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Image processing requires an enormous storage, processing, and communication. To
reduce this amount of data, image compression is necessary. We applied wavelet transform,
which is an up coming technique and very powerful tools for signal processing, to color image
compression. In this thesis, we use Daubechies 20 wavelet transform to the image compression
procedure. There are five steps in the procedure. First, we extract color image into RGB
components. Second, we transform RGB components to wavelet coefficients by using wavelet
transform and pyramid algorithm. Third, we cut oft some coefficients and scaled the results to
eluminate less important data. Forth, we quantize wavelet coefficients by LBG vector quantization
according to the significant of wavelet coefficients. Finally, we apply arithmetic coding, which is

a lossless coding process, to wavelet coetficients.

We test our algorithm with the images of Lena and Peppers. Lena 1s compressed
with compression ratio 50-60 yielding PSNR around 34-35 and compression ratio 80-100 yielding
PSNR around 30-31. Peppers is compressed with compression ratio 55-58 yielding PSNR around
34 and compression ratio 80-100 yielding PSNR around 30. Comparing with JPEG, this
technique gives high PSNR than JPEG, at high compression ratio or compression ratio over 90,

but less PSNR at low compression ratio or compression ratio below 85.
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CHAPTER 1

INTRODUCTION

1.1 Problem Identification

In the technology of computer development, transmission and storage of
information is essential. The problem from a data storage and transmit perspective is
growing, used of image in computer applications is important but it is not economical.
A screen of text, consisting of 80 columns by 25 rows, can contain a maximum of 2000
characters. In comparison, consider a VGA 640 by 480 pixel 16-color image displayed
on a personal computer screen. The image would require 640x480 bits of storage
without considering the fact that four bits are required to represent the color of each
pixel. Thus, the image would require 153,600 bytes of storage, or approximately 77
times the storage required to represent a full screen of text [1]. Image compression can

solve these problems. Many images compression have been presented by researchers.

In this thesis, we present one technique for 24-bits color image compression. We
apply wavelet transform to image compression. The concept that wavelet transform can
decompose data in a set of subimages with different frequency bands, we can cut off

some higher frequency which is less visible to the eye. The wavelet coefficients which



are very small or close to zero will be ignored, and the less amount will be kept to

encode the information[2].

1.2 Objectives and Usefulness of This Work

The purpose of this thesis is to study wavelet transform and color image

compression and to apply wavelet transform to color image compression.

The usefulness of this work is to obtain a technique for color image compression

using wavelet transform.

1.3 Scope of Work

In this thesis, we developed a procedure of color image compression using

wavelet transform, vector quantization and arithmetic coding.

- Analyzing the process consist of significant of wavelet coefficients for

reconstruction in each shape and each level.
- Analyzing the vector quantization that appropriate for wavelet coefficients.
- Applying arithmetic coding to wavelet coefficients to be a binary file.

This thesis is organized into seven chapters. Chapter 2 reviews the literatures.
Chapter 3-5 are about theoretical background. We discusse about the wavelet transform
in Chapter 3, the vector quantization in Chapter 4 and e_lrithmetic coding in Chapter 5.
Chapter 6 provides the design of out color image compression procedure, experimental

results and discussion. Chapter 7 is conclusion.



CHAPTER II

LITERATURE REVIEW

Image compression addresses the problem of reducing the amount of data
required to represent a digital image. Image compression techniques are divided into
two main techniques: transforms and non-transforms. The non-transform techniques
such as PCM (Pulse Code Modulation) and DPCM (Differential Pulse Code
Modulation), based on the signal model, compress data without transforming it. The
transform techniques such as DCT (Discrete Cosine Transform), FFT (Fast Fourier
Transform), and wavelet transform compress data by transforming the data to
coefficients. This is the same principle employed by many efficient transform
techniques which represent data by very small coefficients or close to zero. However,
the transform process cannot reduce the amount of the data to be compressed. One
approach to reduce the number of bits required for representing image is to quantize

the coefficients by means of vector quantization.

In many applications such as computer graphics and graphic on internet, they
are necessary to deal with color images. Typically, a color image is represented by
three color planes corresponding to red, green, and blue. Compression of a color image

can be done by encoding each plane independently using the above transformation and



vector quantization techniques. We shall review the underlying principles relating to

wavelet transform and color image compression in the sections below.

2.1 Review of Literatures Related of Color Image Compression

Lori A. Overturf, Mary L. Comer, and Edward J. Delp [7] presented an
algorithm that utilizes mathematical morphology for pyramidal coding of color images.
This method 1s lossy color image compression by using block truncation coding at the
pyramid levels to attain reduced data rates. The pyramid approach is attractive due to
low computational complexity, simple parallel implementation, and the ability to
produce acceptable color images at moderate data rates. The structure of this
morphological pyramid allows quantization errors to pass from one level of the
pyramid to the next, similar to the structure used by Ho and Gersho [8]. This research
compressed color image by transformed RGB components [9] to the YIQ components
[9] used in NTSC television transmission [10], which Y component is the luminance
image, and the I and Q components are the inphase and quandrature chrominance

images.

2.2 Review of Literature Related of Wavelet Transform and Image Compression

Mar Antonini, Michel Barlaud, Pierre Mathieu and Ingrid Daubechies [3]
proposed an image compression scheme by using biothogonal wavelet transform and
vector quantization using a multiresolution codebook. To encode the wavelet

coefficients, the author proposed a noise shaping bit allocation procedure.
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Furthermore, this research presented a progressive transmission scheme, which showed

that the wavelet transform is particularly adapted to progressive transmission.

Amir Arirbuch, Danny Lazer and Moshe Israeli [4] presented a scheme for
image compression for black and white images based on the wavelet transform. After
applying wavelet transform, the wavelet coefficients are quantized by vector
quantization (VQ) using Linde-Buzo-Gray (LBG) algorithm [5,6]. Otherwise, the
author represented an error correction method, which approximates the reconstructed
coefficients quantization error. By this method, distortion i1s minimized for a given
compression rate at low computational cost. This research achieves a compression

ratio of 60-65 and PSNR of 30-33 for 512x512 black-and-white images.

2.3 Review of Literatures Related of Vector Quantization

Yoseph Linde, Andrus Buzo and Robert M. Gray [5] presented the LGB vector
quantizatiqn algorithm based either on a known probabilistic model on a long training
sequence of data. This algorithm for vector quantization is the most popular which is
used for speech, signal and image compression. This argorithm is also used in this

thesis.

In this thesis, we make use of color image compression strategy proposed by
Overturf e/ at. which extracts color image to YIQ, consisting of three color
components and compresses each color independently. On the other hand, the

algorithm in this thesis extracts color image to RGB components. Overturf et al.’s
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method 1s a non-transform compression method, but our approach uses transform
compression method. The transformation used in this thesis is wavelet transform
introduced by Antonini et al. and Arirbuch e/ at., which apply wavelet transform on
black-and-white 1mage. Our approach differs slightly in that we apply wavelet
transform on color image. We further reduce data used to represent the image by
applying vector quantization in our algorithm using LBG vector quantization algorithm

presented by Linde ef al.



CHAPTER III

WAVELET TRANSFORM

3.1 Introduction to Wavelet

A signal 1s usually defined as an oscillation function of time and space. Fourier
analysis, a signal analysis tool, expended the signal in terms of sinusoids which is
valuable for periodic, time—invariant, or stationary signal. But in the transient,
non-stationary, or time—varying signal, the signal may change suddenly in time that

Fourier analysis is very computationally hard to detect it.

In 1940, Gabor developed windowed Fourier transform [11], which is known
as the sliding—window Fourier transform which shown in Figure 3.1. The idea is to
study the frequencies of a signal segment by segment. The size of the segment is

defined by window, which is fixed size.

Figure 3.1 The Window Function



Fourier transform compares a signal in infinite sines and cosines of different
frequency to see how much of each frequency the signal contains. Windowed Fourier
transform compares a segment of the signal to bits of oscillating curves, first of one
frequency, then of another, and so on. However, this method has some drawbacks. A
small window locates the high signal frequencies, but misses the low ones since lower
signal frequencies do not fit into the smaller window. In contrast, the wider window
shows more of the low signal frequencies, but misses the higher ones. To solve this
problem, wavelet transform is introduced. Wavelet is a function that is localized in
both time and frequency domains. Wavelets can present a large class of signal with
simple elements. Wavelet transform provides multiresolution analysis [12] with dilated
windows. The high frequency analysis is done using narrow windows and the low
frequency analysis is done using wide windows. Figure 3.2 shows windowed Fourier
analysis versus wavelets, which above is windowed Fourier analysis and below is

wavelets.

-0 @

(a) Windowed Fourier Analysis

i =S\

(b) Wavelets

Figure 3.2 Windowed Fourier Analysis versus Wavelets



According to time-frequency localization of wavelet, wavelet transform 1is
widespread in many works, such as denoising, signal processing, image processing,

communication system, radar, etc.

The basis function of the wavelet transform is generated from a basic wavelet
function /(x) together with translations (b ) and dilations (a). The scaled and

translated wavelet can be written as :

W, () = f[x _bJ (3.1)
a

where beR",aeR. f(x) is translated by f(x—5b). In the other words, f(x) is
translated by b units. f(x) is dilated by a scaling factor (a) that stretches of
compresses the wavelet. Note that the scaled wavelets include an energy normalization

term, L, that keep the energy of the scaled wavelet the same as the energy in the

Ja

original mother wavelet. Mother wavelet is wavelet function which is not translated or
dilated. Figure 3.3 shown wavelet functions which difference scaling factor (a) and

translation factor (b).

1
0.5+ 054
0 04
-0.5+
-0.5
-14
T T T T T T T T 1 T
-5 0 5 10 15 -5 0 5 10 15
2=1.000000 b=1.000000 a=0.500000 b=5.000000
0.5
0.5+
0 0
-0.5
0.5
T 7 T T T T T T T T
-5 0 5 10 15 -5 0 5 10 15
a=1.000000  b=5.000000 a=3.000000 b=5.000000

Figure 3.3 Wavelet Functions
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The basis function of wavelet transform must satisty these properties.
1. The original signal can be reconstructed by the inverse wavelet transform.
2. The wavelet must oscillate to have its mean value equal to zero.

3. The wavelet coefficients decrease rapidly with a decreasing of the scale in

scaling function.

4. The wavelets have exponential decay so that their first low-order moments

are equal to zero. Like their names, wavelets are like wave that oscillate and vanish.

AR

I

|
(a) A Sine wave (b) Daubechies’ wavelet v,
Figure 3.4 A Wave and a Wavelet

The signal function f(x) can be described by a linear combination of wavelet
function y, , (x) by

a b

f(x) = ZZ c.jkv/‘jk(x) (3.2)

j=0 k=0

which j and k are integer indices and ¢ , are wavelet coefficients.
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3.2 Continuous Wavelet Transform

The continuous wavelet transform decomposes a signal f(x) into a set of basis

functions W, (a,b) , which is called wavelets:

W, (a.b)= [ £y, ()d(x) (3.3)

The wavelets are generated from a mother wavelet y(x) by scaling and

translation:

1 x—b
V/m/’ T ﬁ'//( : a j (34)

which a € R™,b € R

1 @ g .
The constant T is for energy normalization. The wavelets are normalized as
a

Vo, = [l de=1 (3.5)

J

So that all the wavelets which is scaled by different scaling function have the

same energy.

The signal can be reconstructed by



fe0 = [ (a.bw,,(x)d(x) (3.6)

This transformation is useful when we want to recognize or extract features.
Scaling or translating of f(x) leads to shift of the W (a,b), so that whole analysis can

be made to be scaled and translated invariant a desirable property in some applications.

3.3 Discrete Wavelet Transform (DWT)

Continuous wavelet transform output is the square of a time-bandwidth product
of a signal. For signal processing, we attempt to represent the signal efficiently with
fewer information. The DWT can reduce the time bandwidth product of the wavelet
transform output. In addition to compute the wavelet transform in digital computer, the
input and filter functions are all discrete. Like continuous wavelet transform, the DWT
decomposes the signal into a set of basis function. But the scaling functions and

translation functions in DWT are discrete.

Let [’(R) denotes the space of square integrable functions. The DWT can

represent any signal in L’ (R) by

a b

f(x) = ZZ C_,'kl//_,'k(x) (37)

=0 k=0
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where  , (x) is wavelet basis and ¢, is wavelet coefficient. If the wavelet basis is

orthogonal. This means that

(v .0, (0) = [ ()de =0, k=l (3.8)

where y, and y, are wavelet base which called expansion set, then ¢, . wavelet

coefficients can be calculated by the inner product

¢ = (LW 4 () = [FOI 4 (x) el (3.9)

The first goal of most expansions of a signal is to have the coefficients of the
expansion ¢, which give more useful information about the signal than directly
obvious from the signal itself. The second goal is to have most of the coefficients to be

zero or very small which can encode with low bit per pixel.

The discrete wavelet transform maps a function of a continuous signal into a

sequence coefficients which are zero or very small.

3.4 A Discrete Wavelet and Multiresolution Analysis

A wavelet can describe a signal by decomposing the signal into finer and finer
detail by using scaling function and wavelet function which derived from concept of

multiresolution. To decompose the signal, a wavelet spans the set of signal into
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various subspaces by the various scales of the scaling function, and describes the
different between the spaces spanned by different set of wavelet functions. In order to
understand wavelet, we will use multiresolution concept to define the scaling function

and wavelet function.

3.4.1 The Scaling Function

A set of scaling function is defined in term of integer translates of the basic

scaling function by

@, (x)=p(x-k), keE pe*(R) (3.10)

which z is integer, R is real number and L*(R) is a space of integral of square of a

modulus of a function. The subspace of L*(R) spanned by this function is defined as

v, = spanip, (x)} (3.11)
k

for all integers k. The over-bar denotes closure. This means that

f(x) = D o) (3.12)

k

forany f(x)ev,
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The size of the subspace spanned can increase by changing the time scale of the
scaling functions. A family of functions is generated from the basic scaling function by

scaling and translation by

- (x):2%g0(2-/x—k) (3.13)

whose span over k is

v, = span {(/)k g xﬂ: span{2%(plxk (x)} (3.14)

k

for all integer k € z. This means that if f(x) € v,, then it can expressed as

f(x) = D a2 x+k) (3.15)
k

For j>0,the span ¢, (x)can be larger since ¢,,(x) is narrower and is

translated in smaller steps. It can represent a finer detail of the information.

For j<0,9,,(x) is wider and ¢,,(x) 1s translated in larger step. The wide

scaling function can present only coarse information, and the span is smaller.

We formulate the basic requirement of multiresolution analysis by requiring a

nesting of the spanned spaces as
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..CU,CU,Cv,CV, CU, C..C [ (3.16)

L, DU, DU, DU,
e -~ y

Figure 3.5 Nested Vector Spaces Spanned by the Scaling Function [13]

The space that contains high resolution signals will also contain those of lower

resolution.

The @(x) can be expressed in terms of a weighted sum of shifted ¢(2x) as

p(x) = Zh(n)\/igo(bc -n), nez (3.17)

where h(n) are scaling function coefficients of filters and the V2 maintains the norm

of the scaling function with the scale of two.
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3.4.2 The Wavelet Functions

The orthogonal complement of v, in v,,, is define as w,. This means that the

members of v, are orthogonal to all members of w,. We require

(0,4, () = o, @, (Ddc=0, k=l (3.18)

for all appropriate j,k,/ €z

We now define the wavelet spanned subspace w, such that

v, =0, ®w, (3.19)

which @ is add subspace operation. In general this gives

P=0,2w,®w ®.. (3.20)

when v, is the initial space spanned by the scaling function ¢(x—k). Figure 3.6
shows the nesting of the scaling function spaces v, for different scales j and how the
wavelet spaces are the disjoint differences (except for the zero element) or the

orthogonal complements.
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W, 1w 1w Lo, U; DUV, DU, DY,

L .
- ,»
// <

Figure 3.6 Scaling Function and Wavelet Vector Spaces [13]

Since these wavelets reside in the space spanned by the next narrower scaling

function, w, c v, , they can be represent by a weight sum of shifted scaling function
¢(2x) by

w(x)=> h(mW\2pQ2x-n), ne: (3.21)

for some set of coefficients A, (n) which can view as a filter.

The function w(x) is mother wavelet which can expand functions by

V(0 =2y x-k) (3.22)

where 27 is the scaling of x (; is the log, of the scale), 277k is the translation in x,

J
and 22 maintains the (perhaps unity) L’ norm of the wavelet at different scales.
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A set of functions ¢, (x) and y,, that we have constructed can be span any

function f(x) e L’(R) as

F0) = Yo, +3 S dG. kw0 (3.23)

k=—w Jj=0 k=-0

which c(k) and d(i,k) are wavelet coefficients. If wavelets and scaling functions are

from orthogonal basis, the wavelet coefficients can be calculated by inner products as

c(k) = (g(0),0,(®) = [, (x) dx (3.24)

and

d(j.k) =(g(x)y, () = [g(w,, (x)dx (3.25)

3.5 Filter Banks and The Discrete Wavelet Transform

In digital processing, the filtering is to convolve a sequence of numbers or filter
coefficients with the input signal. For an input sequence x(»n) and filter coefficient

h(k) , the output sequence y(n) is given by

y(n) = Z h(x)x(n—k) (3.26)
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Wavelet filter is designed for separating signals. We can separate and convolve

the signal by two basic operations called down-sampler and up-sampler.

3.5.1 Down-Sampling

The down-sampler takes a signal x(n) as an input and produces an output of
y(n) =x(2n), which is used in forward wavelet transform. The wavelet transform
coefficients at a lower scale level can be expanded in terms of higher scale as shown in

these equations

¢, (k)= Z h(m = 2k)c,,,(m) (3.27)

n

and
d (ky="> h(m=2k),, (m) (3.28)

These equations show that the scaling and wavelet coefficients at different
levels of scale can be obtained by convolving the expansion coefficients at scale j by
the time-reversed recursion coefficients A(—»n) and A (—n) then down-sampling to
give the expansion coefficients at the next level of j—1. In the other word, the scale
— j coefficients are filtered by two filters with coefficient h(__”’) (low pass filter) and
h,(—n) (high pass filter). After down-sampling gives the next coarser scaling (d;) and
wavelet coefficient (¢, ). This filtering and decimation can be repeated on the scaling

coefficients to give the two-scale structure in Figure 3.7.
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Figure 3.7 Two-Stage Two-Band Analysis Tree

3.5.2 Up-Sampling

The Up-Sampling means the input signal x(n) is structured to twice its original
length, x(n) = y(2n), which is used in backward wavelet transform. To reconstruct a
finer wavelet coefficient, the finer coefficient can be made from a combination of the a
scaling function and wavelet coefficients at a coarse resolution as shown in this

equation.

¢,u(k)=> ¢ ,(mh(k =2m)+> d (m)h(k —2m) (3.29)

n m

This equation is evaluated by up-sampling the ; scale coefficient sequence
¢,(k), which means double its length by inserting zeros between each term, then
convolving it with the scaling coefficients A(n). This combining process can be
continued to any level by combing the appropriate scale wavelet coefficient. The

resulting a two-scale tree is shown in Figure 3.8.
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3.6 Daubechies Wavelet Filter Coefficients

=
| —*y 8o(m) |
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The wavelet filter was discovered by Daubechies called “Daubechies wavelet

coefficients” [14]. This class includes numbers ranging from highly localized to highly

smooth. The most localized number is called “DAUB 47, which has only four

coefficients, c,...,c,. DAUB-4 can form to be a transformation matrix as

C G

G 6

S
Lcl — ¢,

Figure 3.9 Daubechies 4’s Wavelet Filter Matrix [15]
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Here blank entries signify zeroes. Each row generates one component of the
data. The data rows are convolved with the filter coefficients c,,...,c,being a
smoothing filter, called H, something like a moving average of four points. In the same
way, even rows are convolved with filter coefficient ¢;,—c,,c,,—c,, being a non-
smoothing filter called G. Actually the ¢’s are chosen so as to make G yield, insofar as

possible, a zero response to a sufficiently smooth data vector.

The results in the output of H, decimated by half, accurately representing the
data’s “smooth” information, and out put of G, also decimated, is referred to as the

data’s “detail” information.

Requiring matrix in Figure 3.9 to be orthogonal, its inverse is its transpose
matrix that is used in the reconstruction. The reconstruction original data vector of
length N is performed by using its N/2 smooth or s-components and its N/2 detail or d-

components.

3.7 Discrete Wavelet Transform and Pyramid Algorithm

The wavelet transform is made by calculated the filter banks being an on-going
string of coefficients at each of the scales. If the input of the filter banks has a certain,
the output at the next lower scale will be two sequences, one of scaling function
coefficient ¢, , , and one of wavelet coefficients d,_, .each, after down-sampling,

being at half the rate of the input. At the next lower scale, the same process 1s done on



the scaling coefficients to give a total output of three strings, one at half rate and two at

quarter rate. The diagram of Forward Wavelet Transform is shown as Figure 3.10.
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Figure 3.10 Wavelet Decomposition Using Pyramid Algorithm

From Figure 3.10, we have seen that the wavelet transform consists of applying
a wavelet coefficient matrix like hierarchically, first to the original data vector of
length N, then to the ” smooth” vector of length N/2 and then to the “ smooth-
smooth” vector of length N/4, and so on until only a trivial number of “ smooth-...-
smooth” components ( usually 2 ) remain. The output of the wavelet transform consists
of these remaining components and all the “detail” components that where

accumulated along the way.

We called the final values <, “ Mother-Function Coefficients ” or “Mother

Wavelet”.



CHAPTER 1V

VECTOR QUANTIZATION

Vector quantization is a method of grouping inputs together and encoding them
as a single vector. Vector quantization is used in lossy compression to reduce the

transmission bit rate or the storage of image and speech compression.

4.1 Definition of Vector Quantization

A vector quantization is defined as a mapping Q of K - dimensional Euclidean

space R* into a finite subset ¥ of R* . Thus,

iR ST 4.1)

where Y=(%,;j=1,2,...,N ) is a set of reproduction vectors, N is the number of
vectors in Y . It can also be seen as a combination of two functions, an encoder and a
decoder. The encoder views the input vector x and generates an index of the
reproduction vector specified by Q(x), and the decoder uses this index to generate the

reproduction vector x. If a distortion measure d(x,x) which represents the cost
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associated with reproduction vector x by x is defined, then the best mapping Q is the

minimization of d(x, x).

The simple distortion measure used in this thesis is a square error distortion
given by

~

X—X

d(x,x) =

5 K-l ,
sls, ~1,) (4.2)
=0

In generally, there are other distortion measures[6], but they are not a good

practical computation and implementation.

4.2 Quantization Process

In vector quantization process, we generate n = | x m blocks or vectors to
represent the source data, which are grouped into n =1 x m blocks or vectors. For
example, we group source data to be blocks or vectors which will be the input vectors
of vector quantizer. Vector quantizer is composed of encoder and decoder. The
encoder and decoder have a set of n-dimensional vector called codebook. The vector in
a codebook is called code-vectors which are selected to be represent the input vectors
from original image. Each code-vectors have index to indicate the address of that code-
vectors. In the encoder, the vectors from source data is compared with the codevectors
in codebook to find the closest vectors, and then the vectors are formed to reconstruct

the data, which have loss some information.
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Figure 4.1 The Vector Quantization Procedure [16]

Then we turn to the important procedure in the design of vector quantizer, the

generation of the codebook.

4.3 Codebook Generation

Codebook is usually generated by using a training set of images that are
representative of the images to be encoded. To encode the image, the optimal
codebook would be generated by using the image itself to be training set. Codebook
generated by this procedure is called local codebook which usually results in good

performance for moderate codebook sizes. This is because most of the images features
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such as adges, lines, etc. that are representing image are adequately represented by

code-vectors.

There are many ways to generate the vector quantizer codebook, although most
of them are based on the popular approach known as Linde-Buzo—Gray ( LBG )

algorithm.

4.4 Linde-Buzo—-Gray (LBG ) Algorithm [5]

Let the expected distortion be approximated by the time averaged square error

distortion given by the expression
1 N-1 k.
D(x,q(x)) = > d(x;,%)) (4.3)
' J=0

The step in LBG algorithm are :

1. Let N = number of levels: distortion threshold & = 0.Assume an initial N
level reproduction alphabet /AIO, and a training sequence (x,;j=0,1,2,

..., n-1), and m = number of iterations, set to zero.

2. Given 121,,, =(y,;i=1,2,...,N), find the minimum distortion partition
P(A)=(S;:i=1,2,..,N) of the training sequence ; x; €S, if

d(x,,y,)<d(x,,y,),forall I. Compute the average distortion

n-1

D, = D[(4,,P(4,)]=n-1Y min d(x,,y) (4.4)
=0 V< '



~

3. If (D,.,-D,)/D, <e, stop the iteration with A4  as the {final

m

reproduction alphabet; otherwise continue.

4. Find the optimal reproduction alphabet JG(P(/:L”)) =(x(S)i=1,2, ..

4

N)for P(4,) where
" . 1 n
Sy = D%, (4.5)
LS,‘ _/'I.\‘/E.\',.
5. Set A4,,, = %(S,), increment mto m+1, and go to (2).

The flow chart of this iteration is shown in Figure 4.2. In the algorithm in
Figure 4.2 an initial reproduction alphabet A was assumed in order to start the
algorithm. There are a number of techniques to obtain the initial codebook as shown in

the next topic.
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Figure 4.2 The Flow Chart of LBG Algorithm

4.5 Codebook Initialization [17]

4.5.1 Random Codes [18]
This approach is to use a random initial codebook where the first N vectors of

the training sets are chosen as the initial codebook.
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4.5.2 Splitting [5]

In this approach, we start with the controid for the entire training set, and this
single codeword is split to form two codewords. The LBG algorithm is applied to get
an optimal codebook of size 2. Then the algorithm is continued until the codebook is

split to size N.

4.5.3 Pairwise Nearest Neighbor (PNN) Clustering [19]

Starting with N clusters which contain the training vectors, the two closest
vectors are merged to create the optimal ( n-1 ) cluster codebook. This algorithm is
repeated until the number of clusters equal to N. The centroids of these cluster are then

used as the initial codebook.

In this thesis, we used the PNN initialization approach to initial the codebook.

4.6 The Empty Cell Problem [16]

In generating codebook process, if there are no input training point gets
assigned to the initial output point, this is a problem because we will end up with
output point in codebook that never used. A approach that can avoid the empty cell
problem is to remove an output point that has no inputs associated with it, and replace
it with a point from the quantization region. This can be done by selecting a point at

random from the region with the highest population of training vectors.



CHAPTER V

ARITHMETIC CODING

Arithmetic coding is especially useful when dealing with sources with small
alphabets, such binary sources, and alphabets with highly skewed probabilities. In
applications where the alphabet size is large probability of the most frequenly occurring

symbol ( P ax ) is generally quite small. However, in cases where the alphabet is small
and the probability of occurrence of the different letters is skewed, the values of P4« can

be quite large and the Huffman code can become rather inefficient when compared to the
entropy. One way to avoid this problem is to block more than one symbol together and

generate code, which is the concept of arithmetic coding.

Arithmetic coding is operation by determining the probability or frequency of each
symbol. Next, we list the symbols in a fixed order, usually by ascending or descending
probability or by the order of the symbols in the symbol set. Any order can be used as long
as it is the same order for both encoding and decoding. The sum of the individual
probabilities is always unity. The next step is to subdivide unity into ranges, giving each

symbol its own range and assigning the length of the range so that it equals the probability
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of the symbol. Once this is accomplished, we are ready to construct a number, which

represents a sequence of symbols. The process is perform the following steps:

1. Select the first symbol in the sequence and locate the ranges associated with

the symbol.

2. Select the next symbol. Multiply the range associated with the previous symbol
by the low and high ends of the range of the current symbols. Add the results
to the low range of the prior symbol to obtain a new low range and new high

range for the current symbol.
3. Continue step 2 until all of the symbols to be encoded are processed.

To illustrate the operation of arithmetic coding, let’s first assume alphabet
restricted to the set of eight symbols [d, e, f, g, n, r, u and space]. To simplify illustration
of the operation of arithmetic coding, alphabet was also restricted to lowercase symbols.
Since arithmetic coding uses the probability of occurrence of each symbol in the alphabet
to construct appropriate coding intervals, the probability of occurrence to each symbol is

assigned in the Table5.1.

Once the probability of the occurrence of each symbol is known, the range of each
symbol is assigned upon its probability. This ranges assignment subdivides the interval
from zero to one [0,1) into subintervals that correspond to the probabilities of each

symbol.
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The table 5.2 illustrates the assignment of subinterval ranges to each symbol in out
alphabet. Symbols can be assigned to subintervals in any order, as long as the compressor
and expander use the same assignment. However, subinterval range assignments are
normally based upon the sequence of symbols in the alphabet. In examining Table 5.2,
note that since the symbol probabilities sum to one, the subinterval ranges fill the interval

between zero and one.

Symbol Probability
D 0.1
E 0.3
E 0.1
G 0.05
N 0.1
R 0.2
U 0.15
Space 0.1

Table 5.1 Probability of occurrence of alphabet symbols
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In examining the range intervals in Table 5.2, note that each symbol owns the
entire range interval up to but not including the high number. Thus, d has the range 0.0 to
0.0999 ... and so on. As symbols that form a message are processed, each new symbol

reduces the range of the floating-point number used to represent the message.

Symbol Probability Range
d 0.1 [0.0,0.1]
e 0.3 [0.1,0.4]
f 0.1 [0.4,0.5]
g 0.05 [0.5,0.55]
n 0.1 [0.55,0.65]
r 0.2 [0.65,0.85]
u 0.05 [0.85,0.90]

space 0.1 [(0.90,1.0]

Table 5.2 Assigning subinterval ranges
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To illustrate the operation of the encoder, assume the name  fredunger’, to include
the space between the first and last name, 1s to be compressed. The first symbol, ‘f°,
results in the encoder selecting the range [0.4,0.5] to allocate to the symbol. The next
symbol, ‘r’, owns the range [0.65,0.85], which narrows the new range to 65 to 85% of the
prior range. That is, the old range started at 0.4 and was 0.1 units long. Multiplying 0.65
by 0.1 and adding to 0.4 gives a new low range starting point of 0.465. Similarly,
multiplying 0.85 by 0.1 and adding the result to 0.4 gives a new high range of 0.485.

Thus, the new interval becomes [0.465,0.485].

0.4 0.465
0.0 /4 A
d / ,
0.1 / a ' 0.4652
¥ 4 .
//
/
4
e ’/ e
4 ///
04 / Y 04673
f il
//
: 0.5
g A
- 0.55
n \
0.65 N\ A 0.465
N\
r Y r
0.85 N ¥...0.485
9 N\
P \
space \\
1.0 <4 ~
0.5 0.485

Figure 5.1 Show the Procedure of Creating Subinterval
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The third symbol in the message is ‘e’, which has the interval [0.1,0.4]. Since the
previously computed range commenced at 0.465 and was 0.02 units in length, we multiply
the length of 0.02 by the starting interval of 0.1 and add the result to 0.465 to obtain the
new low range starting point of 0.4652. Similarly, we multiply the prior range length of
0.02 units by 0.4 and add it to 0.465 to obtain a new high range terminating point of 0.473.
Thus, encoding the third symbol results in the new interval [0.4652, 0.473]. This
procedure is shown in Figure 5.1. By now the encoding pattern should be observable. That

pattern can be summarized as follows.
start with the range [0,1] where low (0) becomes 0 and high (0) becomes 1
Then fori> 1
low(i) = low(i) +[ high(i-1)-low(i-1) *low(i)]
high(i) = low(i) + [high(I-1)-low(I-1)*high(I)]
Continue iterat3 until all symbols in sequence are encoded.

where low(i) represents the low interval of the ith symbol encoded and high(i)

represents the high interval of the ith symbol.



CHAPTER VI

COMPRESSION PROCEDURE DESIGN AND RESULTS

In this thesis, we proposed a procedure for color image compression by using
wavelet transform. This compression is lossy image compression. The concept of this
thesis is that wavelet transform can decompose data to be a set of subimages with different
frequency bands, so that we can cutoff some higher frequency which less visible to the eye
and reconstruct data with some loss. Further wavelet coefficients only indicate change,
areas with no change or very small change give small or zero coefficients, which can be
ignored, reducing the number of coefficients that have to be kept to encode the
information. In addition, only wavelet transform cannot give high compression ratio. An
important procedure to increase compression ratio, we added vector quantization and
arithmetic coding in this compression algorithm. Our compression procedure is showed in

Figure 6.1.

We used lena and peppers to be tested images. Our tested images are 256x256

pixel 24-bits color images in Tiff format.
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Figure 6.1 Compression Procedure
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6.1 Procedure of Image Compression
=

Step 1 Extraction color image into RGB plane.

The original Tiff format image is a binary file. To get the data that presents the
image, we have to extract the image into three text files: red, blue and green. Each file has
the same format which represents integer numbers of the color intensity in each pixel. So,
if the image have nx n pixels, the amount of the intensity in each file is »nx n components.
The intensity of each color has range between 0-255 like gray scale. We called the

intensity of the color as data or signal, which will be compressed in other steps.

Step 2 Apply 2 dimension wavelet transform to the data.

The data in red, blue and green text files are transformed separately by a 2-
dimension wavelet transform. In this thesis, we used Daubechies 20 wavelet filter which is
discussed in Chapter 3. Using pyramid algorithm, the original data are transformed step by
step which is showed in Figure 6.2 to be wavelet coefficients. First, the wavelet filter
coefficients are applied to the data in horizontal direction. The outputs of transformation
are wavelet coefficients with nxn components and composed of two type of data smooth
and detail each has (nx n)/2 numbers. Second, all of the wavelet coefficients from first -

step are passed the wavelet filter coefficients in vertical direction. The outputs are
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separated into four parts. One part is the wavelet coefficients called smooth data, and the

other three parts called shape 1, shape 2 and shape 3 are the details.

Horizontal Vertical
-{- > - —
A Wavelet
Shape 1
Wavelet Wavelet Wavelet Coefficient
> | Coefficient Detail >
v , Shape 2 Shape 3

Figure 6.2 2-Dimension Wavelet Transform

The smooth data in first level are transformed again by wavelet transform. The
smooth data in level 2 are separated into four parts which one of them is smooth data and
the others are three shapes of the details. The process is going on until the last level has
four wavelet coefficients. We called the wavelet coefficients in final level “mother
wavelet” which is the most important in a reconstruction. This wave transform procedure
1s called pyramidal algorithm which is showed in Figure 6.3. All wavelet coefficients have
eight levels and each level have three shapes which we called shape 1 (horizontal

direction), shape 2 (vertical direction) and shape 3 (diagonal direction) as shown in Figure

6.4.



Figure 6.3 Pyramidal Algorithm
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Figure 6.4 Wavelet Coefficients in Final Step

Analyze the significant of difference shape and level in wavelet coefficients

Some shapes in some levels of wavelet coefficients have less important for
reconstruction. We cut off some of them and set them to be zero to test the significant of
them. Table 6.1 shows the PSNR and percent of the zero in wavelet coefficients of Lena
and Peppers images when some shapes in some levels are cut off. From the Table 6.1, we
find that the shape 3 level 1 is less important because when we cut all of coefficients in

this level the PSNR is 41.17 for Lena and 44.56 for Peppers which much more than the
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PSNR when cut other levels. From the Table 6.1, we also find the importance of the shape,

which is arranged by shape 1, shape 2, and shape 3 respectively.

PSNR
Cut off level % Reduced Lena Peppers
cogfficient
Level 1 shape 1, 2, 3 75% 31.55 31.38
Level 2 shape 1, 2, 3 18.75% 28.03 26.97
Level 3 shape 1, 2, 3 4.69% 2b.44 2413
Level 4 shape 1, 2, 3 1.17% 22.91 21.01
Level 5 shape 1, 2, 3 0.29% 21.22 20.06
Level 1 shape 1 25% 33.44 34.44
Level 1 shape 2 25% 37.61 34.74
Level 1 shape 3 25% 4117 44 56
Level 2 shape 1 6.25% 30.15 30.10
Level 2 shape 2 6.25% 34.73 30.61
Level 2 shape 3 6.25% 35.63 37.74
Level 3 shape 1 1.56% 2712 26.87
Level 3 shape 2 1.56% 33.27 28.75
Level 3 shape 3 1.56% 33.47 33.24

Table 6.1 Show percent of reduced wavelet coefficients and PSNR

when some levels and shape are cut off.
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The results from Table 6.1 show that when applied the wavelet transform to the

images it gives the wavelet coefficients in same properties:

1. Each shape have different significant, the most important shape is shape 1.

For shape 2 and shape 3 the important were decreased respectively.

2. Each level had different significant, the most important level is level 8
which is called mother wavelet, and in the lower level the importance had decrease

respectively.

The wavelet coefficient in level 1 is less important than other level. If we cut all
wavelet coefficients in level 1 of some images such as Lena and Peppers, the wavelet
coefficients decrease 75% when the PSNR is around 31 as shown in Table 6.1, that still

gives the good quality of image as shown in Figure 6.7.

Step 3 Cut off and scale wavelet coefficients

This step in our algorithm, we will cut off the wavelet coefficients started with less
important shape and level to more important shape and level. Every time we cut we will
check that PSNR. If PSNR less than PSNR threshold we desired, we will stop cutting. The
PSNR threshold we desired depends on quality of image that we suppose to get. We will

not code the level that we set to be zero in the level 1 when coding step, so at least 25% of
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data 1s reduce in this step. The result after cut off some level of Lena and Peppers image is

showed in Table 6.2.

Color Image Cutoff Coefficients PSNR Cr
Lena Levell Shapel 41.17 17.52
Lena Levell Shapel,2 36.04 21.24
Lena Levell Shapel,2,3 2185 36.36

Peppers Levell Shapel 44 56 15.52
Peppers Levell Shapel,2 34.05 21.43
Peppers Levell Shapel,2,3 31.38 36.36

Table 6.2 The Result PSNR and Compression Ratio of Lena and Peppers

When Cut Off Some of Wavelet Coefficients

Although the cutting off level still gives a good quality of image, but it gives a
low compression ratio. We can increase the compression ratio using concept that wavelet
coefficients only indicate changes, areas with no change or very small change give small
or zero coefficients, which can be ignored, reducing the number of coefficients that have
to be kept to encode the information. We scale the wavelet coefficients by dividing it with
scaling number. Scaling wavelet coefficients make some small numbers of data that less

important for reconstruction became zero, and the large numbers of data are scaled to
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small numbers which results in increasing compression ratio. However, higher levels of

wavelet coefficients are important especially in level 6-8 which we will not scale them.

Step 4 Quantizing the wavelet coefficients.

Quantization is an important step to increase the compression ratio which has the
detail in Chapter 4. Using vector quantization method, we can reduce some of data before
coding. We use LGB vector quantization algorithm. After quantizated the wavelet
coefficients, we have got codebook and codeword that represent index of wavelet
coefficients in the codebook. In creating codebook, we divide the wavelet coefficients to
16-blocks vectors. We select the initial codebook from the wavelet coefficients according
to step3 and use wavelet coefficients to be training set except level 6-8. We fix level 6-8 of
wavelet coefficients in the codebook, but do not put them on the training because these

levels have influence for error in reconstruction.

Step S Arithmetic coding

The codebook and codeword from step 4 are coded by arithmetic coding which has

the detail in Chapter 5.

The reconstruction process is inversion of compression process.
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The results of PSNR and compression ratio of tested image after passed from step

1 to step 5 and reconstruction are showed in Table 6.3-6.6. The result images are in Figure

6.8-6.9.

Lena
Cut off Wavelet Scaling Level of PSNR Cr
Coefficients Parameter Codebook
Shape 1,2,3 of Level 1 1 640 31.17 46.15
Shape 1,2,3 of Level 1 5 640 31.14 64.86
Shape 1,2,3 of Level 1 10 640 31.02 77.42
Shape 1,2,3 of Level 1 15 640 30.86 85.71
Shape 1,2,3 of Level 1 20 640 30.67 96.00
Shape 1,2,3 of Level 1 L 25 640 30.45 100

Table 6.3 Comparison PSNR and Cr of Lena after compression when use different scaling

parameter

The Table 6.3 shows the results of PSNR and Cr when we cut off the wavelet

coefficients m level 1 shape 1, 2, 3, and scaling the wavelet coefficients with parameter

1-25, then using codebook 640 level. We will see that if we increase the scaling parameter

1 to 25, the Cr increases from 46.15 to 100 while the PSNR decreases slightly. The cause

of increasing of Cr is after scaling, many of wavelet coefficients became the same number

that will code in the same code in coding step giving the short length of codeword. The
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slightly decrease of PSNR, although the wavelet coefficients have reduced about 84%,
which 75% is from cut off all of wavelet coefficients in level 1 and about 9% is from
vector quantization, presents the powerful of wavelet transform. However, the scaling

wavelet coefficients appropriates with low quality needed image.

Peppers
Cut off Wavelet Scaling Level of PSNR Cr

~ Coefficients Parameter Codebook

Shape 1 of Level 1 1 1536 38.46 24.00
Shape 1 of Level 1 5 1636 37.85 30.77
Shape 1 of Level 1 10 1536 36.81 36.92
Shape 1 of Level 1 15 1536 35.75 4211
Shape 1 of Level 1 20 1536 34.74 47.06
Shape 1 of Level 1 25 1536 33.82 57.14

Table 6.4 Comparison PSNR and Cr of Peppers when use different scaling parameter

Table 6.4 shows the results of Peppers image. We cut off shape 1 and use
codebook level 1536. When scaling parameter decreases, PSNR decrease more than
testing with cut off all of level 1, because the shapes 2 and 3 have many zero numbers.

The Cr still increases.




Lena
Cut off Wavelet Scaling Level of PSNR Cr
Coefficients Parameter Codebook

- 20 1536 34.85 48.99
Shape 3 of Level 1 20 1408 34.44 52.17
Shape 3 of Level 1 20 1208 34.21 55.81
Shape 3 of Level 1 20 1152 33.98 58.54
Shape 3 of Level 1 20 1024 33.78 63.61
Shape 2,3 of Level 1 20 896 32.89 70.89
Shape 2,3 of Level 1 20 768 32.41 77.42
Shape 1,2,3 of Level 1 20 768 30.88 85.71

Shape 1,2,3 of Level 1 20 640 30.67 96
Shape 1,2,3 of Level 1 20 512 30.03 109.09

Table 6.5 Comparison PSNR and Cr of Lena when change level of codebook and cut off

shape

40 ——T1

— Wavelet

35

PSNR

30

25

40 50 60 70 80 9 100 i 120

Compression Ratio (Cr)

Figure 6.5 Show Graph of PSNR and Cr of Lena Compressed by Wavelet versus JPEG




b1

Peppers
Cut off Wavelet Scaling Level of PSNR Cr
Coefficients Parameter Codebook

- 20 1636 38.46 24.00

Shape 3 of Level 1 20 1408 34.59 54.81
Shape 3 of Level 1 20 1208 34.24 55.33
Shape 3 of Level 1 20 1152 34.43 5581
Shape 3 of Level 1 20 1024 34.09 58.54
Shape 2,3 of Level 1 20 896 31.90 66.67
Shape 2,3 of Level 1 20 768 31.74 72.73
Shape 1,2,3 of Level 1 20 768 30.73 80.00
Shape 1,2,3 of Level 1 20 640 30.33 100.00
Shape 1,2,3 of Level 1 20 512 29.72 104.35

Table 6.6 Comparison PSNR and Cr of Peppers when change level of codebook and cut

off shape
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Figure 6.6 Show Graph of PSNR and Cr of Peppers Compressed by Wavelet versus JPEG
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Table 6.5-6.6 show the results of PSNR and Cr of Lena and Peppers image when
we fix scaling parameter at 20 and decrease size of codebook. The results show that Lena
is compressed with Cr 50-60 yielding PSNR around 34-35 and Cr 80-100 yielding PSNR
around 30-31, and Peppers is compressed with Cr 55-58 yielding PSNR around 34 and Cr
80-100 yielding PSNR around 30. Comparing results with JPEG we plot graphs of PSNR
and Cr of these results compared with JPEG which are showed in Figure 6.5-6.6. From
graphs, they present that this compression procedure gives the results nearly JPEG that
depend on image and Cr. At high Cr, this method gives better PSNR than JPEG, but 1n

low Cr it gives worse or equal results.




(a) Lena cut off shapel of level 1 (d) Peppers cut off shape 1 of level 1
PSNR 41.17 Cr 17.52 PSNR 44.56 Cr 15.52

(b) Lena cut off shape 1, 2 of level 1 (e) Peppers cut off shape 1,2 of level 1
PSNR 36.04 Cr21.24 PSNR 34.05 Cr 21.43

(c) Lena cut off shape 1,2,3 of level 1 (f) Peppers cut off shape 1,2,3 of levell
PSNR 34.05 Cr21.43 PSNR 31.38 Cr 36.36

Figure 6.7 Results from Table 4.2: cut off some shape of level of Wavelet Coefficients
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Original Lena

Lena Compressed by Wavelet Cr 109 PSNR 30.03

Figure 6.8 Compare Lena Compressed by Wavelet Versus JPEG at Cr 109
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Original Lena

Lena Compressed by Wavelet Cr 96 PSNR 30.67

Figure 6.9 Compare Lena Compressed by Wavelet Versus JPEG at Cr 96
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Original Lena

i,

Lena Compressed by Wavelet Cr 71 PSNR 32.89

Figure 6.10 Compare Lena Compressed by Wavelet Versus JPEG at Cr 71
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Original Peppers

Peppers Compressed by JPEG Cr 100 PSNR 28.67

Peppers Compressed by Wavelet Cr 100 PSNR 30.33

Figure 6.11 Compare Peppers Compressed by Wavelet Versus JPEG at Cr100



Peppers Original

Peppers Compressed by JPEG Cr 80 PSNR 30.97

Peppers Compressed by Wavelet Cr 80 PSNR 31.74

Figure 6.12 Compare Peppers Compressed by Wavelet Versus JPEG at Cr80
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Original Peppers

Peppers Compressed by JPEG Cr 73 PSNR 31.70

Peppers Compressed by Wavelet Cr 73 PSNR 31.74

Figure 6.13 Compare Peppers Compressed by Wavelet Versus JPEG at Cr73
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CHAPTER VII

CONCLUSION

This thesis develops a color image compression procedure using wavelet
transform technique, LGB vector quantization and arithmetic coding. Compression is
done separately on the RGB plane. Before quantization procedure, we remove the
unnessary wavelet coefficients for reconstruction by cutting off wavelet coefficients,
set wavelet coefficients to zero and scaled wavelet coefficients to reduce a amount of

information for encoding.

We test our algorithm with the images of Lena and Peppers. The results are as
follows: Lena is compressed with compression ratio 50-60 yielding PSNR around 34-
35 while compression ratio 80-100 yielding PSNR around 30-31; Peppers is
compressed with compression ratio 55-58 yielding PSNR around 34 while
compression ratio 80-100 yielding PSNR around 30. This technique gives high PSNR
of image than JPEG at high compression ratio over 90, but low PSNR than JPEG at

compression ratio below 85.

The benefit of this work is a new wavelet transform procedure for color image

compression which gives higher quality of image than JPEG at high compression ratio.
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