CHAPTER 11

THREE DIMENSIONAL HYDROGEN ATOM

In this chapter the problem of the three dimensional

hydrogen atom will be breifly TE --ed. Starting with the discussion

s for describing atoms, the

Bohr and the Sommerf es of the hydrogen atom

are then studied in purtian of this chapter

is concerned with t relativistic gquantum

mechanical treatmen section 2. 4L and 2.5

respectively.
2.1 INADEQUACY OF CHASSICAL'PHYSIES FOR BESCRIBING ATOM.

It is well-known Ahg #a 2] physics, as represented by
Newtonian mechanics’and Max : aws ofelegtromagnetism, works

marvelously well E ior of macroscopire

+ |

objects in terms of empirically determined laws of force. But as

soon as we ﬁtﬂ Erfjnwﬁ%{ wﬂqﬂﬁmam appear,

requiring newffoncepte for their analyﬁls and descrlption.

%ﬂﬂl&\‘lﬂﬁmmﬂﬁ VLAY, o1 e

it qu1te clear that by classical physics alone it is guite impossible
to understand the most essential properties of atoms - the stability
in atomic structure and the properties of the radiation sent out from
atoms. According to Rutherford's model, an atom consists of a heavy
positively charged nucleus of dimensions very small compared to the

atom itself surrounded by a system of light electrons kept together



by the inverse square attractive Coulomb force from the nucleus.

Let us consider the atom which composes of a nucleus and
one electron, i.e., the hydrogenic atom. For convenience such atom
will be called the hydrogen atom with the understanding that the
number of proton in the nucleus is now equal. to 2 (atomic number).

From classical mechanics, the ellepgnon in the hydrogen atom would

describe an elliptical or eirenlar/soFf bout the nucleus, similar

. ectron would therefore
NN

experience centripet
representing any state g plane, since the force
acting on the electron central force.

According to classiCal atceleration of the

charged particle wouXd of light with
frequencies egqual to the g =~‘ s34 equency of the partical in
its orbit, and to multiples : -nvertones. With the emission
of energy , ‘the radiusg® iminish - the electron
would slowly spire .V_'—"_ e echanical frequency

would change. Eence accordin L0 classica !u-l physics, the emitted
light should s “ﬂg %4 8. is is not at all
what is nbserva ﬁﬁhml ﬁ ﬁiﬂ i.rogen atom is
confined 1 | 51?1 éi] 2 <
mareovarﬂtﬁﬁﬁgﬁﬁm ﬁrﬁ’l zjlje her by
integral factors, as overtones. Instead,there is observed a new

and unexpected connection between the fregquencies , called Reitz's

combination law of spectroscopy,

J?T = RH( T Y n m, n,m=integers (2.1)

where RH is an empirical constant called the Rydberg constant .



2.2 THE OLD QUANTUM THEORY.

2.2.1

BOHR'S THEORY OF HYDROGEN ATOM.

The first formulation of the principle of the guantum

theory that could immediately account for the stability in atomic

structure and the properties of the radiation sent out from atoms

(2)

rm of two postulates (26);

tates of motion in an
atomic ayste} Laie” eX3 of so-called stationary
states which i that the motion of the

particles 1ny » laws of classical

mechanics posses a peculiar,

\\

ion of the system must

mechanica ; of such a sort that

every perma

consist in & \from one stationary state

to another. ear \
S
While in contrad‘ﬁzin- - ¢ classical electromagnetic

theory no radi from the atom in the

stationarg states themselves, 2 prdegss of transition
between v y ‘14";' accompanied by the
emission ;ﬂ‘elec‘ omapneti adiai:on. which will have
the same prgpgrties as that which would be sent out

acc:ﬂ%&j’}%m ﬂﬁ{r] an electrified

tiﬂle executing an harm ation with constant

q e R Th o Tt

hut is given by the relation
hy = E' = EY

where h is Planck's constant, and E' and E" are the values
of the energy of the atom in the two stationary states
that form the initial and final states of the radiation
process. Conversely, irradiation of the atom with electro-
magnetic waves of this frequency can lead to an absorption
process, where by the atom is transformed back from the

latter stationary state to the former.



It follows from the first postulate that in Bohr's theory the
motion of the electron in the stationary states is the motion

in a plane.

In calculating the energy of the stationary states of

the hydrogen atom Bohr imagined that the electron orbits in the

stationary states are repe , circles, although the theory

places no restriction of the orbit. He also used

the assumption that ge diameter the

frequency of the eza 4f Q:R \‘ espond to the freguency
of the orbiting e 4’f %\:E\ @ction of classical

physics. This "coz —' ;\\\\ i to the dintriguing

conclusion that fo % gnated by the integer
n the angular moment@m © # orpiting electron is equal to

(nh/2%). Hence the ke the energy, can change

only in discrete steps.. Zhd ation" of the angular
momentum is of LHGdemental SH¢ nd ee——gigthout it the atom
could radiate at jﬂ- u would no longer be

stationary.

o AU NENINEI AT e o o
iiit;?immn’jﬂm’ﬁﬁﬂﬁ'ﬁ[i’:":’;

relation

mzaeh

En = __"'-E—E ¥ n = 11. 21. 3‘ LI (2-2}
2 n

where m is the Electron's rest mass ( the rest mass of the nucleus
is taken to be infinity), 2 is the atomic number (the number of
protons in the nucleus), e is the elementary charge, and % is the

Planck constant divided by 2n.
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Bohr's theory was a great conceptual advance over the
earlier theories, but it soon proved inadeguate to explain the
observed features of atomic spectra, even those of the simplest
spectrum, that of hydrogen - although it was quite successful in
predicting the position of the spectral lines of hydrogen, there

remained an unexplained "fine structure" of the spectral lines.

The fine structure is a sgi he spectral lines, into

several distinct com nd in all spectra. This

splitting amounts to_ghew and cannot be seen in

spectrometers of lo

2.2.2 SOMMERFELD' SAREu o #i ’ i\ \\ HYDROGEN ATOM.
The more ge-mf" i i\\t were derived in 1915

by Wilson from the t __‘ n and applied almost

immediately by him and Sopex hydrogen spectrum (27)s

These rules are appllc an systems in which the

coordinates are ‘By= that the integral

of each cannnical-ﬁ-n: : ,” its coordinate over a
| ,

i
cycle of its mntinn‘.knonn as tha action variable J must be an

I
AR amsalmdmAse

where pq is the canonical momentum conjugate to the coordinate q,

Pq = g% 3 L = Largrangian of the system.

These rules are often called the " Bohr-Sommerfeld-Wilson

quantization conditions".
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One of the important applications of the Bohr-Sommerfeld-
Wilson gquantization conditions was to the case of the hydrogen
atom in which it was assumed that the electron could move in
elliptical orbits. This was done by Sommerfeld in an attempt to

explain the fine structure of the hydrogen spectrum. Sommerfeld

: ;‘ electron moving in
- @.cal mechanics.

Describing the motion ia¥efusc;df € “Plane polar coordinates

sguch an orbit, using ihe LtOFmu

RS see iy (2.4a)

BTy 2ioee (2.4b)

he found that (a) the leigth of £HE&™ semimajor and semiminor

axes , a and b,

(2.5a)

ﬂﬁﬁ?%’iﬁﬂ%’w IS (2.5b)

and that (b) tfle possible values of the total energy of the

2N TUNIIINGINY

m7 e
- (2.6)
n onéy2

where the gquantum number n is defined by the relation

n = np+nﬁ=1| E. 31 ceE w {El‘?}
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For a given value of n, nﬁ can assume only the wvalues

n" = ‘1‘ E] 31. ses g I (2-8)

Thus, corresponding to each value of the quantum number n there
are n different allowed orbits. One of these, the circular
orbit (nﬁ=n3, is just the orbit described by the Bohr theory,

the others (nﬁﬁh} are elliptigalf i gece orbits are said to be

"degenerate'.
feld
Sommerfe 2 }/1/ \ \\\f\acy by treating the
problem with the the ne *hanics. He showed

that the total energyfoi ; 4, orbit chacterized by

the quantum numbers pfa:

W
where the quantity

WLk VF%WI?WEJ’\T’I? Faca09

is a pure numg!r (dimensionlgss) called the Sommenfeld fine
strsce Wl RN U URARNHINY re 250

in powar series of (Za) and keeping the terms up to the sixth order.
This formula accounts quite well for the spectrum of hydrogen

atom - the terms in Eq.(2.9b) in which a appears correctly

accounted for the fine structure splitting of the lines of the
hydrogen spectrum . Unfortunately, the Sommerfeld

relativistic theory is not the correct explanation for the fine
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structure of atomic spectra. We now know that the fine structure
is partly due to the relativistic variation of mass with velocity,
partly due to the spin of the electron which produces the

gso-called spin-orbit interaction.

Although the old quantum theory, which is essentially a

general method of calculating je ftized guantities based upon

the postulates of Bohr =& ‘b’ fsgondence principle,achieved

many successes in & SETEand | lectrascopy, it was an
incomplete theory. J 1ot be 2ppli od to aperiodic systems,

hermore, it contained

s S
NN
;l-\\‘ However, it predicted a

most collision and =g
errors, contradictio

large body of experigk: ew simple rules, and

it set the stage fC nanics which soon

replaced it.

2.3 NONRELATIVISTI
| Y
The foundie® f'ff‘um mechanics can

be placed between EF years of 1925 and 1‘ ? Two equivalent

formulat ionﬂﬁﬁﬂ '%aﬂ ﬁmﬂﬂ ﬂﬂﬁsimﬂt aneously ;

Heisenberg's Hatrix m&chani%a and Schrﬂeainger‘ﬂ wave mechanics.

o RYTHR TN YINY Ve o

quantumqmechanics , the so-called Feynman path integral approach,

was proposed by Feynman in 1948 (33).



14
2.3.1 HEISENBERG'S MATRIX MECHANICS. (27, 29, 30)

The starting point of the Heisenberg matrix mechanics is
a critical analysis of the old quantum theory. The point of wview
developed by Heisenberg is the following. In any physical theory

one must distinguish the concepts and quantities which are

st necessity play a role
in the theory, where "FERHE modified or abandoned

without impairment. ‘electson orbit is an example

E n
of the concept witLeu _,/ m .X\\\\\

ion sinece no experiment

allows us to assey : v e

o ’ \ all;gr describes a

precise orbit in thg afgo

Starting exélu Lve 11y observable quantities,

such as the freguencies '€ ies of the radiation
emitted by atoms, thenEheory as : L with each physical
guantity a ;;———__—-——-_:"{ gquantities of
ordinary algebra ,Bhese matrice ey a ngicommutative algebra.
It is on this essefifdal point that the new (quantum) mechanics

aitters fmﬂu Sh VBN W Bl Flions of motion of

the d:rnammal variables of & quantized, system argsthus equations
‘betwefa ﬂla Q'ﬂlim umq ,lm&'] alﬂiPles these
aquatinna of motion are formally identical to the equations of

the corresponding classical system.

The method of Heisenberg's matrix mechanics has been
applied to the hydrogen atom by Pauli in 1926. His treatment has
recently been reinvestigated by Veerapaspong (4). By this method

the total energy of the electron in the hydrogen atom is exactly
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the same as that obtained from the Bohr theory, i.e.,

n = - a 2 y n = 11 2, ‘3‘ & w0 {EIEJ

2.%.2 SCHROEDINGER'S WAVE MECHANICsS. (27, 31)

Shortly after Heisenbepgls discovery of matrix mechanics,

Schroedinger set up ind=i-‘:gi..' fiagher form of guantum
mechanics - the wave Jg cs, ﬁtaa in the de Broglie
hypothesis on matter v | hich states that the wave-
corpuscle duality is : f microscopic objects,
and that matter, as o Eows Tl hath wave and
corpusculdar nspecia. et E NG de "Broglie's hypothesis
on the wave nature xe' experimentally in
1927, about one year ldfte ;jviuﬂ =,:«‘F;er's first paper, by
the work of Davisson and Gezs
energy electrons™irg .;éﬁﬁr

Y S ‘;1'
The basic ° Sch TE ation is the
‘ It
understanding that bEEidEB the ﬂﬂ Broglie relation between

wavelength nﬂ ng ﬁ}wﬂ %ﬁqﬁxﬂm’}:ﬁ%ma must stand

in the same ”.Laticm to the ‘orr:linar]r classical mechanir:s that

e WAV FRRHOAR A 1

accepts the additional hypothesis that matter waves (as contrasted

which they scattered low

to electromagnetic waves) are represented by one scalar wave
function U , then the Schrodinger nonrelativistic wave equation
in the configuration space for the wave function U representing
& given system can be deduced from the Hamiltonian of the

corresponding classical system by operating on the wave function

012277
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the classical Hamiltonian with the energy and momentum terms

given by

E — in and  py — - in g;_ ! (2.11)

J

Cﬂlm
o

These two guantities, considered as operators, give the '"new"

quantization condition when acting on the wave function.

For the hydru:f;  ,E . afch the classical Hamiltonian
is

(2.12)

= U(E &) (2.13)

The sclutions of tnown. The normalized

wave functions are

U1n(Fst) = R TR (B Y5 (2.14)

o) AL e )1 12201

dF

Y ﬂﬁﬁfﬂhmw el B

ama DWNIANAL, ..,

Ylmta,ﬁi and Lii{qfn) are the normalized spherical harmonic and

(p),(2.15)

the associated Laguerre polynomials respectively, and En is the

energy eigenvalue
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The three gquantum numbers n, 1, and m are called the "principal",
the "azimuthal" or orbital angular momentum, and the "magnetic"
quantum numbers respectively. When n is given 1 and m can be
found from the following rules ;

for the restrictive n

1l can be O, 15 244

5 1'1—2, n_1

{H—EJ 3 {.'ﬂ*-"|)-

has different standi eloped by the use of

different process the same results

for the problems tg€e n fact, as Schroedinger
has shown, wave mec anics are egquivalent (34).
They are two particuls hu  2£30ns of & theory which can be
presented in very geng :’_,f’l, ;  s8tting up of the general

o

formalism of the guantum 5»~.ﬁ%' sentially due to Dirac.

i _— Y )

T
] ¥

In the Feyngen path integrgl approach of guantum mechanics

e armmmof| AN YN SHEIANTe v oo oo

in the Schroedinger wave meghanics, cpgtained in ghe wave function.

e R ABING AT NERLL

UGEY,EM) = S K(RM,205t7,20)U(R,¢0) a0 (2.18)

where K(%X",%';t",t') is called the propagator or probability
amplitude of a par%icle to go from X' at time t' to %" at time t".
Since,quantum mechanically, there are infinitel} many possible

raths for a particle to go from the initial point to the final
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point under restrictive conditions that ®(t') = %' and x(%zx") = X",
the propagator must be the sum of contribution ¢ [3(t)] from each

path;

K(X",X";t",t') = ): pR(t)] . (2.19)
over all possible
paths from
%' to RV

According to F:;”> ,““! h path contributes equal

B0l Coatributes at different

amount,C, to the to

phase. The phase of each path is the action

S for that path in weftafofffhe fetion h, i.e.,

w [3(t)) (2.20)
where the action

s () (2.21)
with the Lagrani'

L &®(t), " ] = . (2.22)
| ﬁﬁﬁw"ﬁ%’w 4N

K (331 5e0,£1) = %L s [x(t 3] (2.23)

ol mn'ﬁmﬂmﬁﬁmaa

which, as Feynman has shown (33), can be expressed in the path

integral form

3N/2 N
T ' 1im i m A T 2
K(®",30 1", )= H*untznlhs} S-S eprh EE%[EE {xj-xj_1}

_E'ﬂ'{'i'id)]( d3qu3x2... daxﬂ-1 4 (2.24)

tﬂ_t L] = =3
( N ), ta=t', tH=t", E =%', and ﬁh—x"

where € =
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Feynman wrote this sum over all paths in a less restrictive
notation as
-x." " ]
K{X", %" jt",%') = [ exp[ﬂ%—'x—j ¥{€9) (2.25)
*sc"ll

which he called a path integral.

obtained from this mg -7: are & ad same as those obtained
from the Heisenberg m | -
mechanics. In fact, aff gfu FE =  |‘ M:f'ﬁ\\:ese three approaches
of quantum mechanic:'} , 5[23 ceh N xThey are different

mathematical formules

Apparently, &LL¥ "-f.--; -:--\n hes of gquantum mechanics

discussed above predidtediffic Fo efgy levels of the hydrogen
atom, and hence the :;u;_iﬁé%}ﬁf of thq'spectrnl lines.
Again, the relat &;;:;,?-e?m-;::::;:;:.:.;s,i introduced in order
to explain the riﬁ? stry - 1:% he spectral lines.

W

dF

Moreover, in additii;n to the relativistic corrections, the

correction “uﬂ?}%&ﬂa%wqﬁie included in the

theories.

ARIANTUUMINYIAE
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2.3.4 PAULI'S THEORY OF ELECTRON SPIN

The concept of the electron spin was introduced by
Goudsmit and Uhlehbeck in 1925 to explain measurements of the
spectra of alkali-metal atoms. According to their hypothesis the

electron must have its own "spin" angular momentum of the

magnitude of half a quantun hich means that if one measures

the component of this ans figgalong any direction onme
finds either the va a magnetic moment of

one Bohr magneton (=g

After th Goudsmit and Uhlenbeck,

the first treatm s given in 1926 by
Heisenberg and Jory rmal methods of the

matrix mechanics. Afma 5 include the Goudsmit-

Uhlenbeck hypothesis hanics was proposed

independently b 1927. The method proposed

D&
by Pauli socon ;iﬁ e Standard he "féﬁfsiun of all ordinary

problems in atami!ﬂan- nolecular Micturgs However, none of

i¥

these authors pratadj;ﬁ to offer theory of the origin of the

crcctron eofll BERTdeY hE) DIV Feree tr o2

mathematical descr:ption off the physisal ideas pmoposed by

s A ARSI UNBILLRY B B o o
requirements of the special theory of relativity we cannot
congider them as ultimately satisfactory from the point of view
of general theory. Nevertheless, the Pauli theory is a valuable

first approach to the more complex theory based on the Dirac

equation.
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Fauli opened the way to successful wave mechanical
treatment of the electron spin by the assumption of the two wave
functions, i.e., he replaced the Schrodinger wave function (ome
single scalar function) by a pair of weve functions whose squared
absolute values determine the probability density of finding the

electron with its spin oriented ,parallel or anti-parallel to an

arbitrarily chosen axis, In analog to the

‘T-ntruduced the spin

orbital angular momerrtus : .
: ---ii

operator g y TEDTE equently called the

"Pauli matrices" | ; e -\\\?\\ iwo"Component wave function,

a linear superpo

(2.26)

where the Pauli spid m -,di} are the 2-by-2

matrices

. (2.27)

iF |

By studying the trasigformation ofy the component of the wave

tunciion wofik WESo b Y19 BERAE) Broven, 7o

developed a unnsiatant wavefmechanicad, spin theomys which

A 1A IBARDEN ot e e

electron spin.

The main physical assumption of the Pauli theory is that
the Hamiltonian describing a system of particles dis just the
usual Schroedinger Hamiltonian plus an additional term

representing an interaction energy with the electron spin (35).
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For the hydrogen atom, with in the approximations that the mass
of the nucleus is infinity and that the spin of the nucleus is
zero, the interaction energy arises from the interaction between
the Coulomb field of the nucleus and the intrinsic magnetic
moment of the moving electron and is found to be, to the first

order apprnximation;(ﬁﬁj,

(2.28)

angular momentum of

Apart from ¥ 4o} a "if; inte tion (2.28), the
correction terms whi€h J& 50 2 relativistic variation of
mass with velocity myStgals hE c Tud into the Hamiltonian

e initting of the spectral

———

lines. To the first or*?ﬂﬁﬁxﬁ}.ﬂi on

, the additional term is

g . &S _25V) , (2.29)
2l  Bm : : A

:::::t;H)ﬂ 8@51’] ﬁ%tgdﬂﬂﬁjﬁtﬁi%n for the hydrogen
PANIUNRIININY o

Since the spin and the relativistic effects are ﬁnuﬂn to be
small - they correspond to the fine structure splitting of the
spectral lines, we may consider HEP and Hrel as perturbing
potentials and may handle the problem by perturbation methods

(z6).
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By choosing the unperturbed wave functions to be

R ,(r)Y, (8,4)3 , R ,(r)Y, (6,6)B, (2.31)
where
1 L 0
a = and B = (2.32)
4] 1
are the spin wave functig ﬁh pding to the states with
spin-up and spin-down “¥e T" Brd using the first order

perturbation theory =+, order change in energy

due to Hsp and Er:
(a) the the spin-orbit

integ

{1}
nl
8p

e —————— 4 y 1
¥F 1l +5 ,1#0
£S e (2.33)

B!

i
9" Mﬁiiﬁm iﬁ iff 1}

gquantum numbers , respectively,

and that (b) the additional energy due to H..q 18

Bl = (Rea)

rel %
(Zu]‘lE | 5
= B - 2. (23w




2k

Thus, to the first order approximation, the total energy of the

electron is, in terms of the quantum numbers n and j,

(1) = E{G} (1} E1)

nJ n na 11.']
5p rel
[ mzPe” (Za)®

Comparing these res iped from the Sommerfeld

relativistic theory sotion 2.2.2), we see that
except for the case he energy predicted by
the above calculatlionf #s . : ‘\\\\ ent with those predicted
by Sommerfeld. For “ l \ epancy. But this
discrepancy is removed b} elativistic theory, which

shows that therdy more re : rrectinn to the

LJ

Hamiltonian - t "" hose existence we

i | "
could not have gus ! ssed because as no &lassical analog (see

ey umwﬂmwmns
qmmnwumwmaﬂ
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2.4 RELATIVISTIC QUANTUM MECHANICS.

As have been mentioned in the previous section, the Pauli
theory of the electron spin is an incomplete theory since it does
not conform to the requirement of the special theory of relativity.
It was Dirac in 1928 that found a new way of constructing a theory
of quantum mechanics for theydlgeiron spin that is alsc coneistent
with the special theory ’-,_;—-‘i$3?). In the Dirac theory

ﬁxsequenca of the basic

equation - the Dirac \M\sn as a special hypothesis

; o— s ‘\b
stipulated by exper i @en s e \\ \\5,

applicable to all sj

the electron spin apiesss

the Dirac theory is

- the Dirsac particles.

2.4.1 KLEIN - GORL@®

Actually, thefDifigéieqn was not the first relativistic
wave equation , the s0-Gaid grdon equation , for spin-less

particles, was & = i oposed in 1926

independently by -i‘ . ajf, Klein, de Donder and

Van Dungen, and Knder This equatiun is derived by inserting the =~

s orero il WGBS Y R Fon0 - 2o o

relativistic Telation betwegn the ene gr and mﬂm ntum for the free

pwqmaﬂnimum'mmaﬂ

ES = (cp}z + (me®= s (2.36)

where m is the rest mass of the particle and ¢ is the speed of

light in vacuum. This procedure yields the wave equation

2
D u(s,t) = (-n 225 + moc } U(T,t) (2.37)
Bt°

which has become known as the Klein-Gordon equation.
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From the wave equation (2.37) a probability density P
and a probability current density 3 which satisfy the continuity

egquation

Vi - mP =0 (2.38)

gare found to be

P = (2.39)
and
3z = (2.40)
s =1, 2, 3.
It should, I given by Eq.(2.39)

is not necessarily pde ot be interpreted as a

he possibility of

Hon fell into disrepute
st proposed. It was only
tablished the validity of

35 fguation and
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2.4.2 DIRAC EQUATION.

Historically, Dirac discovered the relativistic wave

equation which now bears his name while trying to overcome the

difficulties of negative probability densities of the Klein-

Gordon equation. According to Dirac (36) the relativistic wave

equation must satisfy the fglJ ying requirements :

(1)

(2)

(3)

(%)

It must allow ,: St OfS W gProbability interpretation
of the wave D11 fd. This means that it

must be pPOESLLME FL ¢ .1ﬁ - sy;:ﬁ he wave equation

» &
probability e Sty ¥ -1-*fsﬁx\<:dti?a definite and a
probabilityCufréde! 2enBity § Shch that the continuity
equation

(2.38)
It must be cbnsfi he principle of special
relﬂtijb
It mus ;——" _;&}? on in order that

ole of tHe quantum mechanics

U ANNING DT i i

|
the supasﬂusitiox priy

SLMERIR TPV Il

applicable at low velocities. Furthermore, in the non-

gquantum limit it must yield the mechanics of special

relativity - this implies that , for a free particle,
the wave function must obey the Klein-Gordon equation
to assure that the relativistic energy - momentum

relation for a free particle is satisfied,
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These requirements imply the following form of the relativistic
wave equation for the description of the motion of a free particle

of spin-% and rest mass m , the Dirac equation for a free particle,

.. 0
HD u(z,t) = (ca-B + Emczﬁ u(®,t) = in oy u(e,t) , (2.41)

where HD is the Dirac Hamiltonian for a free particle

+ gi} - amcz, (2.42)

z

a = {“x‘ur‘az} and B.g v,f | mad 'f“%:.=tisf3 the commutation
relations
2
L3 \\\ ’ :
” Qb:\\ (2.43)
2
=

together with the rel

\\ these by permuting the

suffixes x, ¥, 2. The 'wai fr;t} is now a four-

-gﬁﬁ_f{?&

component wave f,lc

U(F,t)

ﬂum m e
'h'"amaw; U INYR .,

5 = a (¥,t) = . (2.45)
P(r Y U (T, t) s ¥ ot (%,t)

b ] (Es""‘l‘l‘)

The standard representation of the & and P matrices, the Pauli

representation, is specified in terms of the Pauli matrices (2.27)

—
a

I
b
o
e
™
n

I = 2-by-2 unit matrix.

(2.46)
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That the Dirac eguation de.scrihes the particle of spin ¥
can be seen by noting that in the Dirac theory the orbital angular
momentum is no longer a constant of the motion but instead there
exists another operator which is a constant of the motion and can

be interpreted as the total angular momentum. That operator is

(2.47)

where 8 is the operator nterpreted as the spin

angular momentum ; s

(2.48)

‘ \ pin matrices. (2.49)

) n
Since the eigenvalu#t > and - =, it

c
F n= :
follows that the Dirac ¢ _Z‘.‘-'_f_-.:.-.n- s the equation which

Y
describes the spin- f=oe .-;

y l
The Dirat = ‘ eralized to describe

the motion of a -L ged particle of spin-7"in the presence of an =

external ﬂﬁﬂﬂTwmmwmfﬂﬂ potential

A (¥,t) and §)vector poten hy making the usual

ﬂwwﬂmnmummmaﬂ

15—-';: -9% , ang-osing - A . (2.50)

The resulting equation is
Hy U(F,t) = [cﬁ-('ﬁ - -}I) + pmc® + qho] U(F¥,t) = in g— {6 .% 5D
' (2.51)

where the potentials A _(¥,t) and E(*,t) are evaluated at the



position of the particle. This equation can be separated with
respect to the space and time coordinates provided that the scalar
and vector potentials are independent of time . By putting

1Et}

u(¥,t) = U(?) exp(- (2.52)

into Eq.(2.51) we obtain

,“\II:“‘, ah, U(r) EU(®) , (2.53)

une-independent Dirac equation.

H) U(%) = [c&‘-(‘ﬁ -

which should be rafff

The quantity E in J 2l '+L; ion 'ds ‘ealled the energy eigen-

value .
For the h = 0, the time-
independent Dirac
(ca.P + pme E U(F) , (2.54)

which can be so f;r (1¢ 7 -4 pund state energy

eigenvalues are

ﬂﬁﬁh TR U
ARSI - o

where n is the prineipal quantum number, n = 1, 2, ... , and k is
the quantum number related to the orbital and the total angular

momentum guantum numbers, 1 and j, through the relations

-(3 +
kE =
(3 +

|
—
n

-(1 + 15 if j 1+ ; (spin-up),

—
1l

1 3t j= 1= (spin -down).

(2.56)

= o=
P =
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Eqs.(2.55) are equivalent to the formulas first derived by
Sommerfeld on the basis of the old quantum theory, although the
interpretation of the quantum numbers is different (and wrong)

in the old theory.

The first term in the series expansion (2.55b) is the

; nonrelativistic energy. The

terms in (Zu)u are exaGhly W ﬁn&d in the Pauli theory

if a first-order pertur lsé- n cal -«1;¢;‘ 'is used to evaluate

rest energy. the second tem;x

the contribution of ding three terms (19) ;

(i) variation of mass
e ; (2.57)
(ii) the s#in f—f'r'{«f :
(2.58)
Y]
(iii) ths “Dafw'n ' uctuation —ﬁum (see Appendix B)

A ummw N3 (2.59
QW'\Nﬂ‘iﬂJﬂJWYJ‘ﬂEﬂaH
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The normalized wave functions which correspond to the
bound states energy eigenvalues (2.55) are divided into two
classes (19) ;

(a) for the spin-up states, i.e., j = 1 + % and k = -(1 + 1),

/k -m+ ¥
By () ““.E_EEI*T ¥ g-1,5-%08)

(e,4)

-k-1,m+¥

A
Hnﬁ{r} y (2.60)
, ERACE Y
(e,d)
(b) for the spin = and k = 1,
ﬁtgﬁﬂ
B k E+ﬁ{g #)
Unkﬁ{r):-A — : y (2.67)

(r) i (G,ﬁj

AU ’JVIEW]?WEJ’]ﬂ‘i '

where m is tid eigenvalue us the z-compnnant of the total angular

s ) G115 0 T PBINY )

nk(r} are the normalized radial Dirac eigenfunctions ,

%

M2 +n+1)
"k (1 *Gnk}}&{a:'hk}m

(r) =
Enc bN (N k) [P(2%+1) e

1 ‘Vk- ‘1 iz L
expl- > hnkr) {E}Ek?} [n1F1{—n+1;Eﬂ§f1;2}hk;)

- (an-kJ,IF,t(—ﬁ;E'FkH;Ehnkr)] i (2.62)
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= ¥%
Thn) = o SEET R i
#Nnktunk-k) {2‘75;1 n!
1 k- = =
exp(~- 3 lnkr} ':Elnkr) [n1F1(—n+1;2"1"k+1;2}~nkr)
+ (Nnk-k},lrm . 27, +1;2hnkr}] g (2.63)
-;fk_= J[kz - (2a)3 ty _ \“ £#5¢ 3o tine structure constant,
E = n- Iki ] '
N, = Kn +~"r’ G | f arent" principal quantum
gL -8 Eik a = Bohr radius,
nk m.c?.
Flc) = .rme_ mma Hunction,
0
e a(a+1) (a+2) 2z° |
azcs = - R
B A ole+) Il c£1) (c+2) 3!
i -J-“d- function.

|
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