CHAPTER III

GENERALIZATION UNDER IMPLICATION AND θ -PROOF

In this chapter we will study the theory of generalization under implication. We note that implication is difficult to work with, and therefore we will introduce a relation equivalent to implication, called θ -proof.

Implication

Implication is the most natural and straightforward basis for generalization, since the concept of inductive conclusion is defined in terms of logical consequence.

Definition 1. Let C and D be clauses. Then C implies D, denoted $C \Rightarrow D$, if and only if every model for C is also a model for D (i.e., $\{C\} \not\models D$). We also say that C is a generalization under implication of D.

Example. Consider the following clauses:

$$C = (p(x) \leftarrow p(f(x))),$$

$$D = (p(x) \leftarrow p(f^{2}(x))),$$

$$E = (p(x) \leftarrow p(f^{2}(y))), \text{ and}$$

$$F = (p(x) \leftarrow p(f^{3}(x))).$$

Then we have that both C and E imply both D and F, but C does not θ -subsume D, and neither C implies E nor E implies C.

Proposition 2. Let C_1 , C_2 ,..., C_k , D_1 , D_2 ,..., D_n , and E be clauses. If $\{C_1, C_2,..., C_k\} \models D_j$ for all $j \in \{1, 2,..., n\}$ and $\{D_1, D_2,..., D_n\} \models E$, then $\{C_1, C_2,..., C_k\} \models E$.

Proof. Assume that $\{C_1, C_2, ..., C_k\} \models D_j$ for all $j \in \{1, 2, ..., n\}$ and $\{D_1, D_2, ..., D_n\} \models E$. We must show that every model for $\{C_1, C_2, ..., C_k\}$ is a model for E. Let E be an interpretation which is a model for $\{C_1, C_2, ..., C_k\}$. Since $\{C_1, C_2, ..., C_k\} \models D_j$ for all $j \in \{1, 2, ..., n\}$, E is a model for E. Thus, E is a model for E is a model for E. Thus, E is a model for E is a model for E. Thus, E is a model for E is a model for E. Thus, E is a model for E is a model for E. Thus, E is a model for E is a model for E. Thus, E is a model for E. Thus, E is a model for E. Thus, E is a model for E.

Proposition 3. Implication is reflexive and transitive.

Proof. Let C, D and E be clauses.

- 1) We must show that $C \Rightarrow C$. Since $\{C\} \not\models C$, $C \Rightarrow C$. So, implication is reflexive
- 2) We must show that if $C \Rightarrow D$ and $D \Rightarrow E$, then $C \Rightarrow E$. Assume that $C \Rightarrow D$ and $D \Rightarrow E$. Then $\{C\} \not\models D$ and $\{D\} \not\models E$, and so $\{C\} \not\models E$ by the previous proposition. Hence, $C \Rightarrow E$. Thus, implication is transitive.

As in the case of θ -subsumption, implication between clauses is not antisymmetric. Also, two clauses may be equivalent under implication without being equivalent under θ -subsumption.

Definition 4. Let C and D be clauses. Then C and D are equivalent under implication, denoted $C \Leftrightarrow D$, if and only if $C \Rightarrow D$ and $D \Rightarrow C$.

Example. Consider the following clauses:

$$C = (p(x), p(y) \leftarrow p(f(x)), p(f^{2}(y))), \text{ and}$$
$$D = (p(z) \leftarrow p(f^{2}(z))).$$

Then we have $C \Leftrightarrow D$. We also have $D \prec C$, but $C \nmid D$.

The above example also shows that if a clause C implies a clause D then C does not necessary θ -subsume D. It is well known that implication is a strictly weaker relation between clauses than θ -subsumption.

Proposition 5. Let C and D be clauses. If $C \prec D$, then $C \Rightarrow D$.

Proof. Assume $C \prec D$. Then there exists a substitution θ such that $C\theta \subseteq D$. Let I be a model for C. Then every ground instance of C is true with respect to I, and thus every ground instance of $C\theta$ is true with respect to I. Note that if $C\theta$ is true with respect to I, then $C\theta \cup \Lambda$ is true with respect to I for any set of literals Λ . Consequently every model for C is a model for D, and $C \Rightarrow D$.

Since there is no least general generalization of Horn clauses under implication, we instead turn our interest to minimally general generalizations under implication in the next definition.

Definition 6. A Horn clause C is a minimally general generalization under implication (MinGGI) of two Horn clauses D and E if and only if:

- a) $C \Rightarrow D$ and $C \Rightarrow E$, and
- b) for each Horn clause F such that $F \Rightarrow D$, $F \Rightarrow E$ and $C \Rightarrow F$, we also have $F \Rightarrow C$.

Example. Consider the following clauses:

$$C = (p(a) \leftarrow p(f(a))),$$

$$D = (p(b) \leftarrow p(f^{2}(b))),$$

$$E = (p(x) \leftarrow p(f(y))), \text{ and}$$

$$F = (p(z) \leftarrow p(f(z))).$$

The clause E is an LGG θ of $\{C, D\}$, and F is an MinGGI of $\{C, D\}$. The MinGGI is strictly more specific than the LGG θ , since $E \Rightarrow F$, but $F \nleftrightarrow E$.

Example. Consider the following clauses:

$$C = (p(x) \leftarrow p(f(x))),$$

$$D = (p(x) \leftarrow p(f^{2}(x))),$$

$$E = (p(x) \leftarrow p(f^{2}(y))), \text{ and }$$

$$F = (p(x) \leftarrow p(f^{3}(x))).$$

Then both clause C and clause E are MinGGI's of D and F.

 θ -proof

Definition 7. Let H be a set of clauses and B a clause. We say that H θ -proves B if and only if there is a sequence A_0 , A_1 ,..., A_n of clauses such that each A_i is either an element of H, or follows from A_j and A_k by resolution for some j, k < i, and in addition A_n θ -subsumes B. We will write $H \vdash_{\theta} B$ if and only if H θ -proves B. If $H = \{A\}$, we often write $A \vdash_{\theta} B$, and say A θ -proves B

The following lemma is used to make it easier to prove the next theorem.

Lemma 8. Let H be a set of clauses, and let $c_1, c_2, ..., c_m$ be constant symbols which do not appear in any of the clauses of H. Suppose we have a sequence $B_1, B_2, ..., B_n$ of clauses such that for each i either $B_i \in H$ or there exist j, l < i such that B_i follows from B_i and B_i by resolution.

Let $y_1, y_2,..., y_m$ be variables which do not occur in any of the clauses $B_1, B_2,..., B_n$. For each i , construct B_i' by replacing all occurrences of c_j with y_j , for j = 1, 2,..., m. Then for each i either $B_i' \in H$ or there exist j, l < i such that B_i' follows from B_i' and B_i' by resolution.

Proof. Let $i \in \{1, 2, ..., n\}$.

Case I. $B_i \in H$. Then $c_1, c_2, ..., c_m$ do not occur in B_i so $B_i' = B_i$ and thus $B_i' \in H$.

Case II. B_i follows from some B_j and B_l by resolution. Let $B_j^* \subseteq B_j$, and $B_l^* \subseteq B_l$, γ and μ be such that γ is an mgu of B_j^* and μ is an mgu of B_l^* . Let $A \in B_j \gamma$, $B \in B_l \mu$ and θ be such that θ is an mgu of $\{A, \overline{B}\}$ and $B_i = ((B_j \gamma) \setminus \{A\}) \cup (B_l \mu \setminus \{B\}))\theta$. Without loss of generality $y_1, y_2, ..., y_m$ do not occur in the domains of γ , μ and θ .

Let $B_j^{*'}$, $B_l^{*'}$, A' and B' be obtained from B_j^{*} , B_l^{*} , A and B respectively, by replacing all occurrences of c_j with y_j , for j=1,2,...,m. If $\gamma=\{x_1/t_1,x_2/t_2,...,x_r/t_r\}$, for each s let t_s' be obtained by replacing all occurrences of c_j by y_j in t_s for j=1,2,...,m. Let $\gamma'=\{x_1/t_1',x_2/t_2',...,x_r/t_r'\}$ Define μ' , θ' similarly. Then γ' is an mgu of $B_j^{*'}$, μ' is an mgu of $B_l^{*'}$, $A' \in B_j'\gamma'$, $B' \in B_l'\mu'$, θ' is an mgu of $\{A', \overline{B'}\}$ and $B_l'=((B_l'\gamma'\setminus\{A'\})\cup(B_l'\mu'\setminus\{B'\}))\theta'$. Thus B_l' follows from B_l' and B_l' by resolution. \square

Theorem 9. (Resolution Theorem) Let T be a set of clauses. Then the empty clause is a member of $R^n(T)$ for some n if and only if T is unsatisfiable.

Proof. A proof can be found in [9].

The following theorem shows that implication and θ -proof are equivalent.

Theorem 10. Let H be a finite set of clauses and C a clause which is not valid. Then $H \models C$ if and only if $H \models_{\theta} C$.

Proof.

Case (\Leftarrow) . We must show that $H \vdash_{\theta} C$ implies $H \models C$. Assume $H \vdash_{\theta} C$.

Let I be an interpretation which is a model for H. Since $H \vdash_{\theta} C$, there is a sequence $A_0, A_1, ..., A_n$ of clauses such that each A_i satisfies one of the following:

(i) $A_i \in H$, or

(ii) A_i follows from A_j and A_k by resolution for some j, k < i, and we also have that $A_n \theta$ -subsumes C.

Then we will prove by induction on $m \in \{0, 1, 2, ..., n\}$ that A_m is true in I.

Basis Case. We have m = 0. Then $A_0 \in H$, so A_0 is true in I.

Induction Case. Assume that $A_0, A_1, ..., A_{m-1}$ are true in I.

Case I. $A_m \in H$, then A_m is true in I.

Case II. A_m follows from A_j and A_k by resolution for some j, k < m. But A_j and A_k are true in I, so A_m is true in I.

In particular, by induction A_n is true in I. But $A_n \prec C$, so $\{A_n\} \models C$. Thus C is true in I. Since I was arbitrary, this shows every model for H is also a model for C. Thus, $H \models C$.

Case (\Rightarrow) . We must show that $H \models C$ implies $H \models_{\theta} C$. Assume that $H \models C$.

Let $C = \{\lambda_1, \lambda_2, ..., \lambda_m\}$. Let $x_1, x_2, ..., x_k$ be the variables occurring in C. For each $i \in \{1, 2, ..., k\}$, choose a constant symbol c_i not occurring in any of the clauses in H, let $\sigma = \{x_1/c_1, x_2/c_2, ..., x_k/c_k\}$ and let $C' = C\sigma$. Then C' is a ground clause. Also let $\lambda'_i = \lambda_i \sigma$, so that $C' = \{\lambda'_1, \lambda'_2, ..., \lambda'_m\}$.

Note that $H \models C'$. Indeed, if I is an interpretation which is a model for H, then I is a model for C, which means that $C\theta$ is true with respect to I for every ground

instance $C\theta$ of C. But C' is a ground instance of C, so C' is true with respect to I. Thus, I is a model for C'.

Then $H \cup \{\{\overline{\lambda'_1}\}, \{\overline{\lambda'_2}\},..., \{\overline{\lambda'_m}\}\}$ is unsatisfiable. By Theorem 9 there is a resolution proof of the empty clause from $H \cup \{\{\overline{\lambda'_1}\}, \{\overline{\lambda'_2}\},..., \{\overline{\lambda'_m}\}\}$. I claim that $H \vdash_{\theta} C$.

<u>Case I.</u> If there is a resolution proof of the empty clause from H, then there is a sequence of clauses $A_1, A_2, ..., A_n$ with $A_n = \{\}$ and for each $i \in \{1, 2, ..., n\}$.

- (i) $A_i \in H$, or
- (ii) A_i follows from A_i and A_i by resolution for some j, l < i.

But $\{\} \prec C$, so $H \vdash_{\theta} C$.

Case II. If there is no resolution proof of $\{\}$ from H, then since $H \cup \{\{\overline{\lambda_1'}\}, \{\overline{\lambda_2'}\}, ..., \{\overline{\lambda_k'}\}\}$ is unsatisfiable, there is a sequence of clauses $A_1, A_2, ..., A_n$ with $A_n = \{\}$ such that for each $i \in \{1, 2, ..., n\}$,

- (i) $A_i \in H$,
- (ii) $A_i = \{\overline{\lambda_j'}\}\$ for some $j \in \{1, 2, ..., k\}$, or
- (iii) A_i follows from A_i and A_l by resolution for some j, l < i.

We want to use A_1 , A_2 ,..., A_n to construct a new sequence B_1 , B_2 ,..., B_n such that for each $i \in \{1, 2, ..., n\}$,

- (i) $B_i \in H$, or
- (ii) B_i follows from B_j and B_l by resolution for some j, l < i, and $B_n \prec C$.

To construct the sequence B_1 , B_2 ,..., B_n , we will first construct two sequences A'_1 , A'_2 ,..., A'_n and A''_1 , A''_2 ,..., A''_n , and a sequence of substitutions θ_1 , θ_2 ,..., θ_n such that for all $i \in \{1, 2, ..., n\}$.

- (i) $A_i \subseteq A'_i \theta_i \subseteq A_i \cup A''_i$
- (ii) $A_i'' \subseteq \{\lambda_1', \lambda_2', ..., \lambda_k'\},$
- (iii) either $A'_i \in H$, A'_i follows from A'_j and A'_i by resolution for some j, l < i, or $A'_i = \{\overline{\lambda_p}\}$ for some $p \in \{1, 2, ..., k\}$.

We will construct A'_i , A''_i , and θ_i by induction on i.

Basis Case. i = 1. See Case I below, since $A_1 \in H$.

Induction Case. Assume i > 1 and that A'_1 , A'_2 ,..., A'_{i-1} , A''_1 , A''_2 ,..., A''_{i-1} , and θ_1 , θ_2 ,..., θ_{i-1} have been defined satisfying (i) - (iii) above. Now, let us define A'_i , A''_i , and θ_i , and check that they satisfy (i) - (iii). There are several cases, depending on A_i .

Case I. $A_i \in H$. Let $A_i' = A_i$, $A_i'' = \{\}$, and $\theta_i = \varepsilon$. Clearly $A_i \subseteq A_i'\theta_i \subseteq A_i \cup A_i''$, $A_i'' \subseteq \{\lambda_1', \lambda_2', ..., \lambda_k'\}$, and $A_i' \in H$.

Case II. $A_i = \{\overline{\lambda_j'}\}$. Let $A_i' = \{\overline{\lambda_j}\}$, $A_i'' = \{\}$, and $\theta_i = \{x_1/c_1, x_2/c_2, ..., x_k/c_k\}$. So, $A_i \subseteq A_i'\theta_i \subseteq A_i \cup A_i''$, $A_i'' \subseteq \{\lambda_1', \lambda_2', ..., \lambda_k'\}$, and $A_i' = \{\overline{\lambda_p}\}$ for some $p \in \{1, 2, ..., k\}$.

Case III. A_i follows from A_j , A_l by resolution:

<u>Case III.1</u>. $A_f = \{\overline{\lambda_p'}\}$ and $A_I = \{\overline{\lambda_q'}\}$. Since A_I follows from A_I and A_f by resolution, and $\overline{\lambda_p'}$ and $\overline{\lambda_q'}$ are ground literals, we do not do any substitution for

resolution, so $\overline{\lambda'_q} = \overline{(\overline{\lambda'_p})}$. That is, $\overline{\lambda'_q} = \lambda'_p$, so $\lambda_p = \overline{\lambda_q}$, and C is valid. Thus, this case cannot occur.

Case III.2. $A_j = \{\overline{\lambda_p'}\}$ and $A_l \neq \{\overline{\lambda_q'}\}$. There exists a μ such that μ is an mgu of a subset of A_l , and there exists a literal $A \in A_l\mu$ such that there exists an mgu θ of \overline{A} and $\overline{\lambda_p'}$ (so that $\overline{A} \theta = \overline{\lambda_p'}\theta$, i.e., $A\theta = \lambda_p'\theta$). Finally, $A_l = (A_l\mu \setminus \{A\})\theta$. Let $A_l' = A_l'$, $A_l'' = A_l'' \cup \{\lambda_p'\}$, and $\theta_l = \theta_l\mu\theta$.

We need to show that $A_l \mu \theta = A_l \cup \{\lambda_p'\}$.

<u>Case</u> (\subseteq). Let $B \in A_l \mu \theta$. Then there exists $B^* \in A_l \mu$ such that $B = B^* \theta$. If $B^* = A$, then $B = B^* \theta = A\theta = \lambda_p'$, so, $B \in A_l \cup \{\lambda_p'\}$. If $B^* \neq A$, then $B^* \in A_l \mu \setminus \{A\}$, so $B = B^* \theta \in (A_l \mu \setminus \{A\})\theta = A_l$. Thus, $B \in A_l \cup \{\lambda_p'\}$. This shows $A_l \mu \theta \subseteq A_l \cup \{\lambda_p'\}$.

<u>Case</u> (\supseteq). Since $A \in A_l \mu$, $\lambda'_p = A\theta \in A_l \mu\theta$. And since $A_l \mu \setminus \{A\} \subseteq A_l \mu$, $A_l = (A_l \mu \setminus \{A\})\theta \subseteq A_l \mu\theta$. Thus, $A_l \cup \{\lambda'_p\} \subseteq A_l \mu\theta$.

Hence, $A_i\mu\theta = A_i \cup \{\lambda'_p\}$. So, $A'_i\theta_i = A'_i\theta_i\mu\theta \subseteq (A_i \cup A''_i)\mu\theta = A_i\mu\theta \cup A''_i = A_i \cup \{\lambda'_p\} \cup A''_i = A_i \cup A''_i$, $A_i \subseteq A_i \cup \{\lambda'_p\} = A_i\mu\theta \subseteq A'_i\theta_i\mu\theta = A'_i\theta_i$, and $A''_i = A''_i \cup \{\lambda'_p\} \subseteq \{\lambda'_1, \lambda'_2, ..., \lambda'_k\}$. Finally, $A'_i = A'_i$ and A'_i satisfies (iii), so A'_i satisfies (iii).

Case III.3. $A_j \neq \{\overline{\lambda_p'}\}$ and $A_l = \{\overline{\lambda_q'}\}$. This is similar to Case III.2.

Case III.4. $A_j \neq \{\overline{\lambda_p'}\}$ and $A_l \neq \{\overline{\lambda_q'}\}$. Then there exist γ , μ such that γ is an mgu of a subset of A_j , μ is an mgu of a subset of A_l , and $A_l\gamma$ and $A_l\mu$ have no variables in common. Also, there exists an $A \in A_l\gamma$, there exists a $B \in A_l\mu$, and there exists a θ such that θ is an mgu of $\{A, \overline{B}\}$ $(A\theta = \overline{B}\theta)$, and $A_l = ((A_l\gamma \setminus \{A\}) \cup (A_l\mu \setminus \{B\}))\theta$.

Since $A_j \subseteq A_j'\theta_j$, we have $A \in A_j\gamma \subseteq A_j'\theta_j\gamma$. Let A_j^* be the largest subset of A_j' such that $A_j^*\theta_j\gamma = \{A\}$. Similarly, let A_i^* be the largest subset of A_i' such that $A_i^*\theta_i\mu = \{B\}$. Thus, $\theta_j\gamma$ is a unifier of A_j^* , so let γ' be an mgu of A_j^* . Let γ'' be such that $\theta_j\gamma = \gamma'\gamma''$. Define μ' and μ'' similarly. Let $A' \in A_j'\gamma'$ be such that $A'\gamma'' = A$. Similarly, let $B' \in A_i'\mu'$ be such that $B'\mu'' = B$.

Note that we have γ' , μ' such that γ' is an mgu of a subset of A'_{j} , and μ' is an mgu of a subset of A'_{i} . WLOG we can define γ' , μ' such that $A'_{j}\gamma'$ and $A'_{i}\mu'$ have no variables in common, and thus, we may assume WLOG that $dom \gamma'' \cap dom \mu'' = \emptyset$.

Note that since θ is an mgu of $\{A, \overline{B}\}$, we must have $A\theta = \overline{B}\theta$, and thus $A'\gamma''\theta = A\theta = \overline{B}\theta = (\overline{B'\mu''})\theta = \overline{B'\mu''\theta}$. Thus, $(\gamma'' \cup \mu'')$ is a substitution, and $A'(\gamma'' \cup \mu'')\theta = A'\gamma''\theta = \overline{B'\mu''\theta} = \overline{B'(\gamma'' \cup \mu'')\theta}$. This shows $(\gamma'' \cup \mu'')\theta$ is a unifier of $\{A', \overline{B'}\}$. Let θ' be an mgu of $\{A', \overline{B'}\}$, and let θ'' be such that $(\gamma'' \cup \mu'')\theta = \theta'\theta''$. Define $A'_i = ((A'_i\gamma' \setminus \{A'\}) \cup (A'_i\mu' \setminus \{B'\}))\theta'$. Then A'_i follows from A'_j and A'_i by resolution. This shows (iii).

Let $A_i'' = A_j'' \cup A_i''$ and $\theta_i = \theta$ ". So, $A_i'' \subseteq \{\lambda_1', \lambda_2', ..., \lambda_k'\}$ by the induction hypothesis. This shows (ii).

Now, let us prove property (i). Recall that $A_i = ((A_j \gamma \setminus \{A\}) \cup (A_l \mu \setminus \{B\}))\theta$, $A'_i\theta_j \subseteq A_j \cup A''_j$, and $A'_l\theta_l \subseteq A_l \cup A''_l$, by induction.

We need to show that $(A'\gamma' \setminus \{A'\})\gamma'' = A'\gamma'\gamma'' \setminus \{A'\gamma''\}$.

Case (\supseteq) . Clearly $(A'\gamma' \setminus \{A'\})\gamma'' \supseteq A'\gamma'\gamma'' \setminus \{A'\gamma''\}$.

ทยสมุดแลง สถาบันวิทยบริกา พุพาลงกรณ์บทาวิทยาลัย Case (c). Let $D \in (A'_j \gamma' \setminus \{A'\}) \gamma''$. Then $D = E \gamma''$, where $E \in A'_j \gamma'$ but $E \neq A'$. Suppose $E \gamma'' = A' \gamma''$. Then $E \gamma'' = A' \gamma'' = A$. Since $E \in A'_j \gamma'$, there exists an $F \in A'_j$ such that $E = F \gamma'$. I claim $F \in A^*_j$. Note that $F \theta_j \gamma = F \gamma' \gamma'' = E \gamma'' = A$. Thus, $(A^*_j \cup \{F\}) \theta_j \gamma = A^*_j \theta_j \gamma \cup \{F \theta_j \gamma\} = \{A\} \cup \{A\} = \{A\}$. But A^*_j is the largest subset of A'_j such that $A^*_j \theta_j \gamma = \{A\}$, so $A^*_j \cup \{F\} = A^*_j$. This shows $F \in A^*_j$.

Since $A' \in A'_j \gamma'$, let $G \in A'_j$ be such that $A' = G \gamma'$. Since $A' \gamma'' = A$, we have $G \theta_j \gamma = G \gamma' \gamma'' = A' \gamma'' = A$, so the same argument as above shows $G \in A^*_j$ also. But then $A' = G \gamma' \in A^*_j \gamma'$ and $E = F \gamma' \in A^*_j \gamma'$, and γ' is an mgu of A^*_j , so $A^*_j \gamma'$ contains only one element. Thus A' = E, a contradiction. The contradiction came from the assumption $E \gamma'' = A' \gamma''$. Thus $E \gamma'' \neq A' \gamma''$. Hence, $D = E \gamma'' = F \gamma' \gamma'' \in A'_j \gamma' \gamma'' \setminus \{A' \gamma''\}$.

This shows $(A'\gamma' \setminus \{A'\})\gamma'' = A'\gamma'\gamma'' \setminus \{A'\gamma''\}$. Similarly, $(A'\mu' \setminus \{B'\})\mu'' = A'\mu'\mu'' \setminus \{B'\mu''\}$. Then

$$A'_i\theta_i = ((A'_j\gamma' \setminus \{A'\}) \cup (A'_i\mu' \setminus \{B'\}))\theta'\theta''$$

$$= ((A'_{i}\gamma' \setminus \{A'\}) \cup (A'_{i}\mu' \setminus \{B'\}))(\gamma'' \cup \mu'')\theta$$

$$= ((A'_{i}\gamma' \setminus \{A'\})\gamma'' \cup (A'_{i}\mu' \setminus \{B'\})\mu'')\theta$$

$$= ((A'_{1}\gamma'\gamma'' \setminus \{A'\gamma''\}) \cup (A'_{1}\mu'\mu'' \setminus \{B'\mu''\}))\theta$$

$$= ((A'_{i}\theta_{j}\gamma \setminus \{A\}) \cup (A'_{i}\theta_{i}\mu \setminus \{B\}))\theta$$

$$\subseteq (((A_i \cup A_i^n)\gamma \setminus \{A\}) \cup ((A_i \cup A_i^n)\mu \setminus \{B\}))\theta$$

$$= (((A_{j}\gamma \cup A_{j}^{"})\setminus \{A\}) \cup ((A_{l}\mu \cup A_{l}^{"})\setminus \{B\}))\theta$$

$$\subseteq ((A_{i}\gamma \setminus \{A\}) \cup (A_{i}\mu \setminus \{B\}) \cup A_{j}'' \cup A_{i}'')\theta$$

$$= ((A_{j}\gamma \setminus \{A\}) \cup (A_{l}\mu \setminus \{B\}))\theta \cup A_{j}'' \cup A_{l}''$$

 $= A_i \cup A_i'$

and

$$A_{l} = ((A_{l}\gamma \setminus \{A\}) \cup (A_{l}\mu \setminus \{B\})\theta$$

$$\subseteq ((A'_{i}\theta_{i}\gamma\setminus\{A\})\cup(A'_{i}\theta_{i}\mu\setminus\{B\}))\theta$$

$$= ((A'\gamma'\gamma'' \setminus \{A'\gamma''\}) \cup (A'\mu'\mu'' \setminus \{B'\mu''\}))\theta$$

$$= ((A'\gamma' \setminus \{A'\})\gamma'' \cup (A'\mu' \setminus \{B'\})\mu'')\theta$$

$$A_{i} = ((A'_{i}\gamma' \setminus \{A'\}) \cup (A'_{i}\mu' \setminus \{B'\}))(\gamma'' \cup \mu'')\theta$$
$$= A'_{i}\theta_{i}.$$

This shows property (i).

Thus, we have sequences A'_1 , A'_2 ,..., A'_n , and A''_1 , A''_2 ,..., A''_n , and a sequence of substitutions θ_1 , θ_2 ,..., θ_n satisfying (i)-(iii).

Now fix $H_0 \in H$. For each $i \in \{1, 2, ..., n\}$ define B_i by

$$B_{i} = \begin{cases} A'_{i} & \text{if } A_{i} \in H \text{ or } A_{i} \text{ follows from } A_{j}, A_{l} \text{ by resolution} \\ H_{0} & \text{if } A_{i} = \{\overline{\lambda'_{i}}\}. \end{cases}$$

Then we have B_1 , B_2 ,..., B_n . I claim that for each i, either $B_i \in H$ or B_i follows from some earlier B_j and B_l by resolution. This will be shown by induction on i. If i = 1, then $A_1 \in H$, so $B_1 = A'_1 = A_1 \in H$. Assume we have B_1 , B_2 ,..., B_{i-1} such that for each $j \in \{1, 2,..., i-1\}$, either $B_j \in H$ or B_j follows from some earlier B_p and B_q by resolution. We want to show either $B_i \in H$ or B_i follows from some earlier B_j and B_l by resolution.

Case I.
$$A_i \in H$$
. Then $B_i = A'_i = A_i \in H$.

Case II. A_i follows from A_j and A_l by resolution, Then $B_i = A'_l$.

Case II.1. $A_j = \{\overline{\lambda_p'}\}$. Then $B_i = A_i' = A_i'$ for some l < i. But A_l cannot be of the form $\{\overline{\lambda_q'}\}$, so $B_l = A_l'$, and thus $B_i = B_l$. By induction, $B_l \in H$ or B_l follows from some earlier B_r and B_s by resolution.

Case II.2. $A_i \neq \{\overline{\lambda_p}\}$ and $A_i = \{\overline{\lambda_q}\}$. This is similar to Case II.1.

<u>Case II.3.</u> $A_j \neq \{\overline{\lambda_p'}\}$ and $A_l \neq \{\overline{\lambda_q'}\}$. We have already proved that A_i' follows from A_j' and A_l' by resolution. But $B_j = A_j'$, $B_l = A_l'$, and $B_l = A_l'$, so B_l follows from B_j and B_l by resolution.

Case III.
$$A_i = \{\overline{\lambda_p^i}\}$$
. Then $B_i \in H$.

Now note that $A_n = \{\}$, so $B_n = A'_n$. Thus, $B_n \theta_n = A'_n \theta_n \subseteq A_n \cup A''_n = A''_n$. But, by property (ii), $A''_n \subseteq \{\lambda'_1, \lambda'_2, ..., \lambda'_k\}$. That is $B_n \theta_n \subseteq \{\lambda'_1, \lambda'_2, ..., \lambda'_k\}$. Now, choose variables $\{y_1, y_2, ..., y_m\}$ such that $y_1, y_2, ..., y_m$ do not appear in any of the clauses $B_1, B_2, ..., B_n$. For each i, let B'_i be obtained from B_i by replacing all occurrences of c_j with y_j for j = 1, 2, ..., m. By Lemma 8, either $B'_i \in H$ or B'_i follows from B'_j and B'_i by resolution for some j, l < i.

Let $t = \{y_1 / x_1, y_2 / x_2, ..., y_m / x_m\}$, and $\theta_n = \{z_1 / t_1, z_2 / t_2, ..., z_r / t_r\}$. For each $l \in \{1, 2, ..., r\}$ let t_l' be t_l with c_j replaced by y_j for j = 1, 2, ..., m, and let $\theta_n' = \{z_1 / t_1', z_2 / t_2', ..., z_r / t_r'\}$. Since $B_n \theta_n \subseteq \{\lambda'_1, \lambda'_2, ..., \lambda'_k\}$, $B_n' \theta_n' \subseteq Ct^{-1}$, where $t^{-1} = \{x_1 / y_1, x_2 / y_2, ..., x_m / y_m\}$. Then $B'_n \theta'_n t \subseteq Ct^{-1} t = C$. So, $B'_n \prec C$. Thus, $H | -\theta C$.

Therefore, $H \models C$ implies $H \models_{\theta} C$. Consequently, $H \models C$ if and only if $H \models_{\theta} C \square$

The previous theorem is similar to Theorem 4 in the paper by Nienhuys-Cheng and de Wolf [7], but the proof is different. The above proof has the advantage that in some ways it is more direct, and is done all in one case, whereas the proof in [7] uses three cases, two concerning ground clauses, and then the general case.

Corollary 11. Let $C_1, C_2, ..., C_k, D_1, D_2, ..., D_n$ and E be clauses. If $\{C_1, C_2, ..., C_k\} \vdash_{\theta} D_j$ for all $j \in \{1, 2, ..., n\}$ and $\{D_1, D_2, ..., D_n\} \vdash_{\theta} E$, then $\{C_1, C_2, ..., C_k\} \vdash_{\theta} E$.

Proof. This follows from Theorem 10 and Proposition 2.

Corollary 12. θ -proof is reflexive and transitive.

Proof. This follows from Theorem 10 and Proposition 3.

