CHAPTER Il
TENSOR THEORY IN FOUR-SPACE

In this chapter, we will provide the sufficient details of tensor theory in four-
dimensional space, or, for brevity,
further studies. However, “".II:\ 7,
can be treated in the samBWEBRNCr, |1 L™ ots of tensor principles, which are
presented in this chaptels & —=e#ectsd Muﬂ_'_ textbooks on tensor theory and
Gk (1964), Borisenko(1968),

“I ed four-space which will be useful for our

of the theory for n-dimensional space

special theory of relatiug
Jackson(1975), and B4

Tensor analysis i#Ccfice ‘ ‘ - abstract objects called tensors,
whose properties are indéheffisd s 4 erénce frames used to describe the
object. A tensor is representsés: ference frame by a set of functions,
termed its compc S Mt o b - sformations represents a

V.-
tensor depends on = these functions from one

coordinate system to" nath&r The penwss:bfe trans

o s O TR et

can be solved Ulliquely for the XV i i terms of the xv', and should be differentiable

a"‘““‘*‘ﬁ“WPﬁ“@ﬂﬁﬂmW]’Jml'lﬁﬂ

natural laws are valid in wide class of reference systems, they
suggested to formulate in the form of tensor equations which are invariant with
respect to a given category of coordinate transformations. For clarity at the
beginning, we consider the following explanation. Let

ations for tensors shouid

F(D,AY,BVH,..) = 0 (2.1)
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be an equation of tensors (of various ranks) in four-dimensional space. If the
equation F is transformed into ancther system to be

G (@, AV,BYN,..) = o. (2.2)

In general, Egs.(2.1) and (2.2) are pot necessary of the same form; i.e., F #G.

(2.3)

We have known t#at s¥ be invariant under some kinds
of permissible transforrfatidies transformations. The tensor
transformations themselves s it 24 demonstrated in two forms named
covariant and cont ‘:;;:—z—?-::T?—T:— ----- -.:d in three-dimensional

space can be shown '::i .

_ o LY

Let umwm? QWrErﬂtﬂTr in three-space. The
concept of v eSia _ inates may not be complicated because its
always |j ‘ 4 m Iﬁ( imple especially
when aimlﬁﬂﬁm m;l ﬂ:T E‘[ linear (but not
orthogonal), curvilinear (orthogonal), and curvilinear (but not orthogonal). In order

to reduce the concepts of covariance and contravariance to their simplest terms,

consider three-dimensional linear coordinates, which have three noncoplana

i¥

vectors e,, e,, €5, Which are in general neither orthogonal nor of unit length, be
their basis vectors. Then vector A can be described so that
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A = Ale, +A2e,+A%, (2.4)

To define a scalar product in a nonorthogonal coordinate systems, it is
convenience to define what is called a reciprocal lattice system, which has three
basis vectors, el, e2, e? which satisfy the conditions

e3 = exe, (2:8)

‘/} e;(exx e3)

B‘ = GEK.E + '2 =

e,'(exx e3)

Then we can say th el, e2, 3 are said to be

reciprocal if they exhi

(2.8)

defined as above.

Now vector A% Wefattice as
7

v e QDS
Ael = LAk el = Algjel = Al (i=1,2,3), (2.8)

and it can be proved similarly for A, = A. Thus Egs.(2.4) and (2.7) can be

rewritten as
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=
i

(Ael)e, + (Ae)e, + (Aed)e,, (2.9a)

-
L[}

(Aey)e+ (Re)e? + (Aves)e?, (2.00)

|A| = (AA) (2.10)
Hence, the scalar produg®! 4 # s We 9 BNaee readily defined as follows:
(2.11a)
(2.11b)
Note that the Cartesian syst ase vectors i, j, k, all are mutually
orthogonal to each ‘ 5 s reciprocal system is the
same as the inertial ¥ bntravariant components of
vectors in Cartesian ¢ able so it does not matter

whether the superscript gr gubscriot is usgd.

ﬂ‘LlEW’J'VIEWI’iW BIN3

determ:% %ﬁ,]:ﬁ b%mée % %Trﬁ tﬁn:]’ ‘saﬁﬁag'ji‘ta EIDGHEMS can be

Al = Ael = TA(ekel), (2.12a)
A = Ae = LAK(eye). (2.12b)
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Then introducing the notations

e e = gk, ehe = gk, ehe, =gl = &y, (2.13)

therefore Eq.(2.12) becomes

gik AK, (2.14a)
(2.14b)

Af = A"H' =
= Ael

These designations of the
the law of transformatio

S Eqs.(Eﬂ‘) and (E_?) iead to

(2.15a)
for covariant component<'a
(2.15b)
07 )
for contravariant corfy Al denote ekey and el'e,

il ‘°ﬁ"‘u?i"j“ﬂ 'm'a'
ammh ﬁiu‘iﬁ"“iﬁwzﬁé‘a

which sahsﬁes Eq.(2.15a) as wanted, and Eq.(2.15b) can be proved in the same
manner. Notice that a point vector x in three-space, or x = x(x',x2x3), will-have
components which are transformed as contravariant components,

"= I o)k = %ai'k axk . (2.16)
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Tensor Theory in Four-space

After we have studied the concepts of the covariant and contravariant
transformations in three-dimensional space, as presented in the previous section.
Now, we will generalize these concepts to the four-dimensional space as follows.

Consider a set of foRMMEMMI/A#AL X! X2 X3, which we may write as
XV} (v = 0,1,2,3). It iS"mesil thrgugl=mem ™ assary, to regard these variables
as coordinates in fous Tl S, TMERio adopt a geometric language.
Any non-singular tra E set of variables {YV} can then
be regarded as a re#So il & £/ 0 f paWessociate with the space V, a
e Bleots that can be described by

R \8ay M, real numbers T,...., T,,.

system of tensors. Ty
their components, whig
(We may think of fanyk fossical physics associated with
galerally change when the coordinates
a tensor Tasamap T. S = R, from

R[5 space Ry, of real- number

| Euclidean three-space.
of V4 are changed. In fact
the set S of perrm :
M-tuplets (T,, ..., 'l;'
at one point only (polfil} tensory, "WWRIBREESE its cfifnponents are just numbers, or
* can be defined on samg, larger subspgge of V, (field tensor), in which case its

components aﬂfu@'a«mmw gINI
ARAREA TR URAD WY VAR convonens.

particulard a tensor of rank zero has one component T and is called a scalar. A
tensor of rank one has 4 components (T,, ..., T4) and is called a four-vector. A

B ) four-space can be defined

tensor of rank two has 42 = 16 components, which can be exhibited in matrix form
thus:
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Too To1 - Tos
Tio T11 = Tia

_Tae Tag - Tag

Such a tensor is said to be sir:gtﬂar if the determinant of this matrix vanishes.

Tensors of higher ranks cannigi) 1 / jcited in such convenience forms, but
\

tensors of all ranks are ugl8 a typical component, e.g. we may
| tﬁnk three, the tensor Tygy ., the
Mg would be {Tygp} for the entire
S.pan become tedious and we shall
wis significant, e.g. Typ3 #T132,
\ Mous symmetry properties-such
. derstood to rank from O to 3.

loosely speak of the tew ~-’-=%., e
tensor of rank four,
tepsor and Ty for a o
not use it. In general,
though specific tens
as Tyap = Typa- The iuficy

For reasons that eWwe will use the subscripts for the
covariant components and _sEZiiEiy s gontravariant components. Therefore,
typical tensor ncrm“ ;_3;_;_;__“__ o), BV (rank two), CVOg
(rank three), etc. Vr f2¥a second-rank tensor (Tyg,

Vo, TV®) as a me the first or upper index will*8iways refer to the row and the

another to theﬁ .ﬂmww m vanish, we may write
ammnﬁfmﬁiﬁﬁﬂﬁaﬂ

We shall flnd it convenient to use Einsteir’s summation convention, name!y if any

index appears twice in a given term, once as a subscript and once as a
superscript, a summation over the range of that index is implied. Thus, for
example, we write AVAy = I AVAy or AypBoP E%ﬁaaﬁ, etc. The repeated
indices signaling surmation are called dummy indices while a non-repeated index
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is called free index. An obvious but important principle is that a dummy index pair
can be replaced by any other! e.g. AVA, = AgAB . Such a replacement is often
necessary to avoid the triple occurrence of an index which would lead to

ambiguities.

Note that from now on, if not state otherwise, we will use Greek indices u,v,

Mtems for our space V,, we
\anke from O to 3. Thus !

M, v, a, .4 e B B8

No special relation lsAisfinlk
woand v . A firsde

{X0.X1 X2,X3}, a secc XT'X2 X3, S
a given tensorig & St ished by the primes on
their indices. Tﬁ’ ﬂﬂ:‘tﬂﬁum rank tensor may be
denoted by aﬁi] n_th "-i' stem, etc. When
primed ﬂlﬁﬁéﬁﬁ%m ﬁﬁﬁﬂ H’Iﬁ se, s0 as not to
lose mght of the relevant coordinate system. Thus, for example, when v'=1, o'=2,

B'=3, Ay'q'p’ becomes A,'yrg. This will already have been noted for the case of
the coordinates above. (However, sometimes we will adopt the simpler device of

4£-they are as independent as
"'[ be denoted by {XV} =

! by (X} = {XV' X

. Similarly the components of

priming the kemel as A’ ,3.)
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When we make a coordinate transformation froin one set of coordinates XV
to another X' (we often drop the brace), it will be assumed that the transformation
is non-singular, i.e. that the equations which express the XV'in term of the XV can
be solved uniquely for the XV in term of the XV, We also assume that the functions
specifying a transformation are differentiable as often as may be required. For
convenience, we write, similarly tc Eq.(2.186),

XY = av, oS av'yq (217)
oxv d
and use a similar notatigafof AFf < bn’ " ¥&s, We observe that, by the chain

rule of differentiation,

s (2.18)

where 8V (the Kronecker feltd3s
important to note the ‘'index

0 3ccording as v=oaorva. ltis
8 of 3V, exemplified by

Y
-' i

EINUNINYINS
BN 13 (b3l miod (el i

is given as follows:

An object which having components AVe...B in the XV system of coordinates
and AV®'..B" in the XV’ system is said to behave as a contravariant tensor under
the transformation {XV} — {XV} if
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AV ..p = a‘u'a’...ﬁ’mup AVC...B (2.19)
Similarly, Ay, p is said to behave as a covariant tensor under {X¥} — (XV'} if

Ave..p = ayal..pV% PAva..p (2.20)

Lastly, AtV g is said to D& 18/ 4 # sd tensor (contravariant in p...v and
covariant in ... ) under e

B (2.21)

Note that Eq.(2.21) = f fos B BRI\ RgSNR. 19) and (2.20) as special
cases. >

At a given point in - 3 :i'k e pure numbers. Thus the tensor
transformation Eqs.(2.1 g~  -—  “iear. the components in the new
coordinate system 2ig lig Dogents in the old system, the

coefficients being ,; R ] ‘ sors involve derivatives of
the of the new coordinfifes olgl} XV, covariant tensors involve
the derivatives of the olq dinates with respect tn the new, and inixed tensors

v s o S AW Y o oo

superscripts for $bntravariance, together with the requirement $hat the free indices

o a9 N STTHANT TN e

reproducirg Egs.(2.19)-(2.2

If we say that an object is a tensor it is understood that the object behaves
as a tensor under all non-singular differentiable transformations of the coordinates
of V.. An object which behaves as a tensor only under a certain subgroup of non-
singular differentiable coordinate transformations, like the Lorentz transformations
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Eq.(1.22), may be called a qualified tensor, and its name should be qualified by
an adjective recalling the subgroup in question, as in ‘Lorentz tensor’, more
commonly called ‘four-tensor. These tensors are, as a matter of fact, the
(qualified) tensors used in special relativity. But we shall occasionally lapse from
this strict terminology by omitting the adjective ‘qualified” when no confusion seems
likely.

independent of the e SR A SbciBelis therefore often called an

invariant. the zero teg®or e Wlis defined as having all its
components zero in a ol £ e ,_Q eri8 N\ WNs"Biear from Eq.(2.21) that it is
tensor. For brevity it is ugfizf #itts & indices omitted,

Evidently we mus they constitute the same map
S — Ry, in other wmds if
systems. Now the mgin Fetn-of e gulug<trivial in its proof, profound

same components in all coordinate

in its implications- ;—: ¥falence [we shall say that a

tensor has valence (ffit) 2ve Jlcontravariant and t covariant

¥

indices) have equal corrponents in any ope coordinate system then they are equal.

This is an umﬁ:ﬂﬁcﬁ}ﬂﬁmwgﬁ]oﬂeg(e 21). It implies that

tensor-(comporfént) equations ayuays express physical or &ecmetnc facts, i.e.

. "WQWWW?‘IW’IW

The simplest example of a contravariant vector is’ provided by the
differentials of the coordinates, dXV. For,

dXv' = (XY /8XV)dXY = aV,dXV. (2.22)
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Under linear transformations XV'= AV' XV + BY' (AV',,BY' = constant) the coordinate
differences AXY transform like the differentials dXV and thus constitute a 'qualified*
vector-usually called the displacement vector. Because of this, the displacement
vector can then serve to represent any contravariant vector. (Recall the ‘direct line
segments' of elementary vector analysis!) The coordinates XY themselves behave
as vectors only under linear homogeneous transformations (B¥'=0). A case in point
is the homogeneous Lorentz trag '

The simplest exarmmmr—

function of position @ = uﬁl

.5}11’1 mmy BN Yo o

transformation in Eq.(2.21) satisfy the two group properties of symmetry and
transitivity. In other words, if an object behaves as a tensor under {XV} - {XV'} then
it also behaves so under {XV'} - {XV} (symmetry); an if an object behaves as a
tensor under {XV} — {XV'} and under {X¥'} - {XV"} then it also behaves so under
{XV} - {X¥"} (transitivity). The general method to proof will be sufficiently indicated
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by dealing with an object of type AM,. Note the use of substitute dummies a.and B .
in the first of the following equations to avoid the triple occurrences of pu and v,
and the use of Eq.(2.18)(or analogous of it):

ap’u"v'v Al 'v' = ap'p'v'v (a# ‘an' Amﬁ) = 81,58, A% = AR,

e its components in all other

oy

systems, or, in a case gf i Jf fd 20 % jose systems which are mutually

connected by transfOrmglifh Fibe(cuki 2\ e Thosen subgroup. The group
AL SMpSlents will be related tensorially.
W1 | then AM is so related to Ak
ransitivity).

properties then ensurs
For if AH, say, is relatey :
(by symmetry) and consefuet#aas :

: M2 precise and formal our
preliminary definitioried o o sections. Note that the

permissible coordinalé system {XV} on V, form &
systems bein i < ﬁf 1 e to the other .is non-
singular, i.e. mnﬁwﬂ:ﬂe oﬂﬂjﬂjﬂw under a specific
transfo ' . m Im member of that
group Hﬁjﬂﬁs m o up properties, if a
tensor T associates the set of components Al with the system {XV}, the
pairs [{XV}, A¥-, ] also form an equivalence class, two such pairs being

equivalent class, two such

equivalent if the coordinate systems are equivalent, and if the corresponding As are
tensorially related according to Eq.(2.21). The tensor T can then be defined as the
equivalence class of all these pairs.

T8 [€295.



The algebra of tensors consist of four basic operations- sum, outer product,
contraction, and index permutation-which all have properties of producing tensors
from tensors. All can be defined by the relevant operations on the tensor
components, but must then be checked for tensor character.

The sum CH--
is defined thus:

» and BW--, of the same valence

Trivially, it is a ten Vb LR \ lar case):

¥ [ [
CHyr = AW+ BW

Note, however, that the surr 7 ent points of V4 is not general a
tensor since in th¢ nifENSIEENSROUSNEN ALeperally pull out the as. But
under linear uoorcli 2 stant and then the sum of

tensors even at di -m

2Nt points 1S a tensor. A <ogous remarks apply to the

”f”“““ﬁﬁﬁﬁ?f%swmm

If A and B are tens®rs of arbitrasy valences, th/juxtaposition of their

compordt Pk} CUEOTHE Bt oY)

is the tensor of the valence indicated by its indices. As a particular case, A

could be a scalar. In conjunction with sum, therefore, we see that any linear
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combination of tensors of equal valence is a tensor. The outer product of two
vectors A(= A) and B(=BH) is sometimes written A ® B.

Contraction of a tensor of valence (s,t) consists in the replacement of one
superscript and one subscript by a dummy index pair, and results in a tensor of
valence (s-1, t-1). For example, if A

is a tensor of valence = 0itd ipdels,. O action in conjunction with outer
ﬁ A most important particular

no free indices remain. the

product results in an
case of contraction @ v
result is an invariant 48 ¢ #F MY AR Mhvariant if the As are tensors.

The last of the afe :._r' ef¥tions is index permutation. For
example, if tensor compongpe A ibited in matrix form, Bgg = Agp

denotes the compg p._- pf0 those components form a

tensor, as is immedd 9 y permutations of all order

are permissible amo f'! either the STGUSCHPLS or the perscripts of a tensor. Thus

we can form such tensof sams as A fﬂ r A#‘-' 31 AVH,g, and such tensor

equations as ﬂﬁu Elﬁrmtﬂ: at the symmetry (or

an‘tlsymmetly) a tensor is af invariant gQroperty, i.e.qis preserved under

woran@} WHOER IUNNINETRE

A contravariant or covariant tensor of second or higher rank is said to be
symmetrical if two components, which are obtained the one from the other by the
interchange of two indices, are equal. The covariant tensor AXV, or the contravariant
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tensor Ay, is thus symmetrical if for any combination or the indices p, v, we have
ARV= AVE or A= Ayp respectively. In contrast, a covariant or a contravariant
tensor of the second, third, and fourth-rank is said to be antisymmetrical if two
components, which are obtained the one from the other by the interchange of two
indices, are equal and of opposite sign, cr, for the second-rank tensor, AWW=-AVH
and A, = -A,,, respectively.

For the of A=t e sixteen components, the four
cemponents AR! vanisheSSem® = are| equad™amenaiopposite sign in pairs, so that
v Similarly, we -see that the
antisymmetrical tensog® i f- S0k W Sah3sionly four numerically different
' , Wb has only one. There are no
antisymmetrical tensors JF i Frivey A PR in a continuum four-space.

Any second-ran 4 ed as a sum of a symmetric
tensor and an antisymme :

/2] Anv-ave]

then obviously ﬂ"ﬁ H!@ %W@w m-ﬂ:ﬁj is called antisymmetric

part of AWV, res

’QW']&\‘lﬂ‘iﬂJllWI’JVIEJ']ﬁH

We shall write

O(A-vy.p) = Ay pg.
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Then if Ak-Vy g is a (field-) tensor, differentiation of the general tensor
component transformation £q.(2.21) yields (by use of 8/0XE" = a€yd/0XE):

M"'r"'wnr.’...ﬁ',s' " ap""vrp..va'...ﬂ'm"ﬁ afg! N"'"vcr....ﬁ,ﬁ* By + B+

where Bs are terms involvigdh I/ £ A athe as. [It should be noted that a
product with implied su ,_-'7—-’1‘-‘?""..' ke =met*hand side of Eq.(2.21)-can be
differentiated with cogmmem —ryechrd Sl engs, summations, since sum and
transformations, therefore,
“elprdinate transformations (as
e valence indicated by all its
repetition of the argument, all

derivative commute
AP-Vy...p,e 1S not
constant) AH-Vy g g
indices, including €, sirgt j##"

higher-order partial deri

17
etc. also behave ! tenso Sgals ear nsformatinns, each partial
differentiation adding a #igw covariant indgx

AUHINENI NN

Consider™ curve in space gefined by the equations Xi 5 X¥(s), where s is a
o Q) R T O BRI . o
proof befhg similar to that for dx*. That the scalar derivative of any field tensor,
(d/ds)Ar--Vy, g, behave as a tensor under linear transformations follow at once
from the differentiation of Eq.(2.21). We may note how the four basic vectors of
classical mechanics-velocity, acceleration, momentum,force-are all built up from
the operations of differentiation and multiplying by scalars: dxis/dt, d2xi/dt2,
mdx'/dt, md2xi/dt2 (t = Newtonian time and i =1,2,3).
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The Cuotient Rule

Although we cannot usually form a ‘quotient’ of tensors, an object like CHV
in the equation AH = CHVB,,, where AMand B, are tensors, can be formally regarded
as a kind of quotient of AMand By, . This gives the name to a most useful rule for
which roughly says that the quotient of
reads thus: If a set of components,
* ith an arbitrary tensor of a given
B tensor. The general method of

recognizing tensors, the quotient nile

tensors is itself a tensor. Aca .,“"1 | ff/
when combined by a giveg Wmels e
valence yields a tensor, T e set cc -
. w8 above special case. Suppose
wensor B, the product CHVB, is
our object in two arbitrary

WiAB, hypothesis and second by the

proof can be suificient!y g AT
we know of the comporyg '
a tensor. Let CHV and 4
coordinate system (X7} 0
tensor character of By, e

whence for all u',

| |
L Gp'.lvf _ alfuvrvc‘“v)ﬂvr = u

e me EHE INHNI NI, ey e
e LA AR

The Metric

For the special structure of V, in which tensors play a role are metric spaces,
i.e., they possess a rule which assigns ‘distances’ to pairs of neigbouring points. In
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particular, one calls a space (pseudo-)Riemannian if there exists a quadratic
differential form
.ﬁz = g}lvw' (E.EE)

where the gs are generally functions of position, and are subject only to the

restriction det(gy,,) # 0. They may loss of generality, be assumed to be

symmetric: guy= gy If dsSONRH/S Ay # 0, the space is called strictiy

Riemannian. Eulidean N-=m

analogous to that M acé of w fie leamed earlier. A scalar
product of two four- 2 ) Eq.(2.11),

ﬂumwﬁmﬁ?m -
e HAMIATAI NN INYAE

A‘B = BA, A(B+C) = AB+ AT

Two vectors are said to be orthogonal if their scalar product vanishes. A particular
case of scalar product is the square of a vector (which in pseudo-Rimannian
spaces can be positive or negative):
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AZ = AA = g APAY, (2.24)

From it one defines the (non-negative) magnitude |A|, or simply A, by the equation
A = |A]'/2 = 0. Thus the metrix ds? itself can be regarded as the square of the
differential displacement vector ds = dXM. For its magnitude we write ds.

In Riemannian space S 1SS basic algebraic tensor operation,
namely the raising and /c BF indiceZe# s purpose we define ghv as the
elements of the inverse o g sy 8 purmessuse of the symmetry of (El.w)- its
niquely by the equations

(2.25)

If gh'v' denote the

Eq.(2.19)], then by the forff-iny

:“'{ e
and 8k, are tensors), we hive i l.,--ﬁ-a E

A the XM system [according to
Somponent equations (since ghv

.‘..—_,_:_t——’—--—. = (2.25)

But these are also th uations that uE'quel)f de ma the inverse (gh'V') of the
e

matrix (gry)- : i §2.27) in all coordinate

systems constitufp a contravariant tensar said to be camtgate 10 Buy-

ATIRIOIHATDINEINY . g o

products of a given tensor with g, or g#V. For examples,

Al = ghVA,,
= gAY, (2.27)
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As can easily be verified, these operations are consistent, in that the raising of a
lowered index, and vice versa, leads back to the original component. They can of
course be extended to raise or lower any or all of free indices of any given tensor:

e.g. if Ay,* is a tensor we can define AM, by the equations

AMyg, = E“ﬁgvpkﬂap-

It may be mentionec important use of the metric tensor

Buy, Namely in the cor “‘_ Wie sowmawest ‘covariant derivative’ of tensor

éz nhis iz not needed in case of flat

under general coordinaie

space, and so will nct bg

FPseydo tensors angd @8 s -’

The only kind of Sl ' ;5, discussed so far are called the
proper rotation transforiBtigiasv:0 e built from a successicn of
infinitesimal transformations AZ7W0Lo 4 metimes we have to dealt with the

#and cannot be obtained by
compounding infini® ‘-’-h‘[- such as parity or time

reversal are examp of the improper transfofdations. Their transformation

B ) ﬁ?WWW‘ﬁTT .
mansiRiiIng s

while the proper transformation matrices satisfy

improper rotation {

(e.28a)

det (a) = +1. - (2.28b)
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The panty transformation corresponds to a rotation by 1809 plus a reflection
through a plane, while the time-reversal transformation reverses the time but not
the spatial coordinates. We will find it useful to classify tensors with respect to
their properties under both proper and improper transformations.

For example, we consider_!gg gransformation of vector b in three-space.
A

Under proper transformation Wt
(2.29)

. But special mention must be
from, this vector shorthand

S
where a! ; is the coeffi
made it we define

reads
(2.30)

where gy, is the so-called ree-space which is defined as

.. £ 'ri
+1 if Tk em of 1,2,3,

J !
gk =4 -1 if1 kisan oddtytﬂc permutatiof of 1,2,3, (2.31)

Til’m“ﬂﬂﬂﬁ“WEl’Tﬂ‘ﬁ B
AR S

tensor, in three-space, has only three independent components, we treat it as a
vector, This has justification, of course, only in so far as it transform under proper
transformation law Eq.(2.29). In actual fact, the transformation law for the cross
product is
" "
bl = det(a) a! jb!, (2.32)
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For proper rotations, we have det(a)=+1, Eq.(2.32) is thus in agreement with the
basic coordinate transformation Eq.(2.29). Thus, under proper transformations,
the cross product transforms as a vector,

We now consider some discrete transformations called parity transformation,

or spatial inversion. Space inversion corresponds to raflection of all three

transformation):

Polar vectors (or jufl v o \athording to Eq.(2.29) and under

spatial inversion, x;

T
Axial vectors or pseudovectoMe=2= LSESE8Wn according to Eq.(2.32) and under

spatial inversion x; ~ x)
W X
Similar distincfign mos sCalagiiinder the transformation. We

i

speak of scalars or psqlﬂscalars. depqyling on whether the quantities do not or

do change siﬂ %%ﬂ IW@W El:q &ﬁv product b.(cxd) is an

example of a pﬂudoscalar quantigy, prowdad c, and d ar@‘gil polar vectors. The
o QA YA S AR o e e
directly i they are built up by taking products of components of polar or axial
vectors. If a tensor of rank r transforms under spatial inversion with a factor (-1)F,
we call it a true tensor or just a tensor, while if the factor is (-1)*+1 we call it a

pseudotensor of rank r. For example, we consider the pseudotensor of rank two in
four-space, it is a sixteen-component quantity in every coordinate system with the
transformation law
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ARV = (det a)al’ V' ARV (2.33a)
while the ordinary tensors will transform as

ARV = gl Vi ARV (2.33b)

The values of det (a) deg ‘.H / / the transformation as have mentioned
earlier. — j'

We have alg //

Eq.(3.31), we ca
pseudovector (axial

@mans of the Levi-Cavita symbol
LR
/ SMigmantisymmetric tensor ej, with a

(2.34)
or,
(e23. €31, €12).
The component} ;;-: ------ T = J omponents of an axial vector
dual to tensor ey S /e Tan associate an antisymmetrical

!

tensor of rank r < 4 wrth a pseudotensor of rank 4-r) by means of the Levi-Cavita

o "ﬂ‘tﬁi TRENTNYING
q Mﬁﬂ W}[Eﬂjﬁ'mm ; 0011:33 (2.35)

0 if pvap is not a cyclic permutation of 0,1,2,3.

Note that the tensor is totally antisymmetric fourth-rank tensor and is a
pseudotensor under spatial inversion. Then we can say that for any four-vector A,
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any antisymmetry tensor B, and any third-rank antisymmetric tensor C, we can
construct new tensors defined by

*Auva = SuvapAP,  *By, = 1 84vapBB, *C, = 1 8,yapBYoB, (2.36)
2 3!

where  £,yqp=-sHvp. We oall WA, the cusi tensors of A, B, and €
respectively. By the defi i W7, Semmmierify that (aside from sign) any
completely antisymmetrenem <OM its dual *D by taking the dual
once again, -

(2.37)

This shows that D and “@odf v [\ ormation. Then the dual of
the dual of antisymmetric, ‘ Hhe negative of the original one

or,

| i
In this sense * has 'y—é-“i eltmry number i @ ** = jj = -1,

¥

B

Thus we can write

AU 8 3918 mwmm
gt “ﬁmnmm N5 13

satisfied fleld equations in empty space, so does its dual, ¢*®B, with suitable

choice of 8. If we take 6=n/2 then the definition *Buy= 1 s}waﬂﬁﬂﬁ is appeared.
2
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