CHAPTER 4

RESULTS AND DISCUSSION

The aim of this pursuit was to synthesize monoester as a potential lubricating oil from coconut oil, which a triglyceride of lauric acid is the main component. By transesterification, triglyceride can be reacted with alcohol to form esters in the presence of concentraed sulphuric acid as catalyst. After that the monoester were treated with hydrogen using platinum as catalyst.

The optimum conditions for transesterification were obtained by varying alcohol, reaction temperature and reaction time. In this research 1-hexanol, 1octanol, 2-ethyl-1-hexanol, 1-oetanol, cyclohexanol were used. The temperature was varied from 70,80 and $90^{\circ} \mathrm{C}$ and the reaction time was observed in 1,2,3 and 6 hous fitter that monoester products were determined by ${ }^{13} \mathrm{C}-\mathrm{NMR}$.
${ }^{13} \mathrm{C}$-NMR spectrums of coconut oil, 1-hexarnol, 1-octanol, 2-ethyl-1hexanol, 1-octanol were shown in Figure A1, A2, A3, A4, A5, respectively.

Figure $\mathrm{A} 1,{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum shown the iminent signal of triglyceride, $-\mathrm{CH}_{2}-\mathrm{O}_{2}$ and $-6 \mathrm{H}=\mathrm{O}-$ cat 62.3 and 68.8 ,respectively. In addition to these, Figure A1 also șhowed signal of unsaturated group at 129.0 ppm .

The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 1-hexanol, 1-octanol, 2-ethyl-1-hexanol, cyclohexanol were shown in Figure A2, A3, A4 and A5, respectively.

1.Transesterification of coconut oil with 1-hexanol

The ${ }^{13} \mathrm{C}$-NMR spectrum of hexyl ester from transesterification was shown in Figure A6. The signal of triglyceride, $-\mathrm{CH}_{2}-\mathrm{O}$ and $-\mathrm{CH}-\mathrm{O}-$ could be seen at 62.3 and 68.8 ppm , respectively. These results indicated that transesterification was incomplete. From Figure A7, when reaction temperature was raised to $80^{\circ} \mathrm{C}$, the resel showed that the signal at 62.3 and 68.8 ppm was disappeared and the signatof $-\mathrm{CH}_{2}-\mathrm{O}-$ and $\mathrm{C}=\mathrm{O}$ of ester product showed at 64.37 and $173.84 / \mathrm{ppm}$. These results indicated that the transesterification reaction was completed.

These experimental resulfs demonstrated that the optimum condition for transesterification of coconut pif with - -hexanol was the reaction temperature of $80^{\circ} \mathrm{C}$ and reaction time of fours. In this study, the result product was 87.56 \% yield.

The physicat and chemical properties of monoester product were shown in Table 4.1. The physical properties were studied as follow :color, pour point, kinetic viscosity cat 40 and $100^{\circ} G$ viscosity index and flash point. The oxidation and thermal stability function were analyzed by TGA analyzer. The thermogramoof-coeonyt eil and hexyl ester-ppoduct were shown in Figure A33 and Figute A34.

Table 4.1 The physical and chemical properties of coconut oil and hexyl ester product.

From Table 4.1, this pesini showed that the pour point of product was entirely different from coconut ait it was $-8^{\circ} \mathrm{C}$. The viscosity at 40 and $100^{\circ} \mathrm{C}$ was 4.98 and 1.86 cst , respectively and the viscosify index was 192.5. Flash point was 195 . The oxidative compounds were $2.21 \% \mathrm{wt}$.

2. Transésterification of cocenut oilowith f-octanes.

Then ${ }^{13}$ C-NARM spectrum of 1 -octyl estei/frorn/tracssester 6 ification was shown if Figure A8. The the signal of $-\mathrm{CH}_{2}-\mathrm{O}$ and $-\mathrm{CH}-\mathrm{O}-$ of triglyceride could be seen at 62.3 and 68.8 ppm , respectively. These results indicated that transesterification was incomplete. From Figure A9, when reaction temperature was raised to $90^{\circ} \mathrm{C}$, the result showed that the signal at 62.3 and 68.8 ppm disappeared and the signal of $-\mathrm{CH}_{2}-\mathrm{O}$ - and $\mathrm{C}=\mathrm{O}$ of ester product
showed at 65.3 and 172.7 ppm . These results indicated that the transesterification reaction was completed.

These experimental results demonstrated that the optimum condition for transesterification of coconut oil with 1-octanol was the reaction temperature of $80^{\circ} \mathrm{C}$ and reaction time of 3 hours. In this study, the result product was 85.02 \% yield.

The physical and chemion/properties of monoester product were shown in Table 4.2. The physical propefties were studied as follow :color, pour point, kinetic viscosity at 40 and $100^{\circ} \mathrm{C}$, yiscosity index and flash point. The oxidation and thermal stability function were analyzed by TGA analyzer. The thermogram of coconut oil and $1-0$ ety 1 ester product were shown in Figure A33 and Figure A36.

Table 4.2 The physical and chemical properties of cocgnut oil and 1-octyl ester product.

From Table 4.2, these results showed that the pour point of product was $-1^{\circ} \mathrm{C}$. The viscosity at 40 and $100^{\circ} \mathrm{C}$ was 6.33 and 2.20 cSt , respectively and the viscosity index was 183.1. Flash point was 198. The oxidative compounds were 2.99% wt.

3.Transesterification of coconut gil with 2-ethyl -1-hexanol.

The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 2-ethyt-hexyl ester from transesterification was shown in Figure A 10 . The signal of $-\mathrm{CH}_{2}-\mathrm{O}$ - and $-\mathrm{CH}-\mathrm{O}$ - of triglyceride could be seen at 62.3 and 68.8 ppm , respectively. These results indicated that transesterification was incomplete. From Figure A11, when reaction temperature was raised to $80^{\circ} \mathrm{C}$, the result showed that the signal at 62.3 and 68.8 ppm disappeared and the signal of $4 \mathrm{CH}_{2}-\mathrm{O}$ - and $\mathrm{C}=\mathrm{O}$ of ester product showed at 66.3 and $173,7 \mathrm{p}, \mathrm{m}$ These results indicated that the transesterification reaction was completed.

These experimental results demonstrated that the optimum condition for transesterification of coconut oil with 2-ethyl-1-hexanol was the reaction temperature of $80^{\circ} \mathrm{C}$ andreaction timeof hours. In this study, the result product was 8532% yield.

The physical and chemical properties of monoester produc

in Table 4.3. The physical properties were studied as follow :color, pour point, kinetic viscosity at 40 and $100{ }^{\circ} \mathrm{C}$, viscosity index and flash point. The oxidation and thermal stability function were analyzed by TGA analyzer. The thermogram of coconut oil and 2-ethylhexyl ester product were shown in Figure A33 and Figure A38.

Table 4.3 The physical and chemical properties of coconut oil and 2-ethyl hexyl ester product.

From Table 4.3 , these results that the pour point of product was min.- 15 ${ }^{\circ} \mathrm{C}$. The viscosity at 40 and $100^{\circ} \mathrm{C}$ was 5.31 and 1.90 cSt , respectively and the viscosity index was 166.4. Flash point was 197 . The oxidative compounds "ce 299\%"ศูนย์วิทยทรัพยากร

The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of cyclohexyl ester from transesterification was shown in Figure A12. The signal of $-\mathrm{CH}_{2}-\mathrm{O}$ - and - $\mathrm{CH}-\mathrm{O}$ - of triglyceride could be seen at 62.3 and 68.8 ppm , respectively. These results indicated that transesterification was incomplete. From Figure A13, when reaction temperature was raised to $80^{\circ} \mathrm{C}$, the result showed that the signal at 62.3 and
68.8 ppm disappeared and the signal of $-\mathrm{CH}_{2}-\mathrm{O}$ - and $\mathrm{C}=\mathrm{O}$ of ester product showed at 71.9 and 172.7 ppm . These results indicated that the transesterification reaction was completed.

These experimental results demonstrated that the optimum condition for transesterification of coconut bil with cyclohexanol was the reaction temperature of $90^{\circ} \mathrm{C}$ and reaction time of 6 hours. In this study, the result product was 81.62 \% yield.

The physical and cheraical properties of monoester product were shown in Table 4.4. The physical properties yere studied as follow :color, pour point, kinetic viscosity at 40 and 100\%C, yiscosity index and flash point. The oxidation and thermal stability function were analyzed by TGA analyzer. The thermogram of coconut oil and cyclohexy ester product were shown in Figure A33 and Figure A40.

Table 4.4 :The physical and chemical properties of coconut oil and cyclohexyl ester product.

	0) 91 Properfies 19 S Oqoconat of1		Monoester
	Color,ASTM	0.5	L1
	Yiscosify at $40{ }^{\circ} \mathrm{bast}$ g	27.7298	18818
	Viscosity at $100^{\circ} \mathrm{C}, \mathrm{cSt}$	5.86	2.73
	Viscosity Index (VI)	162.7	152.5
	Pour Point (${ }^{\circ} \mathrm{C}$)	20	-9
	Flash point (${ }^{\circ} \mathrm{C}$)	295	180
	Oxidation point (${ }^{\circ} \mathrm{C}$)	435	370
	Oxidation compound,\%wt.	7.84	4.72

From Table 4.4, these results showed that the pour point was $-9^{\circ} \mathrm{C}$. The viscosity at 40 and $100^{\circ} \mathrm{C}$ was 8.81 and 2.73 cSt , respectively and the viscosity index was 152.5 . Flash point was 180 . The oxidative compounds were 4.72% wt.

To improve the color and oxidation stability, the monoester had to be finally refined through hydrogenation of ansaturated components. In this study, the monoester was treated with hydrogenated catalyst in a stirred batch reactor under hydrogen. The usec catalyst contained 3% by weight of platinum supported on alumina.

The hydrogenation process was optimized by varying the following parameters: hydrogen partial pressure, catalyst concentration, reaction time while fixing other parameters, such as reaction temperature, weight of oil and stirring speed. The reaction was monitored by ${ }^{13} \mathrm{C}-\mathrm{NMR}$.

Hydrogenation of hexyl ester

The results of bydrogenated byxy ester from hydrogenation at optimum condition was analyzed by 13 C-NMR and the GC-MS chromatogram was

In Figure A7, ${ }^{13} \mathrm{C}$-NMR spectrum, when hydrogen partial pressure was 100 psi , catalyst concentration was 5% by weight of oil, reaction time was 3 hours, and the reaction temperature was $150^{\circ} \mathrm{C}$, it showed that the signal of unsaturated group at between 125.2 and 129.8 ppm was disappeared. These experimental results showed that the optimum conditions for hydrogenation of
hexyl ester oil using 3% of platinum on alumina as catalyst were 5% of catalyst concentration, and the reaction was performed at $100^{\circ} \mathrm{C}$ under hydrogen pressure of 100 psi and reaction time 3 hours.

These experimental results indicated that the hydrogenation reaction of hexyl ester was complete at these reaction condition. In this study, the result product was 95.00% yield.

The composition of hydrogenated hexyl ester product at the optimum condition was determined by GC-MS. The GC-MS was performed in a column packed with DB-5. And the GC-MS chromatogram of hydrogenated hexyl ester product was shown in Figure A14. From the chromatogram, it indicated that hydrogenated hexyl ester frofuce was a mixture of hexyl laurate, hexyl myristate, hexyl caprate and hexy caprilate.

Characteristios of their derivatives were confirmed by mass spectrum as shown in Figure A15, A16, A17 and A18, respeetively. Mass spectrum of hexyl laurate (MW 284) At retention time, 1956 -in Figure A17 showed base peak at 84 due to \propto-cleavage of ester linkage as the following equation:

> จุหาลงกรณ์มหาวิทยาลัย

Mass spectrum of hexyl myristate (MW 312) in Figure A18 showed base peak at 84 due to McLafferty rearrangement as the following equation:

Mass spectrun of hexyl caprylate (MW 228) in Figure A15 showed base peak at 84 due te McLafferty rearrangement as the following equation:

$\mathrm{m} / \mathrm{e} 145$

m/e 127

Mass spectrum of hexyl caprate (MW 256) in Figure A16 showed base peak at 84 due to McLafferty rearrangement as the following equation:
 product, as showed in Table 4.5, were stadied as follow! color, pour point, kinematiclviscosity at 40 card 000 c , viscosity index, flash point and oxidation stability. The oxidation and thermal stability curve were analyzed by TGA analyzer and the result were shown in Figure A35.

Table 4.5 : The physical and chemical properties of hexyl ester and hydrogenated hexyl ester product

Hydrogenation of 1-octyl ester

The results of bydrogenated getylester from hydrogenation at optimum condition was anatyzed by $13 \mathrm{C}=\mathrm{NMR}$ and the GC-MS chromatogram was

In Figure A9, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum, when hydrogen partial pressure was 100 psi , catalyst concentration was 5% by weight of oil, reaction time was 3 hours, and the reaction temperature was $150^{\circ} \mathrm{C}$, it showed that the signal of unsaturated group at between 129.2-130.5 ppm was disappeared. These experimental results showed that the optimum conditions for hydrogenation of

1-octyl ester oil using 3% of platinum on alumina as catalyst were 5% of catalyst concentration, and the reaction was performed at $100^{\circ} \mathrm{C}$ under hydrogen pressure of 100 psi and reaction time 3 hours.

These experimental results indicated that the hydrogenation reaction of hexyl ester was completed at these reacion condition. In this study, the result product was 94.02 \% yield.

The composition of hydrogenated hexyl ester product at the optimum condition was determined by GC-MS. The GC-MS was performed in a column packed with DB-5. And the GC-MS chromatogram of hydrogenated 1-octyl ester product was showed in Figare A19. From the chromatogram, it indicated that hydrogenated hexyl ester produef was a mixture of 1-octyl laurate, 1-octyl caprate and 1-octyl caprilate.

Characteristios of their derivatives were confirmed by mass spectrum as shown in Figure A20, A21 and A22, respectively. Mass spectrum of 1-octyl laurate (MW 312) at cetention time 23.190 in Figure A22 showed base peak at 112 due to eg-cleavage of ester linkage which can be explained as in the

Mass spectrum of 1-octyp caprylate (MW 256), at retention time 16.277 inFigure A20 showed base peak at 112 due to α-cleavage of ester linkage as the following equation:

Mass spectrum of 1-octyl carpate (MW 284), at retention time 19.284 in Figure A21 showed base peak at 112 due to α-cleavage of ester linkage as the following equation:

The physical and chemical properties of hydrogenated 1 -octyl ester product, as showed in Fable 4.6, were studied as folbow: Color, pour point, kinematic viscosity at 40 and $100^{\circ} \mathrm{c}$, viscosity index, flash point and oxidation stability. The oxidation and thermal stability curve were analyzed by TGA analyzer and the result were shown in Figure A37.

Table 4.6 : The physical and chemical properties of 1 -octyl ester and hydrogenated 1-octyl ester product

Hydrogenation of 2-ethylhexyl ester

6a e

The results of hydrogenated 2-ethylhexyl ester from hydrogenation at optimum apadition was anatyzed by ${ }^{3}$ ByNMR and the GCoMs chromatogram was showed in Figure A11 and A23, respectively.

In Figure $\mathrm{A} 11,{ }^{13} \mathrm{C}$-NMR spectrum, when hydrogen partial pressure was 100 psi , catalyst concentration was 5% by weight of oil, reaction time was 3 hours, and the reaction temperature was $150^{\circ} \mathrm{C}$, it showed that the signal of unsaturated group at between 129.4-129.7 ppm. was disappeared. These
experimental results showed that the optimum conditions for hydrogenation of 2-ethyl-hexyl ester oil using 3% of platinum on alumina as catalyst were 5% of catalyst concentration, and the reaction was performed at $150^{\circ} \mathrm{C}$ under hydrogen pressure of 100 psi and reaction time 3 hours indicated that the hydrogenation reaction of 2-ethylhexyl ester was completed at these reaction condition. In this study, the result product was 92.25% yield.

The composition of hydrogenated 2-ethyl-hexyl ester product at the optimum condition was determbied by GC-MS. The GC-MS was performed in a column packed with DB-5. And the GC-MS chromatogram of hydrogenated 2-ethylhexyl ester product was showed in Figure A23. From GC-MS chromatogram, it indicated that hydtogenated 2-ethyl-hexyl ester product was a mixture of 2-ethylhexyl laurates 8 -ethylhexyl myristate, 2-ethylhexyl caprate and 2-ethylhexyl caprilate.

Characteristics of their derivatives were confimed by mass spectrum as shown in Figure A 24, A25, A26 and A27, respectively. Mass spectrum of 2-ethyl-hexyl laurate (MW 312), at retention time 21.812 in Figure A24 showed base peak at 112 due to gecleavage of ester, linkage which can be explained as in the following equation:

จุหาลงกรณ์มหาวิทยาลัย

$$
\mathrm{m} / \mathrm{e} 97,84,71,57
$$

McLafferty reanangement could be occured as following:

m/e 183

Mass spectrum of 2-ethylhexyl myristate (MW 340) in Figure A25 show base peak at 112 due to McLafferty rearrangement as the following equation:

m/e 229

$$
\begin{gathered}
\mid-\mathrm{H}_{2} \mathrm{O} \\
\stackrel{+}{\mathrm{O}} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}
\end{gathered}
$$

m/e 211
Mass spectrum of 2-ethyl-hexyl carpryrate (MW 256) in Figure A27 show base peak at 112 due to McLafferty rearrangement as the following equation:

m/e 145

$$
\begin{aligned}
& \quad \mid-\mathrm{H}_{2} \mathrm{O} \\
& \stackrel{+}{\mathrm{O}} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3} \\
& \mathrm{~m} / \mathrm{e} 127
\end{aligned}
$$

Mass spectrum of 2-ethyl-hexyl carprate(MW 284) in Figure A26 show base peak at 112 due to McLafferty rearrangement as the following equation:

ศูนย์วิทยทรัพยากร

 product, as showed in Table 4.7, were studied as follow: color, pour point, kinematic viscosity at 40 and $100^{\circ} \mathrm{c}$, viscosity index, flash point and oxidation stability. The oxidation and thermal stability curve were analyzed by TGA analyzer and the result were shown in Figure A39.Table 4.7 : The physical and chemical properties of 2-ethylhexyl ester and hydrogenated 2-ethylhexyl ester product

Properties	2-ethylhexyl monoester	hydrogenated 2-ethylhexyl monoester
Color,ASTM	0.5	0.5
Viscosity at $40^{\circ} \mathrm{C}, 054$	5.31	5.53
Viscosity at $100^{\circ} \mathrm{C}, \mathrm{cst}$	1.90	1.93
Viscosity Indox (V1)	166	155.1
Pour Poin (${ }^{\circ} \mathrm{O}$)	min.-	min.-15
	197	188
Oxidation point (${ }^{\circ} \mathrm{C}$)		
Oxidation compound\%\%wt.	2.91	1.50

Hydrogenation of cyclohexyl ester

The results of hydrogenated cyclohexyl ester from hydrogenation at optimum condition was analyzed by $\|^{13} \mathrm{C}_{\mathrm{N}} \mathrm{NM}$ R and the GC-MS spectrum was showed in Figure A13 and A28, respectively.

In Figure A13, ${ }^{13} \mathrm{C}$-NMR spectrum, when hydrogen partial pressure was 100 psi , catalyst concentration was 5% by weight of oil, reaction time was 3 hours, and the reaction temperature was $150^{\circ} \mathrm{C}$, it showed that the signal of unsaturated group at between $129.5-129.7 \mathrm{ppm}$. was disappeared. These
experimental results indicated that the optimum conditions for hydrogenation of cyclohexyl ester oil using 3% of platinum on alumina as catalyst were 5% of catalyst concentration, at $100^{\circ} \mathrm{C}$ under hydrogen pressure 100 psi and reaction time 3 hours.

These experimental results indicated that the hydrogenation reaction of cyclohexyl ester was completed at these reaction condition. In this study, the result product was 90.15% yield. The composition of hydrogenated cyclohexyl ester product at the optimum condition was determined by GC-MS. The GC-MS was performed in a eelumn packed with DB-5. The GC-MS chromatogram of hydrogenated cyctohexyl ester product was showed in Figure A28.

From the chromatogram, it indicated that hydrogenated cyclohexyl ester product was a mixture of cyclohexyl laurate, cyclohexyl myristate, cyclohexyl caprate and cyclohexyl caprilate. Characteristics of their derivatives were confirmed by mass spectrum as shown in Figure A29, A30, A31, A32, respectively.
 which can be indicated as in the following equation:

m/e 201

Mass spectrum of cyclohexyl myristate (MW 310) in Figure A30 show base peak at 82 due to McLafferty rearrangement as the following equation: -

Mass spectrum of cyclohexyl carpryrate (MW 226) in Figure A32 show base peak at 82 due to McLafferty rearrangement as the following equation:

m/e 155

Mass spectrum of cycloticxyl catprate (MW 254) in Figure A31 show base peak at 82 due to McLafferty rearrangement as the following equation:

The physical and chemical properties of hydrogenated cyclohexyl ester product, as showed in Table 4.8, were studied as follow: color, pour point, kinematic viscosity at 40 and $100^{\circ} \mathrm{c}$, viscosity index, flash point and oxidation stability. The oxidation and thermal stability curve were analyzed by TGA analyzer and the result were shown in Figure A41.

Table 4.8 : The physical and chernical properties of cyclohexyl ester and hydrogenated cyclohexyl ester produet

From the results, alcohols varied in this research were 1-hexanol, 1octanol, 2-ethyl-1-hexanol and cyclohexanol to be obtained the desirable
properties. When 1-hexanol was used, viscosity was too low then 1-octanol could be altered for the reason that increasing the molecular weight also increased viscosity. Although increasing viscosity, the pour point was also increasing too. This was one disadvantage of long chain molecule backbone. 2-Ethyl-1-hexanol could be altered in straight chain structure. It has been found that high viscosity index were obtained and also had low pour point but the viscosity was relatively low. Then eselic group in molecule backbone such as cyclohexanol was used.

It could be found that hydrogenated cyclohexyl ester product had suitable properties for use in lubricating works, when compared with the specification of lubricating oil, especially as the lubricant for two-stroke engine.

Table 4.9 Specification of two-cycle lubricant

:TIS 1040-1991 of Thai Industrial Standard Institute, Ministry of industry

From Table 4.9 when compared the kinematic viscosity at $100^{\circ} \mathrm{c}$ to hydrogenated cyclohexyl ester it could be noticed that the viscosity of ester was
too low, but it wasn't seriously, due to polyisobutylene (PIBs) was the major component in two-stroke engine oils which used as VI improvers have predominantly a molecule mass of 10,000 to 15,000 , posses a good viscosity increasing effect and was oxidatively and thermally stable.

