CHAPTER II
BACKGROUND ON LOGIC AND GENERALIZATION
UNDER #-SUBSUMPTION

We start wi gty of clausal logic, derived from Appendix A in
Idestam-Almquist [2]. -

Background

A clausal Iuglc mnsns isal diphabet, a clausal language, a set of
axioms, and a single ¢ alled |
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Definition 1. A clnusﬂlp b
V,F, P, O, U are disjointand

a)Vﬂm“ﬁ*%‘El"%‘%‘Vl‘ﬁ?ﬂﬂ’]ﬂ‘i

b) F is a set of flliction symbols,
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¢) U'is the set of punctuation symbols {(, ), {, }, ,} (the fifth symbol in Uis a comma).
Definition 2. A constant symbol is a O-ary function symbol.

Variables are normally denoted by the letters x, y, z, u, v, and w. Function
symbols are normally denoted by f, g and k. Constant symbols are normally denoted



by a, b, ¢, d and e. Predicate symbols are normally denoted by p, ¢ and r. Note that by
adding extra symbols if necessary, we may assume that there is an infinite number of
constant symbols. We will need this assumption in Chapter IIL.

Definition 3. A term is defined as follows:
a) a variable is a term, and

b) f(t, t,..., 1 ) is a term if fi
(n=0).

nction symbol and 1,, 5,..., 1, are terms

The term a( ), , 15"denoted by a. In this work we
will use the convention thg es » applications of the function f to 1. For
example the term f '

Definition 4. If p is § 5 rﬁf symbol and 1, f,..., 1. are terms then

p(ty, t,..., 1, ) is an atom

The atom p( ), where p sate symbol, will be denoted by p.

alive literal is the negation —B

iteral or a negetive literal.
Definition 6. M 'BM%W] VIR o, ot by . i e

rm literals.
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A clause {Ay, Aa,..., A, ~By, ~\Ba,..., =B, }, where 4,, As,..., A; are positive
literals and —~B,, ~B,,..., ~B, are negative literals, is for convenience denoted by
(A4, Aa,..., A < By, By,..., By).
This clause corresponds to the formula
V1 Vxa... VX (A1vAzv.. vApv—Biv-Bav...vAB, ),
or the equivalent formula

Definition 5. A pos -T"Qf‘——
ofanatom B. A Iiteraﬁ either a po



Vi Vxz.. Vxn ((ArvAzv.. VAL ) « (BinBaA...AB, ),

where xy, X3,..., X, are all of the variables in the clause.

Definition 7. A simple expression is either a term or a literal. An expression is either

a simple expression or a finite set of simple expressions.

Xy, Xa,..., X, are variablm /  are . that f; is distinct from x; for
every 1 <i<n. Anel s called 2 binding for x. A substitution

= {xi/ty, xa/ta, 4 only if # is ground for every
1<is<n
Definition 10. For any su . x/1,}, let the domain of o be

Definition 12. Xafta,..., X,/s} be a substitution and E an expression.

v iﬁi‘umm ST 1S IR S by sty

replacing eachoncurrenueafvanablix;mﬁ‘by the term ¢, for evgry 1 <i<n. IfEQ is
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Definition 13. Let E and F be expressions. Then E nndF are variants, denoted E = F,
if and only if there exist substitutions # and o such that E = F@ and F = Ec. We also
say that E is a variant of F.

Definition 14. Let 8 = {xi/t), xo/ta,..., XJ/t,} and o = { y/si, yo/sy,..., Yw/Sm} be
substitutions. Then the composition 8o of @ and o is the substitution obtained from
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the set {x)/1,0, X2/120,..., Xu/1.0, Y\/S1, Y2/$2,..., Yw/Sm} by deleting any binding x/f;,o for
which x; = t,o and deleting any binding y/s; for which y; € {x), X3,..., %} (1 i <n,
1<j<m).

We denote an n-fold composition of a substitution & by 6". For example

= 000 and 8° = & Note that if E is an expression and 6 and o are substitutions,

then (E@)o=E(60). | ”///
ite set of simple expressions § if

fmd only if -Sﬂ is a sing r.f:t ¥ / f u\\‘\- ost general unifier (mgu) for §

if and only if for each uni{ ltutmn ysuchthat o = 8y A

set of simple expressions Sd& i ab IS ‘ \\\I

"._

Example. The clause ( p(a)~—gfal) af2 p(x) « g(x), g(a)), since {x/a} is

Definition 15. A substituti

e exists a unifier for S.

Definition 16. Let C bed clatis F I". Then Cy is a factor of C.

an mgu of {-~g(x), —ug(a))} { _' is a factor of (r(x) « ), since {x/y} is
an mgu of {r(x)}. —
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Every clause lswfactor of itself and every clausme a factor of its variants. Thus

it is always po ﬁ.ﬁ!mﬂ‘ﬁ i{ﬂ Ef?ﬁ’] factors do not have any
common vari olvent.
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Cy, Dy, /?, B and @ such that:

a) Cy is a factor of C and Dy is a factor of D,
b) Cy and Dy have no variables in common,
c) 4 is a literal in Cy and B is a literal in Dy,

d) @ is an mgu of {4, B }, and



e) Ris the clause (Cy - {4}) v (Du — {B}))6.
The clause C and D are called parent clauses of R, and the literals 4 and B are called
the literals resolved upon in the resolution of C and D.

Definition 18. Let 7 be a set of clauses. Then, the n™ resolution of 7, denoted R'(T),

is defined as:
]
a resolvent of C and D} (n> 0).
.-J
E——
S —

a)R(T')=T, and
| A is =4, and the complement

b) R(T)=R"(T) U {R|

Definition 19. The com,

—A of a negative lit

Semantics is con sttached to the formulas in a

language.

Definition 20. Let L be a clausa i n by A. Then the Herbrand universe
r () for L is the set o can be formed out of the function
symbols in A. Note thaf Gur-assumption-that sanfinfinite number of constant
symbols guarantees u@ is niot € m
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Lis the set of alf%ground atoms which can be formed out of predicate symbols in A and
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Definition 22. An interpretation 7 of a clausal language L is a subset of the Herbrand
base B (L) for L.

Definition 23. Let I be an interpretation of a clausal language L. Then a clause C in L
is given a truth value (true or false) with respect to / as follows:



a) A ground clause C = ( 4, 4z,..., Aw « B, By,..., By ), is true if 4; € I for some
1 <i<mor B; ¢ I for some 1 <j < n, otherwise it is false.

b) A non-ground clause C is true if every ground instance of C is true, otherwise it is
false.

Definition 24. Let / be an interpretation of a clausal language L, and C a clause in L.
Then I is a model for C if and onl \ﬂ\ W with respect to 1.

Definition 26. Let X b€'a iflusé g fyset oficlauses iina Clausal language L. Then:

a) X is satisfiable if I

b) X is valid if every intgfprete .

¢) X is unsatisfiable if nointe rﬁiﬁu i':'.' : del for X, and

d) X is nonvalid if there exists ar i which is not a model for X.
_,..'_,,f.l:fm,«.r '

Definition 27. Let\4 ,-."'.,"_,,-,_...._,_.._

.H

consequence of H, dtaoted i el
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Deﬁn:tmn 28. A clause is:

a) a definite clause if and only if it contains one positive literal and any number of
negative literals (4 « By, Ba,..., By ),

b) a Horn clause if and only if it is a definite clause, or it contains no positive literals
and any number of negative literals ( « B, B,..., B, ), and

use. Then C is a logical
model for H is a model
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c) a unit clause if and only if it contains exactly one literal, positive (A « ) or negative
(« B).

Example. Consider the following clauses:
C=(p() < (),
D= (p(a) « p(b), 4(a)),

E= (<« p(), q(b
F=(p(x) «
G=(«p(
Candﬂaredeﬁn( 11D, (€ and G are Horn clauses, and F and G are
unit clauses.
Definition 29. A clause'C i iy EAFaRd onlyif therelexist literals 4, ~B € C such
that A is unifiable with a

Example. The following cl
C= (P09, 40) & I O

is recursive since p(x).i8 unifiable with p( £ (2)) and p(f(z)) js a variant of p(f (x)).

Aﬂrewmveﬂnses, vec@sw,canberﬂohedwith
ﬂﬁﬂ?'ﬂﬂﬂﬁﬂﬂ?ﬂ‘i

@-subsump tmn

’quﬂﬂﬂim UANAINYAY

we define the generality relation #-subsumption.

Definition 30. Let C and D be clauses. Then C @-subsumes D, denoted by C < D, if
and only if there exists a substitution & such that C8 ¢ D. We also say that C is a
generalization under @-subsumption of D.
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Proposition 31. #-subsumption is reflexive and transitive.
Proof. Let C, D and E be clauses.

1) We must show that C < C. Since C c C, we have Ce < C, where £ is the
identity substitution. Thus, C < C. So, #-subsumption is reflexive.

2) We must show that if C < D and D < E, then C < E. Assume that C < D and
D < E. Then there exist substitutions 8 and o such that C6 < D and Do ¢ E. Hence
Clo cE , and C<E Thus,ﬂ 0

Example. Consider the folloy
C = (« py
D= (q0;
E=(q(a)

We have C < C sificg of itself. We also have C < D

since C@ < D where 6 = {&/ \\' c E, where o= {y/a}. Then

C<E,sinceCloc cE.

Two clauses pay @-subsui e each ithout being variants. In other
words, §-subsumptiQ/Ts 1ot mmetr Y
Definition 32. Let C and. D be clauses, Then C and D are equivalent under

e.,...,s..m.,uﬂuw émwnwmmc
nami RAGIRFEHH 117111

C=(p(a) « q(a), 9(x)),
D= (p(a), p(y) « q(a)), and
E=(p(a) « q(a)).
Then we have C ~ D since C{x/a} < D and D{ yla} < C. We also have C ~ E
and D ~ E. Hence all three clauses are equivalent under &-subsumption. Note that no
two of these clauses are variants.
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We are particularly interested in least general generalizations. As already
mentioned in Chapter I, least general generalization under -subsumption is the most

commonly used form of generalization of clauses.

Definition 33. A clause C is a generalization under @-subsumption of a set of

D, for every 1 <i < n. A generalization
ization under @-subsumption

gralization under @-subsumption C”

F=(p(») - g
Both clauses E and F ag r’j}é{"ﬁ ‘ °

In general, 2 V r' the example above. Plotkin
showed that there exists anLGGH 0 wﬂfﬁmteset clauses, a result which is not
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