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CHAPTER I

INTRODUCTION

1.1 Imbalanced Problem

Classifying a given set of data into two groups based on their targets is the

most common problem in several applications such as pattern recognition, predic-

tion, and machine intelligence. In case of multi-target problem, the problem itself

can be transformed into the problem of classifying data into two groups. In this

study, the binary classification problem is concentrated. Generally, the accuracy of

classification depends on cross-validation and measuring the learning performance

in terms of a cost function during ’training session’ so that the learning system

can achieve a high testing accuracy.

In real applications such that the application of classification in bioinformatics,

the number of data in both classes is not equal. The class with larger amount of

data is called the majority class and the other is called the minority class. For

example, the amount of data of patients having cancer is usually less than the

amount of data of healthy patients. Obviously, the accuracy of classification of

the larger class is always higher than that of the smaller class because the cost

function deployed during ’training session’ measures the difference between the

actual outputs and targets of both the minority and the majority classes. Hence,

the error from the larger class must obviously dominate the error of the smaller

class. This problem has been studied under the name of imbalanced problem. There

are few solutions to this problem [1] [2] [3] [4] [5]. These approaches were based

on the concepts of over-sampling and under-sampling of the training data set.

In several papers, the minority class and the majority class are called the posi-

tive class and the negative class, respectively. The ratio between the minority and

the majority classes may have several ranges from 49:51, 1:100 may be to 1:100,000.
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This study proposes Re-established Cost Function Training Algorithm

(ReCoFT) as a new training algorithm. The concept started from a simple idea

that the correctly predicted data will not be used in the learning algorithm in the

next iteration. Only the incorrectly predicted data are retained. ReCoFT reduces

terms for calculating the cost function and also eliminates the unnecessary data to

the learning algorithm. The strategy obviously differs from the others’ [1] [2] [3]

[4]. Because those methods are based on re-sampling and the data are randomly

increased or decreased during the learning algorithm. But ReCoFT temporarily

and dynamically removes some data during the training session under determined

conditions. The number of removed data depends on the cost function and Re-

CoFT’s conditions. Implicitly, when the number of input neurons is reduced, the

running time is also reduced.

1.2 Scope of The Study

In this study, the performance of the algorithm was evaluated on 15 well-known

data sets described in Chapter IV. Each data set was modified into the binary

classification (the minority and the majority classes) and randomly divided into

two parts, 70% of the minority and the majority classes were for training and the

other 30% data were for testing. The experiments used a 3-layer neural network

with one output and Levenberg-Marquardt as the learning algorithm. The sigmoid

function was used as the activation function.

The objective of the study is to present a new training algorithm to enhance

the accuracy of minority class in the imbalanced problem.

1.3 Thesis Overview

Chapter II summarizes the related works to deal with the imbalanced problem.

Levenberg-Marquardt algorithm is proposed as the learning algorithm in the ex-
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periments. Chapter III explains the concept of the proposed algorithm and the

conditions for re-establishing the cost function. Chapter IV discusses the experi-

ments and results. Chapter V concludes the study.



CHAPTER II

RELATED WORKS

2.1 Sampling Techniques

Over-sampling and under-sampling are techniques in order to adjust a balanced

distribution of data. Over-sampling is randomly increasing data in minority class

to balance distribution. Under-sampling is randomly decreasing data in majority

class in order to balance distribution. But both techniques have some problem

because the over-sampling ends up as an over-fitting for classification. There is

a possibility to remove the important data in majority class for the under-sampling.

2.2 Synthetic Minority Over-sampling Technique

(SMOTE)

One of the over-sampling techniques widely applied is SMOTE [1] [2]. SMOTE

is the pre-processing process to deal with the original data set in order to balance

the class distribution between the minority and the majority classes. After that,

the balanced data set is used to classify with classifiers. SMOTE uses a uniform

distribution to synthesize data in the minority class. This method finds the k-

nearest neighbor of each data in the minority class and generates the position of

synthetic samples on the line segments between an original data in the minority

class and its nearest neighbor.
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2.3 Ranked Minority Over-sampling in Boosting

(RAMOBoost)

RAMOBoost [3] combines the over-sampling technique of ADASYN [4] and a

boosting technique. SMOTE uses a uniform distribution to over-sample synthetic

data in the minority class but ADASYN uses a density distribution to over-sample

data in the minority class. This implied that the over-sampling in each k-nearest

group is not equal. RAMOBoost adapts synthetic data generation in a learning

algorithm by considering the ratio around nearest neighbors of each minority data

from training set. This method does not generate data for the minority class if

there are not the majority data in their k-nearest neighbors. If there are many

majority data in that group, minority data will be proportionally generated. In

part of a boosting technique, RAMOBoost uses an iterative learning in order to

adjust the weights at each boosting iteration to shift the decision boundary between

the minority and the majority classes.

The objective of RAMOBoost is to reduce an error from the imbalanced data

and to adapt the input data from the data distribution. RAMOBoost algorithm

is divided into two parts. First part is a data modification, the input of data

sets is normalized in the interval [0,1]. After that, find the k-nearest neighbors of

the minority class following ADASYN algorithm to generate data for the minority

class. Second part is a learning algorithm. The modified data from the first part

are used to be the input of the classifier for adjusting the weights of the networks.

RAMOBoost uses multilayer perceptron (MLP) as the learning classifier. The

MLP is set as follows the number of hidden neurons is set to four. RAMOBoost

studies on the binary classification problem. The number of output neurons is set

to two. The activation function uses the sigmoid function.

RAMOBoost’s experiments use 19 data sets from UCI machine learning repos-

itory [6] and ELENA project. Since the original data sets are multi-class, they

were modified into 2-class imbalanced data.

From above, RAMOBoost and this algorithm (ReCoFT) use MLP as the learn-

ing classifier and also concentrate on the binary classification problem. Thus
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the performance of ReCoFT will be compared with RAMOBoost and classical

Levenberg-Marquardt.

2.4 Levenberg-Marquardt Algorithm (LM)

LM [7] is an algorithm for adjusting the weights based on the Jacobian matrix

of an error between its target and its actual output. Generally, the cost function

for evaluating the training performance is defined as follows.

F (w) =
P∑

p=1

[ K∑
k=1

(tkp − okp)
2

]
(2.1)

F is defined as a function of the sum square error with respect to all weights

w = [w1w2 . . . wN ]
T . N is the number of the weights. P is the number of the

patterns. K is the number of the output nodes. tkp is a target and okp is an actual

output value. If the network has only one output neuron, then the cost function

can be shortly rewritten as in equation (2.2)

F (w) =
P∑

p=1

(tp − op)
2 (2.2)

F (w) can be written in terms of the following dot product of error vectors.

F (w) = ETE (2.3)

where E = [e1e2 . . . eP ]
T and ep = tp − op where p = 1, ..., P . From equation (2.3),

its Jacobian matrix is defined as

J =


∂e1
∂w1

∂e1
∂w2

· · · ∂e1
∂wN

∂e2
∂w1

∂e2
∂w2

· · · ∂e2
∂wN

...
...

...

∂eP
∂w1

∂eP
∂w2

· · · ∂eP
∂wN

 (2.4)

All weights can be adjusted by using the Jacobian matrix J and the error vector

E in the following equation.

w(new) = w(old) − (JTJ+ αI)−1JTE (2.5)
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Here, α is a learning rate and I is an identity matrix. w(new) and w(old) are the

current values of the weights and the values after being updated, respectively. To

reduce the oscillation effect, Amir and his team [8] proposed a method to adjust

the value of α by using the following equations.

α(new) =

 α(old) · β if F (w(new)) < F (w(old))

α(old)/β otherwise
(2.6)

β is a constant and 0 < β ≤ 1.



CHAPTER III

RE-ESTABLISHED COST FUNCTION TRAINING

ALGORITHM (ReCoFT)

3.1 Brief Description about ReCoFT

Since the cause of imbalanced problem is due to the unequal numbers of terms

in the minority and the majority classes, some terms belonging to the majority class

must be temporarily and dynamically removed as well as re-included in the cost

function during the training session. By performing these processes, the activation

value from the majority class will be expected not to dominate the value from the

minority class and the separating hyperplanes located will be pulled towards the

space in between two classes.

When starting the training session, all data are involved in the cost function.

At each epoch, the learning algorithm retains some minimum amount of data

so that the separating hyperplanes in forms of vectors can be fixed in the space

without any non-deterministic elements in the vectors. Each datum is selectively

and temporarily removed from the cost function. A new cost function based on

the remaining data is re-established to adjust all weights. A datum is removed

from the cost function if the difference between its computed output value and its

target is greater than a defined constant.

A 3-layer perceptron with LM as the learning algorithm with one output is

used in this study. Let op and tp be the output and the target of the input pattern

p, respectively. Pattern p is removed or retained from the cost function under the

following conditions.

1. If (tp − op)
2 ≥ 0.052, then retain pattern p in the cost function in equation

(2.2).
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2. If (tp − op)
2 < 0.052, then remove pattern p in the cost function in equation

(2.2).

Since the sigmoid function is used as the activation function. The meaning of

0.05 of the prediction error is illustrated in Fig 3.1. It shows the interval of the

output value of temporarily removed patterns and retained patterns.

Figure 3.1: The interval of 0.05 of the output value of temporarily removed patterns

based on the sigmoid function.

The minimum number of data in each class that must be preserved in order

to bind a separating hyperplane in between two classes can be derived from the

following observation. Any n-dimensional hyperplane can be represented by this

equation.

a1 · x1 + a2 · x2 + · · ·+ an · xn + b = 0 (3.1)

where b is a constant and ai is weight for input xi. However, equation (3.1) can be

rewritten by dividing each term with a1. Define a′i−1 =
ai
a1
, 2 ≤ i ≤ n and b′ = b

a1
.

Hence, equation (3.1) becomes

x1 + a′1 · x2 + · · ·+ a′n−1 · xn + b′ = 0 (3.2)

To find the values of a′i, for 1 ≤ i ≤ n−1, and b′, at least n data points are needed

from each class to fix the location of each hyperplane. The constant n is equal

to the dimensions of data space. Let H be the number of hidden neurons. The
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number of data that must be retained in each class during the training session is

set to n ·H. Suppose the number of data in training minority class is equal to m

and that of training majority class is equal to M at the beginning. Let min(minor)

and min(major) be the minimum number of retained data in minority and majority

classes, respectively. The detail of the proposed algorithm is given as follows.

Re-established Cost Function Training Algorithm

1. Inititalize the values of α, β, H, and w.

2. Let D(minor) denote a set of data in minority class

being involved.

3. Let D(major) denote a set of data in majority class

being involved.

4. Let D(temp) denote an empty set.

5. Put all data in minority class in D(minor).

6. Put all data in majority class in D(major).

7. Set min(minor) = min(major) = n ·H.

8. Compute F (w) and adjust w only once.

9. If m < n ·H then

10. set min(minor) = m.

11. If M < n ·H then

12. set min(major) = M .

13. For 1 ≤ i ≤ max iteration do

14. Set D(temp) = D(minor).

15. If |D(minor)| ≥ min(minor) then

16. Set D(minor) = ϕ.

17. For each pattern p ∈ minority class do

18. If (tp − op)
2 ≥ 0.052 then

19. Put pattern p into D(minor).

20. Endif

21. Endfor
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22. If |D(minor)| ≥ min(minor) then

23. D(minor) = D(temp).

24. Endif

25. Endif

26. Set D(temp) = D(major).

27. If |D(major)| ≥ min(major) then

28. Set D(major) = ϕ.

29. For each pattern p ∈ majority class do

30. If (tp − op)
2 ≥ 0.052 then

31. Put pattern p into D(major).

32. Endif

33. Endfor

34. If |D(major)| ≥ min(major) then

35. D(major) = D(temp).

36. Endif

37. Endif

38. Re-establish the cost function F (w) based on

39. data in D(minor) and D(major).

40. Compute ∆w = −(JTJ+ αI)−1JTE.

41. If F (w(old) +∆w) < F (w(old)) then

42. w(new) = w(old) +∆w.

43. Adjust α(new) = α(old) · β.
44.. Set w(old) = w(new).

45. Elseif F (w(old) +∆w) > F (w(old)) then

46. Adjust α(new) = α(old)/β.

47. Elseif F (w(old) +∆w) = F (w(old)) then

48. Terminate learning process.

49. Endif

50. Endfor
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The cost function in equation (2.2) is re-established during the learning process.

Let D = D(minor) ∪D(major). The re-established cost function can be rewritten in

terms of sets D(minor) and D(major) as follows.

F (w) =
∑
p∈D

(tp − op)
2 (3.3)

3.2 Relation between The Number of Hidden Neurons and

The Removed Patterns

From ReCoFT algorithm, step 9-12 state that ifm < n·H then setmin(minor) =

m otherwise set min(minor) = n · H and if M < n · H then set min(major) = M

otherwise set min(major) = n ·H. Consequently, ReCoFT algorithm obtains that

min(minor) = min{m,n ·H} (3.4)

and

min(major) = min{M,n ·H} (3.5)

Definitely, m < M and n ̸= 0. The interval of the number of hidden neurons

is divided into 3 cases as follows.

Case 1 Let m > n ·H

∵ M > m > n ·H

∴ M > n ·H

H <
m

n

min(minor) = n ·H

min(major) = n ·H
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Case 2 Let M < n ·H

∵ m < M < n ·H

∴ m < n ·H

H >
M

n

min(minor) = m

min(major) = M

Case 3 Let m < n ·H

and M > n ·H
m

n
< H <

M

n

min(minor) = m

min(major) = n ·H

Since min(minor) and min(major) are the minimum numbers of retained data in

the minority and the majority classes, respectively. If they are equal to m and M ,

respectively, it means that no patterns in any class will be removed. When H is

selected by H < m
n

(Case 1), it is possible to remove pattern both the minority

and the majority classes. Carefully, H should not be selected by H > M
n

(Case

2) because there are no patterns in the minority and the majority classes which

are removed in the learning algorithm. Removing pattern is the most important

part in this algorithm (ReCoFT). If H is selected by m
n
< H < M

n
(Case 3), the

algorithm will not remove any pattern in the minority class. But it is possible to

remove pattern in the majority class.

Notice that in Case 3, when H is selected by H = ⌈m
n
⌉, this algorithm obtains

the number of removed data in the majority class as least as possible. And when

H is selected by H = ⌊M
n
⌋, it obtains the number of removed data in majority

class as much as possible.
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3.3 Concept of ReCoFT Algorithm in Two Dimensions

To explain the concept of ReCoFT algorithm, an example in two dimensions

is used to illustrate how the algorithm works. All data points and their weights in

Fig 3.2 are assumed without experimental values. There are 6 data in the minority

class and 12 data in the majority class in the assumed data set.

The data in the majority class are named as p1 to p12 and the data in the

majority class are named as q1 to q6. The terms of the cost function are presented

under the figures. In Fig 3.2(a), the terms of the cost function in the red dash

box are the terms of the majority class and in the blue line box are the terms

of the minority class. In two dimensions, the weights of network that connect

between the input layer and the hidden layer are in linear equations. The number

of hyperplanes is equal to the number of hidden neurons in two dimensions. In

this illustration, the number of hidden neurons is set to one (one straight line).

Firstly, the initial weights are randomly set as shown in Fig 3.2(a). There are

18 data being involved in the cost function at the first times. Fig 3.2(b) shows the

assumed areas, pink and blue areas, under the condition for re-establishing the cost

function. The data in the pink area are retained and used in the learning algorithm

in the next iteration. So the data in the blue areas are removed as shown in Fig

3.3(a). After the data are temporarily removed, the cost function becomes to 13

terms. The remaining data will be trained in the next iteration in order to adjust

the weights with LM algorithm shown in Fig 3.3(b). In next step in Fig 3.3(c),

the error for the updated weights with respect to the original data (all 18 data)

is computed. In Fig 3.4(a), there are 8 temporarily removed data. Therefore the

cost function reduces to 10 terms such that 6 terms are from majority class and 4

terms are from minority class. In Fig 3.4(b), the new weights are calculated from

the retained data. Then, finding an error for the updated weights with respect

to the original data is shown in Fig 3.4(c). After that, the algorithm removes 11

terms out of 18 terms that are correctly predicted following the conditions. Con-

sequently, the new cost function in this iteration remains 7 terms as shown in Fig

3.5(a). Fig 3.5(b) and Fig 3.5(c) show the two final iterations.
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(a)

(b)

Figure 3.2: (a) The initial weights are randomly set . (b) Areas are consistent with

the pattern removed conditions.
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(a)

(b)

(c)

Figure 3.3: (a) Shows pattern removed following the condition in algorithm. (b)

Uses the remaining pattern to adjust the new weights. (c) Shows the original

pattern with the new weights.
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(a)

(b)

(c)

Figure 3.4: (a) Shows the removed pattern responding to the weights. (b) Adjusts

the weights from retained pattern. (c) Shows the original pattern with the new

weights.
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(a)

(b)

(c)

Figure 3.5: The concept of ReCoFT in two dimensions. Patterns p and q represent

the data in majority and minority classes, respectively. (a) Shows pattern removed

responding to the weights. (b) Adjusts the weights from retained pattern again.

(c) Shows the original pattern with the final weights that can separate patterns p

and q, finishes this algorithm.



CHAPTER IV

EXPERIMENTS AND RESULTS

4.1 Performance Measures

The confusion matrix shown in Table 4.1 is used in order to measure the per-

formance of each classifier. TP, FP, TN and FN are the number of predictions and

their meanings as the following

TP means minority class was correctly classified as minority class.

FP means majority class was incorrectly classified as minority class.

TN means majority class was correctly classified as majority class.

FN means minority class was incorrectly classified as majority class.

Table 4.1: The confusion matrix and the meanings of TP, FP, TN, and FN.

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

The accuracy of correct prediction of each class (the minority and the majority

classes) was used to measure an efficiency in each methods.

The percentage of prediction minority correctly is defined as

TP

TP + FN
∗ 100

The percentage of prediction majority correctly is defined as

TN

TN + FP
∗ 100
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The percentage of prediction both classes correctly is defined as

TP + TN

TP + TN + FP + FN
∗ 100

4.2 Data Set Description

The data sets in the experiments were summarized in Table 4.2. 15 data sets

from UCI machine learning repository [6] were used to compare the performance

of each method in the experiments. There are many classes in the original data

sets. Thus, the original data of each data were transformed into the imbalanced

data. n represents the dimensions of each data set. The next column represents

the number of the original data (or the number of pattern). The others represent

the number of data in the minority and the majority classes, respectively.

4.3 Selection Ratio between Training and Testing

Importantly, each data set should not be divided less than 50% for training.

So the ratio between training and testing were considered to compare their per-

formance. From Fig 4.1, the left bars represent the performance of each data set

whose 70% for training and 30% for testing. The other bars belong to data set

whose 50% for training and 50% for testing. Fig 4.1(a), (b) and (c) show the

accuracy of the minority, the majority and all classes, respectively. The ratio is

set to 70:30 because the experiments show their performance are better than the

50:50 ratio.

4.4 Experiments and Results

From Section 4.3, 70% of data were for training and the other 30% of data

were for testing in the experiments. Ten the experiments were conducted in 10

folds and all weights were initialized in to the same values in the experiments. The

learning process was terminated if the number of epochs was more than 100 epochs

or ∆w was not changed. The initial values of α and β were set to 0.01 and 0.1,
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Table 4.2: The original data sets are set into the imbalanced data sets in order to

use in the experiments. The same as the data in RAMOBoost, 2010.

Dataset n # Data Minority class (#) Majority class (#)

Sonar 60 208 Class ’R’ (97) Class ’M’ (111)

Spambase 57 4601 Spam email (1813) Non-spam email (2788)

Ionosphere 34 351 ’Bad radar’ (126) ’Good radar’ (225)

Wine 13 178 Class ’1’ (59) Classes ’2’ and ’3’ (119)

German 24 1000 Bad credit (300) Good credit (700)

Vehicle 18 846 ’VAN’ (199) the others (647)

Segment 18 2310 ’brickface’ (330) the others (1980)

PageBlocks 10 5473 the others (560) ’text’ (4913)

Satimage 36 6435 Class ’4’ (626) the others (5809)

Vowel 10 990 Class ’0’ (90) the others (900)

Abalone 7 731 Class ’18’ (42) Class ’9’ (689)

Glass 9 214 Class ’6’ (9) the others (205)

Yeast 8 483 ’POX’ (20) ’CYT’ (463)

Letter 16 20000 Letter ’Z’ (789) Letters ’A’ to ’Y’ (19211)

Shuttle trn 9 43500 ’Fpv Close’ (37) the others (43463)

respectively. The number of hidden neurons was set to four in the preliminary ex-

periments. However, the other numbers of hidden neurons were also experimented

and discussed later.

For each data set, the cost function was re-established during the training

session based on the different number of data in each class. Fig 4.2 - Fig 4.6

summarize the amount of data in each data set removed or cut from the original

data set in both the minority and the majority classes. In each graph, the vertical

axis denotes the amount of removed data and the horizontal axis denotes the order

of training epoch. The digits in the upper box of each graph is the maximum

number of removed data in the majority class but that of the lower box is the

maximum number of removed data in minority class during the training session.

Note that the number of removed training data is increased after a number of
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epochs increases because the learning accuracy increases. In Table 4.3, the fourth

column and the fifth column show the number of removed and retained data in

each data set between the training minority and majority data at a final epoch,

respectively.

Fig 4.7(a) and (b) show graphs that are the percentage of the number of re-

moved data in one class and both classes, respectively. Obviously, the data in the

majority class should be removed more than the data in the minority class. Notice

that at the final epoch, ReCoFT algorithm reduced the number of used training

data more than 50 percent as shown in Fig 4.7(b).

Table 4.3: The number of removed and retained data at the final epoch.

Data set m M # of removed # of retained Final

m M m M epoch

Sonar 68 78 0 0 68 78 100

Spambase 1269 1952 479 1719 790 233 100

Ionosphere 88 158 0 0 88 158 100

Wine 41 83 0 15 41 68 100

German 210 490 38 298 172 192 100

Vehicle 139 453 0 333 139 120 100

Segment 231 1386 149 1197 82 189 70

Page 392 3439 0 3059 392 380 83

Satimage 438 4066 0 3180 438 886 100

Vowel 63 630 14 577 49 53 90

Abalone 29 482 0 342 29 140 100

Glass 6 144 0 108 6 36 100

Yeast 14 324 0 288 14 36 26

Letter 552 13448 439 13408 113 40 100

Shuttle 26 30424 0 30387 26 37 37



23

Fig 4.8(a), (b) and (c) show the performance of each method based on the

testing data in the minority, the majority, and both classes. For each data set, the

first vertical bar denotes the accuracy of the algorithm. The accuracy of the LM

and RAMOBoost are shown by the next two vertical stripes, respectively. Notice

that the accuracy of the minority class obtained from the algorithm is lower than

the accuracy of the LM and RAMOBoost in these eight data sets, i.e. Sonar,

Ionosphere, Page, Satimage, Vowel, Abalone, Letter, and Shuttle. This is because

accuracy was based on only four hidden neurons. However, the experiments are

conducted to find the best number of hidden neurons to increase the accuracy.

Fig 4.9 shows the different numbers of hidden neurons for each data set to

make the accuracy from the algorithm is higher than RAMOBoost, i.e. Sonar,

Ionosphere, Page, Satimage, Vowel, Abalone, Letter, and Shuttle. The number

of hidden neurons were varied in between 1 to 20. The separated results of the

minority class, the majority class, and all classes are shown in Fig 4.9(a), (b) and

(c). The number in each box means a number of hidden neurons used in each data

set. However, in case of Page and Satimage data sets, the accuracy of the results

is still lower than that of RAMOBoost.

4.5 Comparison of Training Time

All algorithms were run under the environment of Intel Core 2 Duo E6750@ with

2.66GHz and 2GB RAM. The training time was measured in second unit. Table

4.4 summarized the average training time of each algorithm, i.e. the algorithm

(ReCoFT), LM, and RAMOBoost 20 (RAMO*). For RAMOBoost 20, the number

of boosting iterations was set to 20 and its training time was the average training

time of 20 iterations. Notice the training time of RAMOBoost was more than

those of the other methods. If data sets are not very complex, the training time of

ReCoFT and LM are quite close. But if data sets have many features or dimensions,

obviously, ReCoFT spent less training time than those of the other methods in the

following data sets : Spambase, Satimage, Letter, and Shuttle.
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Table 4.4: The comparison of the average training time (seconds) of each algorithm.

Data set Ours (ReCoFT) LM RAMOBoost 20 (RAMO*)

Sonar 3.2192 3.2890 95.8513 (4.7926)

Spambase 33.6292 76.2112 3130.9028 (156.5451)

Ionosphere 1.6825 1.4461 47.5490 (2.3774)

Wine 1.3176 1.4842 20.6254 (1.0313)

German 1.6588 2.3377 119.2663 (5.9633)

Vehicle 2.1309 2.0399 30.9601 (1.5480)

Segment 1.1302 7.0015 168.5494 (8.4275)

Page 1.2160 5.0667 159.9820 (7.9991)

Satimage 36.1011 57.5002 1155.1529 (57.7576)

Vowel 0.3625 0.4031 13.4512 (0.6726)

Abalone 0.2199 0.2670 6.3113 (0.3156)

Glass 1.2657 1.6796 20.7212 (1.0361)

Yeast 0.1740 0.3537 12.7315 (0.6366)

Letter 6.5254 31.7967 946.7490 (47.3374)

Shuttle 15.0442 30.5300 586.5496 (29.3275)

4.6 Removed Pattern Description

The interval of hidden neurons in Chapter III, section 3.2, is shown in Table 4.5.

Since the number of hidden neurons was set to four in the preliminary experiments

(H = 4), so each data set was concluded as follows. Spambase, German, Vehicle,

Segment, Page, Satimage, Vowel, Abalone and Letter are in Case 1. Sonar is in

Case 2. Ionosphere, Wine, Glass, Yeast and Shuttle are in Case 3. The relation

between H and removed pattern of data sets in the experiments is summarized in

Table 4.3.
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Table 4.5: The interval of the number of hidden neurons that help considering.

Data set n m M m/n M/n

Sonar 60 68 78 1.1 1.3

Spambase 57 1269 1952 22.3 34.2

Ionosphere 34 88 158 2.6 4.6

Wine 13 41 83 3.2 6.4

German 24 210 490 8.8 20.4

Vehicle 18 139 453 7.7 25.2

Segment 18 231 1386 12.8 77

PageBlocks 10 392 3439 39.2 343.9

Satimage 36 438 4066 12.2 112.9

Vowel 10 63 630 6.3 63

Abalone 7 29 482 4.1 68.8

Glass 9 6 144 0.7 16

Yeast 8 14 324 1.8 40.5

Letter 16 552 13448 34.5 840.5

Shuttle trn 9 26 30424 2.9 3380.4

4.7 The Number of Removed Data

In Fig 4.2 - Fig 4.6, the digits in the lower box and the upper box in each

graph are the maximum number of removed data in the minority and the majority

classes, respectively. Suppose the number of data in training minority class is

equal to m and that of training majority class is equal to M at the beginning.

Let min(minor) and min(major) be the minimum number of retained data in the

minority and the majority classes, respectively. And let max(minor) and max(major)

be the maximum number of removed data in the minority and the majority classes,

respectively. Therefore, the digits in the lower box and the upper box are defined

as follows.
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max(minor) = m−min(minor) (4.1)

max(major) = M −min(major) (4.2)

From equation (3.4) and equation (3.5) in Chapter III, section 3.2, equation

(4.1) and equation (4.2) can be rewritten as given in equation (4.3) and equation

(4.4).

max(minor) = m−min{m,n ·H} (4.3)

max(major) = M −min{M,n ·H} (4.4)

Table 4.6: The digits in the lower (max(minor)) and the upper boxes (max(major)).

Data set n m M n ·H (H=4) max(minor) max(major)

Sonar 60 68 78 240 0 0

Spambase 57 1269 1952 228 1041 1724

Ionosphere 34 88 158 136 0 22

Wine 13 41 83 52 0 31

German 24 210 490 96 114 394

Vehicle 18 139 453 72 67 381

Segment 18 231 1386 72 155 1310

PageBlocks 10 392 3439 40 352 3399

Satimage 36 438 4066 144 294 3922

Vowel 10 63 630 40 23 590

Abalone 7 29 482 28 1 454

Glass 9 6 144 36 0 108

Yeast 8 14 324 32 0 292

Letter 16 552 13448 64 450 13422

Shuttle trn 9 26 30424 36 0 30388
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(a)

(b)

(c)

Figure 4.1: The comparison of class accuracy between 70:30 and 50:50 from the

algorithm (ReCoFT) for each data set. (a) The accuracy of minority class. (b)

The accuracy of majority class. (c) The accuracy of all classes.
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(a)

(b)

(c)

Figure 4.2: The number of removed data at different epochs during the training

session of each data set. (a) Spambase. (b) Wine. (c) German.
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(a)

(b)

(c)

Figure 4.3: The number of removed data at different epochs during the training

session of each data set. (a) Vehicle. (b) Segment. (c) Page.



30

(a)

(b)

(c)

Figure 4.4: The number of removed data at different epochs during the training

session of each data set. (a) Satimage. (b) Vowel. (c) Abalone.
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(a)

(b)

(c)

Figure 4.5: The number of removed data at different epochs during the training

session of each data set. (a) Glass. (b) Yeast. (c) Letter.
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Figure 4.6: The number of removed data at different epochs during the training

session of Shuttle data set.
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(a)

(b)

Figure 4.7: The percentage of the number of removed data from the algorithm

(ReCoFT) for each data set at a final epoch. (a) Each class. (b) Number of cut

data in every class.
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(a)

(b)

(c)

Figure 4.8: The comparison of class accuracy from the algorithm (ReCoFT), LM,

and RAMOBoost for each data set. (a) The accuracy of minority class. (b) The

accuracy of majority class. (c) The accuracy of all classes.
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(a)

(b)

(c)

Figure 4.9: The comparison of class accuracy from the algorithm (ReCoFT) and

RAMOBoost for eight data sets. (a) The accuracy of minority class. (b) The

accuracy of majority class. (c) The accuracy of all classes.



CHAPTER V

CONCLUSION

A new training algorithm, named Re-established Cost Function Training, to

enhance the accuracy of the minority class in imbalanced problem was introduced.

The cost function was dynamically re-established by removing or putting the train-

ing data back into the function based on their closeness to their corresponding

targets. The proposed algorithm was compared with the classical learning LM

algorithm and the recent RAMOBoost algorithm which also concerned the class

imbalanced problem. The algorithm achieved the higher accuracy in most cases

within shorter training times.

The results comfirmed that if the number of hidden neurons is unsuitably se-

lected from each data set, the performance can be degraded. Unfortunately, the

suitable number of hidden neurons cannot be explicitly determined on each data

set. So the number of hidden neurons were varied within a defined interval until

they get the best performance. Besides, there are several factors that affect to

the performance of the algorithm. Those training set should not be used for the

learning algorithm in the algorithm. Several learning times on the several training

sets is one of the solution for those problem.

The algorithm (ReCoFT) can be used to preliminarily select the interval of the

hidden neurons under the conditions of the algorithm in order to determine the

behavior of removing data in the training session and also to limit the number of

hidden neurons into narrow ranges.

For future work, Finding a new condition for select the data from both classes

to increase efficiency in pattern removing should be emphasized.
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