau, S. G. and Fisher, N. H. 2001. Antimycobacterial plant triterpenoids. <u>Planta Med.</u> 67(8): 685-694.
- Chandramu, C., Manohar, R. D., Krupadanam, D. G. and Dashavantha, R. V. 2003. Isolation, characterization and biological activity of betulinic acid and ursolic acid from *Vitex negundo* L. <u>Phytother. Res.</u> 17(2): 129-134.
- Chang, C. I., Chen, C. R., Chiu, H. L., Kuo, C. L. and Kuo, Y. H. 2009. Chemical constituents from the Stems of *Diospyros maritima*. <u>Molecules</u> 14(12): 5281-5288.
- Chang, C. I., Huan, S. L. and Kuo, Y. H., 2007. Two new naphthoquinones from the stem of *Diospyros maritima*. J. Asian Nat. Prod. Res. 9(2): 153-158.
- Chang, C. I. and Kuo, Y. H. 1999. Two new lupane-type triterpenes from *Diospyros maritima*. J. Nat. Prod. 62(2): 309-310.

- Chang, C. I. and Kuo, Y. H. 1998. Three new lupane-type triterpenes from *Diospyros maritima*. <u>Chem. Pharm. Bull</u>. 46 (10): 1627-1629.
- Chatsumpun, M., Sritularak, B. and Likhitwitayawuid. K. 2010. Phenolic compounds from stem wood of *Millettia leucantha*. <u>Chem. Nat. Comp</u>. 46(4): 534-535
- Chaturvedi, P. K., Bhui, K. and Shukla, Y. 2008. Lupeol: connotations for chemoprevention. <u>Cancer Lett.</u> 263: 1-13.
- Chen, C. R., Cheng, C. W., Pan, M. H., Liao, Y. W., Tzeng, C. Y. and Chang, C. I. 2007. Lanostane-type triterpenoids from *Diospyros discolor*. <u>Chem. Pharm. Bull. (Tokyo)</u> 55(6): 908-911.
- Chen, G., Lu, H., Wang, C., Yamashita, K., Manabe, M., Meng, Z., Xu, S. and Kodama,
 H. 2002. Effect of five flavonoid compounds isolated from leaves of *Diospyros kaki* on stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils. <u>Clin. Chim. Acta</u> 326(1-2): 169-175.
- Chen, G., Ren, H., and Yu, C. 2012. A new 18,19-secoursane triterpene from the leaves of *Diospyros kaki*. <u>Chem. Nat. Comp.</u> 47(6): 918-920.
- Chen, G., Wang, Z. Q. and Jia, J. M. 2009. Three minor novel triterpenoids from the leaves of *Diospyros kaki*. <u>Chem. Pharm. Bull.</u> 57(5): 532-535.
- Costa, M. A. C., Alves, A. C., Seabra, R. M. and Andrade, P. B. 1998. Naphthoquinones of *Diospyros chamaethamnus*. <u>Planta Med</u>. 64 (4): 391.
- Costa, M. A. C., Silva, A. M. S., Alves, A. C. and Seabra, R. M. 1999. 6-[2-(7-Methyljuglonyl)] isoxylospyrin from *Diospyros chamaethamnus*. <u>Nat. Prod. Lett.</u> 13(4): 269-276.
- Dangoggo, S. M., Hassan, L. G., Sadiq, I. S. and Manga, S. B. 2012. Phytochemical analysis and antibacterial screening of leaves of *Diospyros mespiliformis* and *Ziziphus spina-christi*. J. Chem. Eng. 1(1): 31-37.
- Das, S., Bhattacharya, S., Pramanik, G. and Haldar, P. K. 2011. Antitumour effect of *Diospyros cordifolia* bark on Ehrlich ascites carcinoma-bearing Swiss albino mice. <u>Nat. Prod. Res.</u> : Formerly Natural Product Letters, DOI: 10. 1080 / 14786419.2011.585463

- Das, S., Haldar, P. K., Pramanik, G., Panda, S. P. and Bera, S. 2010. Evaluation of analgesic and anti-Inflammatory activity of *Diospyros cordifolia* extract. <u>Afr. J.</u> <u>Tradit. Complem.</u> 8(1): 11–14.
- De-Eknamkul, W. and Potduang, B. 2003. Biosysthesis of β-sitosterol and stigmasterol in *Croton sublyratus* proceeds via a mixed origin of isoprene unit. <u>Phytochemistry</u> 62: 389-398.
- Del. Recio, M. C., Giner, R. M, Manez, S., Gueho, J., Julien, H. R., Hostettmann, K. and Rios, J. L. 1995. Investigations on the steroidal anti-inflammatory activity of triterpenoid from *Diospyros leucomelas*. <u>Planta Med.</u> 61(1): 9-12.
- Desjardins, R. E., Canfield, C. J., Haynes, J. D. and Chulay, J. D. 1979. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. <u>Antimicrob. Agents Ch</u>. 16: 710-718.
- Devi, P., Meera, R., Merlin, N. J. and Babu, D. D. 2010. Study of analgesic, antipyretic and diuretic activities of various extracts of *Diospyros melonoxylon*. Int. J. Pharm. <u>Tech. Res.</u> 2(3): 2038-2043.
- Dewanjee, S., Kundu, M., Maiti, A., Majumdar, R., Majumdar, A. and Mandal, S. C. 2007a. In vitro evaluation of antimicrobial activity of crude extract from plants *Diospyros peregrina, Coccinia grandis* and *Swietenia macrophylla*. <u>Trop. J.</u> <u>Pharm. Res.</u> 6(3): 773-778.
- Dewanjee, S., Maiti, A., Kundu, M. and Mandal, S. C. 2007b. Evaluation of anthelmintic activity of crude extracts of *Diospyros peregrina*, *Coccinia grandis* and *Schima wallichii*. <u>Dhaka Univ. J. Pharm. Sci.</u> 6(2): 121-123.
- Duraipandiyan, V., Gnanasekar, M. and Ignacimuthu, S. 2010. Antifungal activity of triterpenoid isolated from *Azima tetracantha* leaves. <u>Folia Histochem. Cyto.</u> 48(2): 311-313.
- Dzoyem, J. P., Kechia, F. A., Kuete, V., Pieme, A. C., Akak, C. M., Tangmouo, J. G. and Lohoue, P. J. 2011. Phytotoxic, antifungal activities and acute toxicity studies of the crude extract and compounds from *Diospyros canaliculata*. <u>Nat. Prod. Res.</u> 25(7): 741-749.

- Evans, P. H., Bowers, W. S., Litaudon, M. and Sevenet, T. 1999. Plumbagin from *Diospyros olen*. <u>Molecules</u> 4(4): M93.
- Fan, J. and He, C. 2006. Simultaneous quantification of three major bioactive triterpene acids in the leaves of *Diospyros kaki* by high-performance liquid chromatography method. <u>J. Pharmaceut. Biomed.</u> 41: 950–956.
- Fernandez, M. A., de las Heras, B., Garcia, M. D., Saenz, M. T. and Villar, A. 2001. New insights into the mechanism of action of the anti-inflammatory triterpene lupeol. <u>J.</u> <u>Pharm. Pharmacol.</u> 53: 1533-1539.
- Fulda, S. 2008. Betulinic acid for cancer treatment and prevention. <u>Int. J. Mol. Sci.</u> 9(6): 1096-1107.
- Ganapaty, S., Thomas, P. S., Fotso, S. and Laatsch, H. 2004. Antitermitic quinones from *Diospyros sylvatica*. <u>Phytochemistry</u>. 65(9): 1265-1271.
- Ganapaty, S., Thomas, P. S., Karagianis, G. and Waterman, P. G. 2006. Mono and dimeric naphthalene derivatives from the roots of *Diospyros assimilis*. <u>Nat Prod.</u> <u>Res</u>. 20(9): 783-787.
- Ge, H. M., Yang, W. H., Shen Y., Jiang, N., Guo, Z. K., Luo, Q., Xu, Q., Ma, J. and Tan
 R. X. 2010. Immunosuppressive resveratrol aneuploids from *Hopea chinensis*. <u>Chem. Eur. J.</u> 16(21): 6338 – 6345
- Geetha, T. and Varalakshmi, P. 2001. Anti-inflammatory activity of lupeol and lupeol linoleate in rats. J. Ethnopharmacol. 76: 77-80.
- Hashimoto, F., Kashiwada, Y., Cosentino, L. M., Chen, C. H., Garrett, P. E. and Lee, K.
 H. 1997. Anti-AIDS agents--XXVII. Synthesis and anti-HIV activity of betulinic acid and dihydrobetulinic acid derivatives. <u>Bioorg. Med. Chem.</u> 5(12): 2133-43.
- Higa, M., Noha, N., Yokaryo, H., Ogihara, K. and Yogi, S. 2002. Three new naphthoquinone derivatives from *Diospyros maritima* Blume. <u>Chem. Pharm. Bull.</u> 50(5):590-593.
- Hunt L, Jordan M, De Jesus M, Wurm FM. 1999. GFP-expressing mammalian cells for fast, sensitive, noninvasive cell growth assessment in a kinetic mode. <u>Biotechnol.</u> <u>Bioeng.</u> 65:201–205.

- Jadhav, J. K., Masirkar, V. J. and Deshmukh, V. N. 2009. Antihyperglycemic effect of *Diospyros melanoxylon* (Roxb.) bark against alloxan-induced diabetic rats. Int. J. <u>Pharm. Tech. Res.</u> 1(2): 196-200.
- Jang, I., Jo, E., Bae, M., Lee, H., Jeon, G., Park, E., Yuk, H., Ahn, G. and Lee, S. 2010. Antioxidant and antigenotoxic activities of different parts of persimmon (*Diospyros kaki* cv. fuyu) fruit. J. Med. Plants Res. 4(2): 155–160.
- Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Hetha, R. G., Moon, R. C., and Pezzuto, J. M. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. <u>Science</u> 275, 218.
- Jo, K., Lee, J., Lee, S. and Park, H. 2011. Anticancer activity of persimmon (*Diospyros kaki* L.) calyx extracts on human cancer cells. <u>J. Med. Plants Res.</u> 5(12): 2546–2550.
- Juliawaty, L. D., Sahidin, Hakim, E. H., Achmad, S. ,A., Syah, Y. M., Latip, J. and Said,
 I. M. 2009. A 2-arylbenzofuran derivative from *Hopea mengarawan*. <u>Nat. Prod.</u> <u>Comm.</u> 4(7): 947-950.
- Kantamreddi, V. S. S. and Wright, C. W. 2008. Investigation of Indian *Diospyros* species for antiplasmodial properties. <u>Evid-Based Complait.</u> 5(2): 187–190.
- Kawase, M., Motohashi, N., Satoh, K., Sakagami, H., Nakashima, H., Tani, S., Shirataki, Y., Kurihara, T., Spengler, G., Wolfard, K. and Molnár, J. 2003. Biological activity of persimmon (*Diospyros kaki*) peel extracts. <u>Phytother. Res.</u> 17(5): 495-500.
- Khan, R. M. and Rwekika, E. 1999. 6",8'-Bisdiosquinone from *Diospyros mafiensis*. <u>Phytochemistry</u> 50(1): 143–146.
- Khan, R. M. and Rwekika, E. 1998. A binaphthoquinone from *Diospyros greeniwayi*. <u>Phytochemistry</u> 49 (8): 2501-2503.
- Khan, R. M. and Timi, D. 1999a. Constituent of root and stem barks, leaves and fruits of *Diospyros hallierii*. <u>Fitoterapia</u> 70 (2): 320-321.
- Khan, R. M. and Timi, D. 1999b. Constituent of root and stem barks of *Diospyros* villosiuscula. <u>Fitoterapia</u> 70 (2): 209-211.

Khan, R. M. and Timi, D. 1999c. Constituents of *Diospyros Iolin, D. maritima* and *D. novoguinensis*. <u>Fitoterapia</u> 70(2): 194-196.

- Kim, E., Lee, H., Cho, C., Kim, Y. J., and Kim, D. 2011. Antioxidant capacity and antiinflammatory effect of the ethyl acetate fraction of dried persimmon (*Diospyros kaki* Thumb.) on THP-1 human acute monocytic leukemia cell line. <u>J. Korean Soc.</u> <u>Appl. Biol. Chem.</u> 54(4): 606-611.
- Kuete, V., Tangmouo, J. G., Meyer, J. J. M. and Lall, N. 2009. Diospyrone, crassiflorone and plumbagin: three antimycobacterial and antigonorrhoeal naphthoquinones from two *Diospyros* spp. Int. J. Antimicrob. Ag. 34(4): 322-325.
- Kumar, M. S., Chakraborty, G., Gupta, M. and Mazumder, U. K. 2006. In vitro antioxidant activity of Diospyros malabarica Kostel bark. <u>Indian J. Exp. Biol.</u> 44(01): 39-44.
- Kuo, Y. H. and Chang, C. I. 2000. Six new compounds from the heartwood of *Diospyros maritima*. <u>Chem. Pharm. Bull</u>. 48 (8): 1211-1214.
- Lee, S., Chung, S. and Lee, I. 2006. The Antidiabetic Effect of Dietary Persimmon (*Diospyros kaki* L. cv. Sangjudungsi) Peel in Streptozotocin-induced Diabetic Rats. J. Food Sci. 71(3): S293–S298.
- Li, X. C., Van der Bijl, P. and Wu, C. D. 1998. Binaphthalenone glycosides from African chewing sticks, *Diospyros lycioides*. J. Nat. Prod. 61 : 817-820.
- Loizzo, M. R., Said, A., Tundis, R., Hawas, U. W., Rashed, K., Menichini, F., Frega, N. G. and Menichini, F. 2009. Antioxidant and antiproliferative activity of *Diospyros lotus* L. extract and isolated compounds. <u>Plant Foods Hum. Nutr.</u> 64(4): 264-270.
- Maiga, A., Malterud, K. E., Diallo, D. and Paulsen, B. S. 2006. Antioxidant and 15lipoxygenase inhibitory activities of the Malian medicinal plants *Diospyros abyssinica* (Hiern) F. White (Ebenaceae), *Lannea velutina* A. Rich (Anacardiaceae) and *Crossopteryx febrifuga* (Afzel) Benth. (Rubiaceae). <u>J.</u> <u>Ethnopharmacol.</u> 104(1-2): 132-137.
- Mallavadhani, U. V. and Mahapatra, A. 1998. New flavonoids from the leaves of *Diospyros melanoxylon*. <u>Biochem. Syst. Ecol.</u> 26: 941-942.

- Mallavadhani, U.V., Panda, A. K. and Rao, Y. R. 2001. *Diospyros melanoxylon* leaves: a rich source of pentacyclic triterpenes. <u>Pharm. Biol.</u> 39(1): 20-24.
- Mallavadhani, U.V., Panda, A. K. and Rao, Y. R. 1998. Pharmacology and chemotaxonomy of *Diospyros*. <u>Phytochemistry</u> 49(4): 901-951.
- Matsushita, Y., Jang, I., Imai, T., Fukushima, K. and Lee, S. 2010. Naphthalene derivatives from *Diospyros kaki*. J. Wood Sci. 56(5): 418-421.
- Mohamed, I. E., El Nur, El B. E., Choudhary, M. I. and Khan, S. N. 2009. Bioactive natural products from two Sudanese medicinal plants *Diospyros mespiliformis* and *Croton zambesicus*. <u>Rec. Nat. Prod.</u> 3(4): 198-203.
- Moody, J. O., Roberts, V. A. and Hughes, J. A. 2002. Antiviral activities of selected medicinal plants II: effect of extracts of *Diospyros barteri, Diospyros monbutensis* and *Sphenocentrum jollyanum* on cowpea mosaic viruses. <u>Pharm. Biol.</u> 40(5): 342-345.
- Moshi, M. J., Masimba, P. J., Nondo, R. S. O., Mbwambo, Z. H., Kapingu, M. C., Mohamed, M. and Kimbokota, F. 2007a. Anticonvulsant activity of extracts of *Diospyros fischeri* stem bark. <u>Afr. J. Tradit. Complem.</u> 4(1): 94–98.
- Moshi, M. J., Mbwambo, Z. H., Nondo, R. S. O., Masimba, P. J., Kapingu, M. C. and Magelewanya, E. S. 2007b. Anticonvulsant activity of *Diospyros fischeri* root extracts. <u>Afr. J. Tradit. Complem.</u> 4(2): 226–230.
- Nareeboon, P., Kraus, W., Beifuss, U., Conrad, J., Klaiber, I. and Sutthivaiyakit, S. 2006.
 Novel 24-nor-, 24-nor-2,3-seco-, and 3,24-dinor-2,4-seco-ursane triterpenes from *Diospyros decandra*: evidences for ring A biosynthetic transformations.
 <u>Tetrahedron</u> 62(23): 5519–5526.
- Ndhlala, A. R., Chitindingu, K., Mupure, C., Murenje, T., Ndhlala, F., Mudadi, A. and Muchuweti, B. M. 2008. Antioxidant properties of methanolic extracts from *Diospyros mespiliformis* (jackal berry), *Flacourtia indica* (Batoka plum), *Uapaca kirkiana* (wild loquat) and *Ziziphus mauritiana* (yellow berry) fruits. Int. J. Food Sci. <u>Tech.</u> 43(2): 284–288.

- Nematollahi, A., Aminimoghadamfarouj, N. and Wiart, C. 2011. Anti-bacterial, antioxidant activity and phytochemical study of *Diospyros wallichii* an interesting Malaysia's endemic species of Ebenaceae. <u>Int. J. Pharm. Tech. Res.</u> 3(3): 1732-1736.
- Okonkwo, T. J. N. and Okonkwo, C. J. O. 2009. Antioxidant properties of *Diospyros preussi* (Ebenaceae Gurke) Seed Oil. <u>Trop. J. Pharm. Res</u>. 8(6): 551-555.
- Okuyama, E., Homma. M., Satoh, Y., Fujimoto, H., Ishibashi, M., Yamazaki, M., Satake,
 M. and Ghazali, A. B. A. 1999. Monoamine oxidase inhibitory naphthoquinone and/ or naphthalene dimers from *Lemuni Hitam* (*Diospyros* sp.), a Malaysian herbal medicine. <u>Chem. Pharm. Bull</u>. 47(10): 1473-1476.
- Oluremi, B. B., Osungunna, M. O. and Ogbole, O. O. 2010. Phytochemical and antimicrobial screening of the leaf extract of *Diospyros barteri* Gurke. <u>Pharmacogn. J.</u> 2(11): 405-408.
- Oshima, Y., Namao, K., Kamijou, A., Matsuoka, S., Nakano, M., Terao, K., and Ohizumi,
 Y. 1995. Powerful hepatoprotective and hepatotoxic plant oligostilbenes, isolated from the Oriental medicinal plant *Vitis coignetiae* (Vitaceae). <u>Experimentia</u>. 51(1): 63-66
- Pathak, A., Kulshreshtha, D. K. and Maurya, R. 2004. Coumaroyl triterpene lactone, phenolic and naphthalene glycoside from stem bark of *Diospyros angustifolia*. <u>Phytochemistry</u> 65(14): 2153-2158.
- Phengklai, C. 2005. Two new species of *Diospyros* (Ebenaceae) from Thailand. <u>Thai</u> <u>For. Bull.</u> 33: 157-160.
- Phengklai. C. Ebenaceae. In T. Smitinand and K. Larsen (eds.), *Flora of Thailand Vol. 2 Part 4*. Bangkok : TISTR Press, 1981, pp. 282-392.
- Prachayasittikul, S., Saraban, P., Cherdtrakulkiat, R., Ruchirawat, S. and Prachayasittikul, V. 2009. New bioactive triterpenoids and antimalarial activity of *Diospyros rubra* Lec. <u>EXCLI J.</u> 9: 1-10.
- Prajoubklang, A., Sirithunyalug, B., Charoenchai, P., Suvannakad, R., Sriubolmas, N., Piyamongkol, S., Kongsaeree, P. and Kittakoop, P. 2005. Bioactive

deoxypreussomerins and dimeric naphthoquinones from *Diospyros ehretioides* fruits: deoxypreussomerins may not be plant metabolites but may be from fungal epiphytes or endophytes. <u>Chem. Biodivers</u>. 2(10): 1358-1367.

- Ragasa, C. Y., Puno, M. R., Sengson, J. M., Shen, C. C., Rideout, J. A. and Raga, D. D. 2009. Bioactive triterpenes from *Diospyros blancoi*. <u>Nat. Prod. Res</u>. 23(13): 1252-1258.
- Rath, S. K., Mohapatra, N., Dubey, D., Panda, S. K., Thatoi, H. N. and Dutta, S. K. 2009. Antimicrobial activity of *Diospyros melanoxylon* bark from Similipal Biosphere Reserve, Orissa, India. <u>Afr. J. Biotechnol.</u> 8(9): 1924-1928.
- Ravishankara, M. N., Shrivastava, N., Jayathirtha, M. G., Padh, H. and Rajani, M. 2000. Sensitive high-performance thin-layer chromatographic method for the estimation of diospyrin, a tumour inhibitory agent from the stem bark of *Diospyros montana* Roxb. J. Chromatogr. B. 744(2): 257-262.
- Reutrakul, V., Soorukrum, D., Pohmakotr, M., Jariyawat, S., Piyajaturawat, P., Panthong,
 A., Tuchinda, P. 2010. Chemical constituents from leaves and twigs of *Diospyros* ranongensis (Ebenaceae). <u>Congress on Science and Technology of Thailand</u> 36.
- Reynolds, W. F., McLean, S., Scobar, L. I. and Leon, I. 1986. Total assignment of ¹³C and ¹H spectra of three isomeric triterpenol derivatives by 2D NMR: an investigation of the potential utility of ¹H chemical shifts in structural investigations of complex natural products. <u>Tetrahedron 42(13)</u>: 3349-3729.
- Rzeski, W., Stepulak, A., Szymanski, M., Juszczak, M., Grabarska, A., Sifringer, M., Kaczor, J. and Kandefer-Szerszen, M. 2009. Betulin elicits anti-cancer effects in tumour primary cultures and cell lines *in vitro*. <u>Basic Clin. Pharmacol.</u> <u>Toxicol.</u> 105(6): 425-32.
- Sa, Y. S., Kim, S. J. and Choi, H. S. 2005. The anticoagulant fraction from the leaves of *Diospyros kaki* L. has an antithrombotic activity. <u>Arch. Pharm. Res.</u> 28(6): 667-674.

- Sahidin, Hakima, E. H., Juliawaty, L. D., Syah Y. M., Din, L. B., Ghisalberti, E. L. Latip, J.
 Said, I. M. and Achmad, S. A. 2005. Cytotoxic properties of oligostilbenoids
 from the tree barks of *Hopea dryobalanoides*. <u>Z. Naturforsch</u>. 60: 723-727
- Siddiqui, S., Haffeez, F., Begum, S., and Siddiqui, B.S. 1988. Oleanderol, a new pentacyclic triterpene from the leaves of *Nerium oleander*. J. Nat. Prod. 51(2): 229-233.
- Sinha, B. N., Bansal, S. K. and Pattnaik, A. K. 2009. Phytochemical and antimicrobial activity of extracts, fractions and betulin, 7-methyl juglone obtained from *Diospyros paniculata*. J. Nat. Rem. 9(1): 99-102.
- Sutthivaiyakit, S., Seeka, C., Kritwinyu, T., Pisutchareonpong, S. and Chimnoi, N. 2012. 19-nor -11 -oxooleanan-12-ene and 18,19- seco- 19-oxours-11,13(18)-diene triterpenes from *Diospyros decandra* bark. <u>Tetrahedron Lett.</u> 53(14): 1713–1716.
- Tanaka, T., Ito, T., Ido, Y., Son, T.-K. Nakaya, K., linuma, M., Ohyama, M. and Chelladurai, V. 2000. Stilbenoids in the stembark of *Hopea parviflora*. <u>Phytochemistry</u> 53(8): 1015-1019
- Tangmouo, J. G., Lontsi, D., Ngounou, F. N., Kuete, V., Meli, A. L., Manfouo, R. N., Kamdem, H. W., Tane, P., Beng, V. P., Sondengam, B. L. and Connolly, J. D. 2005. Diospyrone, a new coumarinyl binaphthoquinone from *Diospyros canaliculata* (Ebenaceae): structure and antimicrobial activity. <u>B. Chem. Soc. Ethiopia</u> 19(1): 81-88.
- Tangmouo, J. G., Meli, A. L., Komguem, J., Kuete, V., Ngounou, F. N., Lontsi, D., Beng,
 V. P., Choudhary, M. I. and Sondengam, B. L. 2006. Crassiflorone, a new naphthoquinone from *Diospyros crassiflora* (Hien). <u>Tetrahedron Lett.</u> 47(18): 3067–3070.
- Thanakijcharoenpath, W. and Theanphong, O. 2007. Triterpenoids from the stem of *Diospyros glandulosa*. <u>Thai J. Pharm. Sci.</u> 31: 1-8.
- Theerachayanan, T., Sirithunyalug, B. and Piyamongkol, S. 2007. Antimalarial and antimycobacterial activities of dimeric naphthoquinone from *Diospyros glandulosa* and *Diospyros rhodocalyx*. <u>CMU. Journal</u> 6(2): 253-259.

- Thuong, P. T., Lee, C. H., Dao T. T., Nguyen, P. H., Kim, W. G., Lee, S. J. and Oh, W. K. 2008. Triterpenoids from the leaves of *Diospyros kaki* (Persimmon) and their inhibitory effects on protein tyrosine phosphatase 1B. <u>J. Nat. Prod.</u> 71(10): 1775-1778.
- Tinto, W. F., Blair, L. C. and Alli, A. 1992. Lupane triterpenoids of *Salacia cordata*. J. Nat. Prod. 55(3): 395-398.
- Trager, W. and Jensen, J. B. 1976. Human malaria parasites in continuous culture. Science. 193(4254): 673-675.
- Trongsakul, S., Panthong, A., Kanjanapothi, D. and Taesotikul, T. 2003. The analgesic, antipyretic and anti-inflammatory activity of *Diospyros variegate* Kruz. <u>J.</u> <u>Ethnopharmacol.</u> 85(2–3): 221–225.
- Venu, G. Y., Ravindranath, A., Kalpana, G., Raju, A. B., and Prabhakar, R. V. 2011. antitumor activity of *Diospyros peregrina* on Ehrlich ascites carcinoma in mice. <u>J.</u> <u>Sci. Res.</u> 3 (2): 413-419.
- Wada, S., Iida, A. and Tanaka, R. 2001. Screening of triterpenoids isolated from *Phyllanthus flexuosus* for DNA topoisomerase inhibitory activity. <u>J. Nat. Prod.</u> 64: 1545-1547.
- Wang, X., Habib, E., León, F., Radwan, M. M., Tabanca, N., Gao, J., Wedge, D. E. and Cutler, S. J. 2011. Antifungal metabolites from the roots of *Diospyros virginiana* by overpressure layer chromatography. <u>Chem. Biodivers</u>. 8(12): 2331-40.
- Yahia, E. M., Gutierrez-Orozco, F. and Leon, C. A. 2011. Phytochemical and antioxidant characterization of the fruit of black sapote (*Diospyros digyna* Jacq.) <u>Food Res.</u> <u>Int.</u> 44(7): 2210–2216.
- Zheng, G. 1994. Cytotoxic terpenoids and flavonoids from Artemisia annua. Planta Med. 60(1): 54-57.

APPENDIX

.

Figure 2. IR spectrum of compound DC-1 (KBr)

Figure 3. ¹H NMR (500 MHz) spectrum of compound DC-1 (in CDCl₃)

Figure 4a. ¹³C NMR (125 MHz) spectrum of compound DC-1 (in CDCl₃)

Figure 5. ESI Mass spectrum of compound DC-1

Figure 6. IR spectrum of compound DC-2 (KBr)

Figure 7a. ¹H NMR (500 MHz) spectrum of compound DC-2 (in CDCl₃)

Figure 7b. ¹H NMR (500 MHz) spectrum of compound DC-2 (in CDCl₃) (expanded)

Figure 8a. ¹³C NMR (125 MHz) spectrum of compound DC-2 (in CDCl₃)

,29

Figure 8b. ¹³C NMR (125 MHz) spectrum of compound DC-2 (in CDCl₃) (expanded)

Figure 9. IR spectrum of compound DC-3 (KBr)

Figure 10. ¹H NMR (500 MHz) spectrum of compound DC-3 (in CDCl₃)

Figure 11a. ¹³C NMR (125 MHz) spectrum of compound DC-3 (in CDCl₃)

Figure 12. IR spectrum of compound DC-4 (KBr)

Figure 13a. ¹H NMR (500 MHz) spectrum of compound DC-4 (in CDCl₃)

Figure 13b. ¹H NMR (500 MHz) spectrum of compound DC-4 (in CDCl₃) (expanded)

Figure 15a. ¹H NMR (500 MHz) spectrum of compound DC-5 (in CDCl₃)

Figure 15b. ¹H NMR (500 MHz) spectrum of compound DC-5 (in CDCl₃) (expanded)

Figure 17. UV spectrum of compound DC-6

Figure 18. IR spectrum of compound DC-6 (KBr)

Figure 19a. ¹H NMR (500 MHz) spectrum of compound DC-6 (in DMSO-d₆)

Figure 19b. ¹H NMR (500 MHz) Spectrum of compound DC-7(in DMSO-d₆) (expanded)

Figure 20. ¹H-¹H COSY spectrum of compound DC-6 (in DMSO-*d*₆) (expanded)

Figure 21. ¹³C NMR (125 MHz) spectrum of compound DC-6 (in DMSO-d₆)

Figure 22. HSQC spectrum of compound DC-6 (in DMSO- d_6) (expanded)

Figure 23a. HMBC spectrum of compound DC-6 (in DMSO- d_6) (expanded)

Figure 23b. HMBC spectrum of compound DC-6 (in DMSO-d₆) (expanded)

Figure 23c. HMBC spectrum of compound DC-6 (in DMSO- d_6) (expanded)

Figure 23d. HMBC spectrum of compound DC-6 (in DMSO- d_6) (expanded)

Figure 24. HRESI Mass spectrum of compound DC-6

Figure 25. UV spectrum of compound DC-7

Figure 26. IR spectrum of compound DC-7 (KBr)

Figure 20. ¹H-¹H COSY spectrum of compound DC-6 (in DMSO-*d*₆) (expanded)

Figure 27a. ¹H NMR (500 MHz) spectrum of compound DC-7 (in acetone-d₆)

Figure 27b. ¹H NMR (500 MHz) spectrum of compound DC-7 (in acetone- d_6) (expanded)

Figure 28. ¹H-¹H COSY spectrum of compound DC-7 (in acetone- d_6) (expanded)

Figure 30a. HSQC spectrum of compound DC-7 (in acetone- d_6) (expanded)

Figure 30b. HSQC spectrum of compound DC-7 (in acetone- d_6) (expanded)

Figure 30c. HSQC spectrum of compound DC-7 (in acetone-d₆) (expanded)

Figure 31a. HMBC spectrum of compound DC-7 (in acetone- d_6) (expanded)

Figure 31b. HMBC spectrum of compound DC-7 (in acetone- d_6) (expanded)

Figure 31c. HMBC spectrum of compound DC-7 (in acetone- d_6) (expanded)

158

İ

Figure 31d. HMBC spectrum of compound DC-7 (in acetone- d_6) (expanded)

Figure 31e. HMBC spectrum of compound DC-7 (in acetone- d_6) (expanded)

Figure 32. HRESI Mass spectrum of compound DC-7
VITA

Miss Buntita Bumroong was born in Rayong on November 20, 1985. She received her Bachelor's degree of Science in Pharmacy in 2008 from the Faculty of Pharmacy, Huachiew Chalermprakiet University, Samutprakan, Thailand.

Poster presentation

Bumroong, B. and Thanakijcharoenpath, W. Triterpenoids from *Diospyros collinsae*. Presented at the 28th Annual Research Conference in Pharmaceutical Sciences. January 20, 2012, Bangkok, Thailand.