CHAPTER II

HISTORICAL.

Alkaloids Isolated from Species of Erythrophleum

The Erythrophleum alkaloids were firstly studied by Gallois and Hardy in 1875 from Erythrophleum guineense G. Don bark and E. couminga Baill, leaves and seeds (Dalma, 1954). To date, there are about fourty alkaloids of which complete structures are known from only six Erythrophleum species. Most of the alkaloids were isolated from the bark extract. Arya (1962) reported the alkaloidal smount in the bark of various species as shown in Table 1.

Table 1

Plant	Source	Alkaloid (%)
Erythrophleum africanum Harms.	Tanganyika	0.04
E. chlorostachys Baill.	Queensland	0.25
E. fordii Oliv.	Viet Nam	0.37
E. guineense G. Don	Zanzibar	0.77
E. ivorense A. Chev.	West Nigeria	0.31
E. lasianthum Crob.	Portuguese E. Africa	0.26

Alkaloidal amount of some Erythrophleum species

The alkaloids reported to be distributed in genus Erythrophleum are summarized in Table 2.

Table 2

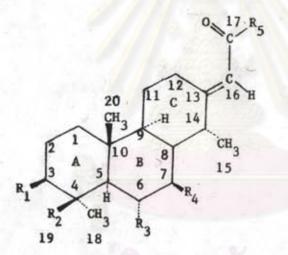
Distribution of Erythrophleum alkaloids

Plant	Alkaloid	Reference
rythrophleum africanum	Cassamidine	
Harms. (bark)	Erythrophlamine	Jansson and Cronlund, 1976
	Norerythrophlamide	
	Norerythrostachamide	
. couminga Baill.	Cassaine	Cronlund and Oguakwa, 1975
(bark)	Cassaidine	Ruzicka et al., 1945 b.
Sec. 18	Coumingidine	Schlittler, 1941.
	Coumingine	Cronlund and Oguakwa, 1975
Contraction of the	Constant States	Ruzicka et al.1945 a. b.
	Norcoumingide	Cronlund and Oguakwa, 1975
ศนย์ว	19-Nor-4-dehydro- cassaidine	Oguakwa and Cronlund, 1976
	Cassamine	1000
A M TOLAU	Norcassamide	
	Cassamidine	
	Erythrophlamine	Cronlund and Oguakwa, 1975
	Erythrophleguine	
	3-Hydroxynorerythro-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	suamide	

Plant	Alkaloid	Reference
Erythrophleum chloro-	Cassaidine	Loder <i>et al.</i> , 1974;
stachys Baill. (bark)		Falkiner et al., 1975.
	Norcassaidine	Falkiner et al., 1975.
121. 27	Norcassaidide	Loder et al., 1974.
	Norerythrostachaldine	Falkiner et al., 1975;
	3β-Acetoxynorerythro- stachaldine	Loder and Nearn, 1975 b.
	Cassamidine	Falkiner et al., 1975;
	Norcassamidine	Loder et al, 1974.
	Norcassamidide	Loder et al., 1974.
	Norerythrophlamine	
	3β-Acetoxynorerythro- phlamine	Falkiner et al., 1975.
. คนย์วิ	Norerythrophlamide	Loder <i>et al.</i> , 1974.
	Norerythrostachamine	
	3β-Acetoxynorerythro- stachamine	Falkiner et al., 1975.
1,22,32	Norerythrostachamide	Loder .et al., 1974.
	Norerythrosuamine	Falkiner et al., 1975.
	3β-Acetoxynorerythro- suamine	Loder and Nearn, 1975 a.

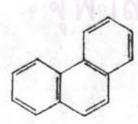
Plant	Alkaloid	Reference
Brythrophleum chloro- stachys Baill. (leaf)	 β-Dimethylaminoethyl- cinnamate N-2-Hydroxyethyl-N- methylcinnamamide N-2-Hydroxyethyl-N- methyl-trans-p- hydroxycinnamamide N-2-Hydroxyethyl- cinnamamide 	Griffin et al., 1971.
E. fordii Oliv. (bark)	Cassaine	Arya, 1962.
E. guineense G. Don (bark)	Cassaine	Dalma, 1939; Clarke, 1971; Lindwall et al., 1965.
	Cassaidine	Lindwall et al., 1971; Ruzicka and Dalma, 1940.
	Coumidine	Thorell et al., 1968.
ง้หายสเ	Coumingine Cassamine	Lindwall et al., 1965.
	Norcassamide	Friedrich-Fiechtl and Spitteller, 1971; Loder et al., 1972.
	Cassamidine	Thorell et al., 1968.

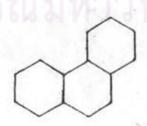
Plant	Alkaloid	Reference
Erythrophleum guineense G. Don (bark)	Norcassamidide	Friedrich-Fiechtl and Spitteller, 1971; Loder et al., 1972.
	Erythrophlamine	Engel and Tondeur, 1948 & 1949.
	Erythrophleguine	Clarke, 1971; Lindwall et al., 1965.
1. 1	Erythrosuamine	Thorell et al., 1968.
	Norerythrosuamide	Friedrich-Fiecht] and
	Dehydronorerythro-	Spitteller, 1971; Loder
	suamide	et al., 1972.
E. ivorense A. Chev.	Cassaine	Cronlund and Sandberg, 1971
(bark)	19-Hydroxycassaine	1
ศนย์วิ	3-(3-Methylcrotonyl)- cassaine	Cronlund, 1973.
	Norcassaide	Cronlund and Sandberg, 1971
		Loder et al., 1972.
	Cassaidine	Cronlund and Sandberg, 1971
	Coumidine	J
	Ivorine	Ottinger et al., 1965.
	Cassamine	Cronlund and Sandberg, 1971
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cronlund, 1973.


Plant	Alkaloid	Reference
Erythrophleum ivorense A. Chev. (bark)	Norcassamide	Cronlund and Sandberg, 1971; Loder et al., 1972; Loder and Nearn, 1972.
	Cassamidine Erythrophlamine	Cronlund and Sandberg, 1971.
	Norerythrophlamide	Cronlund and Sandberg, 1971; Loder <i>et al.</i> , 1972; Loder and Nearn, 1972.
	Erythrophleguine	Cronlund and Sandberg, 1971.

Chemistry of Erythrophleum Alkaloids

Research on the chemistry of Erythrophleum alkaloids was begun in 1935 when Dalma succeeded in isolating three crystalline alkaloids (cassaine, cassaidine and norcassaidine) and an amorphous one (homophleine) from the bark of Erythrophleum guineense G. Don (Dalma, 1954). Subsequently extensive chemical investigations of this group of alkaloids have been undertaken in several laboratories and led to the structural elucidation of those which have been isolated.

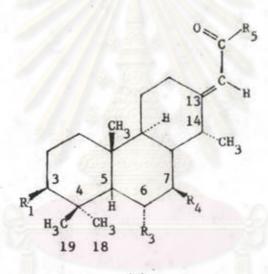

A. Basic Structure of Erythrophleum Alkaloids (1).


Most of the alkaloids obtained from the species of Erythrophleum are, in general, secondary or tertiary aminoethanol esters, or amides of α,β -unsaturated monocarboxylic acid of tricyclic diterpene series containing a perhydrophenanthrene skeleton (3). The tricyclic skeleton of these alkaloids is classified for cassane group (4) of diterpenoids. In this thesis, numbering system of diterpenoid portion follows the proposal of McCrindle (1965). The basic and correlative structures of Erythrophleum alkaloids are shown in Figure 1.

 $R_5 = OCH_2CH_2N(CH_3)_2$ or $OCH_2CH_2NH(CH_3)$ or $N(CH_3)CH_2CH_2OH$

(1) Basic structure

(2) Phenanthrene


(3) Perhydrophenanthrene

(4) Cassane

Figure 1. Basic and correlative structures of Erythrophleum alkaloids.

There are two major groups of Erythrophleum alkaloids depending on the R₂ group at C-4 of ring A (1).

The first group (5) contains two methyl groups at C-4 (1, $R_2 = CH_3$) and a hydroxyl group at C-3 (1, $R_1 = OH$). At C-3, some of the alkaloids are esters having acetate (OOCCH₃), 3-methylcrotonate (OOCCH=C(CH₃)₂). 3-hydroxylsovalerate (OOCCH₂C(OH)(CH₃)₂) or hydroxylvalerate (OOCC₄H₈OH) group as R_1 . The alkaloids in this group are summarized in Table 3.

(5)

15

Table 3

Alkaloid	R ₁	R ₃	R ₄	R ₅
Cassaine	ОН	н	-0	OCH2CH2N(CH3)2
6α-Hydroxycassaine	OH	ЮH	=0	OCH2CH2N(CH3)2
3-(3-Methylcrotonyl)-	ооссн=с (сн ₃) 2	H	=-0	OCH2CH2N(CH3)2
cassaine				
Norcassaide	он	H	=0	N(CH3)CH2CH2OH
Cassaidine	ОН	н	OH	OCH2CH2N(CH3)2
Norcassaidine	ОН	н	ОН	OCH2CH2NH(CH3)
Norcassaidide	ОН	н	он	N(CH3)CH2CH2OH
Coumingine	ооссн ₂ с(он)(сн ₃) ₂	H	=0	OCH2CH2N(CH3)2
Norcoumingide	OOCCH2C(OH)(CH3)2	н	=0	N(CH3)CH2CH2OH
Coumidine	ооссн ₂ с (он) (сн ₃) ₂	H	ОН	OCH2CH2N(CH3)2
Coumingidine	оосс ₄ н ₈ он	H	-0	OCH2CH2NH(CH3)
Ivorine	OOCCH=C(CH ₃) ₂	н	=0	OCH2CH2NH(CH3)

Erythrophleum alkaloids containing C-4 dimethyl groups

References: Clarke, 1971; Cronlund, 1973 a, b; Cronlund and Oguakwa, 1975; Falkiner et al., 1975; Hauth et al., 1965; Loder et al., 1974; Morin, 1968; Ottinger et al., 1965; Thorell et al., 1968. The second group (6) has one β -carbomethoxy group at C-4 in place of a methyl group (1, $R_2 = COOCH_3$). At C-3, some of the alkaloids are esters having acetate group as R_1 . The alkaloids in this group are summarized in Table 4.

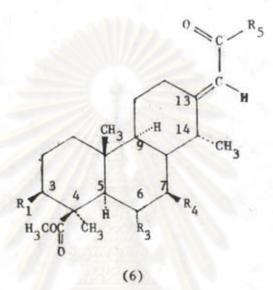
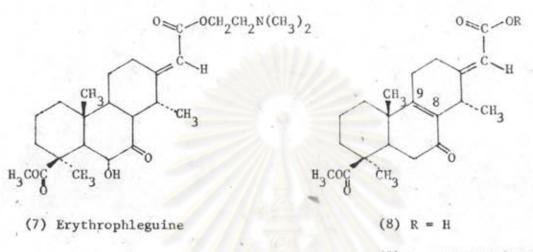


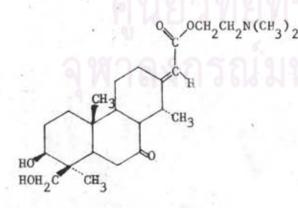
Table 4

Erythrophleum alkaloids containing C-4 ß-carbomethoxy group

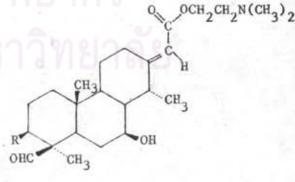

		T	1	T
Alkaloid	R1	R ₃	R4	R ₅
Cassamine	H	н	=0	OCH2CH2N(CH3)2
Norcassamine	H	H	-0	OCH2CH2NH(CH3)
Norcassamide	н	н	=0	N(CH3)CH2CH2OH
Cassamidine	н	H	ОН	OCH2CH2N(CH3)2
Norcassamidine	н	H	ОН	OCH2CH2NH(CH3)
Norcassamidide	н	н	ОН	N(CH3)CH2CH2OH
Erythrophlamine	OH	H	-0	OCH2CH2N(CH3)2
Norerythrophlamine	ОН	н	=0	OCH2CH2NH(CH3)
Norerythrophlamide	ОН	н	-0	N(CH3)CH2CH2OH
THE REAL PROPERTY OF A DESCRIPTION OF A		1		

Alkaloid	R ₁	^R 3	R ₄	R ₅
3β-Acetoxynorerythrophlamine	оосснз	H	=0	OCH2CH2NH(CH3)
Erythrostachamine	ОН	H	OH	OCH2CH2N(CH3)2
Norerythrostachamine	ОН	H	он	OCH2CH2NH(CH3)
Norerythrostachamide	ОН	H	ОН	N(CH3)CH2CH2OH
3β-Acetoxynorerythrostachamine	OOCCH3	н	OH	OCH2CH2NH(CH3)
Erythrophleguine	H	ОН	=0	OCH2CH2N(CH3)2
Erythrosuamine	н	=0	ОН	OCH2CH2N(CH3)2
Norerythrosuamine	H	-0	ОН	OCH2CH2NH(CH3)
Norerythrosuamide	H	=0	он	N(CH3)CH2CH2OH
Dehydronorerythrosuamide	н	-0	-0	N(CH3)CH2CH2OH
3β-Hydroxynorerythrosuamine	ОН	=0	ОН	OCH2CH2NH(CH3)
3β-Hydroxynorerythrosuamide	OH	=0	OR	N(CH3)CH2CH2OH
36-Acetoxynorerythrosuamine	OOCCH.	=0	он	OCH_CH_NH(CH_)

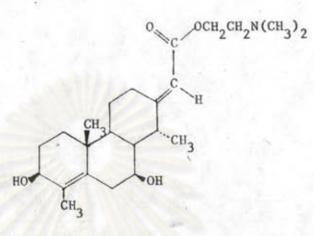
References: Arya and Engel, 1961; Clarke, 1971; Cronlund and Oguakwa, 1975; Falkiner et al., 1975; Jansson and Cronlund, 1976; Lindwall et al., 1965 a, b; Loder et al., 1972; Loder et al., 1974; Loder and Nearn, 1975 a, b; Mathieson et al., 1960; Morin, 1968 and Thorell et al., 1968.


MILE ANELLE IN A

8-Dehydrocassamic acid (8); the hydrolyzed product of erythrophleguine (7); was converted via the acid chloride to 8-dehydrocassamine (9), a member of this group which has not yet been isolated naturally (Clarke, 1971).



(9)
$$R = CH_2CH_2N(CH_3)_2$$

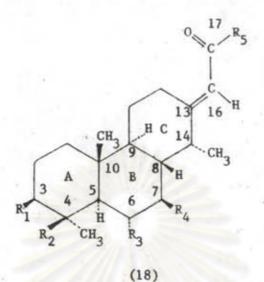

There is further a minor group of *Erythrophleum* alkaloids consists of few alkaloids which a hydroxylated methyl group or an aldehyde group is found at C-4 in place of a methyl group. The three alkaloids of this group are 19-hydroxycassaine (10) (Cronlund, 1973 b), norerythrostachaldine (11) and 3β-acetoxynorerythrostachaldine (12) (Falkiner *et al.*, 1975).

(10) 19-Hydroxycassaine

(11) R = OH(12) $R = OOCH_3$ 19-Nor-4-dehydrocassaidine (13), isolated from Erythrophleum couminga Baill., was reported to have one double bond with no methyl group at C-4 (Oguakwa and Cronlund, 1976).

(13) 19-Nor-4-dehydrocassaidine

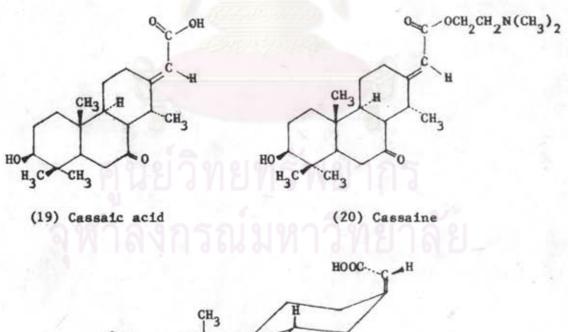
According to the previous statement on page 14, the Erythrophleum alkaloids are derivatives of tricyclic diterpene acids. In four cases, the alkaloids isolated from the leaves of Erythrophleum chlorostachys Baill. are secondary or tertiary aminoethanol ester and amides of cinnamic acid, i.e. &-dimethylaminoethyl cinnamate (14), N-2-hydroxyethyl-N-methyl cinnamamide(15), N-2-hydroxyethyl-N-methyl-trans-p-hydroxycinnamamide (16) and N-2-hydroxyethylcinnamamide (17) (Griffin et al., 1971).


CCOCH2CH2N(CH3)2

(14)

CCNCH2 CH2 OH H R

(15) $R_1 = H$, $R_2 = CH_3$ (16) $R_1 = OH$, $R_2 = CH_3$ (17) $R_1 = H$, $R_2 = H$


B. Stereochemistry of Erythrophleum alkaloids

All naturally occurring *Erythrophleum* alkaloids (18) have asymmetric centers at C-5, C-8, C-9, C-10 and C-14. The configurations of C-5 hydrogen, C-9 hydrogen and C-14 methyl are assigned the α orientation and those of C-8 hydrogen and C-10 methyl the β -orientation (Chapman *et al.*, 1963; Clarke *et al.*, 1966; King *et al.*, 1958; Mori and Matsui, 1966 and Turner *et al.*, 1959). The alkaloids are known to have geometric isomerization since the double bond between C-13 and C-16 posseses the C-16 carbonyl *trans* to the axial C-14 α -methyl group (Hauth *et al.*, 1965).

Substitutions in ring A have been found at C-3 and C-4. The group at C-3 (R_1) may be β -configuration of hydroxyl (OH), acetate (OOCCH₃), 3-methylcrotonate (OOCCH=C(CH₃)₂), 3-hydroxylsovalerate (OOCCH₂C(OH)(CH₃)₂), or hydroxyvalerate (OOCC₄H₈OH) group (Cronlund, 1973 a, b; Cronlund and Oguakwa, 1975; Loder and Nearn, 1975 a, b and Turner *et al.*, 1959). The group at C-4 (R_2) may be β -configuration of methyl (CH₃), hydroxymethyl (CH₂OH), formyl (CHO), or carbomethoxyl (COOCH₃) group (Chapman *et al.*, 1963; cronlund, 1973 b and Loder and Nearn, 1975 b). In ring B, the functional group on C-6 (R_3) may be either α -hydroxyl (OH) or ketone (=0) group and that on C-7 (R_4) may be either β -hydroxyl or ketone group (Blessington *et al.*, 1970; Lindwall *et al.*, 1965 b and Thorell *et al.*, 1968).

According to the extensive structural investigation of cassaic acid (19), the hydrolyzed product of the alkaloid cassaine (20), the A/B and B/C ring junctions of perhydrophenanthrene nucleus are trans-anti-trans system with equatorial C-3 β -hydroxyl and axial C-14 α -methyl (Linstead et al., 1942 and Morin, 1968). The conformation of all rings are assigned the *chair-chair-chair* arrangement, those configurations with larger number of equatorial bonds at the point of ring fusion are the more stable (Johnson, 1951). The conformation of cassaic acid is illustrated in Figure 2.

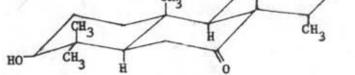


Figure 2. Conformation of cassaic acid.

C. Hydrolysis of Erythrophleum Alkaloids

On mild hydrolysis with diluted mineral acid, these alkaloids afford β -methylaminoethanol and α,β -unsaturated tricyclic diterpenic acids. The diterpenic acids (21) hydrolyzed from *Erythrophleum* alkaloids are summarized in Table 5.

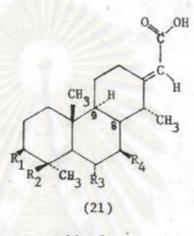
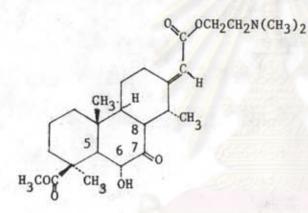


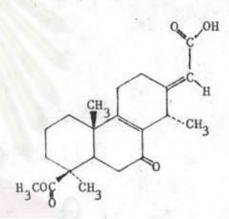
Table 5

Diterpenic acid from Erythrophleum species

Diterpenic acid	R ₁	R ₂	^R 3	R ₄	\triangle^8 Bond
Cassaic acid	ОН	СН3	н	=0	-
8-Dehydrocassaic acid	ОН	CH3	H	=0	Present
Cassaidic acid	ОН	СН3	н	ОН	
Coumidic acid	ооссн3с(он) (сн3)	CH3	н	ОН	-
Coumingic acid	ооссн ₃ с(он)(сн ₃)2	CH3	н	=0	-
Coumingidic acid	оосс ₄ н ₈ он	CH3	н	=0	-
Erythrostachaldic acid	ОН	СНО	н	ОН	
Cassamic acid	н	COOCH3	н	=0	
8-Dehydrocassamic acid	н	COOCH3	н	=0	Present
Cassamidic acid	н	COOCH3	н	ОН	-


Table 5 (continued)

Diterpenic acid	R ₁	R ₂	R ₃	'R ₄	\triangle^8 Bond
Erythrophlamic acid	OH	COOCH3	н	=0	-
Erythrostachamic acid	OH	соосн3	н	ОН	-
Erythrosuamic acid (Cassminic acid)	Н	COOCH3	=0	OH	-
Erythrophleadienolic acid	Н	COOCH3	н	ОН	Present


Reference: Arya, 1962; Blessington et al., 1970; Chapman et al., 1963; Chapman et al., 1965; Clarke, 1971; Dalma, 1954; Gensler and Sherman, 1959; Lindwall et al., 1965; Loder et al., 1974; Loder and Nearn, 1975 b; Mathieson et al., 1960; Morin, 1968; Ruzicka et al., 1941; Schlittler, 1941 and Thorell et al., 1968.

The 3 β -esterification in diterpenic acids and alkaloids can undergo hydrolysis with mineral acid or alkali. Coumingine, on acid hydrolysis, yields cassaic acid and in addition β -hydroxyisovaleric acid (Ruzicka *et al.*, 1941) while 3-(3-methylcrotonyl)cassaine yields cassaic acid and 3-methylcrotonic acid (Cronlund, 1973). Coumidine, on mild acid hydrolysis, provides the mixture of coumadic and cassaidic acids (Thorell *et al.*, 1968). Acid hydrolysis of coumingidine generates methylaminoethanol together with coumingidic acid, but its methyl ester, on alkaline hydrolysis forms an acid identified as cassaic acid (Dalma, 1954).

Erythrophleguine (22), the 6-hydroxycassamine, isolated from Erythrophleum guineense G. Don having a 6a-hydroxy and a 7-ketone group, is hydrolyzed and rearranged easily under acid conditions to give 8-dehydrocassamic acid (23) but a 7-hydroxy-6-oxo orientation as in erythrosuamine (26) effectively prevents this rearrangement. The proposed mechanism shown in Figure 3 for the formation of 8-dehydrocassamic acid from erythrophleguine involves a 1,4-elimination of water from the enol (24) to yield another enol (25) (Lindwall *et al.*, 1965 a, b). Similar reaction would explain the proposal that 6-hydroxycassaine (27) might probably exist and would be the reasonable precursor of the isolated 8-dehydrocassaic acid (28) (Clarke, 1971).

(22) Erythrophleguine

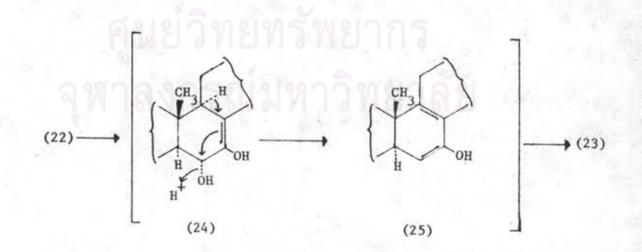
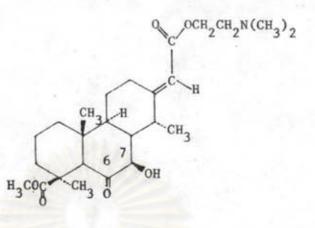
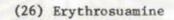
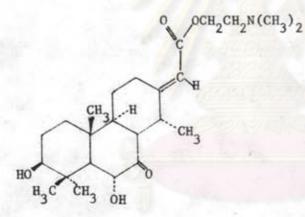
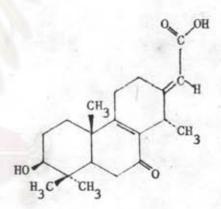





Figure 3. Formation of 8-dehydrocassamic acid



X

(27) 6-Hydroxycassaine

(28) 8-Dehydrocassaic acid

D. Conversion of Erythrophleum Alkaloids

The hydroxyl group in rings A and B of diterpenic portion of Erythrophleum alkaloids may be converted by reduction with sodium borohydride (NaBH₄) into ketone group which may be reconverted into the hydroxyl group by oxidation with chromic trioxide (CrO₃) in pyridine or chromic acid. Some conversions of Erythrophleum alkaloids into their corresponding alkaloids are listed in Table 6.

Table 6

Conversion of Erythrophleum alkaloids

	Conversion		Reference
Cassaine	NaBH ₄	Cassaidine	Engel, 1959.
Coumingine	Cr03	Coumidine	Thorell et al., 1968.
Cassamine	NaBH ₄	Cassamidine	
Norcassamide	NaBH ₄	Norcassamidide	Friedich-Fiechtl
Norerythrosuamide	Cr0 ₃	Dehydronorerythro- suamide	and Spiteller, 1971
Norerythrophlamide	NaBH ₄ →	Norerythrostachamide	Jansson and Cronlund, 1976.

Biosynthesis

A. Introduction

Nowadays, a great number of research have been undertaken to investigate on how plants produce alkaloids by the use of radioactive tracers. These investigations were based upon structural similarities and also upon the relation to simpler natural products. Experiment on the biosynthesis of *Erythrophleum* alkaloids has been hampered by the shortage of plant materials, in part because of the political unrest in the regions where many of the species are found (Morin, 1968). So the speculative biosynthesis of *Erythrophleum* alkaloids may follow closely that of the diterpenoids because the carbon skeleton of these alkaloids themselves correlates to the cassane group of the diterpenoids.

Terpenoids are the group of compounds of extraordinarity diverse structures, all of them may be formally considered to have originated from fragments whose carbon skeletons correspond to isoprene units (methylbutadiene, 29). The completely saturated form of this five carbon unit is called isopentane (30) (Nicholas, 1973). These units link together in various ways and with different types of ring closures, degree of unsaturation and functional groups (Robinson, 1980).

СH₂=CH-C=CH₂

(29) Isoprene

СH₃-CH₂-CH-CH₃

(30) Isopentane

Almost all of the terpenoids conform to the "biogenetic isoprene rule" firstly developed by Wallach (1914) and refined by Ruzicka *et al.* (1953), a rule which states that a terpene is constituted by union of two or more isoprene units in a "head-to-tail" manner (Nicholas, 1973).

Biosynthesis

A. Introduction

Nowadays, a great number of research have been undertaken to investigate on how plants produce alkaloids by the use of radioactive tracers. These investigations were based upon structural similarities and also upon the relation to simpler natural products. Experiment on the biosynthesis of *Erythrophleum* alkaloids has been hampered by the shortage of plant materials, in part because of the political unrest in the regions where many of the species are found (Morin, 1968). So the speculative biosynthesis of *Erythrophleum* alkaloids may follow closely that of the diterpenoids because the carbon skeleton of these alkaloids themselves correlates to the cassane group of the diterpenoids.

Terpenoids are the group of compounds of extraordinarity diverse structures, all of them may be formally considered to have originated from fragments whose carbon skeletons correspond to isoprene units (methylbutadiene, 29). The completely saturated form of this five carbon unit is called isopentane (30) (Nicholas, 1973). These units link together in various ways and with different types of ring closures, degree of unsaturation and functional groups (Robinson, 1980).

СH₂=CH-C=CH₂

СH₃-CH₂-CH-CH₃

(30) Isopentane

(29) Isoprene

Almost all of the terpenoids conform to the "biogenetic isoprene rule" firstly developed by Wallach (1914) and refined by Ruzicka *et al.* (1953), a rule which states that a terpene is constituted by union of two or more isoprene units in a "head-to-tail" manner (Nicholas, 1973).

Biosynthesis

A. Introduction

Nowadays, a great number of research have been undertaken to investigate on how plants produce alkaloids by the use of radioactive tracers. These investigations were based upon structural similarities and also upon the relation to simpler natural products. Experiment on the biosynthesis of *Erythrophleum* alkaloids has been hampered by the shortage of plant materials, in part because of the political unrest in the regions where many of the species are found (Morin, 1968). So the speculative biosynthesis of *Erythrophleum* alkaloids may follow closely that of the diterpenoids because the carbon skeleton of these alkaloids themselves correlates to the cassane group of the diterpenoids.

Terpenoids are the group of compounds of extraordinarity diverse structures, all of them may be formally considered to have originated from fragments whose carbon skeletons correspond to isoprene units (methylbutadiene, 29). The completely saturated form of this five carbon unit is called isopentane (30) (Nicholas, 1973). These units link together in various ways and with different types of ring closures, degree of unsaturation and functional groups (Robinson, 1980).

 $\substack{ \overset{CH_3}{\underset{l}{\overset{l}{\vdash}} CH_2 = CH - C = CH_2 } }$

СH₃-CH₂-CH-CH₃

(30) Isopentane

(29) Isoprene

Almost all of the terpenoids conform to the "biogenetic isoprene rule" firstly developed by Wallach (1914) and refined by Ruzicka *et al.* (1953), a rule which states that a terpene is constituted by union of two or more isoprene units in a "head-to-tail" manner (Nicholas, 1973). The combination of two isoprene units arranged "head-to-tail" is shown below:

 $\begin{array}{c} CH_3 & CH_3 \\ H_2C=CH-C=CH_2 + H_2C=CH-C=CH_2 \end{array} \xrightarrow{\begin{array}{c} CH_3 \\ H_2 \end{array}} H_2C=CH-C=CH_2 \xrightarrow{\begin{array}{c} CH_3 \\ H_2 \end{array}} H_2 \xrightarrow{\begin{array}{c} CH_3 \\ H_2 \end{array}} H_2 \xrightarrow{\begin{array}{c} CH_3 \end{array}} H_2 \xrightarrow{\begin{array}{c} CH_3 \end{array}} H_2 \xrightarrow{\begin{array}{c} CH_3 \\ H_3 \end{array}} H_2 \xrightarrow{\begin{array}{c} CH_3 \end{array}} H_$

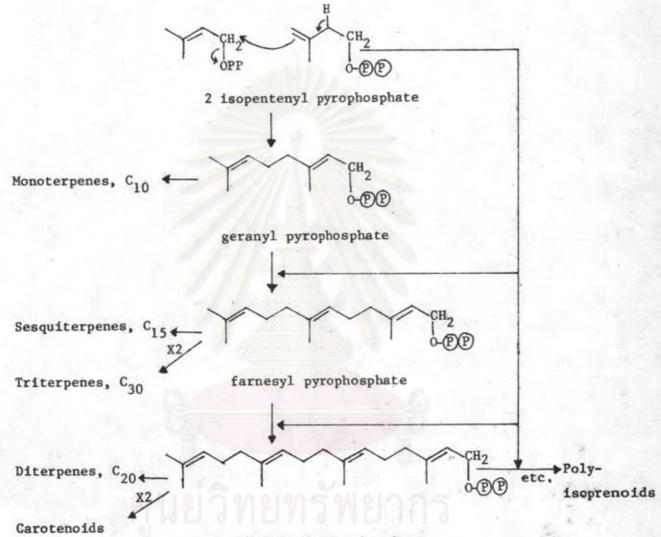
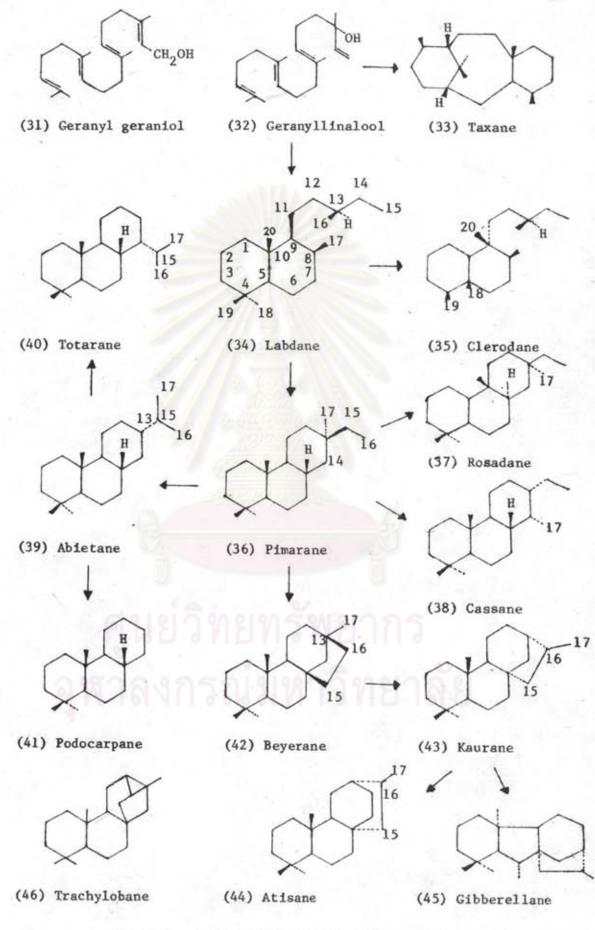

The terpenoid embraces wide varieties of compounds according to the number of isoprene units contained in their molecules as shown in Table 7.

Table 7

General formulae of terpenoids

Class	Number of isoprene unit	General formula
Hemiterpenoids	1	C5H8
Monoterpenoids	2	C10H16
Sesquiterpenoids	3	C15H24
Diterpenoids	4	C20H32
Sesterterpenoids	5 5 61 7 5	C25H40
(Ophiobolanes)	N AND IN	0
Triterpenoids	1.198 6 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	C30H48
Tetraterpenoids	8	C40H64
Polyterpenoids	n	(C5H8)n


The generally acceptable biosynthesis pathways of isoprenoid compounds are outline in Figure 4 (Bu'Lock, 1965).

geranylgeranyl pyrophosphate

Figure 4. Biosynthesis of isoprenoid compounds.

The diterpenoids are C_{20} compounds which may be regarded as derived from four isoprenoid residues. The diterpenes are found in acyclic, monocyclic, bicyclic, tricyclic, tetracyclic and pentacyclic forms. According to Rowe *et al.*, basic diterpene hydrocarbon skeletons are shown in Figure 5 (Hanson, 1972).

¥.

Figure 5. Basic skeletons of diferpenoids.

Like the other terpenoids, they are found in plants or animals as hydrocarbon or in combination with oxygen in the form of hydroxyl, ketone, aldehyde, furan rings, oxides and others (Nicholas, 1973). A uniform numbering system favoring that followed the steroid ring system has been suggested for the diterpenoids (McCrindle and Overton, 1965).

B. Biosynthesis of Diterpenoids

The biosynthesis of diterpenoids involves the following mechanisms:

- 1. Formation of isopentenyl pyrophosphate.
- 2. Polymerization of isopentenyl pyrophosphate.
- 3. Formation of cyclic diterpenoids.

1. Formation of Isopentenyl pyrophosphate

All terpenoid compounds originate from isopentenyl pyrophosphate, which is also known as "activated isoprene". Isopentenyl pyrophosphate is synthesized from acetyl CoA in the same manner by both plants and animals as the following steps (Bu'Lock, 1965; Luckner, 1972):

a) Acetoacetyl CoA (47) is first formed from two molecules of acetyl CoA by "head-to-tail" condensation. This reaction is catalyzed by the enzyme thiolase.

b) A third molecule of acetyl CoA adds to the carbonyl group
at position three of acetoacetyl CoA to form 3-hydroxy-3-methylglutaryl
CoA (48). The steps (a) and (b) are normally interconvertible. 3-Hydroxy3-methylglutaryl CoA may be derived from leucine as shown in Figure 7.

c) 3-Hydroxy-3-methylglutaryl CoA is then reduced to an intermediate product mevaldic acid (49). This reaction is practically irreversible and requires NADPH molecule. d) The enzyme mevaldate reductase transfers the hydrogen stereospecifically from NADPH or NADH to the substrate, $5(R)-[H^*]$ mevalonic acid (50) is thus formed (the tritium atom is marked (*) in Figure 6).

e) Mevalonic acid is then phosphorylated at the primary alcoholic group to form mevalonic acid monophosphate (51) and then in a second reaction step mevalonic acid pyrophosphate (52) is formed.

f) The product of a third phosphorylation at tertiary alcoholic group via ATP undergoes concerted elimination of a molecule of water and decarboxylation yields Δ^3 isopentenyl pyrophosphate (53).

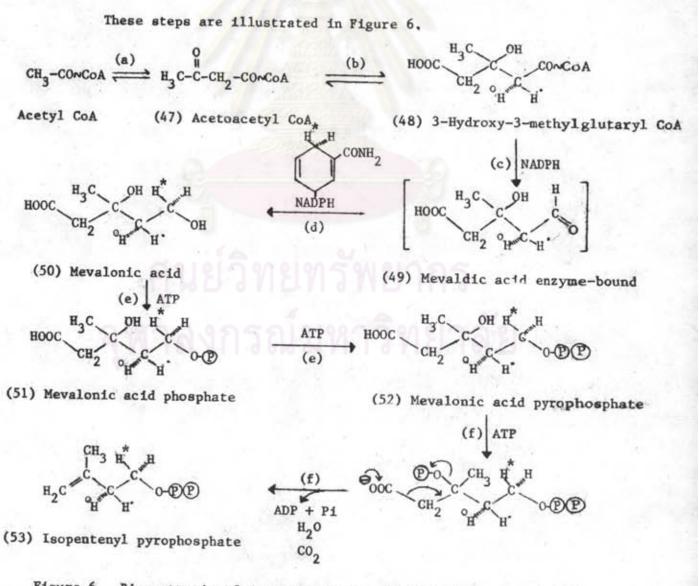


Figure 6. Biosynthesis of isopentenyl pyrophosphate from acetyl CoA.

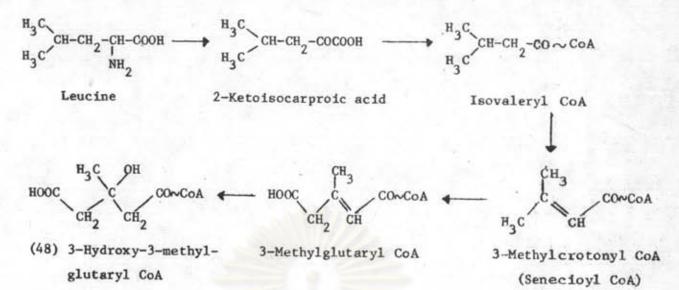
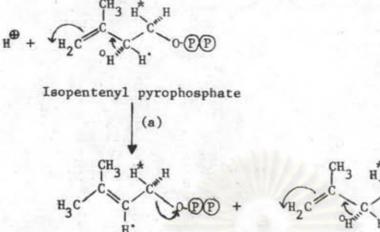


Figure 7. Conversion of leucine to 3-hydroxy-3-methylglutaryl CoA.

2. Polymerization of Isopentenyl pyrophosphate

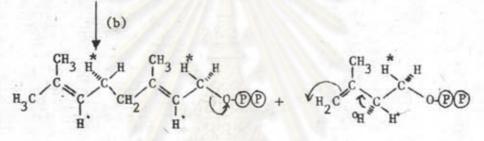

The formation of diterpenoids takes place by the polymerization of several molecules of isopentenyl pyrophosphate. These reactions of polymerization are shown in Figure 8 and described below (Luckner, 1972).

a) By the shift of the double bond of isopentenyl pyrophosphate catalyzed by isopentenyl pyrophosphate isomerase, this yields 3,3-dimethylallyl pyrophosphate (54) which serves as a starter molecule for this polymerization both in plants and animals. As an allylic ester, 3,3-dimethylallyl pyrophosphate or the derived cation is an effective electrophilic alkylating agent. The elimination of a hydrogen atom in this reaction at C-2 is strictly stereospecific. The α -hydrogen atom (°H) is always eliminated.

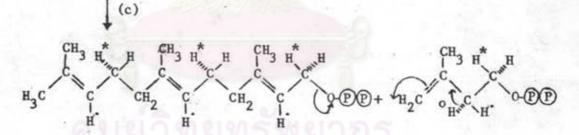
b) One molecule of dimethylallyl pyrophosphate then serves as an acceptor for one molecule of isopentenyl pyrophosphate. The pyrophosphate group is then lost from the starter molecule. The condensation may be considered as a nucleophilic substitution by the CH₂ group of isopentenyl pyrophosphate. The substitution causes an inversion of

configuration at C-l of the starter molecule since the CH_2 group of isopentenyl pyrophosphate opposite the pyrophosphate group enters the molecule from the side in a concerted reaction. During the resulting shift of the double bond, occurring simultaneously with the new C-C bonding, the ^OH atom at C-2 is lost. The resulting monoterpene is geranyl pyrophosphate, C₁₀ (55).

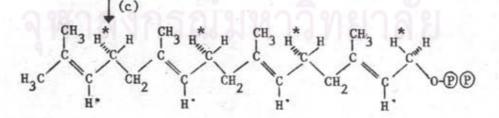
c) Since geranyl pyrophosphate is an allylic ester, the process can be repeated by a similar mechanism, generating farnesyl pyrophosphate, (56), and this is then converted to geranylgeranyl pyrophosphate, C_{20} (57). Configurations around all the double bonds in these compounds are trans.



0-@@

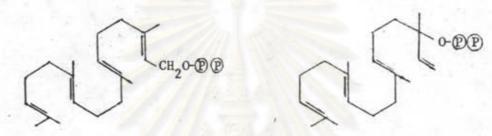

(54) Dimethylallyl pyrophosphate

5


Ł

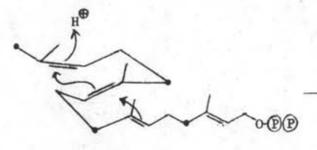
(55) Geranyl pyrophosphate, C10

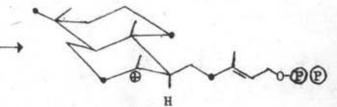
(56) Farnesyl pyrophosphate, C15

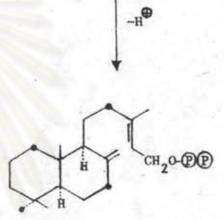


(57) Geranylgeranyl pyrophosphate, C20

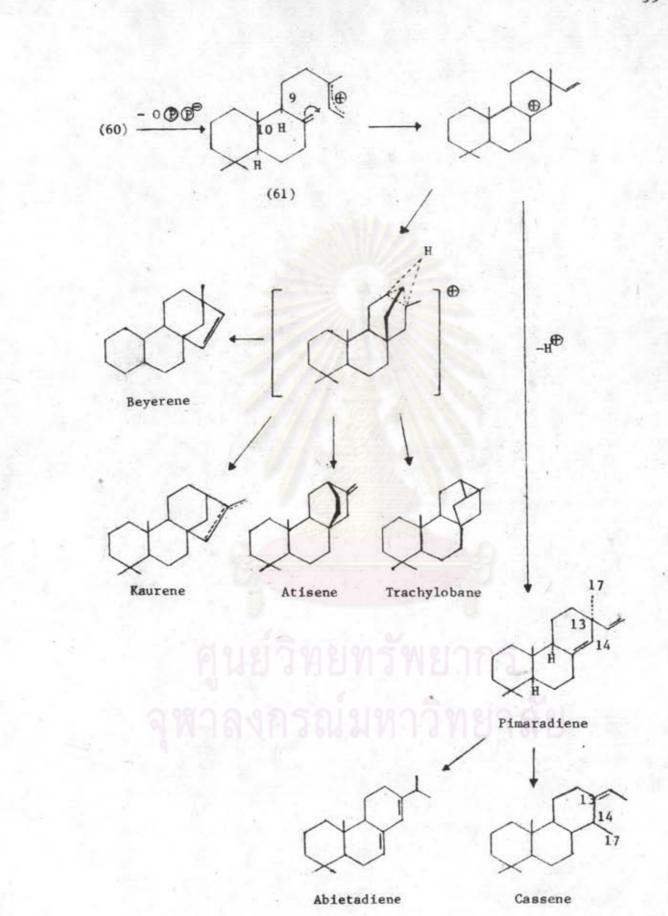
Figure 8. Polymerization of isopentenyl pyrophosphate.


3. Formation of Cyclic Diterpenoids


All of the presently known cyclic diterpenoids are considered to be derived, as a result of the Ruzicka biogenetic isoprenoid rule, from geranylgeranyl pyrophosphate (58) or geranyllinaloyl pyrophosphate (59), either by direct cyclization or by secondary rearrangements (Nicholas, 1973).


(58) Geranylgeranyl pyrophosphate (59) Geranyllinaloyl pyrophosphate

Geranylgeranyl pyrophosphate is converted to bicyclic and tricyclic derivatives. Cyclization is catalyzed by enzymes and initiated by protonation. The cyclic precursor shown is the bicyclic labdane type names (+)-labdadienyl pyrophosphate (60). From its mode of formation with the first three isoprene units folded in "chair-like" conformation, this necessarily has the typical *trans-anti-trans* stereochemistry, but not for all diterpenoids (Richards and Hendrickson, 1964; Bu'Lock, 1965; Luckner, 1972). Their summary is shown in Figure 9.


Geranylgeranyl pyrophosphate

(60) (+)-Labdadienyl pyrophosphate

Figure 9. Biosynthesis of a bicyclic precursor of diterpenoids.

The precursor from figure 9 (60) is converted to the allylic cation (61) by the ionization of the terminal nucleophilic (e.g., -0 (P)). That will lead from labdane skeleton, with a 1,2-shift of the methyl group, to the parent skeleton of pimarane, cassane, abietane, kaurane, beyerane, trachylobane and atisane types. Compounds of these types are outlined in Figure 10 (Nicholas, 1973; Richards and Hendrickson, 1964). From Figure 10, the cassane group which related to *Erythrophleum* alkaloids has a modified pimarane skeleton in which the C-17 methyl group has migrated from C-13 to C-14.

\$

x

4

Figure 10, Biosynthesis of cyclic diterpenoids.