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Let (X,. ). k=1,..., k, ;n=12,... be a double sequence of infinitesimal
random variables which are rowwise independent, under a condition of convergence
of distribution function of the sums

Sy=Xpm+..+Xy —A4A,
where A, are suitably chosen constants, we give necessary and sufficient conditions for
the sequence of distribution functions of
Sy =(g(Xu)) +..+ (g(Xnk,, )) "~ B,(r)

to weakly converge to a limiting distribution function F” for each natural number r,

and also for convergence of the sequence of distribution function (¥”) ,where

"g:R—>R has certain properties and B, (r) are suitably chosen constants.
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INTRODUCTION

This thesis deals with probability limit theorem, mainly related to positive
integer power of function of independent random variables . The problem was first

investigated by J.M.Shapiro {5], and can be precisely stated as follows:
Let (X, ), k=1,....k, ;n=12,... be a double sequence of infinitesimal
random variables which are rowwise independent. The distribution functions of the

sums

S; = |Xn1|r+...+

,

Xnk,,| _Bn(r) (*)

where B, (r) are suitably chosen constants and 7 € N is considered. Necessary and

sufficient conditions are found for the sequence of distribution functions of the

sum (*) to weakly converge to a limit distribution function F’ for each natural

number 7 ,and also for convergence of the sequence of distribution function (F") .
In fact, the sum (*) is of the form

S5 = (X)) +.+(gltm, )} - B,

where g :R — Risdefined by g(x)= |x| .



In this present work, we extend the results of [5] to the case where the
function g : R = R has the following properties:
(g-1) g(0)=0.
(g-2) g is continuous , strictly decreasing on(—o,0] and strictly increasing
on[0,c0) .
(g-3) for some positive & there exist a positive constants ¢ such that,

4C))
X

(g-4) g(—)=g(x) =0,

<cforallx e (-5,5).

In Chapter 1, some important preliminary results and notations, which are
necessary for the work, are presented.

Chapter II gives the main results.



CHAPTER 1

PRELIMINARIES

In this chapter, we present some basic concepts and facts of probability
theory that are needed in this thesis. The proofs of the statements are omitted as

they can be found in [1]-[4].
1.1 Random Variables, Distribution Functions and Characteristic Functions

A probability space is a measure space (Q,€,P ) for which P(Q2) =1.
The measure P is called a probability measure. The set Q2 will be referred to as
a sample space and its elements are called points or elementary events . The
elements of € are called events. For any event A4 , the value P(4) is called the

probability of A .

Let(Q,E,P ) be a probability space. A function X : Q@ — R is called
a random variable if for every Borel set B in R, X "' (B) belongs to€. We
shall use the notation P(X € B) inplace of P({ 0 € Q] X(w) e B }).
In the case where B = (—0,a] aud [a,b], P(X € B)is denoted by P(X <a)
and P(a < X <b), respectively.

Random variables X, X,,..., X, are said to be independent if for all real

numbers Xy, X,,..., X, ,

PO o|x@<x ) = J[PX:<x)
i=1 i=l



A sequence (X, )1s called a sequence of independent random variables if
for each natural number 7 , the random variables X, X,.-, X , are independent.
A double sequence (X, ),k =1,2,..., k_;n =1,2,... of random variables
is said to be rowwise_ independent if for each natural number »n ,
X3 X pyseees X i, are independent.

If for each positive real number ¢, lim max P(|X,|>€)=0 then (X )
n—o 1<k<k,

has an infinitesimal property.

Proposition 1.1.1 Let X 1sX55..., X, be random variables and g a Borel function.
If X;,X,,..,X, areindependent then g(X;),g(X3).....8(X,) are also

independent.

Let X be a random variable. A function F : R — [0,1] defined by
F(x) = P(X £x), for each real number x,

is called the distribution function of the random variable X .

A function F : R — [0,1] is the distribution function of some random
variable if and only if
1. F is nondecreasing,
2. F is right continuous,

3. F(—0) =0and F(+o0) =1.

Let X be a random variable on a probability space (Q2,€,P ). X is said to
be a discrete random variable if the image of X is countable and X is called a

continuous random variable if F can be written 1n the form

F(x) = [r@a



for some nonnegative integrable function f on Rand in this case ,we say that f is

the probability function of X

Now we will give some examples of random variables .
Example 1.1.1 X is said to be a Poisson random variable with parameter A,

written as X ~Poi(A), if its image is {0,1,2,...} and

BEAE o as o
P(X =k)=¥e™.

Example 1.1.2 We say that X is a normal random variable with parameter 1 and

o2, written as X ~N(u,02), if its probability function is
1 1

f(x)= exp(-— (x—p)?).
2nc? 26

Example 1.1.3 We say that X is a degenerate random variable with parameter a,

if the distribution function of X is

F(x):{

0 ifx<a;

1 ifx2a.

A sequence (F,) of bounded nondecreasing functions converges weakly to
F if for every continuity point x of F, F, (x) = F(x) which will be written as

F,——>F.

For a distribution function F of a random variable X . The function
¢ : R — C defined by
o) = [e™dF(x)
R

1s called the characteristic function of the distribution function F and it is also

called the characteristic function of the random variable X .



Proposition 1.1.2 If the random variables X, X,,..., X,, are independent with
characteristic functions ¢, P, 5, ¢, respectively, then the characteristic

function ¢ of the sum X, + X, +...+ X, is given by

o) = 0,9 (0).-0,0).

The cormrespondence between the distribution function and the characteristic
function is one-to-one. Moreover, if a sequence of distribution functions (F), )
converges to a-distribution function F at every continuity point of F , then the
corresponding sequence of characteristic functions (@, ) converges to the

characteristic function ¢ of F and the converse is also true.

1.2 Infinitely Divisible Distribution Functions
A random variable X is said to be infinitely divisible if, for every natural
number , it can be represented as the sum
X=X

X by

ni

of nindependent identically distributed random variables X, X ,,.... X ,, .
The distribution function and the corresponding characteristic function of an
infinitely divisible random variable are also said to be infinitely divisible

distribution function and infinitely divisible characteristic function, respectively.

Theorem 1.2.1 The characteristic function @ is infinitely divisible if and only if

for every natural number n , there exists a characteristic function @, such that

o=(¢,)".



Theorem 1.2.2 The distribution function of finite sum of independent infinitely

divisible random variables is also infinitely divisible.

Theorem 1.2.3 The weak limit of a sequence of infinitely divisible distribution

function is itself infinitely divisible.

It is well known that the characteristic function @ is infinitely divisible if and

only if its logarithm can be represented in the form -

log o(¢) = iyt + j £(t,u)dG(x)

where y is areal constant , the function f is given by

: 2
¥ S ””2)(”’2‘ ) if w=0;
ftw)= b (12,1
-fz— if u=0,

and G is a bounded non-decreasing function which is right continuous with
G (-) =0.
The representation of ¢ given by (1.2.1) is unique , and it is known as the

formula of Le'vy and Khintchine .

There is another representation of the logarithm of an infinitely divisible

characteristic function ¢ , known as Le'vy's formula :

22 0 :
logo(f) = z'w-%Jr j(e*“-1-1f2)dM(x)
0 X
s [ -1-—E N ) L(122)

2
0* 14+x



where o2 20 and y are real constants, M and N are non-decreasing functions

defined on (—w,0) and (0,+) respectively with M(—) = N(0) =0 and

0 €
J_xsz(x) + szdN(x) < 4+ ...(1.2.3)

-t 04'

for every positive real number ¢ and we denoted lim N(x) and lim M(x) by
X—®0 X—>—0

N(e0) and M (—0), respectively.
The characteristic function ¢ is infinitely divisible if and only if its logarithm

can be represented by Le'vy's formula (1.2.2).

For an infinitely divisible characteristic function @, representations (1.2.1) and

(1.2.2) are related by

x 2
M) = j”“ dG(u) for x <0
u |
T1+u '
N = - dG(u) for x > 0 .(12.4)
17
X
and o = GOM)-GO").

We can give (1.2.2) in the following form :

2,2 -t 4o
logo(t) = (T} - "—2’—+ (e ~1)dM(x) + (™ ~1)dN(x)
[V - T )
+ I(e’”r —1—ix)dM (x) + j(e“‘r —1~itx)dN(x) ..(1.2.5)
-1 0*
where M and N have the same meanings as above,T and —t are arbitrary continuity

points of the functions M and N, respectively, and

y(v) =7+ jsz(t)+ j L. ...(1.2.6)

| r|<‘r |12



Theorem 1.2.4 For the convergence of infinitely divisible distribution functions F, to

the limut distribution function F it is necessary and sufficient that

1. M, (u ) - M(u ), N, (u ) - N(u) at ‘continuity points of the functions M and N
2. 7,(1) > ()
3. lim lim { qudM w)+ol + _[usz (u )}

g—0" now

£—>0" o

= lim lim { qudMn (u)-l-a,% + juszn (u)} =o?
-& 0

where the functions M, ,N, and M,N and the constants o, ,7, (1) and o, y(1)

are defined by (1.2.4) and (1.2.6) for the distribution functions F, and F respectively.

Theorem 1.2.5 There exists a sequence of constants 4, such that the distribution

functions of the sum

Xy X & ik, —A4, (127

nl

of independent infinitesimal random variables converge to a limit if and only if
there exist non-decreasing functions M and N , defined on the intervals (- e,0)
and ( 0,+ o ) respectively with M (—c0)=0and N (+ ) =0, and a constant

o 2 0 such that

L. hmj Fo(x) = M)

2 lim i[ Fa(0-1 = N

at every continuity point of M and N , and
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M

3. lim lim
£0" o0 k

{ [ x?dFy ()=( [ xdFp ()}

Vo fxf<e x| <2

1)

kﬂ
= lim lim Z { szank(x)—( deF,,k(x))z} = o,

£—0* n—ow =) |X|<€ |x|<£
where F,,;, denotes the distribution function of X, .

The constants A4, may be chosen according to the formula

kll
4, =Y [xdFu(x)-v(x)

k=1|x<z

where ¥ is the function in (1.2.6) and —t and + 1 are continuity points of M and
N , respectively. The logarithm of the characteristic function of the limit of the
distribution function of the sum (1.2.7) is defined by the formula in (1.2.2) with the
functions M, N and constants y(1),0.

It is well- known that normal, degenerate and Poisson random variables are

infinitely divisible with Le'vy's formula as follow:

Table of canonical representation of infinitely divisible characteristic function

distribution characteristic Le'vy's formula
- function y & M(x) N(x)
Normal exp (iat — %cztz) a |o 0 0

Degenerate exp(iat) 0 0 0

Poisson . | exp(A (e —1))

V>R

0 x>
-1 ifx<l.

Table 1.2.1



CHAPTER II

" THE CENTRAL LIMIT THEOREMS OF SUMS OF POWERS OF
FUNCTION OF INDEPENDENT RANDOM VARIABLES

In this chapter, we let (X ),k =1,2,...,k,, ; n =1,2,...be a double sequence
of infinitesimal random variables which are rowwise independent.
Let
Sp=Xp+utXy —4

'/ R4

where A4, are constants and let F,, F,;; be the distribution functions of §,, and
X,z , respectively. Necessary and sufficient conditions for (¥, ) to converge to
a distribution function F are known, and in particular it is well known that F is
infinitely divisible.

In 1957, Shapiro considered the distribution functions of the sums
"-5,() *)

where B, (r) are suitably chosen constants and » € N . For each natural numberr ,

T, = |Xu| +...+

X nk,

let G, Gy be the distribution functions of 7, ,|X ,4|", respectively. The results are

as follow.

THEOREM A

Assume that foreach » e N , G —>G"as n > and G" —~—> H as

r — . Then H s a degenerate or normal or Poisson distribution function or the
distribution function of the sum of two independent random variables, one a

normal and the other a Poisson distribution function.
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THEOREM B
If F,, ——> F as n — w, then for suitably chosen constants B, (r) ,G, ——>G"

as n — o if and only if

0% n oo T

c 2
lim lim Z jx rd Lv,,k (x) —Fy (=x ‘)j—[[x "d @r,,k (x) = Fy (—x *)]J
0

- i Y, ijz’d[Fnk(x) F-x0))- ( [ a0~ (-5~ )]}
£—0" o

n—DO k|
—o? <,

where lim f(¢) is denoted by f(x7).

1—=x"

THEOREM C
Under the condition F, —*— F as n — co and for suitably chosen constants
B, (r) . a necessary and sufficient condition for GT—2 5 Hasr — o, is that
1. M(x)=0for x <-1,
2. N(x)=0for x>1, and

3. Iim cf = (0")2,

r=—»o0

where M , N are functions satisfying the Le'vy’s formula with respect to F and
G,,G are constants satisfying Le'vy’s formula with respect to G” and H , respectively.

In fact the sum (*) is of the form
S =(g(X) +.+ (gl ) - B9

where g : R —> Ris defined by g(x)=||. In this work, we generalize
THEOREM A , B and C to the case of |

Sy = (g0 +.+ ey, ) - Ba9)
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where g :R — R is with the following properties:
(g71) £(0)=0.
(g-2) g1is continuous, strictly decreasing on (—,0] and strictly increasing on

[0,0).

M<c for all
X

(g-3) for some positived , there exist a constants ¢ such that

x e (-6,6).

(g-4) g(—)=g(+0)=c.

Since g satisfies (g-1) and (g-2), we can write
g(x) if x20;
g(x)= .
g,(x) 1f x<0.
where g : Ry ~» Ry is defined by g,(x) = g(x) and g, : Ry = Ry is defined by
g, (x) = g(x). Since g is continuous at 0, we can assume thed in (g-3) to be such
that g, (8) <1 and g,(-9d) <1.

Now, we give some examples of g.

l.g(x) = ¢ x|",ceRy and neN.
{x+sinx if x>0

2.
8(x) ~x+sinx if x<O.

From now on, we let F, , F, be the distribution functions of § 7 ,(g(X )

respectively and for infinitely divisible distribution function F", we let

MT N" .y .c" be M,N, y,0in Le' vy’s formula of F" .

Lemma2.1

[0 ' if x <0;

1 F(x)=4 P(Xy =0) if x=0:
v 1
Fo(gr (x")=Fu(g' (x7)") if x>0,




0 if x<0;
2. Fh(x)= |

F,,',((x’) if x20.
Proof.
1. Tet xeR.

Case 1 )&<0.

14

Since g is nonnegative and x <0,

Filx) =
Case2 x=0.

Fr0) =
Case3 x>0.

Filx) =

2. Let xeR.

Casel x<0O.

Since g is nonnegative and x
Fi(x)
Case2 x=0.
Fr0) =

Ple(X )" < x)

P(#)
0.

Plg(x, )" <0)

P(g(X,)=0)
P(x, =0).

Plg(X, ) <x)

PO<g(X,)<x")

P(g;'(x") <X, <g'(x7))

Fo(g(x ") —Fy,(g;'(x")).

<0,

Pllg(X, ) <x)
0.

Pg(x,) <0)
P(g(X,) <0)

Fp(0).
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Case3 x>0.
Fi(x) = Plex, ) <x)
= PO<g(X,)<x")

= P(g(X,)<x")

1
= Fni(x’) .

Letha 22 If (X, ) isasequence of infinitesimal random vanables then so is

X)) forall 7> 0.

Proof.

Let € be any positive real number. Then

Ple(X,) >¢) = P(g(X,k) > e’]

= P(’Ynk >gl~1(E’_)]+P[Xnk <g2—](8:)]
£ P[ >gl"(e7)]+P[!Xnk|>—g;'(e:)].

1
Since (X ;) is infinitesimal , lim max P[|X ,,k| >gri(er )] =0 and
n—w 1sksk,

Xnk

1
lim max F[|X,,k| > g5 (E’)] =0.Then lim max P(g(X,,k)’ > e)z 0.

n—o I<k<k, n—w 1ksk,

Lemma 2.3 Let X ~ N(a,62) and ¥ ~ Poi(A). If X and Y are independent, then

Lc'vy‘s formula of the characteristic function of X +7Y is

T 10461001
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<«

logpy,y(t) = i(a+&)t—l<52t2+'[(e“Jr -1- ad )dK (x),
2 2 0 I+x2
-2 1f0<x<y
where K :RT — R is defined by K(x) = l x5
0 ifx>1.

Proof.

By Table 1.2.1, we have logo y(f) = iat—%cr2t2 and
A i itx

logoy () =i—t+ J(e —1———2—)dK(x),
2 0 b x

where @ y and @y are the characteristic functions of X and Y, respectively. Since

X and Y are independent, ¢ y.y =@ y@y . Then

logpy,y(t) = logoy()oy(r)

= logoy (1) +logoy (1)
: Mizgoe A % itx itx
= lat ——0¢'I" +i—t+ !(e -1- )dK (x)
2 2 0 1+x2
= i(a +&)t—lcr2t2 + J‘(ew‘ -]= ltxz)dK(x)
7 3 1+x

Theorem 2.1 Assume that F, —*— F" for every r € N. Then forevery r € N,

1. M (x)=0 on(—,0) and
1
2. N'(x)=N'(x") ae. on (0,0).

Proof.
Let » € N . By Lemma 2.2 and Proposition 1.1.1, (g(X,,)") is infinitesimal
and rowwise independent . Since F, ——> F", by Theorem 1.2.5 we know that 7" is

infinitely divisible with M"and N"are M and N in Le'vy’s formula such that
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kn
lim 3 (x) = M" (%) .(2.1.1)
N0 p)
ky
and lim Z[F,{k (x) —1]= N (%) L2.12)
ﬂ—-)OOk:l

for all continuity points of M "and N', respectively.

-~

0 if x<0;
By Lemma 2.1(2), F,,(x) = i
FL(xr) if x>0,

k, .
Then lim » Fp(x)=0 forallx <0. By (2.1.1), M’ (x )= 0 ae. on (—0,0).

n—x k=1

But M is nondecreasing. Hence M” (x )= 0 on (—x,0).

k, k, ) ]
Since lim Y [ Fp(x)-1 J=1im Y[ Fl(x7)~1 ]=N'(x") for all continuity
n-=»e0 k=1 n—>w k=1

1 :§
points x” of N', by (2.1.2) we have N”(x ) = N'(x ") a.e. on(0,0).

Theorem 2.2 If F,, —— F as n — oo then forevery r € N

kﬂ
I. lim ZF,,’k (x)=0 forallx <0 and
'I—)mk=1
ky L] 1
2. lim ) (Fr(x)-1)=N(g" (x"))-M(g7 (x")) ae.on(0,).
n—»ww k=l
Furthermore, if Fy —— F” forevery r € N then for each r € N ,we have

3. M" =0 on (—,0) and
] 1
4. N"(x}= N(gy (x7))- M (g5 (x7)) a.e. on (0,0).

Proof.
1. follows from Lemma 2.1(1).

To prove 2, let r € N. Since F, —=— F , by Theorem 1.2.5 we know that
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kn
Um > F (x)=M(x) (221
n—)aok:l

kﬂ
Hm Y (Fpy (x)~1) = N(x) L(2.2.2)
n—)mk=l

for all continuity points of M and N, where M and N are functions in

Le'vy’s formula of F. By Lemma 2.1(1), we have
1 1
F(x)= Fo (g (x7)) = Fy (g5 (x7)7) forx>0. Hence

k, K, 1 !
lim Y (FR()-1) = lim Z{Fnk (&' (x")-1-F, (g3 (xf)')]
n—)aok=] . n—eo k=|
k, 1 ky !
= lim Z[F,,k (g (xf))-l}— lim Z[Fnk (g5' (xr )‘)}
n—wo k=‘ n—xo k=1
1 !
= N(gi'(x"))-M(g5' (x7)7) ae. on (0,)
1 1
= N(gi'(x7))-M(g3'(x7)) ae.on (0,).

- Now , we suppose that F;' —=—>F" forevery re N.

By Lemma 2.2 and Proposition 1.1.1, (g(X,;)") is infinitesimal and is rowwise
independent . Since F, —=— F", by Theorem 1.2.5 we know that F” is
infinitely divisible with A" and N " as the functionsM and N in Le'vy’s formula

and are such that

ky
m Y Fu(x) = M’ (x) ..(22.3)
n—w k=1

kn
im Y (Fp()-1) = N'(x) ..(2.2.4)
>0 k=1

for all continuity points of M"and N”, respectively.
Hence, by (1) and (2.2.3) we have M " (x) =0 a.e. on (-,0). But M is

nondecreasing. Hence M’ (x )= 0 on(—x,0). By (2) and (2.2.4) we have
) L
NT(x)}= N(gi' (x")-M(g5' (x7)) ae. on (0,).
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Theorem 2.3 Assume that
1. forevery re N, Fy —*—>F" as n — o and
2.F"—">H as r > o,
Then H is one of the followings
1. a degenerate distribution function
2. a Poisson distribution function
3. a normal distribution function
4. the distribution function of the sum of two independent random variables
one of which is normal and the other is Poisson.
Proof.

Let r be any natural number. Then, by Theorem 2.1 we have M " =0 on (—=0,0)
i
and N"(x)=N'(x") a.e.on (0,). Since F" —2 5 H asr — 0,

by Theorem 1.2.4, we have

lim M " (x) =M (x) for all continuity points x of M" .. 23.1)
r—o

lim N"(x)=N"(x) for all continuity points x of N ..(2.3.2)
r—»

limy”" () =y"(x) ...(2.3.3)
=50

) €
lim E{ fu?dM” @) +(c")? + [u 2dN’(u)}

e_)0+ r—o 0

E=0+r oo

0 €
= lim m{ [u?dM” () + (") + [u 2dN’(u)} =(c")? ...(2.3.4)
0

-E
where M~ ,N',y' and o are associated with H in Le'vy’s formula.

This shows that M~ =0 a.e. on (—0,0) . Since M *is nondecreasing,

M" =0 on (-20,0) . And by appendix,

] 1 o+ : .
N ()= lim N'(x7) = Nl(l_) x>l
o N'(1T) if 0<x<l.

a.e. on (0,).



>" * Tt 1 .
Since N is nondecreasing, N (x) = N'(1")y if x>1
N'@T) if 0<x<]1,

on (0,¢0) .

But N (0)=0,s0 N'(1*) =0.
Thus

0 if x>1 ;

N (x)={1v‘(1‘) if 0<x<l,

and M* =0.

Casel. o =0 and N =0 .

It follows from Table 1.2.1 that H is degenerate.

Case2. o #0and N =0 .

It follows from Table 1.2.1 that H is a normal distribution function.

Case3. o =0 and N takes one jump .
_N@)
~—
From Table 1.2.1 we see that H is a Poisson distribution function.
N
5 ¢
For any constant m ,we note that the charactenstic (p:,, () of H(x—m)

Subcase3.1 y =

Subcase 3.2 y‘ #*—

is @™ " (1), where @ is the characteristic function of H . Hence for
__ 2N

2
logg,, (1) = loge™ o (1)

we see that

20

= imt+logQ (f)
" 0 i ix *
= imt+iy t+0+0+ J(e‘”‘ -1- 5)AN " (x)
o 1+x
N'a) .y i o
= (- N+0+0+ [ (™ ~1-——3)aN"(x).
2 o 1+x

By Table 1.2.1 we see that H(x —~m) is a Poisson distribution function.
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Cased. o #0 and N~ takes one jump.
By Lemma 2.3, H is the distribution function of the sum of two independent

random variables one of which is a Poisson and the other is 2 normal .,

Theorem 2.4 Assume that F, ——> F” as n — o forevery r € N and
F,——>Fasn—>o.If FF—“3H as r - oothen
1. M (x)=0 on (=0,0),

2, N'(x)={N e W B Stwt
(gy (I")-M(g, (1)) ifO<x<l,
on (0,e0),
3. M(g3' M) = Ngi ' (1*) =0,
where M and N are in Le' vy s formula of F and M “and N are in Le'vy s formula
of H.
Proof.
Let r be any natural number. Then by Theorem 2.2 we have

~

M" =0 on (—»,0) ...(2.4.1)
1 |
and N7 (x) = N(g7' (x"))-M(g5" (x")) a.e. on (0,) L (242)

Since F" —¥> H as r =  , it follows from Theorem 1.2.4 that there exist
nondecreasing functions M :R™ — R and N “:R* >R where

M (~0) = N"(0) =0 satisfy (2.3.1) - (2.3.4).

By (2.3.1) and (2.4.1), we see that M =0 ae on (—0,0) .Since M'is
nondecreasing, M =0 on (—0,0). Then (1) holds. By appendix, (2.3.2) and

(2.4.2) we have
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{ 1
N'(x)= Tim N(gr‘ (xT)-M(g3' (7))

N(gr‘a N-M(ga' (") if x>1;
N(g,“(l N-M(g5 (7)) if0<x<l.
ae.on (0,0).
Since N is nondecreasing,

N2 {N(gr‘a D-M(g'a*) i x>1;

. (2.4.3)
NE ™ ))-Mgyla™) ifo<x<l.
on (0,0).

But N‘(+00)=0, S0

. 0 if x>1;
N'(x) = { 2 . (2.4.4)
N @) -M(g7' (17) if0<x<l.

on (0,0), i.e. (2) holds. From (2.4.3) and (2.4.4) we have M (g5’ (1I*)) = N(g; ' (1*)).
Since 0= M(—o) < M(g{l ) =N(gr 11%)) <N(40) = 0, (3) holds.

#
Theorem 2.5 Assume that F, —~ 3 F as n—> . Then foreach re N and

suitably chosen constants B, (r) , F, ——>F"as n— o if and only if
1
k, &) , o
Lotim im3{ e dFy 0+ [e0 dFy ()
0 1

g—0* "_)wk =1

g5'(")
g (")
—( j glt) dF, (D + jgt) dF,(1™)?* }=cl < and
’ g (8')
k, & (E’)
2. lim lim Z{ Ig(t)zrank(t)+ Ig(t)z’ F ()
e—0" n—ye0 ; 0
£ (E')
&' ()
= ( I glt) dF (O + Ig Fa(” )2 = o2 <,
: 0

g2 (5’)
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Proof.

Note that, for eache > 0 we have
[£2dF ()= [xdF (x)*
|x|<e |x|<e
£ ' 1 _ 1
= [,2 -1, 7 B
= [¥?a] Fuler ") Fulga' (x7)7) |
0
£ ] 1

~([xdl Fuler 7 D~ Fu (g3 7))

0
!
g (e") , 0 .
= _[g(tl) " dFy (1) + Jg(tz)r nk(27)
0 1
g5 (e")
1
&) 0 1 1
—( [e@) dFg()+  [g(t2) dFu(t27))? [ 1 =g7" (x7) and 1, =g3'(x")]
0 1
g:'(e")
1
g (e , -~
= g0 dFy )+ [g® dF ()
o !
7' (e")
1
g (") 0
—( fe@) dFu@)+ [g@) dFu(™))>. ..(25.1)
0 '
g:'(E")

To prove necessity, we suppose that F, —~> F"as n—> .
Then 1. and 2. follow from Theorem 1.2.5 and (2.5.1).

For sufficiency, since F, —*—>F as n —> oo, by Theorem 2.2 we have

kn
lim D F (x)=0 for x <0 (2.5.2)
n-—-)ock=|

k, 1 £
lim Z[Fn'k (x)—l] =N(g1_l (x7))- M(ggI (x7)) ae. on (0,). ...(25.3)
n—0, 7

Define M :(~c0,0) = R and N” :(0,0) > R by
i 1
M7 (x)=0 and N"(x) =N(g{'(x")) - M(g5' (x")).
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Clearly, M” is nondecreasing and M " (—w0) = 0.
Now, we show that N” is nondecreasing and N” (o) = 0.

Let x,y € R* be such that x< y. Since M , N are nondecreasing, g{' is
increasing and ggl is decreasing, N(gf] (x%)) < N(g]'l (y%)) and
1 i
M(g3'(y7)) < M(g3' (x")). Then
) 1
N’ ()= N(gi' (x7)) - M(g5' (x"))
] 1
< N(gi (") -M(g3' ")

=N"(»).

Thus N7 is nondecreasing. By property (g-2) and (g-4), we have

1 1
lim g7'(x” )= and lim g5'(x")=—c.Hence N”(+0)=0.
X—>0 X—y0

By .assumptions 1, 2 and (2.5.1) we have

_— kﬂ
tim Tm 3 { [x*dFj(x)-( [sdF()* }
eS0T IR e |x|<e

k'l
= lim lim > { [x*dFp(x)-( [xdF(x)* }=0} <co. .(2.5.4)

0" ns0 kol |ofee lxf<e
By Lemma 2.2 ,(2.5.2)-(2.5.4) and Theorem 1.2.5, F, —— F", where Fisa
distribution with respect to M",N" and o2 .
#

Theorem 2.6 Let F, —*—> F and F, ——>F as n—> o forall re N.
Then F" —— H asr — « if and only if

1. M(x)=0 for all x<g5'()

2. N(x)=0 for all x> gy (1)

3. lim 0,2. = (Gt)2
F—>e0



25

where the functions M, N are associated with F | the constantcf is associated with

FTandc" is associated with A , through the Le'vy’s formula.

Moreover, we know that

4.if 6" =0, M is continuous at g5 () and N is continuous at g; (1) then H is
a degenerate distribution function.

5.if 6" #0, M is continuous at gE'(I) and N is continuous at g,‘] (1) then H is
a normal distribution function.

6.if 6" =0, M is discontinuous at g;'(1) or N is discontinuous at g (1) then

H(x—m) is a Poisson distributionfunction, for some constant m .

7.if 6" #0, M is discontinuous at gil(l) or N is discontinuous at gy’ (1) then

H is the distribution function of the sum of two independent random variables one
of which is a normal and the other is a Poisson.

Proof.

Forr>2 and O0<e< min((gl(é))’)(gz(_g))’)) we have
1 1
max(g;' (e7 ), g5'(e") |) <& and

0 €
0< [uldM” (u)+ jusz'(u)

—£ 0"
1 l
= 0+ J' 2d[ N(gT ) -M (g5 ™)) | (by Theorem 2.2 (3) and(4))
0+
&) &' 1 1
= I(gl(fl)) "dN(1) - J(gz(fz)) dM(t;) [t =gi' (u7) and 1, =g3'(u7)]
0* 0"
g (5')
= [ ave + J(gz(z))” am 1)
° _ & Ier)
81 (5')
( [y ave) + = _[(8'2(‘ )" dM (1))
O+

g2 (8’)



3 0-
<S¢ [ 1) aN@) + [(g,@) dM()
-0+ -8 .
[ 5 o- ]
< [N aN @)+ [(g,0)) dM ()
_0-' _8 =
E 2 0" 2
= ¢ '—g‘(’)] tYWN () + |‘[—g2(’)] £ 2dM (¢)
o f A
[ 5 0-
< c?¢| [t%AN @)+ [t?dM () |. (by property (g-3))
_0* _8

0~ (3
Then 0 < lim lim { [u?dM” (u) + [u?aN" () }

e—>0t r—ow o+

e>0" ro® ol =

& 0~
< lim lim ¢2¢ jz 2dN (1) + jtZdM(z)]
= 0.
I £
Hence lim lim{ [u’dM" (u)+ [u?aN" @) } = o.
g0V r—Hw i o

Similarly, we have

0~ £
lim tim{ [u?dM" @)+ [u?dN"(u) } =0.

0% r oo o

To prove necessity, we suppose that F* —>3H as r — .
p pp

k

Since F, —*>F , by Theorem!.2.5 we have lim 3" F, (x) = M (x)

n—-mk=l
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..(2.6.1)

..(2.6.2)

...(2.6.3)

kﬂ
and lim Z[F,,k(x) —1] = N(x) for all continuity points of M and N. Then (1)
n—w)k=l .

and (2) follow from Theorem 2.4(3) and the fact that M and N are nondecreasing

and M (—o) = N(0) =0,
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Now, we will show (3).

Since F'" —*—> H , by Theorem 1.2.4 we have

0 £
lim lim{ («?aM" @)+ + [u*dN" () )
=07 r—wm % h

0 £
= lim lim{ [u?dM"@)+c] + [utdN" () }= (") (264
- Q

£—=0% row

By (2.6.2) - (2.6.3), we see that limo?=(c")2and lim o2 = (c")?.
r—w r—x

- *
So lim 0'3 =(c")?.
r—oo

To prove sufficiency, we assume that (1), (2) and (3) hold.

Since F,—“>F and F, —>F" as n— o, by Theorem 2.2 , M” =0 and
1 !
N7 (x)= N(gi" (x7)) - M(g3' (x7)) ae. on (0,0).

Let N* :R* > R be defined by N*(x) = lim N" (x) andM R~ >R be
r—»0 ‘
defined by M *(x) = lim M (x).
r—o

Then M~ =0 on (—0,0) and by assumptions (1) , (2) and appendix

0 " S ol

ne= {N<gr‘ A)-M(g5' ) if0<x<l.

a.e. on (0,0).

- * . -
Since N is nondecreasing,
0 if x>1;

N'(x)= . e
N(gi' @™ ))-M(g3'a™)) ifo<x<l.

on (0,) . ..(2.6.5)

That is M ™ () = N* (+00) = 0.

From assumptions 3 and (2.6.2) we have



lim lim { qudAl (1) + o2 +Iu2dN’(u)}

£-0" roo 0

= limo’

r—w

= (c7)2.

Smularlyby (2.6.3), lim lim { Jusz (M) +G> +ju2dN’(u) } = ()2

e—=0" row € 0

By Theorem 1.2.4, we have lim F'(x) = H(x), where H is the infinitely
r—w

divisible distribution determined by M ,N",y" and (c")?.

We note that, by (2.6.5) N‘(x) =0 i1f M is continuous at gil(l) and N is
continuous at gy : (1) and N takes one jump if M is discontinuous at gil (1) or
N is discontinuous at gl'l 0.

Hence Le'vy’s formula of H can be represented by M, N*,(O'-)2 and 'y* .

Casel. o =0,M is continuous at ggl(l) and N is continuous at gl" .
It follows from Table 1.2.1 that H is degenerate.

Case2. o #0,M is continuous at gil(l) and N is continuous at g{'(l).
It follows from Table 1.2.1 that H is a normal distribution function.

Case3. ¢ =0 andM is discontinuous at g5 (1) or N is discontinuous at
g,

Nl ) -M(gr' @)
2
From Table 1.2.1 we see that H is a Poisson distributton function.

N(gi' (1) -M(g5' W)
2

We note that, for any constant m the characteristic (p; (1) of H(x—m)

Subcase3.1 y =

Subcase32 vy = -

e™ " (t) where @' is the characteristic function of & . Hence for

S 2y + N(gy (12)) M(g5' () we see that
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log@, (1) = loge™o (1)
= z‘mt+log(p*(t)
. o itx .
= imt+iy t+0+0+ [(£ -1-——)dN (%)
e 1+x
Nz ) - M (23 o / .
—o + x

By tablel.2.1 we see that H(x — m) is a Poisson distribution function.
Case d4.if & #0 and M is discontinuous at gil (1) or N isdiscontinuous at
gr '1) then, by Lemma 2.3, H is the sum of two independent random variables

of Poisson and normal .
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Appendix

Let A and B be any neighborhoods of 1.

Let N:4A—> R and h:B—>R.

t
Then 1. Foreach x>1,if lim N(A(x")) =/, and lim N(A(?))=1,
roo -t

then [, =1,,
A !
and 2. For each O <x<1,if lim N(h(x")) =/, and lim N(A(t)) =1,
r—yo —1"

then ll = 12 &

Proof.

L. Suppose that the assumption holds. Let £ >0 be given.

Then there exists K € N , with N(h(x:)) -5 < % , for all natural number » 2 XK

and there exists 8 >0 such that for all #,if 0 <f—1< 3, then 'N(h(t))—12|<§.

1
For N, > max{ K,log,,5x },we have |N(h(x"))-1, <§.

1
Since N, >logpsx, 1+8)™ >x,1+8>x™ >1 which implies that
1 1

0<x™ —1<8 .Hence N(h(xﬁl))—l2 <§.

1 1
Thus [}, — 5| <l = N(h(x" )|+ [N(r(x ™)) - | <. So 1) =1,

2. Similar to 1.
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