

CHAPTER III

RESULTS

Experiment I : Effect of astaxanthin and canthaxanthin on coloration of juvenile prawns

Growth

The growth in teff of weight increase of juvenile P. monodon fed with the diets containing different concentrations of astaxanthin and the diets containing different concentrations of canthaxamthin were shown in Figure 3. The growth rate of the control group was significantly different from the group of prays fed diets containing astaxanthin and canthaxanthin. Nevertheless, There was no significant difference within group the prawn fed with either astaxanthin or canthaxanthin. The result of the analysis of covariance is shown in Appendix 1.
 contra 8 dup wear taken merely from/the fist replication. All prawns in the second replication accidentally died at week 3 after a failure of air supply.

Figure 3 Growth of P. monodon fed with the diets containing different concentrations of astaxanthin and the diets containing different concentrations of canthaxanthin.
A = Astaxanthin
$B=$ Canthaxanthin

Survival, FCR, and Individual Moulting Rate

Survival, FCR and individual moulting rate of the juvenile P. monodon fed with diets containing different concentrations of astaxanthin and canthaxanthin were shown in Table 5. Statistical anmysis showed no significant difference among the treatment sooups in each of these three parameters.

The analysis suggested that survival, FCR and moulting rates of these proavment groups were somewhat the same, though the average value showed that the treatment with 100 ppm, astaxanthin gave the best.FGR (2.53).

Visual Observation on Prawn Colouration

The resuit of the visual observation on the prawn coloration afterg two months 96 feeding the experimental diets was shown in Table 6. At week-2 the change in colouration of the prawn appendages cound be, poticeable in the groups and 200 ppm canthaxanthin. During the two months feeding trial, the colour hues of the prawns fed with the diets augmented with the two kinds of carotenoids gradually

Table 6 Ranking order based on visual assessment of the prawn's pigmentation after 2 months of feeding the diets containing different concentration of astaxanthin and canthaxanthin.

changed from blue to light violet, dark violet, and grayish brown. The degree of pigmentation was intensified with the increasing concentration of astaxanthin and canthaxanthin in the diets. The changing colour pattern of the astaxanthin groups and the canthaxanthin groups were considered to be comparable. The group of prawaslfed a control diet did not show any change in colouration. They maintained the blue colour throughout the whole experimental period.

The colour hues of the boiled prawns varied from yellowish orange to bright red orange depending on the original fresh colours. The blue prawns when boiled usually turned yellowish orange while the darker prawns turned more red. Further study flown that the pigment deposited in prawns of this study eowld maintain their colour efficacy for a long peifod of time. The grayisif brown prawns, after two months of storage, could turn bright red color when boiled.

ศนย์วิทยทรัพยากร

Carotenoids in the prawns

(TCA), total astaxanthin (TAC), free astaxanthin (FAC), and total astaxanthin ester (TAEC) concentrations in the whole prawn during the two months of feeding trial were shown in Tables 7-8.

Table 7 Total caroteaoid (TCA), total astaxanthin (tho), free astaxanthin (FAC) and total astaxanthin ester (TACE) contents of the whole pram (Pereess poncion) fed vith varions levels of astaxanthin.

Table 8 Total caroteaoid (TCA), total astaxanthin (TAC), free astaxanthin (FaC) and total astaxanthin ester (TACE), contents of the whole pravn (Peasers monodel fed vith various levels of canthaxanthin.

Treatment	TCA in $\mathrm{Eg} / \mathrm{kg}$						FaC	in $\mathrm{mg} / \mathrm{kg}$		TACE	in $\mathrm{ng} / \mathrm{kg}$		
	Start	1 moath	2 nonths		catb	2 \%onths	Start	1 Hoath	2 Months	Start	1 Montb	2 Honths	
Control 1	$\begin{aligned} & 22.70 \\ & \pm 6.18 \end{aligned}$	$\begin{array}{r} 15.37 \\ \pm 3.30 \end{array}$	$\begin{aligned} & 12.00 \\ & \pm 3.58 \end{aligned}$,	9.99		8.60	6.82	10.22	$3.20{ }^{\circ}$	3.17	
						43) 18	78	± 1.20	± 1.36	± 4.19	± 0.92	± 1.76	
Contorl 2	$\begin{aligned} & 21.03 \\ & \pm 3.53 \end{aligned}$	-	-	$\begin{gathered} 18.57 \\ \pm 2.48 \end{gathered}$			10.57 $+1.92$	-	-	8.00	-	-	
							± 1.6						
50 ppm Cantha.	$\begin{aligned} & 21.87 \\ & \pm 4.88 \end{aligned}$	$\begin{array}{r} 19.23 \\ \pm 2.22 \end{array}$	$\begin{aligned} & 18.72 \\ & \pm 3.72 \end{aligned}$	$\begin{aligned} & 19.04 \\ & \pm 4.65 \end{aligned}$		16.10		9.93]	3. 43	10.10	9.11	7.63	6.00
						± 2.26	± 2.37	± 3.01	± 1.59	± 3.25	± 2.35	± 1.01	
100 ppm Cantba.	$\begin{aligned} & 21.87 \\ & \pm 4.88 \end{aligned}$	$\begin{aligned} & 21.67 \\ & \pm 2.55 \end{aligned}$		$\begin{aligned} & 19.600 \\ & \pm 4.65 \end{aligned}$	$\left[\begin{array}{l} 19.65 \\ \pm 3.24 \end{array}\right.$	$\begin{aligned} & 27.27 \\ & +7.52 \end{aligned}$		${ }_{ \pm 1.62}{ }^{1.14}$	$\begin{aligned} & 14.97 \\ & \pm 2.49 \end{aligned}$	9.11	8.03	12.50	
										± 3.25	± 3.03	± 5.70	
150 ppe Cantba.	21.87	$\begin{aligned} & 2.42 \\ & \pm 4.12 \end{aligned}$	$\begin{aligned} & 25.62 \\ & \pm 4.97 \end{aligned}$	$\begin{aligned} & 19.04 \\ & \pm 4.65 \end{aligned}$	$\begin{aligned} & 29.88 \\ & \pm 4.88 \end{aligned}$	$\begin{array}{\|} 1980.70 \\ \pm 5.28 \end{array}$	$\begin{aligned} & 09.93 \\ & \pm 2.37 \end{aligned}$	$\left\lvert\, \begin{aligned} & 9.12 \\ & \pm 2.14 \end{aligned}\right.$	$\left\{\begin{array}{l} 13.15 \\ \pm 2.93 \end{array}\right.$	$\begin{array}{r} 9.11 \\ \pm 3.25 \end{array}$	$\begin{array}{r} 9.08 \\ \pm 3.07 \end{array}$	$\begin{array}{r} 7.53 \\ \pm 3.24 \end{array}$	
	± 4.88												
200 ppe Cantha.	$\begin{aligned} & 21.87 \\ & \pm 4.88 \end{aligned}$	$\begin{aligned} & 29.13 \\ & \pm 4.17 \end{aligned}$	$\begin{aligned} & 37.88 \\ & \pm 7.06 \end{aligned}$	19.04	27.67	33.71	9.37	14.47	14.36	9.11	13.20	18.85	
				± 4.65	± 4.14	± 5.61	± 2.37	± 1.81	± 4.56	± 3.25	± 5.45	± 3.28	

The general examination of data revealed that total carotenoids (TCA) concentrations in the group of prawns fed a control diet decreased with time while those in the group of prawns the diets containing astaxanthin increased with time. The rate of increase was highest in the group fed 100 ppm astaxanthin, followed by the group fed 75 ppm . The groups fed 50 ppm and 25 ppm astaxanthin showed a slight increase (Figure 4),

The groups of prawns fed diets containing canthaxanthin showed a similan pattopn but with a slight a difference at the lower concentration frife rate of increase was highest in the group fed 200 ppin ganthaxanthin. The groups fed 100 ppm and 150 ppm cantraxanthin showed an intermediate increase while the grongy fody. 50 ppm canthaxanthin only slight increase (5igure 5).

The covariance analysis confirmed the significant difference among the oarotenoig qithgreastng rates of these treatment groups (Appendix 2).

จหาลงกรณมหาวิทยาลัย
 In every treatment group approximately 90% of total

 carotenoid was astaxanthin. The total astaxanthin (TAC) also showed a similar deposition pattern as the total carotenoids. TAC was comprised of two forms, i.e. free astaxanthin (FAC) and astaxanthin esters (TAEC). According to the data

Figure 4 Total carotenoid contents in the whole prawn (Penaeus monodon) fed with various levels of astaxanthin.

shown in Tables 7 and 8, the two forms of astaxanthin constituted a similar proportion, approximately 50% each. Nevertheless the rate of deposition of those two forms not the same. The deposition rate of $F A C$ was seemed to be faster and higher than TACE.

Carotenoid Content in the Feed Pellets

During the expegimental period, the nine diets were sampled at start, 1 month, and 2 months for the analysis of actual content of carotenoids in the feed pellets. The results revealed that astaxanthin at the four concentrations were close to the nominalizalues and the concentrations did not decrease with times contrast, canthaxanthin at the four concentrations were a little lower than the nominal values and the goncentrations decreased with time (Figure 6).

Efficiency of Astaxanthin and oanthaxanthind ค 9% comparison 6 pigment deposition efficiency
between astaxanthin and canthaxanthin was made by calculation. The result revealed that the realistic ratio between astaxanthin and canthaxanthin efficiency should be $1: 1.85$ instead of $1: 2$ Table 9 .

Figure 6 oprofehoid conignes 9 Af Frappedets atstart, 1 month and จุหาลงกรณ์มหาวิทยาลัย

Table 9 Conparison of astaxanthin and cantaxanthin treataent efficiency. Calculation based on total carotenoid content (TCA) in the prawns and in the feeds. 1

Water Quality

Water quality during the feeding trial is shown in
Table 10. These water quality parameters were in the optimal ranges for the nursery of giant tiger prawns.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

Table 10 Yater quality of the recirculabing seawater syster wsed for the feeding trial in Experinent 1.

Experiment II : Effects of astaxanthin on ovarian maturity and spawning of giant tiger prawns

Ovarian Maturity

The results on ovarian maturity of giant tiger
prawns fed with non-astaxajthin added diet and 100 ppm astaxanthin added diet are shovn in Table 11. The percentage of gravid female (stage I ovarian maturity) of these two treatments suggested that the prawns fed with astaxanthin added diet became gravid more frequently than another group fed with non-astaxanthin added diet. The eyestalk ablated prawns could become gfaidid significantly higher than the noablated groups. A noryescestalk ablated prawn in the group fed astaxanthin added tiet could become gravid (stage IV), while none in the group fed non-astaxanthin diet became gravid.

The elapsed time between the eye-stalk ablation and the first grayid Fstage, IV) Of these treatment groups did not differ significantiy $(P>0.05)$. Furthermore, the elapsed times for the gther ognsequtive spayjas were shorter than
first gravid.

Spawning

The results on the spawning of the two treatment groups are shown in Table 12. Similar to the ovarian

Table 11 Ovarian naturity of giant tiger prawns fed with two naturation diets
(Non-astaxanthin added diet and astaxanthin added diet) during the 80 days experinent.

A. Nunbers are the consecutive gravids (stage IV).
B. Tine in days after the eye stalk ablation and the consecutive gravids.
Significant differences ($P<0.05$) of the average elapsed tine are indicated by different letters i.e. a and b vithin the colunn.
maturity results, eye-stalk ablated prawns produced more spawners than the non-ablated prawns. Besides the prawns fed astaxanthin diet produced more spawning successes than the prawns fed non-astaxanthin added diet.

The elapsed time betyofal the eye-stalk ablation and the first spawning of these wwo treatment groups did not differ significantiy (P) O 0). Furthermore, the elapsed time for the other consecutify spawnings were shorter than those of the first spawning. $\%$ 解

Egg Quantity and Quality
Results on egg quantity and quality are summarized in Table 13. It should be noted that although the experimental design was a factorial one, the statistical analysis for factorial design could not be applied because one of the factorial treatment (non-eyestalk ablated with non-astaxanthin diet $\mathrm{on}^{\text {did }}$ not spawn any egg Because of this the analysis of variance was applied to analyse the data of the

The general observation on the results shown in Table 13 revealed that the highest egg production was obtained in the treatments feeding astaxanthin added diets. The eyestalk ablated prawns produced higher egg production than the non-eyestalk ablated prawns.

Table 12 Spawning success of giant tiger prawns fed with two naturation diets (Non astaxanthin added diet and astaxanthin added diet) during the 80 days experinent.

A. Nunbers are the consecutive spawnings.
B. Tine in days after the eye stalk ablation and the consecutive spawning.
Significant differences ($\mathrm{P}<0.05$) of the average elapsed tine are indicated by different letters i.e. a and b within the colunn.

Table 13. Egg quantity and quality of the giant tiger prawns fed with the two types of maturation diet.

Note : Significant differences ($P<0.01$) are indicated by different letters, i.e. a and b.

The average number of eggs per female of the eyestalk ablated groups were significantly higher than the non－eyestalk ablated group（ $\mathrm{P}<0.05$ ）．Besides the eggs per females of the group fed astaxanthin added diet did not differ significantly from the group fed non－astaxanthin added diet．

The average number of eggs spawned per spawner of the rest three groups offprawh did not differ significantly $(\mathrm{P}<0.05)$ ．The number of eg大亏 per spawner averaged at 419,259 eggs．The amount of eggs－spawned in the consecutive spawn－ ings did not differ signifforntly $(P>0.05)$ ．

The diameter orgegss produced from astaxanthin treatments was significantliythigher（ $\mathrm{P}<0.05$ ）than the non－ astaxanthin

The eggs quality in terms of eggs fertility（ferti－ c lized eggs β phtching／个atleqang hletamorphosis rate（from egg to protozoed stage）varied greatly．The average percent
 groups $9^{\text {did not }}$ differ significantly $(P>0.05)$ ．Nevertheless， egg quality of this study was seemed to be better than the previous studies．The consequence mat be due to the improved maturation diets．

Moulting

The moulting pattern of female prawns in the four treatment groups are shown in Table 14. The first moulting after eyestalk ablation took slightly shorter time than the following consecutive mouttings. Non ablated female took longer time to moult than the ablated ones.

Mortality

The analysis of covariance revealed that the mortality rate of prawhs in the groups fed astaxanthin added diet, regardless tho, eqe-stalk manipulation, was significantly lower than the-sfoups fed non-astaxanthin added diet (Figure 7). The mortality rate of females was slightly higher than that of the males (Figure 8). It was also found that astaxantbin added diet could reduce the mortality rate in the eyestalk ablated females (Figure 9).

ศนย์วิทยทรัพยากร

Carotenoids in Hepatopancreas and Ovaries. จุหาลงกรณมหาวิทยาลย

The results of the analyses of the total carotenoids and total astaxanthin and its duivatives in hepatopancreas and ovaries of giant tiger prawns fed the two maturation diets are shown in Table 15.

Table 14 Average elapsed tine between consecutive noltings of giant tiger prawns.

Figure 8 cumiat, fer fercent pottalliqy of femaleqnd male giant tiger

* = Female
$0=$ Male

Figure 9 Cumuqutive percent mortality of female giant tiger prawns fed

S = Non ablated females fed non-astaxanthin added diet.

* = Ablated females fed astaxanthin added diet.
$D=$ Non ablated females fed astaxanthin added diet.

Table 15 Total carotenoids (TCA), total astaxanthin (TAC), free astaxanthin (FAC) and astaxanthin esters (TACE) in bepatopancreas and ovaries of P. sonodon fed the two naturation diets.

At the initial period (before feeding the two maturation diets) the level of total carotenoids (TCA) and total astaxanthin (TAC) in hepatopancreas were quite low. However, when the two maturation diets commenced and extended the level of TCA and TAC in the hepatopancreas showed the increase (Figure 10). The group fed with astaxanthin added diet shown remarkably higher TCA and TAC than the control group (non-astaxanthin added diet). This circumstance suggested that astaxanthy passing to the body of the prawn would be deposited fiyst in hepatopancreas before distributing to other organs in the fater stage.

The concentrationśsoflotal carotenoids as well as the total astaxanthin in ovaries were relatively lower than those in hepatopancreas. The concentratjons of TCA and TAC significantly eleNated in the ovaries after feeding the two diets (Figure 11) Nevertheless the ovary samples collected during the feeding were in the developing stages (stage 24). Hence, the imcxease of darotenoids could be affected by both nutritional and physiologicalafactors. The carotenoid contents of the two treatment groups not show a significant difference like in the hepatopancreas.

As regards the different forms of astaxanthin, it was found that a large portion $(>98 \%)$ of astaxanthin in

Figure 10 Total carotenoids and tetal astaxanthin in hepatopancreas at initial, and aftor feeding the non-astaxanthin added diet and the astaxanthin added acet.

Figure 11 Total carotenoids and total astaxanthin in ovaries at initial, and after feeding the non-astaxanthin added diet and the astaxanthin added diet.
hapatopancreas was the esterified forms. Besides the group fed astaxanthin added diet showed significantly higher astaxanthin esters than the control group (Figure 12). In contrast, higher portion of astaxanthin in the ovaries was the free astaxanthin (Figure 13). This circumstance suggested that the ovaries might gaye much lower saturation point of carotenoids than the hepasopanereas and carotenoids in ovaries was not directry levels in the hepatopancreas.

Water Quality

Water quality of the rearing tanks in this study are summarized in Table 16. Whese water quality parameters were seemed to be in the optimal/aranges throughout the whole period of the experiment

Nutritional Values of the Diets

Nutritional values of the diets used in this study were shown oin rabie 97. chude protein 953.78%) and crude fat $(11.78 \%)^{\text { }}$ of maturation diet were relatively higher than the commerciof diet. Wherelas crude fiber 6 crude ash and moisture content of maturation diet were slightly lower when compared with the commercial diet.

Figure 12 Free astaxarth $1 F(F A C)$ and total astaxanthin esters (TACE) in hepatopancreats at initial, and after feeding the non-astaxanthia added diet and the astaxanthin added diet.

Figure 13
Free astaxanthin (FAC) and total astaxanthin esters (TACE) in ovaries at initial, after feeding the non-astaxanthin added diet and the astaxanthin added diet.

Table 17 Proxinate analysis of artificial diets used in Experinent 1 (coloration) and Experinent 2 (Maturation diets).

