CHAPTER III
GENERALIZATION UNDER IMPLICATION
AND @-PROOF

In this chapter we wi neralization under implication. We
note that implication is difficuit i i therefore we will introduce a
relation equivalent to i
Implication

Implication is thg jand straightforward basis for generalization,
since the concept of inductife gontlusion is'd ---~; erms of logical consequence.

Definition 1. Let C and D be clauses. Then € implies D, denoted C => D, if and only
if every model for C-is ¢ for 4 .Wealsnsaythat(?isa
generalization um:'[ '

!D g

Example. Consider the following clauses:

ﬁwmmwmm

D% (px) < p(/@),

q W&Nﬂm"ﬂ%ﬂﬂ NYIRE

F=(p(x) < p(f*()))-
Then we have that both C and E imply both D and F, but C does not £-
subsume D, and neither C implies E nor E implies C.

Proposition 2. Let C, Cy,..., Cy, Dy, Ds,..., Dy, and E be clauses. If {C,, Gs,..,, G E
D, forallj € {1, 2,..., n} and {Dy, Dy,..., D;} £ E, then {C, G,..., Ci} =E.
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Proof. Assume that {Cy, Cs,..., Ci} E D, for all j € {1, 2,..., n} and {Dy, Ds,..., Du} |~
E. We must show that every model for {Cy, C,,..., Ci} is a model for E. Let / be an
interpretation which is a model for {C\, C3,..., Ci}. Since {Ci, Ca,..., Ci} = D for all
j e {1,2,..,n},Iisamodel for D, for all j € {1, 2,..., n}. And since {Dy, D;,..., Da} =
E, Iis a model for E. Thus, {C), Cs,..., Ci} F E. O

1) We must sho ) _4 Stince { C = C. So, implication is

reflexive .

2) We must sh ' D and P =5 E, then C = E. Assume that C = D
and D = E. Then {C {D, ' h nd se I by the previous proposition.
Hence, C = E. Thus, imp is.fransitiv ‘ 0

As in the case of @-subsamption. s ication between clauses is not anti-
symmetric. Also, twa clauses may be equivalent undér implication without being

LY
equivalent under @-su -»" "

:;:::f;:,:@ﬁmmﬁﬁmﬁm e
e HAASDIANNING 1A Y

C=(p(), p(¥) < p(f @), p(S*(»))), and
D =(p(2) « p(/* ).
Then we have C <> D. We also have D < C, but C & D.
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The above example also shows that if a clause € implies a clause D then C does
not necessary @-subsume D. It is well known that implication is a strictly weaker

relation between clauses than @-subsumption.

Proposition 5. Let C and D be clauses. If C < D, then C = D.

Proof. Assume C < D. Then thecaisls itution @ such that C@c D. Let I'be a

model for C. Then every grouad astance oi pue with respect to /, and thus every
ground instance of C@is erthat if C@is true with respect to /,
then C@ U A is true with sesfoef 1o /| for any set of literals A. Consequently every
model for C is a model fc ' \ 0
Since there is orn clauses under implication,

ations under implication in

implication (Min {., ) of tw se
2)C= Dand C= Edand
b) for each Horn cla suchthat =0 F:}Eanﬂ:ﬁ' we also have F = C.

ramse BN EN TN
am&im%ﬁ’wnwmaﬂ

E=(p(x) < p(f())), and
F=(p@) < p(f(2)).
The clause E is an LGG# of {C, D}, and F is an MinGGI of {C, D}. The
MinGGI is strictly more specific than the LGG®, since E = F, but F 4> E.



Example. Consider the following clauses:
C=(px) < p(f (),
D= (p(x) < p(S* X)),
E=(p() ¢ p(f*(»))), and

F=(p@) « p(S*x))).
Then both clause C and clause E are MinGGI’s of D and F.

@-proof

. We say that i @-proves B if

and only if there is a sequenCc A3 A \ \ that each 4, is either an
element of &, or follows frg Ay o for some j, k < i, and in addition
A, 0-subsumes B. Weaill girife ¥ .‘ Bif and c @-proves B. If = {A}, we

Lemma 8. Let #be : 4-_.__*_.¥ ...y €5 Be constant symbols which do
' B4 scquence B, Bi,..., B of

not appear in any o"
i either B, € H or there exist ﬂ < j such that B, follows from

clauses such that for eae

@Mﬁ;ﬂﬂﬁjmmgﬂﬁh any of the clauses

A W AN TR e e

from B} andB’ by resolution.
Proof. Let i € {1, 2,..., n}.

Case I. B, € H Then ¢y, ¢3,..., ¢ do not occur in B; so Bj = B, and thus B} € H.
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Case I1. B; follows from some B; and B; by resolution. Let B;  B;, and B/ C B,
yand u be such that yis an mgu of B} and g is an mgu of Bl. Let 4 € Bjy, B € By and

@ be such that @ is an mgu of {4, B } and B, = ((B)\{4})(ByA\{B}))6. Without
loss of generality yi, ¥s,..., ¥m do not occur in the domains of y, x and 6.

Let B, By, A’ and B’ be ‘Q\\' : B], Bi, A and B respectively, by
replacing all occurrences of ¢; with \" or_j AL Ify ={xa/t,x2/ t,..., %11},

for each s let #/ be ned.bv L _occurrences of ¢ by y; in ¢, for
j=1,2,...mLety’ =[x ' . @' similarly. Then " is an

is an mgu of {4’, B’ } and
o Bf’and B{ by resolution. 0

mgu of B;’, u" is an
Bi=((Bjy"'\ {A"')(Big

Theorem 9. (Resolution Y Lot T8 auses. Then the empty clause is
a member of R " (T") for so ‘

Proof. A proof can befpundin [9). r O
M':-.
rhefauuwingugam- :

Theorem 10. Lﬂ%%ﬂ %%g 44 & h"dafide yhich is not valid. Then

H Cufandonl;”lfﬂ]—,(.‘

o ’QWW&\"Iﬂ‘imﬁJW]’JWEI’]ﬂEJ

Q&,(E). We must show that & |-¢C implies # }= C. Assume # }|-5C.

plication a.rmﬂ-pmnf are equivalent.

Let / be an interpretation which is a model for H. Since H |-¢ C, there is a
sequence Ao, Ay,..., A, of clauses such that each A4, satisfies one of the following:
ﬁ) A, € H, or
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(ii) A, follows from A4, and A4, by resolution for some j, k <1,
and we also have that A, @-subsumes C.

Then we will prove by induction onm € {0, 1, 2,..., n} that 4, is true in 1.

Basis Case. We have m = 0. Then Ag € H, s0 4o is true in /.

Case II. 4, fo
Ay are truein 7, so A, is

or some j, k < m. But 4, and

In particular, by induCtidi*ds is true il But 4, <C, so {4,} = C. Thus C is
i model for # is also a model for C.

Thus, # = C. — i

true in I Since 7 was arbitrary; $his shos

Case (=). We must s.how‘that HEC unphes H|-C. Assume that H|=C.

ﬂumvmmw'm

Let C =%, 2s,..., A} L@trl,x:, x. esaccumnngFor

e $ OR8N8 1 g

A= %0, so that C"= {4, A..., Am}.

Note that # |= C'. Indeed, if 7is an interpretation which is a model for A, then 7
is a model for C, which means that C@ is true with respect to I for every ground
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instance C@ of C. But C’is a ground instance of C, so C’is true with respect to I.
Thus, [ is a model for C”.

Then # U {{A1}, {A%},.... {An}} is unsatisfiable. By Theorem 9 there is a

resolution proof of the empty clause from & U {{A1}, {42},..., { Am}}. I claim that
H}-C.

Case I. If there is a resolution prox pty clause from H, then there is a

sequence of clauses 4,, 4 “Awith A, chie{l,?2,..,n}
(i) 4; € H, or — m
(ii) 4, follows , solution for.softe j, /<.

But {} <C,

Case II. If thegé isfng' resolution proef of {} from A, then since & U

(A%}, (A2},..., (A} is able; t
Ay= () such that for each | € (WBar )l

(') Al’ € H . e .._r_

of clauses 4, As,..., A, with

ssolution for j, I<i.
e b S S I NS TR A G 5. B .

that for each 7 qul 2o 1)y ¢

ARFAININUNIINYAY

{iﬁ B, follows from B; and B; by resolution for some j, / <1,
and B, < C.

(Il) A;”'{ '
(iii) A, follows gmdf d A by
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To construct the sequence B, Bs,..., B,, we will first construct two sequences
1, Ab,..., Ab and A, A%,..., A%, and a sequence of substitutions @1, 83,..., 6, such that
foralli € {1, 2,...,, n}.
(i) AicAibc A4
(i) A%< (A, A,..., Ak},
(iii) either A} € H, A} follows from A} and A} by resolution for some j, / </, or

’/ﬂ/

A= {7} for somep € {1, 2,...
We will construct
Basis Case. i = 1. See

Induction Case. Assumedi * X% : ‘- -, A4, A%,., A%, and
@4, 02,..., 01 have been ¢ i ‘ 0 ve Now, let us define 4}, 4%
and @, and check that they safisfy (i) eral cases, depending on A4,.
= &

Casel. A, € H
Al (A, ..., ), 00 __'”u

learly 4; c 4i6, < A, w A1,

y
P‘htdf , A= {}, and 6 = {xi/cy, xofc,..., Xk fci}. So,
A;;A;ﬂc&;@iﬂﬂ’ahnﬂ 5 ﬁdwﬂ:] anepe 11,2, k)
REALOIGLEAANYAY

Case IIL1. A4, = {7} and 4, = (7). Since 4; follows from 4; and 4, by

resolution, and 4, and A are ground literals, we do not do any substitution for



resolution, so A3 = (4p) . That
cannot occur.

is, A5 = 4}, so A, = Ag, and C is valid. Thus, this case

Case IIL.2. A;= {A,} and 4, # {43} There exists a y such that x is an mgu of

a subset of 4;, and there exists a literal 4 € A;u such that there exists an mgu 6 of 4

and 75 (so that 4 0= 74,6, i : ”///imny, A= (A \{4})0. Let 4] = A},
A= A70 {4}, and 6=

We need to show

* € A such that B = B0, If
5" # A, then B € Aju\ {4}, so
is shows Auf c A, v {4}

B '=A,thenB=B'0 =A@
B=B"0¢e (Au\{A})0= 4

Case (2). Since 4 € 4

Aub. And since A \(4} < A,
A= (An\(A))0 < 46, Thus:2

Mf_::; ¥

y ?A,wmpe = Apb U A=
{z,}uA1=A,uA" A Ao (5} = 4wl < AiBuO = A9, and 4=

e TN NP =m0
QA G117 LYY ey b

Case I114. 4; # {A;} and 4, = {Ag}. Then there exist y, u such that y is an
mgu of a subset of 4;, u is an mgu of a subset of A, and 4,y and 4;u have no variables

Hence, Ajuf =

in common. Also, there exists an A € Ay, there exists a B € 4, and there exists a 6

such that @ is an mgu of {4, B } (46=B ), and 4, = (47 \{4}) v (42 \{B}))6.
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Since 4, c )6, we have 4 € Ay < Ajfy. Let A be the largest subset of 4 such that
A8y = {A). Similarly, let 4] be the largest subset of A} such that 4;Gu = {B}. Thus, §y
is a unifier an;, so let ¥’ be an mgu an; Let ¥ " be such that §y=y'y". Define u ’
and " similarly. Let A’ € Ajy’ be such that A’y " = A. Similarly, let B’ € Aju ' be
such that B'u" = B.

Note that we have ', 4’ sugh hat # s an mgu of a subset of 4}, and u ' is an
mgu of a subset of A7. WLO :

variables in common, and ¢ e ma un&ﬂmtdamy ~domu"=@.

Note that since have 4@ = B 6, and thus

4 ") is a substitution, and
A'(r o u”)g =A% " )&, This shows (" v u")fis a
unifier of {4’, B" }. Let 6
= 6'9". Define 4) = (4}’
by resolution. This shows

(L5 }.and let 0" be such that (»* L ")0
44*Xg8%))0". Then 4 follows from A; and 4}
F ¥
Let Af ug' : .'I A3,..., Ak} by the induction
hypothesis. This shows u)

Now, leﬂsgoﬂe :I-]uﬂyitmmnm g1) ?xm D Aus\BY,
A‘@;‘ﬁmmﬂmﬂﬁﬁﬂ NYNa Y

Weneedmhowumm Ay = Ay " Ay}

Case (2). Clearly (4jy" M4 )r" 24jy 'y " MA'y"}.

."Ii‘ﬂ",u: ALY

VT ANVEA M 1T

B wlinalnit
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Case (C). Let D € (4jy' \{A'})y". Then D =Ey", where E € Ajy ' but E# A",
Suppose Ey" =A'y". Then Ey" =A'y " = A. Since E € Ajy’, there exists an F € 4
such that E = Fy . I claim F € A;. Note that F@y = Fy 'y " = Ey " = A. Thus,
(4] U {(F))Gy =4,y (Fy) = (A} v {4} = {4}. But 4is the largest subset of 4]
such that 4,6y = {4}, so 4] U {F} = 4;. This shows F € 4;.

Since 4’ € Ajy", let G < Ajbe suglifthiat 4’ = Gy". Since A’y " = A, we have

GOy=Gy'y" =A'y" = A, so the Catras above shows G € 4; also. But
. - -!d . . &

then A’ = Gy ' € Ajy " and"¥ s an mgu of 4, so 4,7 " contains

. ,_.,;_ contradiction came from the
'y DSky" =Fr'y" € Aly'y" (A'y").

NS
i B\ Simitcy, (i B -
Aip" " \(B'"). Then i

48, = Ay \AaNIY n0

= (' \(4") v HAZSEDG ;

= (A" Ay " B N B |
= Al' Ll ﬂ}:_;"—E;:T_‘:'_'TT_-E:;;;:;:;;'i :
(( .p'f ? v’. = \‘

((4}30'\{ i '. ' @
c ((4ud])r }{A N (4w AT)u\(B)))E

AN
oUW tie1 e\ VDR

and
A = ((Ar\4h) © (Ap\(B})E
c ((AjGr\{4)) v (i8u\(B}))0
= (Ar'r"\A'y"H v ip'p"\(B'u"})6
= (Ay™ANr" © Aip"\(B'Hu")o



A= (A" MAN Y Aip" (B Nr"wu")o
= Alf.
This shows property (i).

Thus, we have sequences A}, 45,..., A%, and A4, 4%,..., A%, and a sequence of
substitutions &, @,..., 6, satisfying (i)-(iii).

Now fix Hy € H. For ea 1 %ﬁna B by
- _‘

[ Aj if A, € growAziollows fromd,, by resolution

| Hy ifA 2 4 )
el / Atiatsih \each. Feithe B; € H or B, follows from

some earlier B; and B; by igh., ' % \“\ r induction on i, If i = 1, then
A HysoBi=Ai=Afc i A P \\\&\ , Bi\ such that for each j e
{1, 2,..., i-1}, either B; &/ o B, fallowsiiom : apiie: lier B, and B, by resolution.
We want to show either B, € ,‘.ara'a-'i'~ some earlier B; and B; by resolution.

LM
e i >

Case | A, € FrthonBeeddeet e e
Ly, Y )

e

Case IL. 4; fullowg, from A; and 4, by resoluunn,ﬂhm B;=Ai.

ﬂ‘IJEJ’J‘VIEJ'VlﬁWEJ’]ﬂ‘i

C_ﬂ:’&.ﬂ.l A= (A} Then}%=A;—A¢ for some /<i. B tA: cannot be of the

e RUARINI DALY 2 Bhr b

earlier B, and B, by resolution.

Case I1.2. 4, # {A;} and 4;= {A3}. This is similar to Case IL1.



Case 113. 4; # {4} and 4, # {A;}. We have already proved that 4] follows
from Aj and A} by resolution. But B, = 4}, B = 4}, and B; = A, so B, follows from B,
and B; by resolution.

CaseIIl. 4,={A,}. Then B, € H.

!
,@ Gs = A4B = Au'w A% = A% But, by

: 'J;bat e {AL A5,..., Ak). Now, choose

"‘uu-.s appear in any of the clauses

& or B follows from Bj and Bj by

Now note that 4, = {}, 0
property (i), 4% < {4,
variables { y1, ¥2,..., Yo
B,, B,,..., B,. For each
with y, forj=1, 2,...,

eplacing all occurrences of ¢;

resolution for some j, [ #7.

Let 1= {_}’1 fxl,,h
le(l,2,.r)lettf be :
(a1 /1, 22/ th,....2 It}. Since

21/, z2 [ ty,...,2. [ 1,}. For each
y for j =1, 2,..., m, and let /=

B = (A5 As,..., A}, B/G/ < C1™", where 17! =
) T & )
{I,f J’}’;, x;fy:,..., X ﬂ { . Thll!, HI—QC.

¢

i
Therefore, Hhm mplmsH aC.

|"1514E=¢:|l.1£:r|t|;vfm‘xr|= Cifand only if H}-, C.0

The prﬁ uﬂrg ﬂrﬁmiuﬂﬂ ﬁl ﬁper by Nienhuys-Cheng

and de Wo% but the proof is different. The above proof hasithe advantage that in

some “Qs o ffe] aeid dogd lfin bl Wherbdg prootin (7] ses

twu concerning ground clauses, and then the general case.

Cﬂl‘ﬂ“ﬂ'}' 11. Let CI, Cz,.“, Ck, Dl, Dz,,D, and E be clauses. H{C], Cg,..., Cg} I—;.Dj
forallj € {1, 2,..., n} and {Dy, Ds,..., Ds} e E, then {Cy, C3,..., Ci} FeE.

Proof. This follows from Theorem 10 and Proposition 2. ]



Corollary 12. §-proof'is reflexive and transitive.

Proof. This follows from Theorem 10 and Proposition 3.
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