

การตดัแยกและการประมาณเนือ้ร้ายเร่ิมต้นในปอดโดยการใช้คา่ขีดแบง่บนความหนาเฉพาะท่ี

นายอคัรพนัธุ์ เจนธีรพงศ์

วิทยานิพนธ์นีเ้ป็นสว่นหนึง่ของการศกึษาตามหลกัสตูรปริญญาวิทยาศาสตร์มหาบณัฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์ จฬุาลงกรณ์มหาวิทยาลยั
ปีการศกึษา 2555

ลิขสิทธ์ิของจฬุาลงกรณ์มหาวิทยาลยั

บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

LUNG NODULE SEGMENTATION AND ESTIMATION USING THRESHOLDING ON LOCAL

THICKNESS

Mr. Akaraphan Janetheerapong

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science and Information Technology

Department of Mathematics and Computer Science
Faculty of Science

Chulalongkorn University
Academic Year 2012

Copyright of Chulalongkorn University

Thesis Title Lung Nodule Segmentation And Estimation Using Thresholding
on Local Thickness

By Mr. Akaraphan Janetheerapong
Field of Study Computer Science and Information
Thesis Advisor Assistant Professor Rajalida Lipikorn, Ph.D.
Thesis Co-advisor Assistant Professor Nagul Cooharojananone, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of
the Requirements for the Master's Degree

 ………………………………………….. Dean of the Faculty of Science
 (Professor Supot Hannongbua, Dr. rer. nat.)

THESIS COMMITTEE

 …………………………………………… Chairman
 (Assistant Professor Pattarasinee Bhattarakosol, Ph.D.)

 …………………………………………... Thesis Advisor
 (Assistant Professor Rajalida Lipikorn, Ph.D.)

 …………………………………………… Thesis Co-advisor
 (Assistant Professor Nagul Cooharojananone, Ph.D.)

 …………………………………………… External Examiner
 (Colonel Anan Wattanathum, Ph.D.)

 iv

อคัรพนัธ์ุ เจนธีรพงศ์ : การตดัแยกและการประมาณเน้ือร้ายเร่ิมตน้ในปอดโดยการใช้
ค่าขีดแบ่งบนความหนาเฉพาะท่ี. (LUNG NODULE SEGMENTATION AND
ESTIMATION USING THRESHOLDING ON LOCAL THICKNESS)

อ. ท่ีปรึกษาวทิยานิพนธ์หลกั : ผศ.ดร. รัชลิดา ลิปิกรณ์ิ,อ. ท่ีปรึกษาวทิยานิพนธ์ร่วม :

ผศ. ดร. นกุล คูหะโรจนานนท,์ จ านวนหนา้ 63 หนา้.

 เสนอวธีิการท่ีง่ายแต่ไดผ้ลส าหรับการตดัแยกและการประมาณเน้ือร้ายเร่ิมตน้ในปอด
โดยการใชค้่าเทรสโฮลดบ์นความหนาเฉพาะท่ี โดยการใชข้ั้นตอนวธีิประมวณความหนา
เฉพาะท่ีบนจุดท่ีเราตีกรอบบนภาพรังสีส่วนตดัอาศยัคอมพิวเตอร์ ระบบท่ีน าเสนอสามารถเอา
ความหนาของบริเวณเฉพาะมาประมวลต่อ โดยใชว้ธีิการค านวณค่าขีดแบ่งแบบอตัโนมตับน
ความหนาเฉพาะท่ี ระบบจะสามารถก าจดับริเวณ 3 มิติท่ีมีความหนาต ่า อาทิ เส้นเลือด และใน
ขณะเดียวกนั ระบบสามารถท่ีจะถนอมเก็บบริเวณ 3 มิติท่ีมีความหนาสูงกวา่ เช่น เน้ือร้าย
เร่ิมตน้ เป็นตน้ การใชข้ั้นตอนวธีิการน้ีสามารถท าใหป้ระมาณเน้ือร้ายเร่ิมตน้ได ้เพราะส่วนท่ี
เป็นหนามและเส้นเลือดท่ีติดกบัเน้ือร้ายเร่ิมตน้ถูกก าจดัออก เพื่อท่ีจะประมวณวา่ วธีิท่ีเรา
น าเสนอใชไ้ดผ้ลและวดัไดจ้ริง ผูท้ าวจิยัไดท้ าการวดัขนาดกลุ่มขอ้มูลเน้ือร้ายเร่ิมตน้โดยการ
เปรียบเทียบระหวา่ง โปรแกรม Philips Extended Brilliance Workspace กบัวธีิการท่ี
น าเสนอ และเห็นวา่มีความสัมพนัธ์กนั 98.9%

ภาควชิา คณิตศาสตร์และวทิยาการคอมพิวเตอร์ ลายมือช่ือนิสิต .

นิสิต……………o... สาขาวชิาวทิยาการคอมพิวเตอร์และสารสนเทศ ลายมือช่ือ อ.ท่ีปรึกษาวทิยานิพนธ์หลกั .
ปีการศึกษา 2555 ลายมือช่ือ อ.ท่ีปรึกษาวทิยานิพนธ์ร่วม .

v

5373615723 : MAJOR COMPUTER SCIENCE AND INFORMATION
KEYWORDS : LUNG NODULE SEGMENTATION / LOCAL THICKNESS /
THRESHOLDING

AKARAPHAN JANETHEERAPONG : THREE DIMENSIONAL LUNG NODULE
SEGMENTATION AND ESTIMATION USING THRESHOLDING ON LOCAL
THICKNESS. ADVISOR : ASST. PROF. RAJALIDA LIPIKORN, Ph.D.,
CO-ADVISOR : ASST. PROF. NAGUL COOHAROJANANONE, Ph.D., 63 pp.

 A simple-yet-effective method, utilizing local thickness and auto-thresholding
for manual lung nodule segmentation and estimation is presented. By utilizing local
thickness algorithm, we can achieve the field of local thickness for the respective
region of interest, which can be used for further assessment in thresholding. The
auto-thresholding technique, IsoData, is used on local thickness field for segmenting
lung nodule, which can remove blood vessels or features that are difficult to be
removed by conventional mean and must be excluded in order to ensure correct
segmentation and measurement. By using correlation comparison on the same lung
nodule dataset between our proposed method and Philips Extended Brilliance
Workspace, we can see that the correlation is 98.9%.

Department : Mathematics and Computer
Science

signature..

Student’s Signature

Field of Study : Computer Science

signature..

Advisor’s Signature

Academic Year : 2012

signature..

Co-advisor’s Signature

vi

Acknowledgements

I would like to thank my advisor, Assistant Professor Rajalida
Lipikorn, and Assistant Professor Nagul Cooharojananone at the department
of Mathematics in Chulalongkorn University. They dedicated themselves in
assisting my research greatly. When I do not have the resource or knowledge,
they are always there to assist and provide respective subjects that I lack.
Without them, creating such a thesis would be next to impossible.

Moreover, I would like to thank Col. Dr. Anan Wattanathum for
providing the data set for this research. Without such resources, this research
would not be possible, as we will not have anything to compare ourselves with
at all. Therefore, I highly appreciated the generosity.

All in all, I would like to once again thank you honorable people
mentioned above, for assisting me in this research.

Table of Contents

 Page

Abstract (Thai)……………………………………………………………………………. iv

Abstract (English)... v
Acknowledgements.. vi
Table of Contents... vii
List of Tables……………………………………………………………………………… ix
List of Figures…………………………………………………………………………….. x

Chapter

I Introduction……………………………………………………………………………… 1
 1.1 Objectives………………………………………………………………………… 1
 1.2 Scope of the Work……………………………………………………………….. 2
 1.3 Problem Formulation…………………………………………………………….. 2
 1.4 Expected Outcomes…………………………………………………………….. 3
II Theoretical Background………………………………………………………………. 4
 2.1 Image Processing………………………………………………………………... 4
 2.2 Biomedical Image………………………………………………………………... 5
 2.3 Methods used in the past……………………………………………………….. 5
 2.4 Commercial software…………………………………………………………….. 7
III Proposed Method and Algorithmic Design and Implementation………………... 8
 3.1 Computed Tomography Image………………………………………………… 8
 3.2 Preprocessing……………………………………………………………………. 12
 3.3 Human Interaction……………………………………………………………….. 12
 3.4 Segmentation…………………………………………………………………….. 13
 3.4.1 Auto-thresholding…………………………………………………………... 13
 3.4.2 Region Growing…………………………………………………………….. 13
 3.4.3 Local Thickness…………………………………………………………….. 14

Chapter Page

vii
i

 3.4.4 IsoData Thresholding on Local Thickness………………………………. 18
 3.5 Estimation…………………………………………………………………………. 19
 3.6 Conversion to millimeter cube………………………………………………….. 20
 3.7 Program Design and Flowchart………………………………………………… 20

 3.8 Implementation……………………………………………………………………. 25

IV Experimental Results………………………………………………………………….. 26

 4.1 Correlation Test………………………………………………………………....... 26
 4.2 Lungman and Artificial Nodule…………………………………………………. 28
 4.3 Material for Artificial Lung Nodule……………………………………………… 29
 4.4 Measurement and Analysis for each object………………………………….. 30
 4.5 Shape Analysis……………………………………………………………………. 32
V Conclusion and Discussion…………………………………………………………… 37
References………………………………………………………………………………… 38
Appendices………………………………………………………………………………... 40
 Appendix A…………………………………………………………………………….. 41
 Appendix B…………………………………………………………………………….. 46
 Appendix C…………………………………………………………………………….. 60
Biography... 63

ix

List of Tables

Table Page
1 Volume in mm cube for nodule estimation between the two methods… 27
2 Measurement of all objects in millimeter cube…………………………… 31
3 Measurements on additional bubblegums in millimeter cube………….. 34

x

List of Figures

Figure Page
1 “Local Thickness” algorithm on MRI Quail Embryo……………………… 15
2 “Local Thickness” algorithm applied on Trebecular Rabbit Femur……. 16
3 Local Thickness on striped structure Ω………………………………….. 17
4 Comparison on a few auto-thresholding techniques…………………….. 19
5 Nodule Segmentation Simulation…………………………………………... 19
6 Gumbase in CT Scan………………………………………………………... 29
7 Water-based clay in CT Scan………………………………………………. 29
8 Bubblegums used for shape analysis……………………………………... 33
9 Algorithm’s result for bubblegums…………………………………………. 34
10 Example of Thresholding on Local Thickness on a bubblegum……….. 35

1

CHAPTER I

Introduction

 Biomedical research is always a field of interest to many researchers. The
progress in our research can increase life expectancy, survivability, health condition,
etc. And as technologies progress further, we have better tools and techniques at our
disposal to further increase effectiveness of healthcare. For example, in the past, without
proper tools for inspecting inside the patient’s body, it is impossible to diagnose a
disease, such as internal cancer. But with technologies such as X-ray, Ultrasound, or CT
scan, it is possible to inspect inside the patient and diagnose the disease more
efficiently.

 For example, in the case of Lung Cancer, if it is not detected at an early stage, it
could spread to other organs and cause havoc damages, which eventually lead to
death of a patient. However, using CT Scans, we can detect these lung cancers at their
young states and deal with them before things get out of hand. According to [1], the
chance of survival for patients, with the beginning stages of malignant nodules, may be
as high as 80%, but for patients with advanced stages of malignant nodules, the survival
rate is as low as 5% or less. Therefore, if we can detect these lung nodules during their
early stages, we can perform medical operation to remove these nodules. Thus, we can
ensure higher survivability of the patients.

 However, there are some cases that are more difficult than other cases. Manual
nodule detection requires the radiologists to skim manually through hundreds of slides.
This is a time consuming and tedious task and it is prone to error. Without a doubt,
nodule detection in a larger size is easy to spot, but this already implies that the cancer
in patient might be in a more advanced stage. If we can detect such nodules when they
are at earlier stages, we can eliminate the threat before things get out of hand.
Nevertheless, nodules at such stages are very small in diameter (Less than three
millimeters). These nodules may present themselves only in a few CT slices out of
hundreds and occupy only a few voxels. These are very difficult to manually detect by
human.

2

 Many automated approaches [2-5] are suggested, and there are still false
positives and false negatives within the automated results. Note that we are not looking
for 100% perfect solution here. Automated solutions could suggest a radiologist the
locations of a number of small nodules, but in the end, a radiologist will have to ensure
that the nodule is valid and not false positive. Moreover, he will still have to skim through
the slices for checking nodules that might have been missed by the automated solution.
All in all, the CT scan still has to be thoroughly and intensively checked to ensure the
right medical procedure.

 Another issue that has to be considered is segmentation. Several methods such
as in [3] suggest calculating shape index from the isotropic volume, for detecting
spherical shapes. Although many nodules are spherical, not all nodules are spherical.
Thus, undersegmentation or oversegmentation might occur in this case.

1.1 Objectives

 We would like to propose a simple-yet-effective and user-friendly method for
manual lung nodule segmentation, which allows non-spherical nodule to be taken
into account to reduce undersegmentation, as well as to remove blood vessels that
are attached to the nodule, to reduce oversegmentation.

1.2 Scope of the Work

 We will use only DICOM of Philips and Toshiba software.

 We will use Fiji software for this purpose.

1.3 Problem Formulation

In this research, we required CT Scans of patients with lung nodules,
however, there are many types of lung nodules. For instance, juxtapluera nodules are

3

nodules that stick to the lung wall. Nodules themselves, most of the time, tend to be
spherical, but not all nodules are spherical. A few nodules have irregular shapes or have
features spreading all over the place. One paper [13] suggested 4 types of nodules.
However, another paper [14] has shown more complex shaped nodules. Their shapes
scatter around the lung in a complex manner; one of them looks like a spike ball. In
older researches, their algorithms are based on the assumption that nodules tend to be
spherical. This tends to be true for most of the time, but if the nodule is not spherical at
all, then the assumption would be false in the respective case. That is their limitation.
Theoretically, the more nodules we can investigate, the more we can deal with. We
believed that segmentation of many typical spherical nodules have been taken care of
in past research already. What remains should be these special cases, and we believed
our algorithm should be able to take care of these nodules.

Another issue to be addressed is, in many commercial software, should
the radiologist feels the software segments the nodule incorrectly, he can adjust the
lasso selection on each frame accordingly. If a nodule spans on for 100 frames, this can
be a very tedious task and each different person performing this same task would
achieve different result, due to human bias.

 Therefore, we aim to address the following issues:

 How to segment non-spherical nodules in such a way that attached
blood vessels and thorns could be removed.

 Coming up with a method that allows better usability to select a nodule.

1.4 Expected Outcomes

 A user-friendly method that can solve aforementioned problems

 Results from the method should be similar to those of Philips, which we
hold as a golden standard.

CHAPTER II

Theoretical Background

 This chapter elaborates some technical details that are mandatory to understand later parts

of this thesis.

2.1 Image Processing

 Image Processing is a technique in Computer Science to manipulate or process images to

achieve specific objectives. It is a huge field and is still considered as an active ongoing research

area.

 Briefly explaining, an image in a computer is nothing more than a sequence of numbers.

Depending on the format of the image type, the sequence of numbers of image type could be

different from one to another. However, in this thesis, we are using DICOM files. In these DICOM

files, we have grayscale image data. Suppose a 2D image has a resolution of 512 x 512 pixels, we

can treat such image to be a 512 width x 512 height matrix. Each element in the matrix is a pixel for

the image. For 8 bit image, a pixel can be a number from 0 (black) to 255 (white). For other

variations, the value could be 0-65535, 0.0-1.0, etc. This all depends on formatting definition, but all

in all, these values signify the blackest value to the whitest value. Higher dimensional images from

3D, 4D, 5D and so on, also exist. For this thesis, since we are using CT Scan and DICOM files, we

will be using 3D images.

5

2.2 Biomedical Image

 Biomedical images in this thesis refer to DICOM (Digital Imaging and Communications in

Medicine) which is a standard for handling, transmitting, printing, and storing information in medical

imaging. The standard is widely used in many commercial software, as the file formatting can be

shared and understood not by just one software, but many other software, as the standard enforces

that the respective biomedical images should be similar in the file format. This is why DICOM files

could be opened by a multitude of various imaging programs. Nevertheless, DICOM standard is

loose. Should developers of any entity feel additional header information of DICOM files should be

added or stored elsewhere differently for any reason, it is technically possible to do so. Yet, doing

so may result in fewer programs parsing the file incorrectly. Some software developers may prefer

that certain information must be found in certain places. While this assumption is true for most of the

time, if some entities decided that certain mandatory values are to be stored elsewhere instead of

the usual places, a program other than these entities’ own software may incorrectly parse the file

and show incorrect result. Therefore, when handling different DICOM files from software from many

different companies, it is wise to understand this tiny bit difference between their implementation.

However, we will not discuss the difference in their implementation here, as it is not our objective.

2.3 Methods used in the past

 We have come across several methods. S. G. Armato III et al [2] has suggested for analysis

for nine features of nodules. M. Antonelli et al [3] has suggested for distinguishing nodules from

blood vessels and other pulmonary elements via shape analysis. Y. Liu et al [4] has suggested

using support vector machine to perform voxel analysis. From [2] and [3], we can see that they

6

have been trying to segment the nodules mathematically. From [4], a supervised learning model is

used.

 Generally, for automated segmentation, the following procedure needs to be done:

 Preprocessing: on the CT Scan, the background needs to be removed. Background refers

to the field outside the patient’s body. This implies the bed of the CT Scan machine or any

other objects are to be removed.

 Lung Field segmentation: the flesh surrounding the lung is to be removed, leaving only the

lung field intact.

 Error Correction From Lung Field Segmentation: many papers use of Rolling Ball algorithm

to reinsert the attached to the wall juxtaplueral nodules. These nodules have the same

intensity levels as the lung wall. Thus, when lung wall is removed, these nodules are

removed along as well. Therefore, many papers have suggested to reinsert them back

using Rolling Ball algorithm. Imagine in each frame of the CT slice, a ball is rolled around

each lung field, and when there is a hole in the shape, the hole is filled (to reinsert the

possible nodule candidate). The benefit is, the nodules are inserted back. However, the

disadvantage with this method is that the nodule could be any size. It could be so big that it

leaves a big hole after lung wall removal that the ball rolled pass through the section, as if

there is nothing there. Shapes of the lung are also varied from person to person, thus, it is

inaccurate to utilize curvy shape of the lung.

These are the general steps for automated system from many papers. After that, suggested

methods of each respective paper are applied afterward.

7

 How much “area” should be considered a nodule and how much “area” should be

considered non-malignant tissues? The only way to know which nodule is malignant tissue and

which is not requires the patient’s tissue to be removed and inspected in the laboratory. There has

been a statistical research concerning a method to distinguish malignant and non-malignant

nodules mentioned in [1]. It won’t be helpful to have more accurate result, as studying the patient’s

nodule physically is the only way to have the best call on malignancy. Therefore, we could make do

with estimation. If the size is so huge, then the doctor should just perform the operation on the

patient. If the size is not so huge, then the doctor could estimate it first, and then perform the next

procedure with respect to the method given in [1]. This is one more disadvantage of the automated

method, that is, in the end, we cannot have a clear say whether a nodule is malignant or not.

Nevertheless, automated methods are to be used for detection, as skimming through CT slices for

very small nodules are difficult and tedious. The benefit of the automated method should be used

for detection, yet it is preferable to have another skim through on the CT slices for false positives,

false negatives and what not.

2.4 Commercial software

 In this research, we use Philips’s software [5] as the golden standard for correlation test.

Additionally, we also use Toshiba’s software [16] for comparison with our software as well. Both

Philips and Toshiba have its own one-click segmentation methods, which they will try to measure

the size of the specified nodule automatically. Should the user feel that there is a need to adjust the

automated lasso selection, these software allow the user to do so frame by frame.

CHAPTER III

Proposed Method and Algorithmic Design and implementation

 We will go further in-depth with the proposed method and algorithmic design in this chapter.

Our method is semi-automatic, which means that a user-interaction is required. We required 4

interactions in our method, which will be covered later.

3.1 Computed Tomography Image

 First, the image is to be loaded. Normally, this should be CT scanned image, which usually

comes as DICOM format. As mentioned before, there are several implementations of DICOM files,

and they might need to be taken care of differently. We require two things from DICOM file(s):

image data and some parameters.

 For image data, usually DICOM format header has a specific place for storing such image

data. Several imaging software, such as IrfanView , could open a few type of DICOM files. However,

as mentioned before, some DICOM implementation is different from the norm, and some regular

software couldn’t open it due to different implementation. We will not cover how to open different

type of DICOM files, and the bottomline is all the image data for a target patient is to be acquired

and loaded into the RAM sequentially, meaning we should have the first slice to the last slice

ordered correctly.

 For the mandatory parameters, we will require the data from the DICOM header file. An

example of a partial part of a DICOM file is shown on the next page:

9

0002,0002 Media Storage SOP Class UID: 1.2.840.10008.5.1.4.1.1.2

0002,0003 Media Storage SOP Inst UID:

1.2.392.200036.9116.2.5.1.37.2417493711.1343795704.895026

0002,0010 Transfer Syntax UID: 1.2.840.10008.1.2.1

0002,0012 Implementation Class UID: 1.2.392.200036.9116.2.6.1.100

0002,0013 Implementation Version Name: TM_CT_CMW_V3.00

0008,0005 Specific Character Set: ISO_IR 100

0008,0008 Image Type: ORIGINAL\PRIMARY\AXIAL

0008,0016 SOP Class UID: 1.2.840.10008.5.1.4.1.1.2

0008,0018 SOP Instance UID: 1.2.392.200036.9116.2.5.1.37.2417493711.1343795704.895026

0008,0020 Study Date: 20120801

0008,0021 Series Date: 20120801

0008,0022 Acquisition Date: 20120801

0008,0023 Image Date: 20120801

0008,0030 Study Time: 133047.000

0008,0031 Series Time: 133340.379

0008,0032 Acquisition Time: 133403.250

0008,0033 Image Time: 133405.193

10

As you can see, in the header of DICOM, there are numbers in front of each information. These

numbers and the information could be studied in the DICOM standard website.

For the required parameters, we required “distance between slice” and “pixel spacing”, which is

available in the following header:

0018,0088 distance between slice

0028,0030 pixel spacing

Again, due to different implementation of DICOM, sometimes, such header may not exist, or worse,

it may exist, but the value is left as a default unusable value. One of the DICOM file types that we

have encountered, have used the following original header:

7005,1013 ---: 1

7005,1016 ---: 1.2.392.200036.9116.2.5.1.37.2417493711.1343795678.307076

7005,1017 ---: 408

7005,1018 ---: 340

7005,101A ---: 1

7005,101B ---: FC07

7005,101F ---: 20120801133438305675

11

7005,1022 ---: 0.80

7005,1023 ---: 1.388

7005,1024 ---: 20120411

7005,1030 ---: CT

7005,1040 ---: 234.0

7005,1041 ---: 0.5x80

7005,1043 ---: 0.00000\0.00000\-1.00000

7005,1063 ---: 5.9

As you can see, there are only numbers and no human readable information is given. Some

freeware DICOM reader might be able to interpret these values, fortunately, and it is a must to do a

bit of homework to figure which header is our required parameter. Again, we do not know how many

implementation are out there, so we can only share some of the few we have encountered. But if the

file is DICOM, the required values should be there somewhere in the header.

Once we have those parameters, we will be able to translate a voxel into a real world millimeter

cube.

12

3.2 Preprocessing

Before we will perform any operation on the image, we should perform a bilateral filtering [6] to

smooth the image and at the same time to preserve the edges in an image. This will allow us to

have a “cleaner” input.

3.3 Human interaction

 The user is required to give the program 4 things:

- The first slice of the nodule

- The last slice of the nodule

- The rough ellipse-shaped location of the nodule

- The pinpoint location of the nodule

 The procedure may seem redundant at first, but in order to ensure that the region of interest

is really what we are looking for, those four procedures above are mandatory.

Here are some explanations for each parameter above respectively:

1-2. We want only the slices that contain the lung nodule; therefore we get the respective substack

here.

3. The ellipse is an area of interest which will be used for cropping on all slices. The result is

cylindrical area crop on the remaining CT slice. Of course, it is possible to use other 2D shapes,

which extend into 3D. The reason that we use ellipse selection is for a better ease of use, since

nodule’s shape could be spherical, egg-shaped, or spiky urchin-shaped. These nodules

13

nonetheless will stay in one region of interest, and using ellipsical shaped which extend into

cyrindrical shaped should provide a reasonable ease of use for the user. We will only segment one

nodule at a time. If there are two nodules extending and connecting to each other, we will take of

them one by one.

4. The fourth step may seem redundant, but for some rare cases such as nodule that glides along

blood vessels, this will help us remove all the other blood vessels and possibly other lung lesions

remaining from step 2, and retain only this single nodule of interest. The objects that will be

removed are those that are not attached to the nodule. Other attached objects that are attached to

the nodule will be taken care of later.

3.4 Segmentation

 The segmentation step is as follow:

3.4.1 Auto-thresholding

Auto-thresholding will be performed on an image utilizing IsoData auto-thresholding technique [7].

This will binarize an image, which allows a more accurate result in the region growing section.

3.4.2 Region Growing

Region Growing algorithm will be performed starting from the specified point, using the human

interaction from step 3.3. Any other objects outside the acquired region are to be removed. What

14

remains within the user-specified ellipse should now have only nodule of interest and remnants of

other attached objects of the nodule.

3.4.3 Local Thickness

There are more tasks needed to be done before volume estimation. For instance, a nodule may

have regular blood vessels attached to it. These vessels are not a part of a nodule and must be

excluded in volume estimation. Also, as a nodule gets bigger, it tends to develop extruding thorn-

like or bump-like features, which, according to our radiologist, should be excluded from volume

estimation as well. Local Thickness [5] is used to solve this issue, and is originally defined as:

(1)

Local Thickness allows us to differentiate between areas that are thicker and less thick by giving

these area different values of intensity with respect to “local thickness”. In order to validate and

clarify Local Thickness, we showed example cases from [9]:

15

Figure 1: “Local Thickness” algorithm on MRI Quail Embryo. An example image of MRI Quail

Embryo on the left that has “local thickness” algorithm applied on the right.

16

Figure 2: “Local Thickness” algorithm applied on Trabecular Rabbit Femur. We can see the femur’s

structure’s thickness with “local thickness” algorithm.

Fig. 1 and Fig. 2 show how the Local Thickness algorithm behaves given the CT slices of several

studies. The application proves useful to get local thickness information from three dimension data.

Therefore, we would like to apply this method on to lung nodule segmentation to achieve the same

goal.

17

Elaborating Local Thickness formula, from Fig. 3 and (1), let be the Local Thickness function.

Let be a structure or object of interest, in which , be the center and r be the radius of a

local largest sphere . Any particular point will have local thickness value that is equal to

the ratio size of all spheres of the local largest sphere, which have been fit into the object in an

image, and is a superset of point .

 takes point as an input and finds the local thickness intensity of this point . The local

thickness intensity could be defined as the value of the diameter of the largest sphere that fits

inside the given input object at the point . From here, we iteratively take each voxel of , and

process all of their local thickness intensity to get local thickness field.

Figure 3: Local Thickness on the striped structure . Only one sphere is shown here for simplicity. In

the real definition, a sphere will exist in every voxel of .

 We will use an example naïve implementation of local thickness acquisition for the sake of

simpler explanation. Let us think of local thickness like this: first, an input image IMG will be an

18

image which contains a number of objects. An object in this case refers to a group of white voxels

which are connected together in an image. All of the white voxels in the image will have a sphere

created with diameter of 1. After that, all of the spheres will increment their diameters in each

iteration. Any sphere will stop expanding if the next incremental diameter contains a black voxel.

After all of the spheres have stopped expanding, an empty matrix LT with the same dimension as

IMG is created. LT will be used for holding local thickness intensity. For each voxel v of LT, iterate

through all of the spheres and check which sphere contains the voxel v and which sphere has the

largest diameter value. This voxel v will hold the value of the sphere which has the highest diameter

in this case. After that, the highest intensity value from LT will be stored as MAXINT. All of the voxels

will then be divided by MAXINT and multiply with 255. All of the voxels in LT will now hold the

desired result, a field of local thickness intensity, where 255 is the maximum intensity.

 Several implementations for local thickness exist to improve the algorithm’s performance as

the original definition of local thickness is too slow for any application. We used R. P. Dougherty’s

implementation [9] as our base and add an extra step to the algorithm in the next step.

3.4.4 IsoData Thresholding on Local Thickness

 Usually, a nodule has bigger volume than blood vessels and is expected to be the brightest

feature in this user-specified region image. Other parts such as blood vessels should have lower

intensity. In order to eliminate these features, we add an extra step into Local Thickness algorithm,

which is to perform an auto-thresholding technique. We have tried a few auto-threshold techniques

[7,10-12] (Fig. 4) and we see that the IsoData is the most stable for our method. (shown in Fig. 5 on

top right) This way, all of the lower intensity features will be removed, and what remains should be

the nodule of interest. (shown in Fig. 5 on bottom left)

19

3.5 Estimation

 After thresholding on local thickness has been performed, we can now estimate the nodule

simply by counting the remaining voxels in the process.

Input Local Thickness Image

Figure 4: Comparison on a few auto-thresholding techniques

Figure 5 Nodule segmentation simulation: clockwise, starting from top left: the original binarized
image, local thickness, auto-threshold on local thickness, and finalized segmentation.

20

3.6 Conversion to millimeter cube

 To convert, simply multiply the number of counted voxels with the 3 mandatory values

mentioned earlier in step 3.1:

 (pixelSpacingWidth * pixelSpacingHeight * distBetweenSlice) * totalCountedVoxel)

This will convert voxel to millimeter cube.

3.7 Program Design and Flowchart

Since we used Fiji as our base, we have to write a script and execute it from Fiji’s interface. Fiji can

execute Python, Java, etc. We decided to use Java as Fiji is based on ImageJ, which is written in

Java. Because all the primary classes are already provided by Fiji, we simply built on top of Fiji. Fiji

can run and edit these external routine in its editor.

 There are templates provided within Fiji itself, however, we will not use their template; we

create our own class and methods. The first method that will run when we hit “Run” on Fiji editor is

the constructor of our class. Our class extends PlugInFrame of Fiji, therefore, it is a frame, and we

can make it appear by adding it to the WindowManager.

 We have the following essential methods in our class:

public masterNoduleSegmentFiji()

public void mouseClicked(MouseEvent e)

public void actionPerformed(ActionEvent e)

private void segmentNodule()

private Rectangle extraCrop(Rectangle bound)

21

The explanation for these methods are as follow:

public masterNoduleSegmentFiji() is the constructor of the class and is the main entrance

for our script. First, it performs a check whether the user has his (DICOM image) file open or not. If

so, the program proceeds by checking for the header data in the opened DICOM file. Differences in

header data has been discussed in section 3.1. These data are crucial in that they are used for the

correct calculation of estimated size. We need information of slice distance, etc, so we obtained

them here. Furthermore, we will also register (add) “this” frame to the windowManager, making it

visible on the screen. Various buttons and labels are also initialized and added to “this” frame, for

displaying user interface. Listeners are also added.

public void mouseClicked(MouseEvent e) contains the code for manipulating and checking

the user’s input during the slice selection phase. When the user clicks on a slice, the program will

remember the slice’s index as the “first” index. After that, the program will request for the “last”

index, which the user will also supply. The program will remember the user’s next selected slice as

the “last” index. Then, the program will proceed on to the next phase. In fact, this method is the key

component during this substack selection, in which the program will use the “first” and “last”

information for getting the substack.

public void actionPerformed(ActionEvent e) is used for receiving “button click” from

various buttons. The buttons that will invoke this method are the “start” button and the “cancel”

button. The “start” button is used during ellipse selection and the final pinpoint selection, while

“cancel” button basically closes down the frame and exit the script. The code regarding the later

part of the algorithm such as bilateral filtering and local thickness are all located and/or originated

from this method.

22

private void segmentNodule() is invoked near the end of actionPerformed method during the

final pinpoint selection phase. As its name suggested, the method “segments” nodule after all the

major algorithms have been applied. Up to this point, we should have all the required values to

segment the nodule. At this point, the user just has to wait for all the remaining algorithms such as

Level Sets and Local Thickness to finish. Once done, the program will report the estimated size of

the specified nodule in the console.

private Rectangle extraCrop(Rectangle bound) is a method for extra auto-cropping

during user’s ellipse selection. Due to the fact that different people may create an ellipse selection

differently, this may create a bias on the final result. To remedy this, the method “extra crop” is used

for “tightening” selection down to the area that there are no rows of background color voxels remain

in the selection.

To demonstrate the big picture for the explanation above, the flowchart is provided:

masterNoduleSegmentFiji

(all initializations)

Start

Wait for listeners

Mouse Click

mouseClicked

(substack management)

End

23

A Button got

clicked

Action

Performed

End

actionPerformed

Source?

Terminate Program

Cancel button

OK button

Phase?

Ellipse selection

phase

Pinpoint selection

phase

Bilateral Filter

Cropping

Next phase

segmentNodule

24

segmentNodule

IsoData

Thresholding

Level Sets

Local

Thickness

IsoData

Thresholding

Calculate

volume

End

25

3.8 Implementation

The source code is simply a macro written in Java language, and will run from Fiji Macro Interface.

It is served as a macro that provides a simple user-interface, and will do all the tasks from the

previous section. We use Fiji library, which is rich in image manipulation, and contain many imaging

algorithms [15]. The source code is available at Appendix B.

Chapter IV

Experimental Results

 We have proposed our method, and we must test our method in order to make sure that it

does work. In order to validate our method, we came up with 2 methods. The first method is

correlation test and the second method is using lungman (or “chest phantom”) with artificial nodules.

4.1 Correlation Test

 In order to validate that our proposed method works and could segment the specified

nodules correctly, one of the validation methods was correlation test.

 Correlation test, in this case, basically imply whether two methods that are trying to segment

and measure a nodule, got similar result or not. We used our method and Philips software for

correlation. In our software, the procedure is described in previous chapter. In the Philips Extended

Brilliance Workspace software, it has Lung Nodule Assessment ™ method. It will automatically,

tried to converge to a volume of the nodule. However, should the user feel the segmentation is

incorrect, he or she can perform manual lasso selection, and the software will re-measure the

volume accordingly. We will use this manual method along with the automatic one-click

segmentation on the Philips side.

 The data set contains nine lung nodules for evaluation. In this set, there are regular

spherical nodules and also irregular shaped nodules as well. Some of them might have several

thorn-like extruding features as well. Nonetheless, these nodules are segmented satisfactorily by

both methods, from the visual inspection of our radiologist.

27

 Philips Extended Brilliance Workspace gives out the main volumetric result along with ±

error value, which can be used to calculate possible range of minimum and maximum volume of a

nodule. In Table 1, the second column shows the volumetric result calculated by Philips, followed

with the errors in the third column, the maximum volume (Max column, calculated by adding the

error to the main volumetric value), and the minimum volume (Min column, calculated by

subtracting the error from the main volumetric value).

 We then calculate the correlation between the main volumetric values of Philips and our

proposed method’s results, and the correlation is 0.9887. This number shows a promising

correlation result between the two methods, which employ different techniques to achieve the same

goal.

 However, there are some problems with correlation test. We take it for granted that Philips is

the gold standard, but in reality, we do not know the internal implementation of the Philips software

28

at all. In this correlation test between two methods, Philips is considered as a black box. Moreover,

we never know whether the segmentation is correct or not. Both methods simply output some

numbers, using data from the CT scan, but we do not know whether these numbers are closed to

the real nodules or not. We do not know whether whose method holds the correct answer, with the

correlation test.

 Can we take the real nodules out of living patients? The answer to this question lies in a gray

area, but most of the time, complication from the patients’ side will rise. Patients’ information, by

medical practice, is confidential, and must not be disclosed, unless the patient agrees to disclose

such information. This will be complicated. Nevertheless, if we can measure the real nodules of the

patients, this will give us the values from real world measurement that we can used against the

programs.

4.2 Lungman and Artificial Nodule

 Fortunately, a better method which can solve the complication of ethical medical practice is

available. That is, we used Lungman (or “Chest Phantom”), which is an artificial chest, used for

biomedical research, and could be used in the CT Scan machine. Furthermore, Lungman features

artificial blood vessels, so we will get CT slices of lungs that are very similar to human’s lungs.

 Lungman set also comes with artificial lung nodules, but these nodules are spherical, and

we know that spherical nodules can be easily segmented. We would prefer to use something more

random shaped to reflect the fact that nodules could be any shape, and to test our method.

29

4.3 Material for Artificial Lung Nodule

 We have been suggested by a radiologist to use bubblegum as artificial lung nodules. It

has been claimed that the material of the bubblegum or rather, the gumbase gives a more similar

texture to the lung nodule. Yet chewed bubblegums could be sticky, so we need to cover them with

scotch tape, or else it could damage the artificial blood vessels of the lungman. Moreover, we also

tried using water-based clay, which is easier to mold and they become not sticky after we left them

to dry for a day. Images below show the results of the materials in CT Scan of the lungman.

Figure 6 – Gumbase in CT Scan Figure 7 – Water-based clay in CT Scan

 Figure 6 shows the gumbase. It is more similar to real lung nodule – the intensity and

texture are similar to those of artificial blood vessels. The shape of the bubblegum could also be

considered as quite close to the nodule. For figure 7, the water-based clay shows that it has a

weaker intensity in the image, and because of this, it could not be used. We have tried Toshiba

software to measure the clay, but the segmentation does not cover the whole shape; it only covers

30

the inner part which is only about 30%. Therefore, we should not use the water-based clay, as it is

not similar to real nodules at all.

4.4 Measurement and Analysis for each object

Because it is impossible to measure the real volume of the nodule inside of a patient, we suggest

using Lungman, filled with bubblegums and perform CT scan on it. Lungman is an artificial lung in a

30 kilogram artificial body, imitating human’s body exactly. Lungman is created solely for the

educational purpose. This way, we don’t have to deal with real patients.

 Moreover, we could try to put in some objects, such as bubblegums or water-based clays,

into the lungman. Of course, we could measure the volume of these objects in the real world, with

Middle School science. By using water and a graduated cylinder, one could measure volume of an

object by using water displacement method, originally discovered by the ancient Greek scholar

Archimedes.

 We have tested with several types of materials:

- Bubblegums

- Water-based clay

- Spherical marble

- Standard rectangular eraser

 For preparation, we chewed several bubblegums and tried to create “artificial” nodules out

of them. We got about 3-4 sizes of artificial nodules. The same goes with water-based clays. We

can change their shape around, and after that, leave them for one day for solidification. The good

thing about water-based clay is that they are not sticky after they solidified, unlike regular

31

bubblegum. Therefore, when we put them in lungman, they should not be sticky with those artificial

blood vessels. Therefore, preserving delicate artificial blood vessels. This is our main reason to go

for water-based clays in the first place.

 We have tried with several graduate cylinders, however we don’t have graduate cylinder

that allows us to insert bigger objects, while giving more accurate and exact reading. In other

words, smaller cylinders can give more accurate reading, but the hole is too small to fit our smallest

bubblegum. On the other hand, we can slide bubblegums through the bigger cylinder, but these

give us lesser accurate reading. Therefore, we have to make do with what we got.

 We have measured our objects with water displacement method and also using our

algorithm on the lungman CT slices, as shown in Table II below. Note that, this time, we are

requesting Chulalongkorn hospital to perform CT scan on the lungman, so the software, in this case,

is Toshiba software.

Table 2: measurement of all objects in millimeters cube

Object
Water
Displacement

Toshiba
software

Our
algorithm

Bubblegum 1 0.5 0.6638 0.63
Bubblegum 2 1 1.514 1.459
Bubblegum 3 1 2.182 2.233
Bubblegum 4 2 3.018 2.941
Spherical Marble 8 7709.8 8998.87
Rectangular
Eraser 7 7004.8 7433.99

32

 We thought we could go for more bubblegums, but in order to have an easily

distinguishable bubblegum from one another, we prefer small size to big size bubblegum. This is

our initial plan, so we bought several bubblegums and chew them up. Unfortunately, we have

discovered that we need to chew quite a number of bubblegums in order to get the sizes we want.

After chewing the bubblegum, all the sugar and components are removed via saliva, and what

remains is gum-based and possibly some more air. The remain is smaller than the original size, of

course. Totally, it took 10 bubblegums to create 4 “artificial” nodules with the size we want.

 For the eraser and marble, they have intensity higher than the nodules, but for testing

purpose, they should be acceptable, since the overall intensity is higher than everything.

4.5 Shape Analysis

 To further strengthen our experiment, we created more bubblegums, but this time, we mold

the shapes differently to see how our algorithm impacts the segmented shape.

 The bubblegums do not have to be big, as the bigger nodule tends to be malignant, and

doctors are likely to perform surgery right away. Therefore, we will focus on smaller nodules for

shape analysis.

33

Figure 8: Bubblegums used for shape analysis. We wrapped our bubblegums with Transpore tape.

34

Figure 9: Algorithm’s result for bubblegums. Each image on the top is the result of our proposed

algorithm. The images on the bottom are the original bubblegum images in Lungman.

 On figure 9, we can see the result of our proposed algorithm. We can see that the algorithm

removed spikes and extruded features out such as the second and seventh image. On the other

hand, we also see on the fifth image that the hole and the surrounding area have been removed

entirely. This is acceptable because we want to measure only the denser part. The bubblegum of

the fifth image is intended to have a “tunnel” through a part of it and the area around the tunnel

should not be taken into account for estimation.

 Moreover, we also measured these additional bubblegums and compared with our method

in millimeter cube on Table 3.

Table 3: Measurements on additional bubblegums in millimeter cube.

Bubblegum

No.

Toshiba’s

volume

Our method Bubblegum

No.

Toshiba’s

volume

Our method

1 1497.5 1448.391 5 2083.4 2138.448

2 1411.8 1459.517 6 1514.4 1493.771

3 1339.9 1406.569 7 812.3 760.1925

4 1440.3 1483.579

35

Figure 10: Example of Thresholding on Local Thickness on a bubblegum

 Furthermore, we also show an instance on how our method behaves on one of our

bubblegums in figure 10. Note that this bubblegum is the second bubblegum on figure 9 and is the

second bubblegum on table 3. To clarify better, we upscale our images. The leftmost image shows

the original nodule in the CT scan. The second image shows the image that has been thresholded.

The third image shows local thickness at work. The white area shows the area containing the

thickest zones of the image, while red and yellow show lesser thickness respectively. Once the

image has been finalized with the final procedure, we will have the fourth image. We see that the

spike on the top has been removed due to thresholding on local thickness. However, some areas

have panned out, such as on the top left and top right of the bubblegum. Yet, from the

measurement in table 3, we see that this bubblegum got 1411.8 and 1459.517millimeters cube from

the two methods respectively. They are very close, although our method has a little bit higher

measurement. In order to remedy this, we could set threshold to be more aggressive to exclude all

yellow areas on the third image in figure 10.

 On a miscellaneous side, for the eraser that we put into Lungman since the beginning, when

we tried to segment it with our program, we see that the shape becomes like a Chinese tofu. The

long cube has its 8 sharp edges reduced to dull edges. Yet, the eraser is used for material testing

in CT scan and there are no real nodules that have rectangular shaped.

36

 All in all, from the tables, we see that the method, more or less, is similar to Toshiba software.

This proves another possibility in that our method is also applicable to perform estimation on nodule

segmentation.

37

CHAPTER V

Conclusion and Discussion

 From the results, we can see that Thresholding on Local Thickness is another
possibility to perform a segmentation and estimation on lung nodule.

In Table I, we see that the results between Philips and our proposed method are
fluctuating. This might be because of user-bias during manual selection. The manual
selection for Philips Extended Brilliance Workspace could be user-biased during lasso
selection adjustment in each frame. The same goes for the proposed method, where
cylindrical selection could be user-biased. For example, different users may select the
region of different nodules in a different way, thus giving small difference in the final
result. This is why the values in the correlation table might jump around between the two
methods. These semi-automatic methods after all require user’s input and judgment
could differ from radiologist to radiologist.

 In conclusion, we propose a new method for lung nodule segmentation using
local thickness and auto-thresholding. Blood vessels that are attached to the nodules
and extruding feature will be removed by IsoData thresholding technique on the local
thickness field. This semi-automatic method can reduce oversegmentation and gives us
a cleaner segment of the nodule, which makes volume estimation to be more accurate
without blood vessels and extruding features. With 0.9887 correlation result, we have
validated that our proposed method is another possibility of semi-automatic nodule
segmentation method that could work better for irregular shaped nodules.

 Moreover, with the result from Table II, we see a similar result from Toshiba
software and our method, which further added credibility on correlation in this
experiment.

38

References

[1] D. Ost, A. M. Fein, S. H. Feinsilver, “The Solitary Pulmonary Nodule”. New England
Journal of Medicine, 348, 2003.

[2] S. G. Armato III, M. L. Giger, C. J. Moran, J. T. Blackburn, K. Doi, H. MacMahon,
“Computerized detection of pulmonary nodules on CT scans”, RadioGraphics, 19,
1999.

[3] M. Antonelli, G. Frosini, B. Lazzerini, F. Marcelloni, “Lung Nodule Detection in CT
Scans”, World Academy of Science, Engineering and Technology, 1, 2005.

[4] Y. Liu, J. Yang, D. Zhao, “Computer Aided Detection of Lung Nodules Based on Voxel
Analysis utilizing Support Vector Machines”, International Conference on Future
BioMedical Information Engineering, 2009.

[5] Brilliance Workspace. [Online]. Available:
http://www.healthcare.philips.com/in_en/products/ct/products/ct_brilliance_workspac
e/

[6] C. Tomasi, R. Manduchi, "Bilateral Filtering for Gray and Color Images", Computer
Vision, 1998. Sixth International Conference on, 1998.

[7] T. W. Ridler, S. Calvard, "Picture thresholding using an iterative selection method", IEEE
Transactions on Systems, Man and Cybernetics 8, 1978.

[8] T. Hildebrand, P. Rüesgsegger, “A new method for the modelindependent assessment of
thickness in three-dimensional images”, J. of Microscopy, 185, 1996.

[9] R.P. Dougherty, K-H Kunzelmann, "Computing Local Thickness of 3D Structures with
ImageJ," Microscopy & Microanalysis 2007, Ft. Lauderdale, FL, Aug. 5-9, 2007.

[10] L-K Huang, M-J J. Wang, "Image thresholding by minimizing the measure of fuzziness",
Pattern Recognition 28, 1995.

[11] J.M.S. Prewitt, M.L. Mendelsohn, "The analysis of cell images", Annals of the New York
Academy of Sciences 128, 1966.

[12] G.W. Zack, W.E. Rogers, S.A. Latt (1977), "Automatic measurement of sister chromatid

39

exchange frequency", J. Histochem. Cytochem. 25, 1977.

[13] W.J. Kostis, A.P. Reeves, D.F. Yankelevitz, C.I. Henschke (2003), “Three-Dimensional
Segmentation and Growth-Rate Estimation of Small Pulmoary Nodules in Helical
CT Images”, IEEE Transactions on Medical Imaging, 2003.

[14] Artit C. Jirapatnakul, Anthony P. Reeves, Alberto M. Biancardi, David F. Yankelevitz,
Claudia I. Henschke (2009), “Semi-Automated Measurement of Pulmonary Nodule
Growth without Explicit Segmentation”, IEEE International Symposium on
Biomedical Imaging, 2009.

[15] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark
Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld,
Benjamin Schmid, Jean-Yves Tinevez, Daniel James White, Volker Hartenstein,
Kevin Eliceiri, Pavel Tomancak and Albert Cardona (2012), Fiji: an open-source
platform for biological-image analysis, Nature Methods 9(7): 676-682.

APPENDICES

41

Appendix A

42

43

44

45

Appendix B

47

SOURCE CODE

import ij.IJ;

import ij.plugin.PlugIn;

import ij.gui.GenericDialog;

import java.util.Hashtable;

import java.util.Collections;

import java.util.ArrayList;

import java.util.Iterator;

import java.awt.TextField;

import java.awt.event.TextListener;

import java.awt.event.TextEvent;

import java.awt.Color;

import java.awt.*;

import java.awt.event.*;

import java.lang.Runnable;

import ij.*;

import ij.plugin.frame.PlugInFrame;

import ij.gui.*;

import java.awt.*;

import java.awt.event.*;

import ij.*;

import ij.process.*;

import ij.gui.*;

import java.awt.*;

import ij.plugin.*;

import ij.plugin.filter.Info;

import process3d.Flood_Fill;

public class masterNoduleSegmentFiji extends PlugInFrame

implements KeyListener, ActionListener, MouseListener {

 String text;

 private int phase;

 private static final int PHASE_CROP_FRONT = 0;

 private static final int PHASE_CROP_BACK = 1;

 private static final int PHASE_SELECT = 2;

 private static final int PHASE_SEED = 3;

 private double sliceThickness = -1; //in mm

 private double distBetweenSlice = -1;

 private double pixelSpacingWidth = -1, pixelSpacingHeight = -1;

 private int first;

 private int last;

 private int inc;

 String title;

 Label label;

 ImagePlus currentImp;

 ImageCanvas originalCanvas, keptCanvas, seedCanvas;

 String keptCanvasName;

 Button okay, startButton;

 OvalRoi oroi;

48

 Polygon polygon;

 Rectangle bound;

 private String segName = "NODULE SEGMENTATION", seedName =

"SEED SELECTION";

 /** The constructor, preparing the window (panel) */

 public masterNoduleSegmentFiji() {

 super("User Action Required:");

 if (WindowManager.getCurrentWindow() == null){

 IJ.showMessage("No windows are open! Open the file

first!");

 }else{

 Info info = new Info();

 ImagePlus img = WindowManager.getCurrentImage();

 ImageProcessor ip = img.getProcessor();

 String s = info.getImageInfo(img ,ip);

 //IJ.log(s);

 String[] ss = s.split("\n");

 //IJ.log(ss[0]);

 for (int i = 0; i < ss.length; i++){

 String[] sss = ss[i].split("\\s");

 //IJ.log(ss[i]);

 if (sss.length == 0)continue;

 if (sliceThickness < 0)

 if (sss[0].equals("0018,0050")){

 sliceThickness =

Double.parseDouble(sss[sss.length-1]);

 IJ.log("Slice thickness: " +

sliceThickness);

 }

 if (distBetweenSlice < 0)

 if (sss[0].equals("0018,0088")){

 distBetweenSlice =

Double.parseDouble(sss[sss.length-1]);

 IJ.log("distance between slice: " +

distBetweenSlice);

 }else if (sss[0].equals("Voxel")){

 String[] ssss = sss[2].split("x");

 distBetweenSlice =

Double.parseDouble(ssss[2]);

 IJ.log("Via Voxel: distance between

slice: " + distBetweenSlice);

 }

 if (pixelSpacingWidth < 0)

 if (sss[0].equals("0028,0030")){

49

 String[] ssss = sss[sss.length-

1].split("\\\\");

 pixelSpacingWidth =

Double.parseDouble(ssss[0]);

 pixelSpacingHeight =

Double.parseDouble(ssss[1]);

 IJ.log("pixel spacing: w:" +

pixelSpacingWidth + " h:" + pixelSpacingHeight);

 }else if (sss[0].equals("Voxel")){

 String[] ssss = sss[2].split("x");

 pixelSpacingWidth =

Double.parseDouble(ssss[0]);

 pixelSpacingHeight =

Double.parseDouble(ssss[1]);

 IJ.log("Via voxel: pixel spacing: w:" +

pixelSpacingWidth + " h:" + pixelSpacingHeight);

 }

 }

 phase = PHASE_CROP_FRONT;

 WindowManager.addWindow(this);

 okay = new Button("Cancel");

 okay.addActionListener(this);

 okay.addKeyListener(this);

 originalCanvas =

WindowManager.getCurrentWindow().getCanvas();

 originalCanvas.addMouseListener(this);

 GridBagLayout gridbag = new GridBagLayout();//set

up the layout

 GridBagConstraints c = new GridBagConstraints();

 setLayout(gridbag);

 c.insets = new Insets(4,4,2,4); //(top, left,

bottom, right)

 c.gridx = 0; c.gridy = 0; c.anchor =

GridBagConstraints.WEST;

 c.gridx = 0; c.gridy = 1;

 label = new Label("STEP 1/4: Select the first slide

of the nodule by clicking on respective slide");

 IJ.setTool("point");

 add(label, c);

 c.gridx = 0; c.gridy = 2; c.anchor =

GridBagConstraints.EAST;

 add(okay, c);

 c.gridx = 1; c.gridy = 2; c.anchor =

GridBagConstraints.EAST;

 startButton = new Button("Start");

 add(startButton, c);

 startButton.addActionListener(this);

 startButton.setEnabled(false);

50

 this.pack();

 GUI.center(this);

 setResizable(false);

 show();

 synchronized(this) { //wait for OK

 try {wait();}

 catch(InterruptedException e) {return;}

 }

 }

 }

 public void close() {

 synchronized(this) { notify(); }

 if (originalCanvas != null)

 originalCanvas.removeMouseListener(this);

 if (keptCanvas != null)

 keptCanvas.removeMouseListener(this);

 if (seedCanvas != null)

 seedCanvas.removeMouseListener(this);

 super.close();

 }

 private String keepSlices(ImageStack stack, int first, int last,

int inc) {

 if (last>stack.getSize())

 last = stack.getSize();

 int count = 0;

 ImageProcessor ip;

 ImageStack newstack = new ImageStack(stack.getWidth(),

stack.getHeight()) ;

 for (int i=first; i<=last; i+=inc)

 {

 if ((i-count)>stack.getSize())

 break;

 ip = stack.getProcessor(i);

 newstack.addSlice("slice:" + i, ip);

 count++;

 }

 String newName = title+ " " + segName;

 new ImagePlus(newName, newstack).show();

 return newName;

 }

public void mousePressed(MouseEvent e) {}

 public void mouseReleased(MouseEvent e) {}

 public void mouseEntered(MouseEvent e) {}

 public void mouseExited(MouseEvent e) {}

 public static synchronized void FloodFillFromBorder(ImagePlus

imp, int color){

51

 //1. how many images? If 1-2 images in stack, flood fill

from all sides.

 if (imp.getStackSize() > 0 && imp.getStackSize() <= 2){

 IJ.log("stack size is <= 2");

 }else if (imp.getStackSize() > 2){

 ImageStack stack = imp.getStack();

 //there are 6 angles to take care of: top, left,

front, back, right, bottom

 //top: the first image in the stack

 int x,y,z;

 z = 0;

 IJ.log("FloodFillFromBorder top");

 for (x = 0; x < imp.getWidth(); ++x){

 for (y = 0; y < imp.getHeight(); ++y){

 if (stack.getVoxel(x,y,z) == 255){

 Flood_Fill.fill(imp, x, y, z,

128);

 }

 }

 }

 // left: the left plane

 x = 0;

 IJ.log("FloodFillFromBorder left");

 for (y = 0; y < imp.getHeight(); ++y){

 for (z = 0; z < imp.getStackSize(); ++z){

 //IJ.log("left y:" + y + " z:" + z);

 if (stack.getVoxel(x,y,z) == 255)

 Flood_Fill.fill(imp, x, y, z,

128);

 }

 }

 // front

 y = 0;

 IJ.log("FloodFillFromBorder front");

 for (x = 0; x < imp.getWidth(); ++x){

 for (z = 0; z < imp.getStackSize(); ++z){

 //IJ.log("front x:" + x + " z:" + z);

 if (stack.getVoxel(x,y,z) == 255)

 Flood_Fill.fill(imp, x, y, z,

128);

 }

 }

 // back

 y = imp.getHeight() - 1;

 IJ.log("FloodFillFromBorder back");

 for (x = 0; x < imp.getWidth(); ++x){

 for (z = 0; z < imp.getStackSize(); ++z){

 //IJ.log("back x:" + x + " z:" + z);

 if (stack.getVoxel(x,y,z) == 255)

52

 Flood_Fill.fill(imp, x, y, z,

128);

 }

 }

 // right: the right plane

 x = imp.getWidth() - 1;

 IJ.log("FloodFillFromBorder right");

 for (y = 0; y < imp.getHeight(); ++y){

 for (z = 0; z < imp.getStackSize(); ++z){

 //IJ.log("right y:" + y + " z:" + z);

 if (stack.getVoxel(x,y,z) == 255)

 Flood_Fill.fill(imp, x, y, z,

128);

 }

 }

 //bottom: the last image in stack

 z = imp.getStackSize() - 1;

 IJ.log("FloodFillFromBorder bottom");

 for (x = 0; x < imp.getWidth(); ++x){

 for (y = 0; y < imp.getHeight(); ++y){

 //IJ.log("bottom x:" + x + " y:" + y);

 if (stack.getVoxel(x,y,z) == 255)

 Flood_Fill.fill(imp, x, y, z,

128);

 }

 }

 }

 }

 public void mouseClicked(MouseEvent e) {

 if (phase == PHASE_CROP_FRONT){

 if (IJ.getToolName() == "point"){

 first =

WindowManager.getCurrentImage().getSlice();

 ImagePlus imp =

WindowManager.getCurrentImage();

 ImageStack stack = imp.getStack();

 title=imp.getTitle();

 IJ.log("first " + first + " size: " +

stack.getSize());

 phase = PHASE_CROP_BACK;

 label.setText("STEP 2/4: Select the last

slide of the nodule by clicking on respective slide");

 show();

 }

 }else if (phase == PHASE_CROP_BACK){

 if (IJ.getToolName() == "point"){

 last =

WindowManager.getCurrentImage().getSlice();

 if (last < first){

 IJ.showMessage("Please select a slice

number greater than " + first);

53

 }else{

 ImagePlus imp =

WindowManager.getCurrentImage();

 ImageStack stack = imp.getStack();

 title=imp.getTitle();

 keptCanvasName = keepSlices(stack,

first, last, 1);

 keptCanvas =

WindowManager.getCurrentWindow().getCanvas();

 originalCanvas.removeMouseListener(this);

 keptCanvas.addMouseListener(this);

 phase = PHASE_SELECT;

 startButton.setEnabled(true);

 IJ.setTool("oval");

 label.setText("STEP 3/4: Select a

circle area on the nodule. When you are ready, press Start.");

 show();

 }

 }

 }

 }

 int seedX, seedY, seedSlice;

 int originLeft, originRight, originUp, originDown;

 int neoLeft, neoRight, neoUp, neoDown, neoWidth, neoHeight;

 private Rectangle extraCrop(Rectangle bound){

 originLeft = bound.x;

 originRight = bound.x + bound.width;

 originUp = bound.y;

 originDown = bound.y + bound.height;

 neoLeft = neoRight = neoUp = neoDown = 0;//for

adding,reducing values in bounds.

 ImagePlus impp = WindowManager.getCurrentImage();

 ImageStack stackk = impp.getStack();

 IJ.log("testPlane");

 int x,y,z;

 double testPlane[][] = new

double[impp.getWidth()][impp.getHeight()];

 for (z = 0; z < impp.getStackSize(); ++z){

 for (x = originLeft; x < originRight; ++x){

 for (y = originUp; y < originDown; ++y){

 double v = stackk.getVoxel(x,y,z);

 if (testPlane[x][y] < v){

 testPlane[x][y] = v;

 }

54

 }

 }

 }

 IJ.log("left");

 //check test plane for boundary

 //left

 for (x = 0; x < impp.getWidth(); ++x){

 for (y = 0; y < impp.getHeight(); ++y){

 if (testPlane[x][y] > 0){

 neoLeft = x;

 x = impp.getWidth();

 y = impp.getHeight();

 }

 }

 }

 IJ.log("right");

 //right

 for (x = impp.getWidth() - 1; x >= 0; --x){

 for (y = impp.getHeight() - 1; y >= 0; --y){

 if (testPlane[x][y] > 0){

 neoRight = x;

 x = -1;

 y = -1;

 }

 }

 }

 IJ.log("up");

 //up

 for (y = 0; y < impp.getHeight(); ++y){

 for (x = 0; x < impp.getWidth(); ++x){

 if (testPlane[x][y] > 0){

 neoUp = y;

 x = impp.getWidth();

 y = impp.getHeight();

 }

 }

 }

 IJ.log("down");

 //down

 for (y = impp.getHeight()-1; y >= 0; --y){

 for (x = impp.getWidth()-1; x >= 0; --x){

 if (testPlane[x][y] > 0){

 neoDown = y;

 x = -1;

 y = -1;

 }

 }

 }

 IJ.log("neoLeftRightUpDown " + neoLeft + " " + neoRight +

" " + neoUp + " " +neoDown);

55

 neoWidth = neoRight - neoLeft;

 neoHeight = neoDown - neoUp;

 IJ.log("!!! " + bound.x + " " + bound.y + " " +

bound.width + " " + bound.height);

 bound.x = neoLeft;

 bound.y = neoUp;

 bound.width = neoRight - neoLeft;

 bound.height = neoDown - neoUp;

 IJ.log("!!! " + bound.x + " " + bound.y + " " +

bound.width + " " + bound.height);

 return bound;

 }

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == okay) close();

 else if (e.getSource() == startButton){

 if (keptCanvas ==

WindowManager.getCurrentWindow().getCanvas() || seedCanvas ==

WindowManager.getCurrentWindow().getCanvas()){

 if (phase == PHASE_SELECT && keptCanvas ==

WindowManager.getCurrentWindow().getCanvas()){

 if (keptCanvas ==

WindowManager.getCurrentWindow().getCanvas()){

 Roi roi =

WindowManager.getCurrentImage().getRoi();

 if (roi.getType() == 1){

 //apply bilateral filter

 IJ.run(WindowManager.getCurrentImage(), "8-bit", "");

 IJ.run(WindowManager.getCurrentImage(), "Bilateral Filter",

"spatial=3 range=50");

 oroi = (OvalRoi)roi;

 polygon =

oroi.getPolygon();

 bound =

polygon.getBounds();

 ////////////////////////CONTROLS EXTRA CROP

 int performExtraCrop = 1;

 if (performExtraCrop > 0){

 IJ.log("!");

 bound =

extraCrop(bound);

 IJ.log("@");

 }

56

 ////////////////////////

 StackProcessor sp = new

StackProcessor(WindowManager.getCurrentImage().getStack(), null);

 //crop

 WindowManager.getCurrentImage().setStack(sp.crop(bound.x,bound.

y,bound.width,bound.height));

 phase = PHASE_SEED;

 IJ.setTool("point");

 label.setText("STEP 4/4:

Click on the nodule, then press start.");

 show();

 seedCanvas =

WindowManager.getCurrentWindow().getCanvas();

 keptCanvas.removeMouseListener(this);

 seedCanvas.addMouseListener(this);

 }else{

 IJ.showMessage("Please use

oval selection.");

 }

 }

 }else if (phase == PHASE_SEED && seedCanvas

== WindowManager.getCurrentWindow().getCanvas()){

 if (IJ.getToolName() == "point"){

 Roi roi =

WindowManager.getCurrentImage().getRoi();

 PointRoi proi = (PointRoi)roi;

 Polygon p = proi.getPolygon();

 seedX = p.xpoints[0];

 seedY = p.ypoints[0];

 seedSlice =

WindowManager.getCurrentImage().getSlice();

 segmentNodule();

 close();

 }else{

 IJ.showMessage("Please use point

selection");

 }

 }else{

 IJ.showMessage("Incorrect window

selected");

 }

 }else{

 IJ.showMessage("The currently selected window

is incorrect. Please select the provided window under the name " +

keptCanvasName + ".");

57

 }

 }

 }

 private void segmentNodule(){

 int x2 = bound.x + bound.width, y2 = bound.y +

bound.height;

 int cx = (bound.x + x2) / 2, cy = (bound.y + y2) / 2;

 ImagePlus imp = WindowManager.getCurrentImage();

 int[] list;

 //clear all the things outside the oval.

 WindowManager.getCurrentImage().setRoi(new

OvalRoi(0,0,bound.width,bound.height) ,false);

 IJ.run(imp, "Clear Outside", "stack");

 IJ.run("Make Inverse", "");

 IJ.run(imp, "Invert", "stack");

 IJ.run("Make Inverse", "");

 IJ.run(imp, "Auto Threshold", "method=Default white stack

use_stack_histogram");

 IJ.run(imp, "Select None", "");

 IJ.setTool("point");

 imp.setRoi(new PointRoi(seedX, seedY));

 imp.setSlice(seedSlice);

 IJ.run(imp, "Level Sets", "method=[Active Contours]

use_fast_marching use_level_sets grey_value_threshold=50

distance_threshold=0.50 advection=2.20 propagation=1 curvature=1

grayscale=30 convergence=0.0050 region=outside");

 list = WindowManager.getIDList();

 imp = WindowManager.getImage(list[list.length-1]);

 IJ.run(imp, "Invert", "stack");

 IJ.run(imp, "Local Thickness (complete process)",

"threshold=128");

 // for debug purpose

 boolean stopB4ThresCheck = false;

 if (stopB4ThresCheck)

 return;

 list = WindowManager.getIDList();

 imp = WindowManager.getImage(list[list.length-1]);

 IJ.run(imp, "8-bit", "");

 IJ.run(imp, "Auto Threshold", "method=Default white stack

use_stack_histogram");

 ImageStack stack = imp.getStack();

 int totalWhiteVoxel = 0;

 for(int x = 0; x < stack.getWidth(); ++x){

 for(int y = 0; y < stack.getHeight(); ++y){

 for(int z = 0; z < stack.getSize(); ++z){

 if (stack.getVoxel(x,y,z) > 0){

58

 ++totalWhiteVoxel;

 }

 }

 }

 }

 IJ.log("Total white voxel: " + totalWhiteVoxel);

 //these are for setting values manually for debug purpose.

 //sliceThickness

 //distBetweenSlice = 0.799;

 //pixelSpacingWidth = 0.64;

 //pixelSpacingHeight = 0.64;

 IJ.log("Convert to mm^3 (MAX): " + ((pixelSpacingWidth *

pixelSpacingHeight * distBetweenSlice) * totalWhiteVoxel));

 double voxelCountWithZSpacingPerspective = 0;

 for(int x = 0; x < stack.getWidth(); ++x){

 for(int y = 0; y < stack.getHeight(); ++y){

 for(int z = 0; z < stack.getSize(); ++z){

 if (stack.getVoxel(x,y,z) > 0){

 //check prev slice

 if (z > 0){

 if (stack.getVoxel(x,y,z-1)

> 0)

 voxelCountWithZSpacingPerspective += 0.5;

 }

 //check next slice

 if (z < stack.getSize()){

 if (stack.getVoxel(x,y,z+1)

> 0)

 voxelCountWithZSpacingPerspective += 0.5;

 }

 }

 }

 }

 }

 IJ.log("voxelCountWithZSpacingPerspective: " +

voxelCountWithZSpacingPerspective);

 IJ.log("Convert to mm^3 (3DSpacing): " +

((pixelSpacingWidth * pixelSpacingHeight * distBetweenSlice) *

voxelCountWithZSpacingPerspective));

 int maxArea = 0;

 for(int z = 0; z < stack.getSize(); ++z){

 int tempMaxArea = 0;

 for(int x = 0; x < stack.getWidth(); ++x){

 for(int y = 0; y < stack.getHeight(); ++y){

 if (stack.getVoxel(x,y,z) > 0){

 ++tempMaxArea;

59

 }

 }

 }

 if (tempMaxArea > maxArea){

 maxArea = tempMaxArea;

 }

 }

 IJ.log("Max Area: " + (maxArea * pixelSpacingWidth *

pixelSpacingHeight) + " mm^2");

 }

 public void keyPressed(KeyEvent e) {}

 public void keyTyped(KeyEvent e) {}

 public void keyReleased(KeyEvent e) {}

}

Appendix C

61

INSTRUCTION / HOW TO USE

To use the macro, one needs to download and install Fiji first. After that, execute Fiji, and go to File

> Open, and open the java macro file. The Java source code will be loaded, and Macro Interface

will show up with the source code. The next step is to load the DICOM of user’s choice with Fiji.

(Using File > Import > Image Sequence, if required) After that, run the macro with “Run” button from

the Macro interface.

The user has to follow these steps:

1. Once the program is “running”, you can use the scroll wheel on the mouse to scroll between

the slices of the CT images. You then look for the slices that have a particular nodule. Find

the slices that the nodule spans on. For example, if the nodule is on slice 100-123. You will

scroll to slice 100, click anywhere on slice 100, then scroll to slice 123, and click anywhere

on it.

Now, you will see that a new window will pop up with a lesser number of slices from the

original slice. These slices should be the only slices that have your nodule. For instance,

from previous step, you will have slice 100-123.

2. Now, try drag your mouse around (hold left click and release after moving to a new

destination) the new window. You will see an ellipse being drawn, just like in those painting

programs. This ellipse is your selection. The selection will still stay intact, should you scroll

the slices around. This is so that you can see how your selection goes with other slices.

3. You must perform ellipse selection on the nodule, ensure that it covers the whole nodule,

not only on one slice, but every slice. Just circle an area around the nodule, scroll around

and see if it fits. If everything seems right, press “start” on the “User Action Required” box.

62

You should see a new window, but the image should be smaller, containing only the area of

your selection.

4. In the new window, click on the nodule, presumably on the center. (You can also scroll

around and click on the slice that has the largest area of the nodule, if you prefer.) Before

you press “start”, make sure that you are on the correct slice. The point you click on served

as a x,y coordinate, while the current slice you are viewing will serve as a z-coordinate. You

want to have these coordinates on the nodule. Once you have the point of the center of

nodule and the correct slice, press “start”.

Once you press “start”, please wait for a while. Leave it be. At this time, do not click on any

Fiji’s windows, as it may confuse a few of the underlying algorithms, and the result might be

incorrect.

Once the program is finished, you will have yet another window popping up, showing you

the remaining area, which should be the nodule segmentation volume. The information will

also be shown in the log.

63

Biography

 Mr. Akaraphan Janetheerapong was born in 1987. He obtained his degree in Computer Science
from the Mahidol University International College, Nakhonpathom, Thailand, in 2010.

	Cover (Thai)
	Cover (English)
	Accepted
	Acknowledgements
	Table of Contents
	Chapter I Introduction
	1.1 Objectives
	1.2 Scope of the work
	1.3 Problem formulation

	Chapter II Theoretical backgound
	2.1 Image processing
	2.2 Biomedical image
	2.3 Methods used in the past
	2.4 Commercial software

	Chapter III Proposed method and algorithmic desing and implementation
	3.1 Computed tomomgraphy image
	3.2 Preprocessing
	3.3 Human interaction
	3.4 Segmentation

	Chapter IV Exrerimental Results
	4.1 Correlation Test
	4.2 Lungman and artificial nodule
	4.3 Material for lung nodule
	4.4 Measurement and analysis for each object
	4.5 Shape analysis

	Chapter V Conclusion and discussion
	References
	Appendices
	Biography

