Chapter 2

Machematical Programming Models

Mathematical models are idealized representation

that is expressed in te ° mathematical symbols and

sibe the essence of the
problem. Thus ? - re elated quantifiable
decisions to begmads LRy  @- spresented as decision
variables (say, # ./ .  :~“ wh 1 espective values are
to be determined. é i'f_ . e ‘measure of performance
(e.g., cost) is th
of the decision B, B, F =323 +2x+...45x).
The function : C _._f  obje dve function. Any
T "P€ assigned to these

] i

decision varl--les are also expreSsed mathematically,

e ﬂ'ﬁ‘El INHRINGA i o

x +3xx ARxy; < 10). Such mathematlcal express;ons for

the aﬂqmﬁﬁwaﬁﬁﬂwmﬁ (Hillier

and Lieb erman, 1990). We then write the problem as

restrictions

Optimize: E(x) objective function
Subject to: h(x)= 0 equality constraints
g(x) 2 0 inequality constraints
For identifying optimal piping design problem, there

are three mathematical programming models that have been



widely proposed: Linear Programming (LP), Nonlinear

Programming (NLP) and Dynamic Programming (DP) .

2.1 Linear Programming Model .

Linear programming is one of the most widely used

gne of the most effective.

i '41:1&:1 by George Dantzig

—
in 1947 refering. ‘ of optimization in

problem in w e function and the
constrains are lbau, 1988).
Kameli, (1968) presented a
method of pipigh sing the theory of
linear program programming model is
based on an ass kga;'} ) | pipes connecting the
delivery points to. & The network and
conditions
in Flgure 2.1. ]ﬂ

The network COnElStE o a set of N demand points

‘Vlifw BIERA Fre two types of

demand pul s; delivery Jpoints aﬁ Junctlavclnts At

s AT W VIR B o o

a glve rate, g(m), and at a hydraulic head greater than

89 operate are shown
i

indexed b

a given minimum H(n). These demand points are connected
to the source at O by a network of N pipe sections that

also indexed by n.
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In each seg different kinds of

pipes and diamegex be considered for

inclusion in the These are chosen in

relation to the d guired, the maximum and

minimum allowed
\F A
pipes are indases £X0m 1 to G (n). The

B :H‘
|
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He section is .

AUL INENTNEINS

F(n) =Y3 1(n, j)c(n, j) (2.1)

- AXTRINTUNMINY1AY

c(n, Jj) = unit cost in jth alternative pipe in

IThe G(n) different

total cost of

section n;

1(n, j) = length of jth alternative pipe in section



b) Pumping Cost.
The head to be provided at the pump is given by
H(0), and its cost is assumed to be c(0) per unit (This

includes annual operating cost and capital costs of the

pump expressed as annual amount by a suitable capital

recovery factor).

c) Minimum
Thus, the«*Opg - 8 D ‘"‘&: may be stated in
standard LP fo

Objective;

Minimize A, i)1(n, 7) (2.2)
Subject to:
Gg'?u ) .

n, e (2.3)
J =1 y" |‘ ‘
H(0) =Y 5 lfn,Jthfn JJ > zﬁ (2.4)

o GUEINENINGNT

(2.86)
- ARTRATAI NN TN
F is the total annual cost of the system;
H(n) = the total hydraulic head at point n;
L(n) = total length of section n;
he(n, j) = unit friction loss in jth alternative

pipe in section n;



G(n) = number of alternative pipes for consideration
in section n;

and the summation over n' is taken over all sections
in the flow path from 0 to n.

the c(n, j) so as to minimize

The aim is to choose
‘ e assuring the required
pressures and dischafge at ry.

For all secid - pumOFf“eig, lengths of the pipes

5‘~th of the section,

\\ al total hydraulic
\k \; than

selected, 1(n,
L(n) . At eac
head, H(n) mus
a given minimum,

Each pair, sociated with it a
diameter, D, fric .u_.__‘_uﬂ_i ™, as selected by the

designer, and a unit fﬁg;fg;a s _denoted by hg(n, 7).

The totaH‘é‘ cron—tess—in-a-geeldpn 1s given by
G\ T
n(n) = >3(n, 7)he (4, L (2.7)
=l ¢ a
merﬂwwwwmﬁaﬁ o can ve
written wi H(0), and ghe 1(m,_Jj) of the, section lying

in el dibu] Shei Floa YTt Wlfsl'bﬁrﬂs Bq. 2.4.

The model is employed to minimize the total cost by
determining the optimal commercially available pipe size
for each link, and for the pump head at each node. The
model is suitable for the both cases in which the fluid

pressure is to be selected, and the case where pressure

is given.
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The LP model is found to be very useful for the
analysis of branched networks. However, when the number
of candidate pipe sizes is large and the configuration of
the network becomes complicated, then computer resources
such as memory and CPU time increase substantially that

cause the LP model large to solve (Fujiwara

and Dey, 1988).

For this re Shamir (1977, quoted
in Perez, Mati ggested the problem
size could : “by\ \eor ing a number of
candidate dia‘ . ing only the strictly
needed constrai i g A Seme ‘purpose, Bhave (1979)
used the concep for establishing a

minimum number of

2.2 HNonlineaf-

The LP ges ﬂWer other methods in

simplicity in g2 pllcatlon especially in branched
ﬁ‘%ﬁﬂﬂﬁ%ﬁﬁ‘%‘ﬂﬂﬂ’mﬁe
this reas®n some  guthors lgﬁve cho nonlinear

fmfl%? oA TR 3 ﬂﬂ%ﬁa&l continuous

dEElSl n variables.

NLP problems come in many different shapes and
forms. Unlike the simplex method for linear programming,
no single algorithms have been developed for various
individual classes of NLP problem (Hillier and Lieberman,

1990) . One of the NLP approach for economic pipe size
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selection giving a quick analysis is developed as

unconstrained optimization problems (Peter and
Timmerhaus, 1968; MNolte, 1978; Coulson and Richardson,
1983; Edgar and Himmelblau, 1988). However, as the

process model is made more accurate and complicated, it

can lose the possibd obtaining an analytical
solution For constrained
problems, present AN optimization algorithm
using Lagrangalrp \%'w 'c;

Lagragians ' e ‘\Qiﬁ?“ st solution subject
constraints ' . \k so the first. They

may be considergd fa Iﬂ#,; sdiste \step to the general
optimum conditiog ub¥i ;f "1 flhn and Tucker in 1951

(de Neufville, Lagrangain Multiplier

Technique appends constraints to the

i

objective fupgtion ost  functie 5
. el )

. L]

U

hrough Lagrangian

=ale ction.

. 7
Multipliers ti.“

Chlplunkar and Khanna

oo G BN S oy oo e o

nonlinear Programming {%LP}

‘Q RWIANN I UNIINYAY

The capital cost of pipe per 1length (including

{1933} ‘presented a simple

laying and jointing cost) can be expressed as

m
Cp, = KD (2.8)

in which
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Cp = cost of pipe per length; D = internal diameter
of pipe; and K and m are constants depending on the
material of pipe.

Therefore, the total cost of pipe for N sections can

be expressed as follows:

N
F = Y K1;p;™ (2.9)
i=1
where
li = the 1B
D; = the digmELéj 1R N FL iection;
N = the totjz
b) _
The relatiorms T o ating the friction head
loss in ith section daabe-—w en in general as,
hei = -3 (2.10)
AY
in which I

section; Kz =

o B R
~ S IR Y

head so as to achieve the required terminal head H, at

point n. The constraint can therefore be expressed as
N
2.CiDi T = Hy - Hy (2.11)
i=1

in which
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Hg = an initial head of source at the point 0; Hp =
the terminal head required at point n.

The cost of pumping plant can be expressed as

Cpump = K'(HP)™ (2.12)

in which

Coump = cost‘ plant; K' = a constant

determined by a a correlating capital

cost of pump with ponent depending on

type and range HP = horse power of

pump which ca

-'
Hp = 2514 (2.13)
n74¢
in which
Q1 = tota isghary i8. % flow in the first

T

. - LIRS/ )
which p = deps of =~ £Xu: acceleration due to

section of branch; 81 pump head; and A = in

gravity; and 07= '®fi pump and motor.

Cpump = K4{Q1Ho I (2.14)

’ éiu A NAUNTH DT e o
inwma%ﬁ%muwﬁaﬂawﬁﬂ

Cpower = capitalized cost of power; A = a constant

-

determined from the cost of energy, hours of pumping
during a day, efficiency of pump and motor, yearly
average consumption, and capitalizing factor over the

design period.
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c) Minimum Total Cost.
Therefore, the optimal problem can be expressed as
Objective:

Minimize F k1;07 + Ky (Q1Ho )™M + a10Hg ~ (2.16)

N
=k

Subject to:

N
2. Cibi " (2.11)
i=1 - ‘
D; > 0 for = . : (2.17)
The optimis L \ | ‘ani™he stated as that of
minimizing tot; @ 4 ind (Bg. bject to constraint
(Eg. 11) The 0, ofy problem is
N . ; \
F{Di,j} = 2 v 5 .,'4".' C;D, , (Hn = Hn)] (2.18)

\

where A; = the 4.;:_

The miniud

=
-

G8in function amounts

ubjec-k‘e function as the
constrain ﬁ ‘j' £ie g rEl optimal solution is
achieved ﬂv EBL ﬁ gj?] Zﬂ gﬁf derivative of
Lagr i q m : dﬁm‘l variable
(diaam»]ﬁd FL ﬁﬁim Lagrangian

multipliers and equating the expressions thus obtained to

. ]
to the minimi ! tion o©

zero (Rao, 1979 quoted in Chiplunkar and Khanna, 1983).
The optimal solution results in continuous diameters
which neccessaries must be 1round off to discrete

commercial pipe.
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The linearization not only introduces results that
are often far from the true optimum solution, but also
hardly applies to complex piping networks (Liang, 1971).

The concept of DP was developed to solve a general

separable, serial optd Zelt i . The approach 1is
to decompose a - ¥gramming problem into a
series of individuad®—sub) bem, connected in a serial
manner. S5 : 1dug subproblems are solved
recursively to O UNE O . on. The separable
: sented by the stages
re tied together Dby
information into and

transition functj

out of each subpuBbliem bas in'decisions made at each

—

stage. The current ,..,v,, b )*; condition of the system
at each stage_3i=s rebained Snd ol ‘f 'ded in the state

]

variables (Mar --_E n

|V
{
Yang, L:.ang‘. and Wu {19?5} developed an optimization

procedureﬂwug '}%‘Hfj%m ﬂ«ﬁjem design. The

configurat%ns of flu:.q. transpnrt systems‘u range from a

csoo® )64 P DEHHTE) BHH TR voine <o

anothe (Figure 2.2), to complex distribution system

consisting of many branches (Figure 2.3). Each pipe
segment of a system is treated as a dynamic programming

stage.
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Figure 2.3: Diverging branch system.
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Figure 2.2 shows the corresponding relation between
dynamics programming stage and a pipe segment in which Hj
= inlet total head of the ith stage, Hj_j = outlet total

head of the ith stage, D;j = diameter of the ith stage, Fj

= total cost due to the h The total heads at

/7

output state varfable—of ‘€ fAge. The pipe diameter

the inlet and outigt ent are the input and

is the decision 0rle) of \eachwgtage. The sum of all

cost phases, aterial cost, power

cost, and wasteg gtages, is used as a

system effectiveness.

\\:\ne system 15 expressed

criterion for meaBufr:
wiﬂ

pate

A design pro

as

ﬁﬁ* Soe st
Minimize " Vi
il |~r‘
F(Hj, D;, Hey * 7 + Cei) (2.19)
d‘ i=1 I
Subject to:f .,
Hi- ﬂumwﬂmwmm .
(2.21)
(2.22)
where as
bﬁi = the cost of pipes, elbows, tees, and crosses
per year;

Cej = the cost of energy put into fluid per year;
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D; = diameter of pipe, elbow, tee, or cross of the
ith stage;
Q; = flow rate in the ith stage;

]

Hj inlet total head of the ith stage;

H;_, = outlet total head of the ith stage and inlet

total head of (i (a pipe and connector

attached to its ouk er are treated as one

stage) ;

Hpi., Hp2: . ‘cf each branch.

The soluti yrogramming technique
consists of two

'-\-\:R optimization at each

component, the iiffiﬁ- .\\zgch. diameter will be

1. Moving

determined.
2. ghe initial compeonent, the

minimum cost Of optimum diameter

of this cnmﬁ-ér ;,-t choice of this
diameter is t‘; next optlmum dia-d'er. According to
-~ “‘*’F?ﬁ’ﬁ)‘"ll Wﬂ‘ﬂ“ﬁﬂ 3 11 0 A
get by movihg forward.

Wﬂ]ﬂ:@&ﬁ wwrlﬂ w Erftarﬂ minimum the

sum ofl overall total cost that may be expressed as

cost = minZCtj’i= min{Cthi} (2.23)

where

Ctj,i = total annual cost of the jth diameter of the

ith component.
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The recurrence formula for additive function can be

expressed as

Fj g min{Fj, ;] (2.24)

where
F*
Fid
of the ith component;

minimum cumulative cost of the jth diameter

Fj, i = cumulg:: e jth diameter of the
ith component.

The cumulati summation of total

annual capital lative cost of its

choice. In equ:

Fj,i=0Ctj,i {2.25)
where

Ef_l = minim “;, =j uBure cost (component n-1
onward) of the ChDi'gﬁﬂf‘*gw

The Far,L;ﬁ_q-_____;_m,__“.___;+ ced itself by Eq.

i
"

tmila can be expressed
|
L

wﬂwﬂmawﬁwmm

Tost of connﬁftor is ccn51derable, Yang, Liang

- w@a«@ﬁ%ﬁmm@wﬁmﬂ o 236 5

the d elapment equatlon may be expressed as

" v:'.
2.25, Therefi%l.

as

* 4
Fj,i = mn{ctj,i + Fi—l + ch,.i} (2.27)
where
Ccj,i = total annual cost of jth connector for

connection between ith component and i-1th component.

The connector has two different diameters, first is
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the inlet diameter that will be equal to diameter of ith
component, second is the outlet diameter will be egqual to
diameter of i-1tP component. The total annual cost of

connector is also determined by the same method as total

pipe cost.

Perez et al. (1933))Puksented a method based on a

dynamic programmi ~mfwali @30 The method identified
— - # . i
optimal strategi®& £0F uSe OE PrEssure reducing valves

(PRVs) in order e..in downstream pipes,
thereby reducing t ) :“~ investment cost in

-3—.~~d an opportunity to

\\\\ 5 t cost.

%\\

those pipes.

achieve considergbl

HUEI’JVIEWI‘WEI’H‘]?
Qﬁqaﬂﬂimﬁﬁﬂﬂmaﬂ
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