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CHAPTER I

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

In 1992, for the purpose of studying Markov processes via copulas, Darsow,

Nguyen and Olsen introduced a bilinear operation on the set of (2-dimensional)

copulas known as the ∗-product. There are many more following researches on

the ∗-product, e.g., invertible copulas with respect to the ∗-product, the joint

continuity of the ∗-product with respect to various norms on the linear span of

the set of copulas, some generalizations, etc. In this thesis, we focus on two aspects

of the ∗-product: finding a “compatible” norm and studying a generalization.

In their paper, Darsow et al. showed that a copula of two random variables,

which are conditionally independent given a third random variable, can be decom-

posed as a product of two copulas related to the three random variables. To be pre-

cise, if X and Y are conditionally independent given Z, then CX,Y = CX,Z ∗CZ,Y ,

where CX,Y denotes a copula of the random vector (X, Y ). We study a special

case of the previous result where we transform the random variables X, Y . We

obtain that if f and g are Borel measurable transformations of random variables

X, Y , respectively, then Cf(X),g(Y ) = Cf(X),X ∗ CX,Y ∗ CY,g(Y ). In particular, if f

and g are Borel measurable bijective transformations, Darsow et al. showed that

copulas Cf(X),X and CY,g(Y ) are invertible with respect to the ∗-product. To study

Cf(X),g(Y ), we then study a more general form of the decomposition which we call

shuffling maps on the linear span of the set of copulas: A 7→ U ∗ A ∗ V where
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U, V are invertible. We discovered that, restricted to the set of copulas, shuffling

maps preserve stochastic properties of copulas, i.e., they preserve independence,

complete dependence and mutual complete dependence. In other words, the trans-

formed random variables f(X) and g(Y ) are independent, completely dependent

or mutually completely dependent if and only if random variables X and Y are

independent, completely dependent or mutually completely dependent, respec-

tively. In the sense of this previous result, we can say that a suitable measure of

dependence should then be invariant under bijective transformations. In order to

obtain such a measure of dependence, we constructed a norm called the ∗-norm

via ‖A‖∗ = sup
U,V ∈Inv C

‖U ∗A ∗ V ‖ where InvC denotes the set of invertible copulas

and ‖ · ‖ denotes the Sobolev norm for copulas. We obtain that shuffling maps

are isometies with respect to the norm. Then we construct the measure ω∗ of two

continuous random variables to be the normalized ∗-distance between the product

copulas and the copula corresponding to the two random variables.

For the second half of the thesis, we study a generalization of the ∗-product

known as C-product. But to emphasize the link with the ∗-product, we will call it

∗C product. This generalization arose from a research by Durante, Klement and

Quesada-Molina on compatibility of copulas and characterizing Fréchet classes.

For a family of copulas C = {Ct}t∈[0,1], the ∗C product of copulas A and B is

given by

(A ∗C B)(x, y) =

∫ 1

0

Ct(∂2A(x, t), ∂1B(t, y)) dt.

However, it is questionable whether the product is well-defined because of the

measurability of the integrand. In this part of our thesis, we restrict our attention

to some reasonably large classes of families of copulas. Then, for each family C in

those classes, we show that the ∗C product is well-defined. Then, we derive some

properties of the re-defined ∗C product.
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1.2 Preliminaries

In this section, we recall necessary definitions and properties involving our

work. Here, we give a definition of bivariate copulas, or 2-copulas. We also give

a definition of trivariate copulas, or 3-copulas, as we will encounter them later in

a definition of classes of compatible copulas. Though, we are only interested in

properties of 2-copulas. More details on copulas can be found in the classic book

[7] by Nelsen.

Definition 1.1. A 2-copula, or simply copula, is a function C : [0, 1]2 → [0, 1]

satisfying the conditions:

1. C(u, 0) = C(0, v) = 0 for all u, v ∈ [0, 1].

2. C(u, 1) = u and C(1, v) = v for all u, v ∈ [0, 1].

3. C is 2-increasing, i.e., for all [u1, u2]× [v1, v2] ⊆ [0, 1]2, we have

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Definition 1.2. A 3-copula is a function C : [0, 1]3 → [0, 1] satisfying the condi-

tions:

1. C(u, v, 0) = C(u, 0, w) = C(0, v, w) = 0 for all u, v, w ∈ [0, 1].

2. C(u, 1, 1) = u, C(1, v, 1) = v and C(1, 1, w) = w for all u, v, w ∈ [0, 1].

3. C is 3-increasing, i.e., for all [u1, u2]× [v1, v2]× [w1, w2] ∈ [0, 1]3, we have

C(u2, v2, w2)− C(u1, v2, w2)− C(u2, v1, w2)− C(u2, v2, w1)+

C(u2, v1, w1) + C(u1, v2, w1) + C(u1, v1, w2)− C(u1, v1, w1) ≥ 0.
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According to Sklar’s theorem (see, e.g., [7]), for any random vector (X, Y ),

there exists a copula C which links the joint distribution to its marginals as

follows:

FXY (u, v) = C(FX(u), FY (v)).

If X and Y are continuous random variables, then the copula C is unique. We

write CX,Y to represent a copula of the random vector (X, Y ).

We denote the set of copulas by C. Every copula is Lipschitz continuous with

Lipschitz constant 1, consequently, its partial derivatives exist almost everywhere

and are bounded, wherever exist, between 0 and 1. Moreover, each copula induces

a measure on the Borel subsets of [0, 1]2 as follows.

Definition 1.3. Given a copula C, define a set function µC on the set of rectangles

[x1, x2]× [y1, y2] ⊆ [0, 1]2 via

µC([x1, x2]× [y1, y2]) = C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1) ≥ 0.

Then, by standard measure-theoric techniques, µC can be extended to a measure

on the Borel σ-algebra on [0, 1]2. Moreover, µC is doubly stochastic in the sense

that µC(B× [0, 1]) = µC([0, 1]×B) = λ(B) for every Borel set B ⊆ [0, 1] where λ

denotes Lebesgue measure. This measure is sometimes referred to as C-measure,

C-volume or mass of copula C.

Definition 1.4. The support of a copula C, denoted by suppC, is defined to be

the complement of the union of all open subsets of [0, 1]2 with zero C-volume.

The support of a copula C together with C-volume can be used to compute

values of the copula at some, if not all, points (x, y) ∈ [0, 1]2. We demonstrate

such technique in the following example.
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Example 1.5. Let C be a copula with its support shown in the figure below.

A

B

x0

y0

Figure 1.1: the support of C

For any point (x0, y0) in the upper left area, let A denote the rectangle whose

vertices are (0, y0), (x0, y0), (x0, 1) and (0, 1) and let B denote the rectangle whose

vertices are (0, 0), (0, x0), (x0, y0) and (0, y0). Then µC(A) = 0 since it does not

intersect the support of C. Moreover, µC(A∪B) = C(x0, 1)−C(x0, 0)−C(0, 1)+

C(0, 0) = x0. Then, µC(B) = µC(A ∪ B)− µC(A) = x0. Hence,

C(x0, y0) = µC(B) + C(0, y0) + C(x0, 0)− C(0, 0) = x0.

Notice that the values of C at the points in the lower right area can be computed

similarly.

Theoretically, the most important copulas are the Fréchet-Hoeffding upper

and lower bounds and the product copula. The formulae are given, respectively,

by

M(u, v) = min(u, v),

W (u, v) = max(u+ v − 1, 0),

Π(u, v) = uv.

These copulas represent comonotonicity, countermonotonicity and independence,

respectively, between the two random variables.
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Example 1.6. It can be shown that suppM is the main diagonal from (0, 0) to

(1, 1), suppW is the other diagonal and Π has full support, i.e., suppΠ = [0, 1]2.

In their study of Markov processes, Darsow, Nguyen and Olsen [1, p. 604]

introduced a binary operation ∗ : C× C → C defined by

(A ∗B)(u, v) =

1
∫

0

∂2A(u, t)∂1B(t, v) dt,

where ∂i denotes the partial derivative with respect to the i-th variable. This

operation is bilinear and is called the ∗-product on C. Remark that it can be

naturally extended to a bilinear operation on spanC.

From straightforward computations, for any C ∈ C, we have the following

identities: M ∗ C = C ∗M = C and Π ∗ C = C ∗ Π = Π. Therefore, copulas M

and Π can be viewed as the identity and the zero of (C, ∗), respectively. Moreover,

denoted by CT , the transpose of C, defined by CT (u, v) = C(v, u) is also a copula.

In addition, a copula B is said to be invertible if there exists a copula C such that

B ∗C = C ∗B = M . The set of invertible copulas plays an important role in this

thesis and is denoted by Inv C.

Remark 1.7. If they exist, left and right inverses of a copula C ∈ C are unique

and given by the transposed copula CT (for a proof, see [1, Theorem 7.1]).

An important class of invertible copulas is the class of shuffles of M . This class

attracts our interest because it is easy to compute. Moreover, Santiwipanont and

Sumetkijakan [9] showed that the set of shuffles of M is dense in InvC with respect

to the Sobolev norm for copulas. A definition of a shuffle of M is given below.

For more details on shuffles of M , see, e.g., [5, 9].
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Definition 1.8. A copula C is a shuffle of M if and only if there exist a positive

integer n, partitions 0 = s0 < s1 < · · · < sn = 1 and 0 = t0 < t1 < · · · <

tn = 1 of [0, 1], and a permutation σ on the set {1, 2, . . . , n} such that each

(si−1, si)× (tσ(i)−1, tσ(i)) is a square of C-volume si− si−1 and its intersection with

the support of C is one of the diagonals of the square. In this thesis, we call it a

shuffle of M of n stripes.

s0 s3s1 s2
t0

t1

t2

t3

Figure 1.2: the support of a shuffle of M where σ = (1 3 2)

Example 1.9. The straight shuffle of M at α ∈ [0, 1], denoted by Sα, is defined

to be the shuffle of M supported on the straight line joining the points (0, α) and

(1− α, 1) and the straight line joining the points (1− α, 0) and (1, α).

1− α

α

Figure 1.3: the support of the straight shuffle of M at α ∈ [0, 1]
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Durante, Sarkoci and Sempi [5] generalized the idea of shuffles of M to shuffles

of any copula. The definition of shuffles of copulas is measure theoric. Fortunately,

Santiwipanont et al. [9] gave a useful characterization of shuffles of copulas: a

shuffle of copula C is the ∗-product of the copula C with a shuffle of M on the

left. They also introduce generalized shuffles of copulas: the ∗-product of a copula

with an invertible copula on the left. This idea can be extended further, i.e., the

∗-product of a copula with two invertible copulas, one on the left and the other on

the right, which we call two-sided generalized shuffles of copulas. For more details

on shuffles of copulas, see [5, 9].

Example 1.10 ([9], p. 14). Let Sα be the straight shuffle of M at α ∈ [0, 1] as

in Example 1.9. Then

(Sα ∗ C)(u, v) =











C(u+ 1− α, v)− C(1− α, v) if 0 ≤ u ≤ α ≤ 1

v − C(1− α, v) + C(u− α, v) if 0 ≤ α ≤ u ≤ 1.

Observe that the mass of copula C is shuffled according to the shuffling of S. We

generalize this observation in the following remark.

Remark 1.11. Let’s remark that a shuffle of copula C, which can be written as

S ∗ C where S is a shuffle of M , is indeed the shuffling of the mass of copula C

according to the shuffling of S. In particular, the support of C is also shuffled

accordingly. This fact can be shown by considering a set of generators of the set

of shuffles of M , which is the set of all shuffles of M of three stripes where the

first is fixed while the second and the third are swapped such that the swapped

second stripe is straight, i.e., the support in that stripe has slope one. An explicit

formula for S ∗C, where S is an element from this generating set, can be tediously

computed and, from which, the shuffling of the mass can be seen.
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α β

Figure 1.4: the support of a generator where the third stripe is flipped

Let Sα,β be the shuffle of M whose support is as in Figure 1.4. Then,

(Sα,β∗C)(u, v) =























C(u, v) if 0 ≤ u ≤ α

C(α, v) + C(u+ 1− β, v)− C(1 + α− β, v) if α ≤ u ≤ β

C(α, v) + v − C(1 + α− u, v) if β ≤ u ≤ 1.

α β

Figure 1.5: the support of a generator where the third stripe is straight

Let Sα,β be the shuffle of M whose support is as in Figure 1.5. Then,

(Sα,β∗C)(u, v) =























C(u, v) if 0 ≤ u ≤ α ≤ 1

C(α, v) + C(u+ 1− β, v)− C(1 + α− β, v) if α ≤ u ≤ β

C(u+ α− β, v) + v − C(1 + α− β, v) if β ≤ u ≤ 1.

Remark 1.11 is very useful when we want to determine the support of a shuffle

of a copula. We will use this technique in Example 2.16.



10

We are also interested in a generalization of the ∗-product. The motivation

behind this generalization comes from a research on compatibility of copulas.

Copulas C12, C13 and C23 are said to be compatible if there exists a trivariate

copula C̃ such that

C12(u, v) = C̃(u, v, 1),

C13(u, w) = C̃(u, 1, w),

C23(v, w) = C̃(1, v, w).

Given copulas A and B, the class C(A,B) is the set of all copulas that are

compatible with A and B. To characterize these classes, Durante et al. [3] intro-

duced a binary operation on C defined, for each family of copulas C = {Ct}t∈[0,1],

by

(A ∗C B)(u, v) =

1
∫

0

Ct(∂2A(u, t), ∂1B(t, v)) dt.

They called this operation C-product, but in this thesis, we will call it ∗C product.

But it is questionable whether the integrand is Lebesgue measurable for all families

of copulas. We will give a detailed discussion on this in Chapter 3.

Example 1.12 ([4], p. 237). For every copula B ∈ C and every family of copulas

C = {Ct}t∈[0,1] such that the ∗C is well-defined, we have

B ∗C M = B = M ∗C B,

(B ∗C W )(u, v) = u− B(u, 1− v),

(W ∗C B)(u, v) = v −B(1− u, v).

Now, we move on to the next definition. In this thesis, we are interested in

the modified Sobolev norm introduced by Siburg and Stoimenov [11].
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Definition 1.13. For any A ∈ spanC, define a norm of A by

‖A‖ =

(
∫ 1

0

∫ 1

0

(∂1A(x, y))
2 + (∂2A(x, y))

2 dxdy

)1/2

.

With a slight abuse of notation, the restriction of ‖ · ‖ to C is called the Sobolev

norm for copulas.

The following are some useful properties of the ∗-product and the norm (see,

e.g., [1, 11, 12]).

Proposition 1.14. Let A,B,C ∈ C. Then the following statements hold.

1. A ∗ (B ∗ C) = (A ∗B) ∗ C.

2. (B ∗ C)T = CT ∗BT .

3. ‖CT‖ = ‖C‖.

4. ‖C − Π‖2 = ‖C‖2 − 2
3
.

5. ‖C‖ = 1 if and only if C is invertible.

6. The ∗-product is jointly continuous with respect to the norm.

Definition 1.15. Let X and Y be random variables. Then X is said to be com-

pletely dependent on Y if there exists a Borel measurable transformation h such

that X = h(Y ) with probability one. Moreover, X and Y are said to be mutually

completely dependent if X is completely dependent on Y and Y is completely

dependent on X, i.e., there exists a Borel measurable bijective transformation h

such that Y = h(X) with probability one.

The following theorem gives some stochastic intepretations of the Sobolev

norm for copulas.
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Theorem 1.16 ([12], Theorem 4.3). Let X and Y be continuous random variables

with copula C. Then ‖C‖2 ∈ [2/3, 1]. Moreover, the following assertions hold:

1. ‖C‖2 = 2/3 if and only if X and Y are independent.

2. ‖C‖2 ∈ (5/6, 1] if X is completely dependent on Y or Y is completely de-

pendent on X.

3. ‖C‖2 = 1 if and only if X and Y are mutually completely dependent.

We end this section by exploring a relationship between the ∗-product and the

Sobolev norm for copulas. In the following example, we observe the ∗-product of

a shuffle of M with another copula.

Example 1.17. We consider a family called the Farlie-Gumbel-Morgenstern (FGM)

copulas: Cθ(u, v) = uv + uvθ(1 − u)(1 − v), θ ∈ [−1, 1]. Let S1/2 be the straight

shuffle of M at 1/2, which is an invertible copula. Then it can be computed,

though tediously, that

‖S1/2 ∗ Cθ‖2 = ‖Cθ‖2 − 5
144

θ2 < ‖Cθ‖2 for all θ 6= 0.

Hence, a map A 7→ U ∗ A ∗ V where U, V ∈ InvC is, in general, not an isometry

with respect to the Sobolev norm for copulas.



CHAPTER II

A COMPATIBLE NORM

2.1 Shuffling maps

In this section, we introduce the definition of a shuffling map on the set spanC.

Then we survey some of its stochastic properties.

Definition 2.1. Let U, V ∈ InvC, the set of invertible copulas. A shuffling map

SU,V is a map on spanC defined by

SU,V (A) = U ∗ A ∗ V .

The motivation behind the word “shuffling” comes from the fact that a shuf-

fling image of a copula is a two-sided generalized shuffle of the copula, which was

introduced in Chapter 1.

Proposition 2.2 ([1], p. 610). If Z and Y are conditionally independent given

X, then CZ,Y = CZ,X ∗ CX,Y .

Proposition 2.3. Let h : R → R be Borel measurable. Then, for any random

variables X, Y , we have h(X) and Y are conditionally independent given X.

Proof. Observe that h(X) ∈ σ(X), the σ-algebra generated by X. Hence, by

properties of conditional expectations,

E(Ih(X)≤a|X)(ω) · E(IY≤b|X)(ω) = Ih(X)≤a(ω) · E(IY≤b|X)(ω)

= E(Ih(X)≤a · IY≤b|X)(ω)

for all ω ∈ Ω. This completes the proof.
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Corollary 2.4. Let f, g : R → R be Borel measurable functions. Then

Cf(X),X ∗ CX,Y ∗ CY,g(Y ) = Cf(X),g(Y )

for all random variables X, Y .

Proof. Since f and g are Borel measurable, by Propositions 2.2 and 2.3, we have

Cf(X),Y = Cf(X),X ∗ CX,Y and (2.1)

Cg(Y ),X = Cg(Y ),Y ∗ CY,X (2.2)

for all random variables X, Y . Transpose both sides of (2.2), we obtain CX,g(Y ) =

CX,Y ∗ CY,g(Y ). Then, we have

Cf(X),g(Y ) = Cf(X),X ∗ CX,g(Y ) (2.3)

= Cf(X),X ∗ CX,Y ∗ CY,g(Y ). (2.4)

We are now ready to derive stochastic properties of shuffling maps.

Lemma 2.5. Let X, Y be continuous random variables and U, V ∈ InvC. Then

the following statements hold:

1. X and Y are independent if and only if SU,V (CX,Y ) = Π.

2. X is completely dependent on Y or vice versa if and only if SU,V (CX,Y ) is a

complete dependence copula.

3. X and Y are mutually completely dependent if and only if SU,V (CX,Y ) is a

mutual complete dependence copula.
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Proof. We only need to prove the implications as the converses automatically

follow because the inverse of a shuffling map is still a shuffling map.

1. The result is clear because the copula CX,Y = Π if and only if X, Y are

independent.

2. With out loss of generality, assume that Y is completely dependent on X.

Then there exists a Borel measurable transformation h such that Y = h(X) with

probability one. Consider a shuffling map SU,V . There exist Borel measurable bi-

jective transformations f, g such that U = Cf(X),X and V = CY,g(Y ). By Corollary

2.4, we have

SU,V (CX,Y ) = Cf(X),X ∗ CX,Y ∗ CY,g(Y ) = Cf(X),g(Y ).

Thus, it suffices to show that g(Y ) is completely dependent on f(X). From

Y = h(X) with probability one, g(Y ) = (g ◦ h)(X) = (g ◦ h ◦ f−1)(f(X)) with

probability one. It is left to show that f−1 is Borel measurable. This is true

because of Lusin-Souslin Theorem (see, e.g., [6], Corollary 15.2) which states that

a Borel measurable injective image of a Borel set is a Borel set.

3. The proof is similar to the proof above except that the functions h and

g ◦ h ◦ f−1 are now Borel measurable bijective transformations instead of Borel

measurable transformations.

Corollary 2.4 implies that a shuffling image of a copula CX,Y is a copula of

transformed random variables Cf(X),g(Y ) for some Borel measurable bijective trans-

formations f and g. Together with the above lemma, we obtain the following

theorem.
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Theorem 2.6. Let X and Y be continuous random variables. Let f and g be

any Borel measurable bijective transformations of the random variables X and Y ,

respectively. Then X and Y are independent, completely dependent or mutually

completely dependent if and only if f(X) and g(Y ) are independent, completely

dependent or mutually completely dependent, respectively.

The above theorem suggests that shuffling maps preserve stochastic properties

of copulas. In the next section, we contruct a norm which, in some sense, also

preserves stochastic properties of copulas.

2.2 The ∗-norm

Our main purpose is to construct a norm under which shuffling maps are

isometries and then derive its properties.

Definition 2.7. Denoted by ‖ · ‖ the Sobolev norm for copulas. Define a map

‖ · ‖∗ : spanC → [0,∞), by

‖A‖∗ = sup
U,V ∈Inv C

‖U ∗ A ∗ V ‖.

It can be easily checked that ‖ · ‖∗ is a norm on spanC. We call ‖ · ‖∗ the ∗-norm.

Moreover, from the definition, it is clear that ‖A‖ ≤ ‖A‖∗ for all A ∈ spanC.

Lemma 2.8. Let U, V ∈ C. If ‖U‖ = 1, then ‖V ‖ = 1 if and only if ‖U ∗V ‖ = 1.

Similarly, if ‖V ‖ = 1, then ‖U‖ = 1 if and only if ‖U ∗ V ‖ = 1.

Proof. It suffices to prove only the first statement as the second statement can be

proved similarly.

Let U, V ∈ C be such that ‖U‖ = 1 and ‖U ∗V ‖ = 1. Then U, V are invertible.

We know the set of shuffles of M is dense in InvC with respect to the Sobolev

norm. Then, with respect to the Sobolev norm, there exist Sn, Tn shuffles of
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M such that Sn → U and Tn → V . Hence, with respect to the Sobolev norm,

Sn∗Tn → U ∗V by the joint continuity of the ∗-product. But a product of shuffles

of M is still a shuffle of M , which is invertible. Hence, ‖U ∗ V ‖ = 1.

Let U and U ∗ V be copulas of Sobolev norm 1. Since ‖UT‖ = ‖U‖ = 1, then,

by the previous result, we have ‖V ‖ = ‖UT ∗ (U ∗ V )‖ = 1.

We move on to deriving properties of the ∗-norm. The following proposition

summarizes the results used to contruct and derive properties of the measure of

dependence.

Proposition 2.9. Let A ∈ spanC and C ∈ C. Then the following statements

hold.

1. ‖C‖2∗ = 2
3
if and only if C = Π.

2. ‖C‖∗ = 1 if ‖C‖ = 1.

3. ‖C − Π‖2∗ = ‖C‖2∗ − 2
3
.

4. Transposition map is an isometry with respect to the ∗-norm.

Proof. 1. Since U ∗ Π ∗ V = Π for all U, V ∈ InvC, the result is clear.

2. If ‖C‖ = 1, then 1 = ‖C‖ ≤ ‖C‖∗ ≤ 1.

3. From property 4 of Proposition 1.14, we have

‖U ∗ (C − Π) ∗ V ‖2 = ‖U ∗ C ∗ V − Π‖2 = ‖U ∗ C ∗ V ‖2 − 2
3

for all U, V ∈ InvC. The result follows by taking supremum over U, V ∈ InvC on

both sides.
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4. Let A ∈ spanC. We know ‖UT‖ = ‖U‖ for all U ∈ C. In particular,

UT ∈ InvC if and only if U ∈ InvC. Hence,

‖AT‖∗ = sup
U,V ∈Inv C

‖U ∗ AT ∗ V ‖

= sup
U,V ∈Inv C

‖V T ∗ A ∗ UT‖

= sup
UT ,V T∈Inv C

‖V T ∗ A ∗ UT‖

= sup
U,V ∈Inv C

‖U ∗ A ∗ V ‖

= ‖A‖∗.

Theorem 2.10. Shuffling maps are isometries with respect to the ∗-norm.

Proof. Let A ∈ spanC and B,C ∈ InvC. Then, for any U ∈ C, ‖U ∗ B‖ = 1 if

and only if ‖U‖ = 1 by Lemma 2.8. In other words, U ∗ B ∈ InvC if and only

if U ∈ InvC. Similarly, for any V ∈ C, C ∗ V ∈ InvC if and only if V ∈ InvC.

Hence,

‖B ∗ A ∗ C‖∗ = sup
U,V ∈Inv C

‖(U ∗B) ∗ A ∗ (C ∗ V )‖

= sup
U∗B,C∗V ∈Inv C

‖(U ∗B) ∗ A ∗ (C ∗ V )‖

= sup
U,V ∈Inv C

‖U ∗ A ∗ V ‖

= ‖A‖∗.

Here, we give two examples: the first example suggests that the Sobolev norm

and the ∗-norm are distinct and the other gives a class of copulas on which the

Sobolev norm and the ∗-norm are equal.
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Example 2.11. From the setup of Example 1.17, let Aθ = S1/2 ∗ Cθ. Then, we

have S1/2 ∗ Aθ = S1/2 ∗ S1/2 ∗ Cθ = Cθ. Also from Example 1.17, we have that

‖Aθ‖ < ‖Cθ‖ for any θ 6= 0. Then

‖Aθ‖∗ ≥ ‖S1/2 ∗ Aθ‖ = ‖Cθ‖ > ‖Aθ‖.

Hence, the two norms are distinct.

Example 2.12. Consider the family of convex sums of an invertible copula and

the product copula {αA+ (1− α)Π}α∈[0,1]. Then

‖αA+ (1− α)Π‖2∗ = ‖αA+ (1− α)Π− Π‖2∗ +
2

3

= ‖αA− αΠ‖2∗ +
2

3

= α2‖A− Π‖2∗ +
2

3

= α2(‖A‖2∗ −
2

3
)2 +

2

3

= α2(‖A‖2 − 2

3
)2 +

2

3

= α2‖A− Π‖2 + 2

3

= ‖αA− αΠ‖2 + 2

3

= ‖αA+ (1− α)Π‖2.

Hence, the Sobolev norm and the ∗-norm coincide on the family of convex sums

of an invertible copula and the product copula.

Remark 2.13. At first, we thought that the set Inv C is compact with respect

to the Sobolev norm for copulas, but that is not the case. If this were true, we

would have obtained that, for any A ∈ spanC, there exist U, V ∈ InvC such that

‖A‖∗ = ‖U ∗ A ∗ V ‖. Consequently, we would have the converse of the second

statement in Proposition 2.9. However, this is false as a counterexample is given

in Example 2.16. Before that, let us discuss why Inv C is not compact with respect

to the Sobolev norm for copulas.
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Definition 2.14. For any k ∈ N, p ∈ [1,∞] and Ω ⊆ Rn, the Sobolev space

W k,p(Ω) is defined to be the set of all functions f ∈ Lp(Ω) such that for every

multi-index α with |α| ≤ k, the weak partial derivative Dαu ∈ Lp(Ω).

Proposition 2.15 ([2], pp. 426, 436). For any p ∈ [1,∞], let ‖ · ‖1,p be the

classical Sobolev norm defined on the Sobolev space W 1,p([0, 1]2) and let | · |1,p be

the corresponding seminorm defined by

|f |1,p =
(
∫ 1

0

∫ 1

0

(|∂1f(x, y)|p + |∂2f(x, y)|p) dxdy
)1/p

.

Then, the following statements hold.

1. | · |1,p restricted to spanC is a norm.

2. On spanC, | · |1,p dominates the uniform norm for all p ∈ (2,∞].

3. The set InvC is not compact with respect to any norm which dominates or

is dominated by the uniform norm on spanC.

4. The topologies generated by | · |1,p coincide on C for all p ∈ [1,∞].

From properties 2 and 3 of the above proposition, Inv C is not compact with

respect to any | · |1,p where p ∈ (2,∞]. Together with property 4 of the same

proposition, we can conclude that Inv C is not compact with respect to any | · |1,p

where p ∈ [1,∞]. In particular, it is not compact with respect to the Sobolev norm

for copulas. Furthermore, Inv C is complete with respect to the Sobolev norm for

copulas because it is a closed subset of the set of copulas, which is complete (for a

proof see [2], Theorem 4.5). As a consequence, Inv C is not totally bounded with

respect to the Sobolev norm for copulas since it is a complete metric space which

is not compact.
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In the following example, we give a copula C0 ∈ C such that ‖C0‖ 6= 1 but

‖C0‖∗ = 1. To show that ‖C0‖∗ = 1, we construct a sequence of invertible copulas

Un ∈ InvC such that ‖Un ∗ C0‖ → 1.

Example 2.16. Let C0 be the copula supported on the straight line joining the

points (0, 0) and (1/2, 1) and the straight line joining the points (1/2, 0) and (1, 1).

It is known that C0 is not invertible; hence, ‖C0‖ < 1. Consider a partition of

[0, 1]2 into 2n+1 equal vertical stripes where n ∈ N. Let Sn be the shuffle of M

which switches, for all j ≡ 2 mod 4, the supports of the j-th and (j+1)-th stripes

of M . For a better understanding of this construction, see the figure below.

Figure 2.1: the supports of M , S1 and S2

Construct, recursively, Cn = Sn ∗ Cn−1 for all n ∈ N. According to Remark

1.11, the support of Cn−1 is shuffled according to the shuffling of Sn, i.e., for all

j ≡ 2 mod 4, the supports of the j-th and (j+1)-th stripes of Cn−1 are switched.

Then the support of Cn lies entirely in the diagonal 2n-squares. For examples, see

the figure below.

Therefore, by applying the technique demonstrated in Example 1.5, it can

be shown that the copula Cn and M coincide on the area outside the diagonal

2n-squares. But the union of the diagonal 2n-squares is a descending chain, the

intersection of which is the diagonal of [0, 1]2 joining the points (0, 0) and (1, 1).

This implies that, for i = 1, 2, we have ∂iCn(x, y) → ∂iM(x, y) pointwise for all
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Figure 2.2: the supports of C0, C1 and C2

x 6= y. Note that, for fixed x, y ∈ [0, 1] such that x 6= y, there exists N ∈ N large

enough so that the point (x, y) is outside the 2N -squares. Hence, for each i = 1, 2,

∂iCn(x, y) exists for all n ≥ N . Thus we have |∇Cn(x, y)|2 → |∇M(x, y)|2 a.e.

(x, y) ∈ [0, 1]2 and they are bounded by 4 which is integrable on [0, 1]2. Hence,

by Dominated Convergence Theorem, we have ‖Cn‖ → ‖M‖ = 1.

To sum up, Cn = Sn ∗ Cn−1 = · · · = (Sn ∗ Sn−1 ∗ · · · ∗ S1) ∗ C0 is a product

of a shuffle of M and the copula C0 for all n ∈ N. So we have a copula C0 and

sequences of invertible copulas {Un} and {Vn} where Un = Sn ∗Sn−1 ∗ · · · ∗S1 and

Vn = M such that ‖C0‖ < 1 but ‖Un ∗ C0 ∗ Vn‖ → 1, which implies ‖C0‖∗ = 1.

Therefore, for C ∈ C, ‖C‖∗ = 1 does not imply ‖C‖ = 1.

2.3 The measure ω∗

First, let’s recall the definition and properties of the measure of mutual com-

plete dependence ω introduced by Siburg and Stoimenov [12]. Let X and Y

be continuous random variables with copula C. The measure ω is defined by

ω(X, Y ) =
√
3‖C − Π‖, which can be viewed as the normalized Sobolev distance

between the copula C and the independence copula. The following theorem sum-

marizes properties of the measure.
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Theorem 2.17 ([12], Theorem 5.3). Let X and Y be continuous random variables

with copula C. Then the measure ω(X, Y ) has the following properties:

1. ω(X, Y ) = ω(Y,X).

2. 0 ≤ ω(X, Y ) ≤ 1.

3. ω(X, Y ) = 0 if and only if X and Y are independent.

4. ω(X, Y ) = 1 if and only if X and Y are mutually completely dependent.

5. ω(X, Y ) ∈ (
√
2/2, 1] if Y is completely dependent on X or X is completely

dependent on Y .

6. If f and g are monotone transformations, then ω(f(X), g(Y )) = ω(X, Y ).

7. If {(Xn, Yn)}n∈N is a sequence of pairs of continuous random variables with

copulas {Cn}n∈N and if lim
n→∞

‖Cn − C‖ = 0, then we have lim
n→∞

ω(Xn, Yn) =

ω(X, Y ).

Analogous to the measure ω, we define a new measure of dependence using

the ∗-norm as follows. Let X and Y be continuous random variables with copula

C. Define ω∗(X, Y ) =
√
3‖C − Π‖∗. Moreover, from property 3 of Proposition

2.9, we have ω∗(X, Y ) = (3‖C‖2∗ − 2)1/2.

Because the properties of the ∗-norm are for the most part analogous to those of

the Sobolev norm, the properties of ω∗ are consequently analogous to those of ω’s

except for properties 4 and 6 in Theorem 2.17. The measure ω∗, unlike the measure

ω, is not a measure of mutual complete dependence since there exists, according

to Example 2.16, a pair of continuous random variables which are not mutually

completely dependent but their copula has ∗-norm one. This is the downfall of

our measure compared to the measure ω. Nevertheless, for the measure ω∗, we can
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weaken the assumptions on the transformations f and g in property 6 in Theorem

2.17. In order to do this, we use the fact that the shuffling maps are isometries

with respect to the ∗-norm. The following theorem summarizes properties of the

measure ω∗.

Theorem 2.18. Let X and Y be continuous random variables with copula C.

Then ω∗(X, Y ) has the following properties:

1. ω∗(X, Y ) = ω∗(Y,X).

2. 0 ≤ ω∗(X, Y ) ≤ 1.

3. ω∗(X, Y ) = 0 if and only if X and Y are independent.

4. ω∗(X, Y ) = 1 if X and Y are mutually completely dependent.

5. ω∗(X, Y ) ∈ (
√
2/2, 1] if Y is completely dependent on X or X is completely

dependent on Y .

6. If f and g are Borel measurable bijective transformations, then we have

ω∗(f(X), g(Y )) = ω∗(X, Y ).

7. If {(Xn, Yn)}n∈N is a sequence of pairs of continuous random variables with

copulas {Cn}n∈N and if lim
n→∞

‖Cn−C‖∗ = 0, then we have lim
n→∞

ω∗(Xn, Yn) =

ω∗(X, Y ).

Proof. Let X and Y be continuous random variables.

1. This follows from the fact that ‖CX,Y ‖∗ = ‖CY,X‖∗ since, by Proposition

2.9, the transposition map is an isometry with respect to the ∗-norm.

2. By Theorem 1.16, ‖CX,Y ‖2 ∈ [2/3, 1]. Since ‖A‖∗ ≥ ‖A‖ for all A ∈ spanC,

we have ‖CX,Y ‖2∗ ∈ [2/3, 1]. Hence, 0 ≤ ω∗(X, Y ) ≤ 1.
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3. By Proposition 2.9, X and Y are independent if and only if CX,Y = Π if

and only if ‖CX,Y ‖2∗ = 2/3. Therefore, X and Y are independent if and only if

ω∗(X, Y ) = 0.

4. If X and Y are mutually completely dependent, then ‖CX,Y ‖∗ = 1. There-

fore, ω∗(X, Y ) = 1.

5. Let Y be completely dependent on X or X be completely dependent on Y .

Then ‖CX,Y ‖2 ∈ (5/6, 1] by Theorem 1.16. Since ‖A‖∗ ≥ ‖A‖ for all A ∈ spanC,

we have ‖CX,Y ‖2∗ ∈ (5/6, 1]. Hence, ω∗(X, Y ) ∈ (
√
2/2, 1].

6. Let f, g be Borel measurable bijective transformations. Then, X and f(X)

are mutually completely dependent, and so are Y and g(Y ). Thus ‖Cf(X),X‖ = 1

and ‖CY,g(Y )‖ = 1 by Theorem 1.16. Therefore, the copulas Cf(X),X and CY,g(Y )

are invertible by property 5 in Proposition 1.14. Hence

ω∗(f(X), g(Y )) =
√
3‖Cf(X),g(Y ) − Π‖∗

=
√
3‖Cf(X),X ∗ (CX,Y − Π) ∗ CY,g(Y )‖∗

=
√
3‖CX,Y − Π‖∗

= ω∗(X, Y ).

7. From the definition of ω∗, observe that

|ω∗(Xn, Yn)− ω∗(X, Y )| =
√
3|‖Cn − Π‖∗ − ‖C − Π‖∗|

≤
√
3‖Cn − C‖∗.
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We end this chapter with the list of open problems we encountered during our

work on this part of thesis.

1. Besides the transposition and shuffling maps and their compositions, are

there any other maps which are isometries with respect to the ∗-norm?

2. What are necessary and sufficient conditions on a copula C with ‖C‖∗ = 1?

3. What is the set of copulas on which the Sobolev norm and the ∗-norm

coincide?

4. Is the ∗-product jointly continuous with respect to the ∗-norm?

5. What are probabilistic interpretations of shuffling maps?



CHAPTER III

A GENERALIZED ∗-PRODUCT

3.1 Measurability of the integrand

In this section, we introduce various sets of conditions on the family of copulas

so that the ∗C product is well-defined.

Example 3.1. Let P be a Lebesgue nonmeasurable subset of [0, 1]. Consider the

family C = {Ct}t∈[0,1] where

Ct =











M if t ∈ P

W if t /∈ P.

Then we can see that Ct(∂2A(x, t), ∂1B(t, y)) is not Lebesgue measurable in the

variable t for some A,B ∈ C and x, y ∈ [0, 1], e.g., A,B = Π and any x, y ∈ (0, 1)

so that M(x, y) > W (x, y).

From the above example, it is evident that the ∗C product is not always well-

defined since the integrand may not be Lebesgue measurable. One way to solve

this measurability problem is to restrict our attention to smaller classes of families

of copulas. We give two sets of conditions such that Ct(∂2A(x, t), ∂1B(t, y)) is a

Lebesgue measurable function in the variable t.

The first set of conditions is given in the following theorem. Practically, almost

all families of copulas we encounter satify this set of conditions.
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Theorem 3.2. Let C = {Ct}t∈[0,1] be a family of copulas which satisfies

1. C consists of countably many distinct copulas and

2. for each A ∈ C, the set {t ∈ [0, 1] : Ct = A} is Borel measurable.

Then, for all x, y ∈ [0, 1], Ct(∂2A(x, t), ∂1B(t, y)) is Lebesgue measurable in the

variable t.

Proof. Let C = {Ct}t∈[0,1] be a family of copulas satisfying the two conditions.

Since there are countably many distinct copulas. Let E = {C1, C2, . . . } be an

enumeration of the distinct copulas in the family.

For each Cn ∈ E, let Tn = {t ∈ [0, 1] : Ct = Cn}. Observe that {Tn}∞n=1 is a

partition of [0, 1] into measurable sets. Then, we write Ct(∂2A(x, t), ∂1B(t, y)) as

∞
∑

n=1

χTn
(t)Cn(∂2A(x, t), ∂1B(t, y)),

which is a countable sum of Lebesgue measurable functions; hence, it is Lebesgue

measurable.

Observe that the proof of the above theorem works perfectly fine if we replace

Borel measurability by Lebesgue measurability.

Theorem 3.3. If the map (t, x, y) 7→ Ct(x, y) is Borel measurable, then for all

x, y ∈ [0, 1] and for all A,B ∈ C, Ct(∂2A(x, t), ∂1B(t, y)) is Lebesgue measurable

in the variable t.

Proof. For any fixed x, y ∈ [0, 1], the map t 7→ (t, ∂2A(x, t), ∂1B(t, y)) is Lebesgue

measurable since each component function is Lebesgue measurable. Then, being

the composition of a Lebesgue measurable map t 7→ (t, ∂2A(x, t), ∂1B(t, y)) and a

Borel measurable map (t, x, y) 7→ Ct(x, y), the map t 7→ Ct(∂2A(x, t), ∂1B(t, y)) is

Lebesgue measurable.
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Denoted by Mc the collection of families which satisfy the set of conditions in

Theorem 3.2, Mu the collection of families which satisfy the condition in Theorem

3.3 and M the collection of families {Ct}t∈[0,1] such that, for all A,B ∈ C and

x, y ∈ [0, 1], the function Ct(∂2A(x, t), ∂1B(t, y)) is Lebesgue measurable in the

variable t. We have just shown that Mc and Mu are subcollections of M. Let’s

remark that, in practice, it is not easy to determine whether a family is in M.

This is the sole reason we introduce the collections Mc and Mu.

Lemma 3.4. If a family of copulas satifies the set of conditions in Theorem 3.2,

then it also satisfies the condition in Theorem 3.3. In other words, Mc ⊆ Mu.

Proof. LetC = {Ct}t∈[0,1] ∈ Mc. For each Cn ∈ C, let Tn = {t ∈ [0, 1] : Ct = Cn}.

Then we can write

Ct(x, y) =
∞
∑

n=1

χTn
(t)Cn(x, y).

Now, for any a ∈ [0, 1], the inverse image of the interval [0, a] under the map

(t, x, y) 7→ Ct(x, y) is equal to
∞
⋃

n=1

Tn×C−1
n ([0, a]). Observe that Tn and C−1

n ([0, a])

are Borel measurable. Hence, the inverse image of the interval [0, a] under the

map (t, x, y) 7→ Ct(x, y) is Borel measurable.

The following proposition helps us in dealing with families which behave well

outside a set of Lebesgue measure zero.

Proposition 3.5. Let C ∈ M. If D is another family of copulas such that

Dt = Ct a.e. t ∈ [0, 1], then D ∈ M and the products ∗C and ∗D are identical.

We say that the family D is ∗-equivalent to the family C.

Proof. The result easily follows from the fact that if f = g a.e. and f is Lebesgue

measurable, then g is also Lebesgue measurable. Moreover, for any Lebesgue

measurable set A,

∫

A

f dλ =

∫

A

g dλ where λ denotes Lebesgue measure.
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3.2 The ∗C product

In this section, we properly re-define the ∗C product. Then we derive some of

its properties.

Definition 3.6. Let C ∈ M. The ∗C product of copulas A and B is defined by

(A ∗C B)(x, y) =

∫ 1

0

Ct(∂2A(x, t), ∂1B(t, y)) dt.

Remark 3.7 ([3], Proposition 3.1). For all C ∈ M and for all A,B ∈ C, we have

A ∗C B ∈ C.

Lemma 3.8. Let C ∈ M and A,B ∈ C. If A is right invertible or B is left

invertible with respect to the ∗-product, then A ∗C B = A ∗B.

Proof. It suffices to prove only the first statement as the second is analogous.

Let A be a right invertible copula. Then ∂2A(x, y) ∈ {0, 1} almost everywhere.

Let Z be the set {(x, y) : ∂2A(x, y) = 1}. Compute

(A ∗C B)(x, y) =

∫ 1

0

Ct(∂2A(x, t), ∂1B(t, y)) dt

=

∫

Z

Ct(1, ∂1B(t, y)) dt

=

∫

Z

∂1B(t, y) dt

=

∫ 1

0

∂2A(x, t)∂1B(t, y) dt

= (A ∗B)(x, y).

Theoretically, we often encounter the ∗C of copulas A and B where one of

them is invertible, so the above lemma is very useful.
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Lemma 3.9. {Π ∗C Π: C ∈ M} = C.

Proof. For any copula C ∈ C, consider the family C consisting of Ct = C for all

t ∈ [0, 1]. Then, we have C ∈ Mc and

(Π ∗C Π)(x, y) =

∫ 1

0

C(x, y) dt = C(x, y).

This completes the proof.

Theorem 3.10. If Cn,C ∈ M such that Cn,t(x, y) → Ct(x, y) pointwise for all

t ∈ [0, 1], then (A ∗Cn
B)(x, y) → (A ∗C B)(x, y) pointwise.

Proof. Observe that, for a fixed t ∈ [0, 1],

Cn,t(∂2A(x, t), ∂1B(t, y)) → Ct(∂2A(x, t), ∂1B(t, y))

pointwise. Moreover, Cn,t(∂2A(x, t), ∂1B(t, y)), Ct(∂2A(x, t), ∂1B(t, y)) are bounded

by 1 which is Lebesgue integrable on [0, 1]. By Dominated Convergence Theorem,

∫ 1

0

Cn,t(∂2A(x, t), ∂1B(t, y)) dt →
∫ 1

0

Ct(∂2A(x, t), ∂1B(t, y)) dt

pointwise. This completes the proof.

Corollary 3.11. For any A,B ∈ C. If Cn,C ∈ M such that Cn,t → Ct uniformly

for all t ∈ [0, 1], then A ∗Cn
B → A ∗C B uniformly.

Example 3.12. Recall that the set of shuffles of M is dense in C with respect to

the uniform norm. Hence, given a family of copulas C = {Ct}t∈[0,1], we can find

families of shuffles of M , Sn = {Sn,t}t∈[0,1], such that A∗Sn
B → A∗CB uniformly.

Our motivation for the previous example is the computation of A ∗C B. One

can see that given a family C = {Ct}t∈[0,1], it is not easy to obtain an explicit

formula for A ∗C B. But with the above result, the computation seems more

feasible.
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3.3 Identity and zero of (C, ∗C)

Recall from Chapter 1 that the identity and the zero of (C, ∗) are M and Π,

respectively.

Theorem 3.13. For all C ∈ M, the identity for (C, ∗C) exists and is unique.

Moreover, it is the Fréchet-Hoeffding upper bound M .

Proof. Let C ∈ M. Since M is invertible, from Lemma 3.8, we have

M ∗C A = M ∗ A = A = A ∗M = A ∗C M

for all A ∈ C. For the uniqueness, suppose M ′ is another identity. Then we have

M = M ∗C M ′ = M ′.

Hence, for all C ∈ M, the copula M is the identity for the ∗C product.

Theorem 3.14. Let C ∈ M. A zero for the ∗C product, if exists, is unique and

is the product copula Π.

Proof. The uniqueness part is easy. Let U, V be zeroes for the ∗C product. Then

U = U ∗C V = V . Now, to see that Π is the zero, if exists, it requires some work.

Let U be the zero for ∗C. For each Sα, the straight shuffle of M at α ∈ [0, 1],

since Sα is invertible, we have Sα ∗ U = Sα ∗C U = U .

Recall the formula in Example 1.10:

(Sα ∗ C)(x, y) =











C(x+ 1− α, y)− C(1− α, y) if 0 ≤ x ≤ α ≤ 1

y − C(1− α, y) + C(x− α, y) if 0 ≤ α ≤ x ≤ 1.

Then copula U must satisfy the two functional equations

U(x+ 1− α, y) = U(x, y) + U(1− α, y) if 0 ≤ x ≤ α ≤ 1 and (3.1)

U(x− α, y) + y = U(x, y) + U(1− α, y) if 0 ≤ α ≤ x ≤ 1. (3.2)
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We will solve the above equations and show that the only copula which satisfies

them is the product copula Π.

Fix y ∈ [0, 1] and let f(x) = U(x, y). Then, from the properties of copulas, f

is a continuous mapping on [0, 1] with boundary contitions f(0) = 0 and f(1) = y.

Then (3.1) and (3.2) become

f(x+ 1− α) = f(x) + f(1− α) if 0 ≤ x ≤ α ≤ 1 and (3.3)

f(x− α) + f(1) = f(x) + f(1− α) if 0 ≤ α ≤ x ≤ 1. (3.4)

First, we solve (3.3). Let z = 1 − α. Then (3.3) becomes the well-known

Cauchy equation

f(x+ z) = f(x) + f(z)

where f : [0, 1] → [0, 1] is continuous.

Observe that f(m
n
) = f(m−1

n
) + f( 1

n
) for all m,n ∈ N such that 1 ≤ m ≤ n.

Hence, by induction, we have f(m
n
) = mf( 1

n
). Thus f(1) = nf( 1

n
). In other words,

f( 1
n
) = 1

n
f(1) for all n ∈ N. Therefore f(m

n
) = m

n
f(1) for all m,n ∈ N such that

1 ≤ m ≤ n, i.e. f(r) = rf(1) for all r ∈ Q ∩ (0, 1]. We know that f is continuous

and f(0) = 0. Hence, for all x ∈ [0, 1], we have

f(x) = xf(1). (3.5)

Now, we solve (3.4). Observe that f(x− x) + f(1) = f(x) + f(1− x). Hence,

f(1 − x) = f(1) − f(x) for all x ∈ [0, 1]. Thus, from (3.3), we have f(x − α) =

f(x) − f(α) for all 0 ≤ α ≤ x ≤ 1. In other words, f(x) = f(x − α) + f(α) for

all 0 ≤ α ≤ x ≤ 1. Again, we have f(m
n
) = f(m−1

n
) + f( 1

n
) for all m,n ∈ N such

that 1 ≤ m ≤ n. This is the same equation as the one we just solved. Hence, for

all x ∈ [0, 1], we also have that

f(x) = xf(1). (3.6)
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From (3.5) and (3.6), we have U(x, y) = f(x) = xf(1) = xy for all x, y ∈ [0, 1].

Thus, the only copula which satifies (3.1) and (3.2) is the product copula Π.

Lemma 3.15. If C ∈ M is a family such that ∗C has a zero, then

∫ 1

0

Ct(x, y) dt = xy

for all x, y ∈ [0, 1].

Proof. If ∗C has the zero, then Π(x, y) = (Π ∗C Π)(x, y) =

∫ 1

0

Ct(x, y) dt.

Recall that {Π ∗C Π: C ∈ M} = C. Hence, Π ∗C Π can be any copula. But

for the ∗C product to have a zero, Π ∗CΠ can only be the product copula Π. One

can see that, for the product ∗C to have a zero, the underlying family C must be

extremely special.

Example 3.16. Given a copula C ∈ C. Let C = {C}t∈[0,1]. If C = Π, then the

∗C product is simply the classical ∗-product, which has a zero. If C 6= Π, then

the ∗C product has no zero by the above Lemma.

Example 3.17. Let C be a family of copulas where Ct = Π a.e. t ∈ [0, 1]. Then,

∗C has a zero since the families C and {Π}t∈[0,1] are ∗-equivalent. In fact, ∗C is

identical to the classical ∗-product.

Example 3.18. Recall that the Farlie-Gumbel-Morgenstern copulas are of the

form Cθ(u, v) = uv + θuv(1 − u)(1 − v) where θ ∈ [−1, 1]. Let C = {Ct}t∈[0,1]

where Ct is equal to Cθ if t ∈ [0, 1/2] and is equal to C−θ otherwise. It is easily

seen that the family C satisfies the condition in Lemma 3.15.

We will show that ∗C in the above example has no zero, which implies that

the criteria in Lemma 3.15 is not sufficient for the product to have a zero.
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Example 3.19. Consider a family of copulas C in Example 3.18 where θ 6= 0.

Compute

(A ∗C Π)(x, y) =

∫ 1

0

Ct(∂2A(x, t), y) dt

=

∫ 1/2

0

Cθ(∂2A(x, t), y) dt+

∫ 1

1/2

C−θ(∂2A(x, t), y) dt

=

∫ 1/2

0

∂2A(x, t)y + θ∂2A(x, t)y(1− ∂2A(x, t))(1− y) dt+

∫ 1

1/2

∂2A(x, t)y + θ∂2A(x, t)y(1− ∂2A(x, t))(1− y) dt

= xy + θy(1− y)

[
∫ 1/2

0

∂2A(x, t)(1− ∂2A(x, t)) dt−
∫ 1

1/2

∂2A(x, t)(1− ∂2A(x, t)) dt.

]

Choose A = Cθ. From straightforward computation, if x /∈ {0, 1}, then
∫ 1/2

0

∂2A(x, t)(1−∂2A(x, t)) dt−
∫ 1

1/2

∂2A(x, t)(1−∂2A(x, t)) dt =
x2

2θx(x− 1)
6= 0.

Thus Cθ ∗C Π 6= Π. Therefore, ∗C has no zero.

We end this chapter with the list of open problems we encountered during our

work on this part of thesis.

1. What are necessary and sufficient conditions for a family of copulas C to be

in the set M?

2. What are necessary and sufficient conditions for a family of copulas C to

induce the product ∗C which posesses a zero?

3. What are the invertible copulas with respect to the ∗C product?

4. What are probabilistic interpretations of the ∗C product?
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