are structural regularities_callcd “mternal a@mal connections in the given
clauses. Such structural : -m Opriate linear expansions can be

;\\\.\:. L roots of clauses for which it is not

computed. However the

possible to find any appfG \ hnique. Such linear indirect
roots have a kind of st ‘ lled-eress c . “ 0
The following definitiogs iré derive d'fr : ; am-Almquist [2].

Definition 1. A position of a-,j
defined as follows:
n)-:::-lsapnmnuno

b) <(f, ), Pr, P2sees pﬂ} is @ posil i E@ a term f (f, f,..., fs ) and
<Py, P2,..., Pm > is a positionof t in £;, wherg L<i <n,

s<annrfl N SRE B G .

<py, P2 ,p_‘.':- apnsutmnnfrmrewherelﬂfin and

O <D G RGBT Y B o

and < py, Pa,..., Pm > is & position of ¢ in £, where 1 <i <n.

ple expression E is a sequence of pairs

We also say that — p is a position of f in E if p is a position of E'in 1.

Definition 2. Let p = < py, pa,..., Pn > be a position. Then a position ¢ is a
subposition of p if and only if ¢ = <py, pa,..., Pm , 1, 925, Gn >-
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Definition 3. Two literals are compatible if and only if they have the same predicate
symbol and sign.

Definition 4. A pair of literals (4, —B) is ambivalent if and only if 4 is compatible
with B. A clause C is ambivalent if and only if there exist literals A, =B € C such that
(4, —B) is ambivalent.

Example. The clause C = { @), q ! y *(@))) is ambivalent since p(a) is

rQause neither p(a) nor g(b) is

literals (4, —B) if and

. be an ambivalent pair of literals.
Then the pair of terms (a, f *(a) in position <( p,1)> in (4, —B), and the

pair of terms (b, d ) is

T —

e R

Intimambwatempmru terms | 'example,acansaethatﬂwﬁrsttenn is
a subterm of the second®erm. We also hawe some structural regularities in the term

ro HUBINETING N
o VA BTV A B D G0 .2

posmon}gmzl and 7 a term in position g in B. Then a sequence of terms K =

[So, 51,...,5, ] is a cross connection with structure z from s to ¢ if and only if:
a)so=sand s, =1,
b) p is not a subposition of g nor is g a subposition of p, and
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¢) 7= [(p1, @1), (P2, G2), -.- » (Pns Gn )] is & sequence of pairs of positions such that for
each 0 <7 < (n— 1) there is a literal L, € C such that s, is found in position py in L,

and sy is found in position g in L.

Example. Consider the following clauses:
C=(plx, 1) « g5, ), 71, V), P, Y)),

), 4(v, W), p(z, ).

In the clause C t K = [x, y] with structure m =
[(<(~g,1)>,<(~q,2)>)] fromHEs€ini ¥ in the litera u) to the term  in the literal
= p(v, ¥), and a cross cogaeCtion s = fu \\* e m = [(<(=r,1)>,<(-r,2)>)]

s F g >3 ] \\\\\ g » ] »
from the term u in the liggrald nx) #)-to-the ter e literal = p(v, y).The cross
connections in C have d ' A W '

‘tha both clauses C and D are

Definition 7. Let T be a se ™ linear resolution of 7, denoted

L'(T), is defined as:

)T =T and S A
b) £(T)=°r"(T) ' | i H is a resolvent of C and D}

(n>1).

‘A U
Definition 8. ﬂaye ﬂm’gnm powzl j amng (;ltfn]djn]y if D is a variant of a
T , ¢ - ) o/
T T
Definition 9. A clause D is an indirect #™ power of a clause C if and only if there

exists a clause E such that E < D and E is an n™ power of C. We also say that C is an

indirect n™ root of D.



Example. Consider the following clauses:
C=(p() < p(f())),
D = (p(x) « p(f*®)),
E=(p&) < p(S* @),
F=(p(a) « p(f*(a)), p(a)), and
G = (p(x) « p(a)).

The clause C is a second root ¢
an indirect second root of F, since .} :
clause G is an indirect n" :
first root of F.

t of D and D @-subsumes F. The
—

@e clause G is also an indirect

third root of E. The clause C is also

Example. Consider the fo
C=(p(
D =(p()f

The followi : wsoistilon: shisa of ©f) predicate, function, and
!

constant symbol bet 4 wo clause ; *1" plies the other. While it is
not used directly in tfollows, it does help to motivat | he J-algorithm.

ropmiion L AN T W DT it .1

every prﬁdiﬁ. lf:lmctica and constafit symbol ocu-r}ﬁ in A must.also occur in B.
q

ANTIIEU AR IVIE IR E

Proof. Let / be an interpretation such that B is false with respect to I.

Step I. We must show that there is no predicate symbol which occurs in 4 but
not in B. Suppose that there is a predicate symbol p which occurs in 4 but not in B.
First, suppose that p occurs in the body of 4. Let I' =1\ { p(f) | t is a ground term}
(i.e., I is I modified so that p is always false in I' ). Then 4 is true with respect to I',
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but B is still false with respect to I' , because p does not occur in B. This says I is a
model for A but not a model for B, contrary to 4 = B. Thus, p cannot occur in the
body of A.

Hence we must have that p occurs in the head of 4. let " =T L { p(f) | tis a
ground term} (i.e., /" is / modified so that p is always true in /" ). As above, we have
‘ | with respect to /", contrary to 4 = B.
Thus, p cannot occur in the hedd ¢ i ' ows there is no predicate symbol

or constant symbol which
nction symbols of arity 0,
bols. Thus, let f be a function
occurs in B, Since 4 = B,
A3,..., A, such that for eachi e

Step II. We m

occurs in A but not in# Sj
we really only need to g
symbol which occurs in
A ¢ B. Thus, there is a segtie
{1, 2,..., n} either

1)A,=A4, or

2) there exist /o <1 Such that 4/fs are f y3nd Ao
mﬂﬂm:hammmﬁﬁ[m__“_'” é‘

We must show that for each i € {1,82;..., n} the symbol foccurs in 4, We do

aistyndiofbl £ ) 'ﬂﬂ‘VﬁWMﬂ‘i
MQ'W”% V8 P A B s 4

ie{l,21,

Basis Step. i = 1. Then 4, = A, = A. Then f occurs in the head of 4, because f

occurs in the head of A.
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Induction Step. Assume that f occurs in the head of 4, for all / € {1, 2,..., k}
where k < i. The case A; = A is the same as the Basis Step, so we may assume 4, is a
resolvent of 4; and 4, where j, k <i. By the induction hypothesis, foccurs in the head
of A; and A4,. By resolution, f occurs in the head of 4,.

Case II. fonly occurs in the body of 4. We will show f occurs only in the body of 4,

foralli € (1, 2,..., n}. ’,//

;roccursmth-ehudyofd fonly

Basis Step. i = 1. Tl

he body of 4; for all I €
as the Basis Step, so we may
induction hypothesis, f only
s in the body of 4.

{1, 2,..., k} where k <
assume A, is a resolvent of¥, g

occurs in the body of 4; andé, By (es

In particular, f occurs "' Nov ,_ ubstitution & only changes variables in
An, not function symbols, se- f 50 Becurs HEAS T Since A @ < B, this shows f must
occur in B as well. _ﬂ; very Tunction sym Aalmuccursinﬂ. O

There is no algurbthm to compute mdlrm roots of some clauses that contain

e o 3501 QB YPY o e oo i

algorithm, calledlithe J-algorithm whu:h finds mdtrect roots of clauses, even if they

““‘ﬂ"ﬁ"’Tm’ﬂ‘ﬁm UANAINYAY

J—Algorithm
The J-algorithm is defined in 5 steps:

1. Input the Horn clause D.
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2. Consider predicates in the clause D, and create a new clause C such that C
has the same positive and negative predicates as clause D, but no negative predicate is
repeated.

3. Change the terms in the negative predicates in C to new variables. Let C, =
C,and C;=C.

4. Resolve the clause C; with C; to get a clause C". When resolving, always
wm new variables into C; to make the

: : isioi hose i " c&jniﬁﬁng, never replace a variable
in C; with one of the new va ables i 11 ]

S —

anegative predicate, and let 7 be

the number of times tha n ", and'migthe number of times it occurs

if we can obfaid /e "’" : fituting for some variables which do

dlie find'a a0 = D, replace C with C8, let
C,=C, C;=C, and go back to steg4. =

else lot Ci = cﬂud @ﬁ.ﬁgg ot

Proposition 11. Let
from the J-algorithm whe.:; the input is D. Then Cisa genm‘nlmtmn under implication

tome DI FHHN NN T
cres ’mﬂ’ﬁmﬂiﬁmﬁﬁm*ﬁﬁﬁ ctnh

let C; be the value of C" after executing Step 4 the i* time, and let C; be the value of C
after executing Step 4 the /" time.

clause which is the output

Note that the output C = Cj, and C; @-subsumes D. Let p be the smallest
member of {1, 2,..., k} such that C, = Ci. Then C, = C also, so it suffices to show that
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C, }-¢ D. By the choice of p, when we execute Step 4 the p™ time, the clause C, and C;
in the algorithm are both equal to Cp. Thus, C, follows from C; and C, by resolution,
s0 Cp o Cj.

Let us show that {C,, C3} |- D. Assume for a contradiction that {C,, C3} We
D, and let ¢ € {p, p+1,..., k} be the largest number such that {Cp, Cg} o D.

o\ {/f""' y {C,, Ci} o D, and thus g # k.
0 mds' choice of q, {Cp, Cg+1} o D

Since C; @ -subsumes

Since g < k, we must have

We need to sh } ko 1 e J-algorithm, let m be the
number of times that a curring \ egative predicate occurs in D and

Case m = n. Since g -.. e that there is a substitution & such that
C30 =D, and that we set ‘ Sp= C,8 = C,, contrary to our choice of p

Casem # n. -,v‘_ ’_-;w thm is set equal to C; and
C; is set equal to(fbg:re ool ?4 the p+1* time. Thus, Cg «
follows from C, and Cj by resolution. But Cg = C,, so Cy1 follows from C, and C; by

mmmﬁw@%mwmm
Q%Wﬂwwawﬂﬂﬂﬂ} o i

(C,, C3} o Cp, by Corollary 11 in chapter III {C;, Cg} |-o D, a contradiction. Thus,
we must have that {C,, Cp} |-e D.

Now, we note Cp |-¢ Cp and Cp |-¢ Cj. Thus, Cp |- D
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To see that C is an indirect root of D, note that when we do resolution in Step
4 of the J-algorithm, the clause C, is always equal to C, so Ci € L“"*? ({C}), and
Ci=<D. 0

The following example shows how the J-algorithm can find an indirect root of

a clause that contains a cross connection.

Example. Let D = p(x, y) < qfx, £ ( _
. 7
contains a cross connection, Letus { d 1

, (f (2), f (w)), and note that D
C of D using the J-algorithm.

We start with '’ f \\ tCiy=Ca=C.
¢ Resolve C; with Cy, |

Cr=p(x, y) < q(m, W), pik £}
Ca=plk, 1) < g, n'), 0085 15
¢ Resolve on p(k, 1), we T
Compte»

¢ There are two wa .-‘“ substitute for m anc nthai\aallnwc.tnmatchﬂ: {mlx,

nlf (2)}, or {mly
ﬁﬁ%awﬂﬂ§WH1ﬂi
mfr nif (z)}. Thendlet C = p(x,2) « q(x, f (2 pk, D)), and C, =

ci-c ARTAINIUURIINYINE

+Resolve Cl with Cy,
Ci=p(x,y) « q(x, f (2)), p(k, 1), and
CZ-P(x'! J") L q'(x':f(z,))l p(k‘l r)



¢ Unify C; with {x'/k, y'/1},
Ci=p(x, y) « q(x, f(2)), pk, 1), and
Ca=p(k, 1) < gk, f (@), p(K, ).
+ Resolve on p(k, 1), we get
C,=p(x,y) < q9(x,f (@), 9k, f (), p(K, I).
¢ To allow C, to match D we must make the substitution {k/y}.

So, let C=p(x, y) +
¢ Resolve C, with Cs,

Co=p(x, y) « q(x, S
¢ This shows us we need to n (I f(2)}.
Hence, let C = c. G=C.
#Resolve C; with Cs, " |

M?Mﬁ‘ﬁfﬁmm
NG EamaInedy

C2=p(3,f @) < 9(»,f @), pP(f (@), [ ().
# Resolve on p(y, f(2)), we get

C.=p(x, y) < q(x, [ @), (3. f (@), p(S @), [ ().
¢ The substitution {z'/w} makes C, match D. But Z' is not a variable in C, so we are

finished, with C = p(x, y) < 9(x,/ (2)), P(),.] (2))-

L1y 2284



Case II. {mly, nif (w)}. Then let C = p(x, y) « q0, f ), p(k, 1), and
Ci=C=C.
#Resolve C; with Cs,

Ci=p(x, y) < q(y,.f W), p(k, 1), and

Cr=p(, y) < q(¥,f W), p(¥, I').
¢ Unify C; with {x'/k, y'/1}, |

-p(x’ Y) « oy, S0Pl

¢ Unify C; with {x'/k, ¥ /x}, :
Ci=p(x,y) "" |
Ca=p(k, x) < 4 f @) p

‘”‘“"““’“:’@ﬁmwmmmm

+ Now we need f(w) |
ARSI AInenae
Hence, let C = p(x, y) < q(».f (W), p(f (W), x), and C, = C2=C.

4 Resolve C; with Cs,

Ci=p(x,y) « q(y,f (W), p(f (W), ¥), and
C=p(x,y) « q( ¥V, f W), p(f (W), X).



¢ Unify C; with {x'/ f(w), y'/x},
Ci=p(x,y) < q(,/ W), p(f (), x), and
C2=p(f W), x) « q(x,f (W), p(f (W), S (W)).
¢ Resolve on p(f(w), x), we get
Ce=p(x,y) < (.S W), qCe, £ W), (S W), S (W)
¢ Now the substitution {w'/z} makes C, equal to D. Again, w' does not appear in C,

Notethatf.‘landﬂ';th celyes go

Concluding Remarks

L .E‘:r:-a‘;f
With the J-algorithm we f?5-i7=¥'=i-. “indirect roots of some clauses whose

roots could not be com gntained cross connections.

However, it is not cléar/ghiat the J-algor firest roots of all clauses. As a

mu,mnhermdyisrg:n, may lead t0 an erlianced algorithm.
AUYINYNTNYINT
RINNIUUNININY
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