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AN ABSTRACT

##4072345523 MAJOR: MATHEMATICS

KEYWORD:UNIQUE FACTORIZATION / PSEUDO-ARITHMETIC FUNCTION
PATHIRA RUENGSINSUP : UNIQUE FACTORIZATION OF PSEUDO-
ARITHMETIC FUNCTIONS. THESIS ADVISOR : ASST. PROF. PATANEE
UDOMKAVANICH, PH.D., THESIS COADVISOR : ASSOC. PROF. VICHIAN
LAOHAKOSOL, Ph.D., 29 PP. ISBN 974-334-063-7.

In 1959, Cashwell and Everett proved that the set of complex-valued arithmetic
functions forms a unique factorization domain under addition and convolution. In this
thesis we further this result in two directions.

In the first direction, we replace the set of all natural numbers and the complex field
by an arithmetical semigroup S and a unique factorization domain D, respectively, and
prove that when the ring of formal power series in any finite number of indeterminates
over D is a unique factorization domain , then the set of all pseudo-arithmetic functions
from S into D is a unique factorization domain under addition and convolution .

In the latter direction, we replace the complex field by a unique factorization ring

R with zero divisors and prove that when the ring of formal power series over R in any

finite number of indeterminates is a unique factorization ring with zero divisors and the

ring of formal power series over R in a countably infinite number of indeterminates is

compact, then the set of all arithmetic functions over R is a unique factorization ring with
zero divisors under addition and convolution.

The proofs employed come from a detailed analysis of those used by Cashwell and
Everett (1959) ,and Lu(1965) with a number of modifications together with an

introduction of concepts such as weak cancellation law and compactness.
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INTRODUCTION

The set of all functions from an arithmetical semigroup S info a commutative
ring R with identity , denoted by Qg , forms a commutative ring with identity under
addition and convolution , see e.g. Berberian[1]. It was proved by Cashwell and

Everett [3] in 1959 that when S is the set of all natural numbers and R the complex

field , vQc is a unique factorization domain . The proof was based on the fact that

nQc is isomorphic to C[[x,X,, ... ]], the ring of formal power series over C in

countably many indeterminates and that the rings of formal power series over C in a

finite number of indeterminates are unique factorization domains. In the sixties ,

Cashwell and Everett [4] , Lu[10] considered instead the case where the complex

field is replaced by an integral domain D and proved that «Qp is a unique
factorization domain if D is a unique factorization domain such that the rings of
formal power series over D in a finite number of indeterminates are unique
factorization domains .

In Chapter I , we introduce notation , definitions and prove auxiliary theorems
used throughout this thesis.

In Chapter IT , we prove subject to certain conditions the unique factorization
theorem in ¢Qp, where S is an arithmetical semigroup and D a unique factorization
domain. This extends the original works of Cashwell and Everett [3] in the direction
of the domain involved. The proofs is divided into two parts. First , the case where
the range is the complex field , it is proved that such arithmetical semigroup is
isomorphic to the set of natural numbers and the result then follows from Cashwell
and Everett theorem. This is essentially the proof adopted by Knopfmacher[8].
Second , the case where the range is any unique factorization domain, the proof is a
modification of that used by Cashwell and Everett in [3].

In Chapter III , we prove subject to appropriate conditions the unique

factorization theorem in yQx , where R is a unique factorization ring with zero

divisors. This also extends the result of Cashwell and Everett in the direction of the



range involved. The main proof is a combination of ideas used in Cashwell and
Everett[3] , and Lu[10] . First , a characterization of unique factorization ring with
zero divisors as a ring with greatest common divisors satisfying weak cancellation law
is established. Passing to isomorphic setting in the ring of formal power series , a

concept of compactness is introduced which enables us to complete the proof.



CHAPTER I
PRELIMIANRIES

In this chapter we give notation , definitions and theorems used in this thesis.

The following symbols will be standard :

Z is the set of all integers,

N is the set of all positive integers,
No = Nu {O},

C is the complex field.

§1. ARITHMETICAL SEMIGROUPS

We take the same definition and examples of arithmetical semigroups as in
Knopfmacher[9].
Definition 1.1 Let (S,-) be a commutative semigroup with identity 15, S is called
an arithmetical semigroup if and only if
(i) S has a finite or countably infinite subset P (whose elements are called the

primes of S ) such that every element s # 15 in S has a unique factorization of the

n

Sform s =p" py?---pl* ,where the p; are distinct elements of P, the n; are positive

integers , k may be arbitary , and unigeness is up to the order of the factors indicated
(ii)  there exits a non-negative real-valued norm mapping / / on S such that

(1) [1s/=1, [p/>1 forpeP,

2) Jab/ = lallb/ forall abes,

(3)  the total number Ns(x) of elements aeS of norm la/< x is finite

for eachreal x> 0.

Note Forall acS, Ja/ >1 and the only one factor of I is itself .

Example 1.2 Define anorm on N by |nl| =n forall n e N .Then for all real x > 0,

Nn (x) = [x] , the greatest integer not exceeding x. Thus (N,-) with its subset P of all

rational primes is an arithmetical semigroup.



Example 1.3 Let D be an integral domain. Then the set G, of all associate classes a
of nonzero element aeD forms a commutative semigroup with identity under the
multiplication a-b=ab.

In the case when D is a principal ideal domain , the content of the unique
factorization for D is that each element a#1 of Gp admits unique factorization into

power of the classes p of prime elements peD.

If D is a Euclidian domain with norm function | .|, then define a norm on Gy
satisfying conditions (1) and (2) above by letting lal = |al. In certain interesting
cases this norm satisfies condition (3) above, and G, forms an arithmetical semigroup.

The followings are illustrations .

1.3.1) Let D be the ring Z[i] of all Gaussian integers m+ni ( m,n €Z) .This ring is

a Buclidian domain with the norm | m+ni|=m*n?®. Since Z[i] has only four units

1,-1,1, and -1,

Noy®= 3 2109 <

k<x
where r(k) denotes the total number of lattice points (a,b) (a,b eZ ) on the circle

v+ z2 =k (k 1) in the Euclidian plane R? . Thus G, forms an arithmetical

semigroup.

1.3.2) Let F be a field and x an indeterminate.Then the polynomial ring F[x] is a
Euclidian domain with the norm | f| =2%8" for 0% fe F[x],|0|= 0 .The units in F[x]
are nonzero constant polynomials. In the case when F is a finite (Galois) field GF(q) ,
the total number of units in F[x] is q-1. Let £ = apx"+ ap x™ +... + 2 ¢ F[x] ,a, #0
Thenf= {af:aeF-{0}} and | f|= |f|=2". Thus #{g e Gp:|gI=2"} =#{g

=a.x"+bx"' + ... +Db,: bjeF} = q". Let r be a positive real number . Thus

[log, r]

NGF[x] (r) - an '
n=0

Hence Gy forms an arithmetical semigroup.
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Proposition 1.4 If S is an arithmetical semigroup then for all a € S,

{ xy) eS xS : xy=a} isfinite.

Proof Let ae S.For x,y €S , ifxy=a then |x||y|= |xy\=|a| ,s0 |xl<]al

and |y|£|a|. Since NS(|a|) is finite , { (x,y) e SxS : xy=a} isfinite. #

§2. POWER SERIES
We first recall some general definitions. Let R be a commutative ring with

identity 1 . An element u R is a unit if there is veR such that uv = 1. Forr,seR , r

divides s, written r|s, if there exists t eR such that it =s. Two elements r and s are
associate ,written r ~ s, if there is a unit u of R such that ru=s .An elementr# 0 is
a zero divisor if there is s # 0 in R such that rs=0. Let r be a nonzero non-unit
element of R ; ris prime if, whenever r|ab where ab # 0 , then r|aorr‘b ; ris
reducible if there are nonzero non-unit a,b eR such that r = ab ; ris irreducible if r is

not reducible. It is easy to shown that if r and s are irreducible , then r divides s if and

only if r and s are associates. An element deR-{0} is called a greatest common

divisor of a,, a,,...,a, eR , not all zero , if d ‘ a; forallie{l,2,...,n} ,and if ceR-{0}
1s such that ¢ l a; forallie{l,2,...,n} ,thenc l d. If d, and d, are two greatest common
divisors of a,, a,...,a, €R then d, ~ d,. Denote by (a,, a,,...,a,) a greatest common
divisor of a,, a,,...,a, eR.

Let R be a commutative ring with identity 1. Denote by R, =R[[ X, , X5, ...]]
the set of all formal power series in a countably infinite number of indeterminates
Xi,Xy,... overR and forj=1 ,by R;=R[[ X,,X;, ..., X;]] the set of all formal
power series In j indeterminates over R.

n,;

Definition 1.5 We say that a nonzero monomial cx}'x}* ---x,*, ce R is of weight r if
In,+2n, +... vthkn, =vr.
It is easy to see that the product of two monomials , whose weights are t; and
t, respectively and whose coefficients are not zero divisors , is of weight t; +t; .
Every element fof R, can be expressed in the form f=(f,,fi, ... s /fns --- ),

where each f, is either zero or a finite or an infinite sum of monomials of weight n .



Definition 1.6 Define addition and multiplication of two power series
f=(f.fi, o fn, . )andg=(gy, &, ..., &n, ... ) asfollows:
Jre=(fotgo, itg, . futen )
fe=(ho, by, ..., hy,..) , whereh, = ¥ fig,.

i+j=n
With these definitions of addition and multiplication , R, becomes a commutative

ring with identity 1 .

Theorem 1.7 An element f=(f;,f;, ..., fa, --- ) Of Ry is a unit if and only if f,is a
unit of R .

Proof Let f=(fo,fi».--s/fns...) € Ry. Assume that f is aunit of R, . Then fg =1

forsome g =(go, 81> 5&n,...) € Ry. Thus fog,=1,s0f, isaunit of R .
Conversely , assume that f;, is a unit of R . We will construct an element

g=(g,& ,-->8&n,...)of Ry, where each g, is either zero or a form of weight n,

such that > f,g,=0 foralln=0.

i+ j=n
Define g, = fo'l .Let n > 1. Assume that g;, g,, ... , 2.1 have been defined

and that each g; is either zero or a form of weight 1 for 0 < 1 <n-1. Define

&n= — 0"( ¥, f,.gj). It is clear that g, is then either zero or a form of weight n
i+j=n,j=n
and Y fig,=0.Nowset g=(go, 8 ,--->8n,---)-Then ge Ry and fg=1,so0
i+j=n

fisaunitof R, . 4

Definition 1.8 Define an order function & on R, as follows :

2(0)=c0 and () = min{nelNy :f, 20} if f #0.

Theorem 1.9 Let fand g be power series in R, . Then
@ oftrg) 2 min{ 7)), 7))
@ )= o) +I(g) .

Proof If f or g is zero, then there is nothing to prove . Assume that f and g are

both nonzero . Then ¢ (f) =n and #(g) =m for some nm e N,.



(1) If f+g =0, then the result is trivial. Assume that f+g # 0 . Then @ (f+g) =k for
some keNy,s0 fit g #0. Thus fi#0 or g #0, so k> min{nm}=min{d(f),0(g) }.
(i) If fg=0 , then the result is trivial . Assume that fg# 0. Then @ (fg) =s for

somes eNg,s0 3 fig, #0.Thus fi#0 and g #0 forsome1, suchthat itj=s,

i+ j=s

so i2n andj>m.Hence ¢(fg) =s=it) =2 ntm=0() +0(g) . #

Notation Let # = {B,(f):feR, andt eNy} ,where B,(f) ={geR,:(g-f) > 1t)}.

Cleary , R, = By(0) , so Ry, is the union of the elements of %.

Proposition 1.10 Let f g eR, and s,t € N,. Assume that By(f) N B(g) =& and

s <t. Then
(i)  fi=g foral i f01,..,s-1}
()  Bug) < B(f) .

Proof (1) Let & e By(f) N By(g) . Then ¢ (h-f) =2s and & (h-g) >t . Thus for all
1€{0,1,...,8-1}, hi=fi and forall je{O0,1,...,t-1}, A =g;. Hence for all
1€{0,1,...,s-1}, fi=gi.

(i) Let p € Bi(g) . Then forall i €{0,1,...,t-1}, pi=gi ,so forallie{0,1,..., s-1},

pi=g =fi. Then 0(p-f) 2s,s0 p e B(f) . Thus B(g) < Bs(f). #

By Proposition 1.10 , % satisfies the condition : if U and V are any elements

of % and if x is any point of UNV then there is an element W of % such that x e

W < UnV. Then by Theorem 2.2(c) of Gautam and Narayan [6] , The class T of all

subset X of R,, such that X is the union of a family of elements of # is a topology

for R, and % is a basis of T . This topology is called the weight topoloty.

Definition 1.11 A4 sequence (f ™) of elements in R, is called a Cauchy sequence
if forevery i >0 there exists a positive integer T(i) such that for n,m > 1(j),
oM ) > i



Definition 1.12  We say that sequence (f ™) of elements in R, converges to an
element f €R, if forevery i >0 there exists a positive integer 1(i) such that for

all n 276), of™-f)>i.

Theorem 1.13([10]) R, is complete under the weight topology .

Proof Let (f ™y bea Cauchy sequence of elements in R,. Then for every integer

j >0, there exists an integer T(j) such that ¢ (f™- f™)>j if nm > T(j) . Then
SM=f" forall k<j.Put f=( fI, fIO,  £TO ) Then feR,
and for every j, fi= f” forallk< j if n>T(j). Thus 0(f(")-f) > j if n=T().

Therefore (f™) converges to f.Hence R, is complete. 4

Lemma 1.14 If u e R,, is a limit of a convergent sequence of units in R, then uis a

unit .

Proof Let (u'™) be a convergent sequence of units in R, with a limit u e R, .
Then for every integer j >0, there exists an integer T(j) such that for alln > T(j),

O(u™-u) >j . Therefore u,=ul® for n sufficiently large, so u, is a unit of R

Hence u isaunitof R, . &

Definition 1.15 Let f=f{x;,, x,, ... , Xj, ...)e Ry ; then for any integer j = 0, the
formal power series f(x;, x,, ... ,x;, 0, 0,...) in R;, denoted by (f);, is called the
projection of f onR;. WesetR =R,.

Clearly , the mapping f — (f); is a ring homomorphism from R, to R; , i.e. ,
(F+g)i = (N + (g); and (/2); = (i(2); -

Definition1.16 A sequence (f@, @, .., f? ..), where 1 cR; is said to be a
telescopic chain if ¥ = ({""); for each i .



Lemma 1.17([10]) Every infinite telescopic chain (f©@, f@ .., % . )isa

Cauchy sequence for the weight topology , and hence has a limit in R, .

Proof Since the sequence is telescopic , for every integer i1 > 0 and j > O , each
monomial of £ — r® s either zero or contains at least one x, with k >1 asa

factor. Hence & (f () _ S @) > i . Thus the sequence is a Cauchy sequence . Since Ry, is

complete , the sequence has a limit inR,.  #

Note FEvery [ eR, is a limit of a finite or an infinite telescopic chain

((Fo (f)rr e (f)is o)

Definition 1.18 R, is said to be compact (with respect to weight topology) if every

sequence of units in R, has a convergent subsequence.

Definition 1.19 A sequence (f(o),fw, AT where f©V e R; is said to be a

pseudo-telescopic chain if ("), is associate to f in R; for every i .

Lemma 1.20 If R, is compact , then any pseudo-telescopic chain has a convergent

subchain .

Proof Let (f © TR ® ..),where fP ¢ R; bea pseudo-telescopic chain.
Then for each j >0, f@ =40 V) = @O ™y where 4% is a unit in R; .
Put FO =7 D=, 0r® " 2= uOyr @ RO = uOuM 3y 0Dr O Then
f(j) = O 0 , where W = (u(o)u(l)...uo'l)) 1 is a unit in R; and ( F‘O), F“), ...)isa
telescopic chain , which has a limit in R,, , say F .Since Ry, is compact , there is a

subsequence Ry of (v(j)) which converges to a unit v in R, . Therefore

limf (%= limy WF (<) = |im vy O limF (%) = yF _ Hence the ( f*)) is a

k—w k—0 ko k->»

convergent subchain of (%) . 4
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Lemma 1.21([3]) Let f be a nonzero non-unit element in R, .Then there is a least
positive integer L =L(f) , hereby called the index of f, for which (f); is a nonzero

non-unit element in R;, forallj 2L .

Proof Since f is a nonzero non-unit element of R, , then f must contain some
monomial term  X,'X;? --- with nonzero coefficient and n; not all zero . If in this term
Xk 1s the last variable with ny > 0 ,then ( f)x # 0. Hence there is a least positive

integer L with (/). # 0, so (f); is a nonzero non-unit element in R; for j> L . "

Lemma 1.22([3]) Let f be a nonzero non-unit element in R, with index L . If (f);
is irreducible in R; for somej=>L , then (f), is irreducible in R,, for allm 2j, and f

is irreducible in R, .

Proof Assume that (f); is irreducible for some j> L. Letm > j . Let g™, A™ ¢ R,, be
el it (f)m i g(m)h(m). Then (f)j - ((f)m)j _ (g(m)h(m))j b (g(m))j(h(m))j _Thus (g(m))j or
(h(m))j isaunit inRj, so g™ or ™ is a unit in Ry,. Hence (Am is irreducible in Ry,

Similarly , we can show that f is irreducible in R, . 4

Definition 1.23 Let f be a nonzero non-unit in R,,. A true factor of (f);,j €N, is a

non-unit proper divisor of (f );in R;.

Definition 1.24 A4 nonzero non-unit element f in R, is said to be finitely irreducible
if there is a least integer P > the index L of f such that (f); is irreducible in R; for

all j>P.

§3. PSEUDO-ARITHMETIC FUNCTION

In this section S stands for an arithmetical semigroup and R for a commutative
ring with identity.
Definition 1.25 A pseudo-arithmetic function is a function from S to R. Let £, be
the set of all pseudo-arithmetic functions. Define addition and multiplication *, which

is called a convolution , in ;£ as follows .



For a,f ek, (a+tf(a) = (a)(a) + (P)(a) and
(axf)(@) = X a(x)B(y) forall a eS.

xy=a

The summation is well-defined by Propositionl.4 .

It is easy to show that ( (Qz , +, * ) is a commutative ring with identity . The
zero O and additive inverse —a of o € sQr are the pseudo-arithmetic functions
defined by 6(a) = 0 and (—a)(a) = —a(a) for all a € S . The convolution identity € is
defined by € (1)=1and e(a)=0 forallaeS-{1).

Definition 1.26 Define the order function ()on (% by ,
(0)=0 and (&) = min{ la/: afa) #0} if a=8.

Proposition 1.27 (i) For aes(% , (o) 20 and (a)=0 ifand only if « = 6.
(ii) For a,f es$k, (a*p) = (a) (B). In particular , if R has no
zero divisor then (ax*B) = (a) (B) forall o, € s{ .

Proof (i) is obvious from the definitiion.
(1) Let a,p € sk .The case oo = 6 or = 6 is trivial . Assume that o and B are

nonzero. Then (o) = |a| and PB)= | b| for some a,b € S. Then for all ce S such that

lcl<labl , (a*B)(c) = Ta(x)B(y) =0 and (axB)(ab) = 2 a(0B(y) = a(@B(b).

xy=c¢ xy=a

Then (o+B) > | ab| . If R has no zero divisor then a(a)B(b) # 0, so {a*B) = (&) (B) . #
Proposition 1.28 Let @ € (2. Then « is a unit if and only if (1) is a unitin R .

Proof Assume that o is a unit. Then there is a nonzero element B in sQg such that
o*f =¢. Thus 1=¢(1) = (a+B)(1) = a(1)B(1), so a(1) is a unit in R .

Conversely, assume that (1) is a unit in R. We will construct a nonzero
element Bin sQ such that a+B =¢.Define P(1)=a(l)'. Let ae S be such that
a# 1. Assume that for all be S such that [bl<|al , B(b) has been defined and
satisfied the condition (a+)(b) =&(b) . Define P(a) = a(1)'(- bz a(b)B(c)) . Then



(@=p)e} = Todfie)=  Zoib)ile) = o(1)B(c) = 0 = g(a) . Thus (axp)(a) = &(a)

c=a,bx*l

forall aeS,soa*p=g¢.Henceaisaunit. y

Now let the primes p of S be listed in the order p, , p, ,... , where | pi | <| Piti |
Then every element a of S may be written uniquely in the form a= p'p;?---py* for
some k , where each n; is a non-negative integer. Hence every pseudo-arithmetic
function o may be associated with a definite formal power series in R, by means of
the correspondence :

) a- fY=Sa@xxp X,

n,

where the summation extends over all a= p"p}* ---pi* of S ; obviously the sum

can be identified with some formal power series in Ry, . It is easy to verify that the

correspondence is an isomorphism between ¢Qz and Ry, .

Definition1.29 Define Sk to be the set consisting of all elements of S of the form

ny

ppyplt . n 20 foreach i=1,23,.. k.
Then clearly S,c S,c S;c... cSkc ... and U7, Sk=S.
Let (sQr)x be the subset of Q consisting of those pseudo-arithmetic functions o

such that o(a) =0 forall a ¢ Sk. Then, the set is a collection of all functions on Sk

into R . It can easily verified that (sQx)x = R[[ X, , X2, ..., Xk ]] under the

correspondence (*) .

§4. UNIQUE FACTORIZATION RINGS WITH ZERO DIVISORS.

We take essentially the same definition of unique factorization rings with zero
divisors as in Galovich[5] .
Definition 1.30 A4 commutative ring R with identity and zero divisors is a unique
Sfactorization ring with zero divisors (UFRZ) if
(i) every nonzero non-unit of R can be written as a finite product of irreducible
factors and
(ii) if a,a,-a, = b;b,--b, , where each of the elements a; and b; is irreducible , then

n=m and a; can be renumbered so that a;~ b; (i = 1,...,n).



Example 1.31 Z /p™Z , where p is a rational prime and m is a positive integer > 2,

is a UFRZ , see Billis[2].

Definition 1.32 A commutative ring R with identity is said to satisfies a weak

cancellation law whenever ax = ay =0, where a,x,y eR, then x~y .

Proposition 1.33 UFRZ R satisfies a weak cancellation law.

Proof Let ax,y e R. Assume that ax = ay # 0 . Then a ,x and y are nonzero
elements. By the unique factorization property on R, a =a,a,a; , X = XX, X, and
Y= Y\¥2¥m , Where each of the elements a;, X; and yy is irreducible , so

2,285 X Xy Xp = 18785 V1 Y2'Ym. Ihen n=m and after some renumbering X; ~ y;

i=1,...n),s0x~y. 4

Lemma 1.34([7]) Let R be a commutative ring with identity and zero divisors.
Assume that any two elements of R , not both zero, have a greatest common divisor
and R satisfies a weak cancellation law. Then

(i) For a,,a,,...,a, e R , a greatest common divisor of a,, a
(i1) For a,b,ceR, ((ab)c)~(a(bc)).

(iti) Fora,b,c eR, c(ab)~ (cach).

(iv) Fora,b ceR, if (a,b)~1 and (a,c)~1 then (abc)~ 1.

2,0,y EXISLS.

Proof (i) Leta,a,,...,a, e R.Let d=(a,,a,), di+s; =(dj,a+) 1< i<n-land d=d, .
Then d ‘ dn., and d l a, ,sod | a; for 1< i1<n. Letebeacommon divisor of
a,,25,...,a;,. Then e ‘ d,,soe | d; for 1<i<n.Thus e ' dy,=d . Hence d is a greatest
common divisor of a,,a,,...,a, .

(1) Let a,b,c e R and g=((a,b),c). Then g | (a,b) and g | c. Thus g | a,g |b and

glc, so gis common divisor of a ,b and ¢ . Let d be 2 common divisor of a ,b and c.
Then dla,d|bandd|c. Thusd|(ab), so d|((ab),c). Thus ((a,b),c) = g ~ (a,b,c).
Similarly , we can show that (a,(b,c)) ~ (a,b,c). Hence ((a,b),c) ~ (a,(b,c)).

(iii) Let a,b,c e R ,d=(ab) and g = (ca,cb). Thend|a and d|b,so cd|ca and
cd|cb. Then cd | g,so g =cdx for some xe R. Since g | ca ,ca=gy for some ye R.

Then ca = gy = cdxy . Since R satisfies a weak cancellation law , a = dxyu for some



unit ue R , so dx ‘ a . Similarly , we can show that dx |b, so dx ‘ d . Then x is a unit
and (ca,cb) = g ~cd = c(a,b).

(iv) Let a,b,c € R. Assume that (a,b) ~1 and (a,c) ~ 1. By (ii1) , (ac,bc) ~ ¢ and
(a,ac) ~a. Then 1 ~ (a,c) ~ (a,(ac,bc)) ~ ((a,ac),bc) ~ (a,bc) . 4

Proposition 1.35 Let R be a commutative ring with identity and zero divisors.
Assume that every nonzero non-unit element of R can be written as a finite product of
irreducible elements of R. Then the following assertions are equivalent :

(i) R isa UFRZ.

(ii) Any two elements of R ,not both zero, have a greatest common divisor and R

satisfies a weak cancellation law .

Proof Assume that (i) holds.By Proposition 1.33,R satisfies a weak cancellation law.
Let x,yeR . Since R is a UFRZ , we can write X = 1,;"'r,? ---r;*and y= "'5,” ---1*,
where r; are distinct irreducible elements of R and n; ,m; are non-negative integers.
Let d = rmremipmintnms) pmintnemd Then d|a and d|b, so d is a common divisor
of a and b.Let e be any other common divisor of a and b. Then e =r,'r,? ---r;* , where
0<si<n; and 0 <s; <m;. Thus s; < min{ n;,m; }, so e | d. Hence d is a greatest
common divisor of a and b.

Assume that (ii) holds. We will show that every irreducible element of R is a
prime. Let p be an irreducible element of R such that p | ab , a,beR. Suppose that p
does not divide a and b . Then (p,a) ~ 1 ~ (p,b) . For , if there is a non-unit deR such
that d = (p,a) , then p=dx for some xeR , since p is irreducible , we have x is a unit ,
SO p |d ; hence p | a , a contradiction. By Proposition 1.34(iv) , (p,ab) ~ 1 which
contradicts p | ab. Hence p | aorp | b, sopisaprimeinR.

Now we will show the uniqueness of factorization in R. Let a be a nonzero
non-unit element of R . Suppose that 11,1, = a = §;5,--sm, Where r1; and s; are
irreducible . Since irreducible elements are primes , 1, | s; for somej , says, . Sincer,
and s, are irreducible , r, ~ s, , sor, = u;s, for some unit u, in R. Then u;s, 1y =
$:8,+°Sm - Since R satisfies a weak cancellation law, ur,---1, = VS-S, for some unit

v, . Continue this process. If n # m , we have a product of irreducible elements equal

to a unit , which is impossible . Then n=m and after renumbering r; ~s; foralli.



CHAPTER II
CASE OF NO ZERO DIVISORS

E.D.Cashwell and C.J.Everett [3] have proved that the ring of complex-valued
arithmetic functions is a unique factorization domain. In this chapter, we consider the
case where the set of natural numbers and the complex field are replaced by an
arithmetical semigroup S and a unique factorization domain D , respectively, and call
such functions pseudo-arithmetic functions. We shall prove that the ring of all
pseudo-arithmetic functions from S to D is a unique factorization domain. The proofs
is divides into two parts. First , the case where the range is the complex field. Second ,
the case where the range is any unique factorization domain .

Throughout this chapter , S denotes an arithmetical semigroup and D a unique

factorization domain.

Proposition 2.1 If the set P of all primes of S is countably infinite, then S is

isomorphic to N.

Proof Since P is countably infinite,we can write P = {p,,p,, ...} where | Pi | <| DPi+1 .
Let the primes of N be listed in any definite order q;,q;,.... Defineg: S > N as
follows : for 1#seS,s=p/'p,’--'p, forsome k>1,n 20, let o(s) =
q4'q; - qi* and @(1)=1.

Since the unique factorization holds in S and N, ¢ is well-defined and one-

to-one . Clearly , ¢ is onto. Let s,t € S. If s =1 or t =1 then @(st) = @(s)¢(t) . Assume

that s#1 and t# 1. Then s= p'p;*---p* and t=ppy?---p;* forsomekr>1,

n;, mj >0. Suppose that k <r. Then @(st) = @(p;'py " DPe* P P32 - PrF) =

ny+mg Ny +m,

o(p,"'p,

Ny +my My,

...pk

ny+my n,+m,

Prai o g

ny+my

.-.qk

Myt ,..q™ =
qk-H+ qrr
m, _

q;'92% Qe 4,957 g, = ¢o(s)(t) . Thus ¢ is a homomorphism . Hence ¢ is an

isomorphism. g



Corollary 2.2 ([8]) The set of all pseudo-arithmetic functions from S to C is a unique

factorization domain .

Proof If the set P of all primes of S is countably infinite , then S = N by proposition
2.1, s0 SQC = nQc ; hence sQ¢ is a unique factorization domain. On the other hand
if the set P is finite,say P = {p,,p. , ...,pk}, then by chapter I §3 , Q¢ is isomophic to

a formal power series of the form C[[x,,X; ,...,Xx]] Wwhich is a unique factorization

domain , so sQ¢ 1s a unique factorization domain. 4
Next , we shall prove that Q35 is a unique factorization domain.
Proposition 2.3 (2, is an integral domain.

Proof  Since D has no zero divisors , {(o*B) = (a){B) for all o,p € sQp by
Proposition 1.27(i1) . Let o,p e €2 be such that axp = 0. Then (a)(B) =(axp) = 0.
Then{(a)=0or(f)=0,s0 =0 orf=0. 4

The next corollary follows directly from Proposition 2.3 and Q, =D, .

Corollary 2.4 D, is an integral domain.

Recall that a commutative ring R with identity is said to satisfy the ascending

chain condition for principal ideals (ACCP) if for every ascending chain

(a) c (ay) ¢ ... ofprincipal ideals of R there is an integer n such that (a;) = (a,)

foralli=n.

Theorem 2.5 Let R be a commutative ring with identity. Assume that R satisfies
the ACCP. Then every nonzero non-unit element in R is a product of a finite number

of irreducible factors.

Proof Let a be a nonzero non-unit element in R. If a is urreducible , we are done.
Assume that a is reducible. Then there exist nonzero non-unit elements b,,c, in R

such that a=Db,c, ,s0 (a) = (b)). If both b,and c, are irreducible , we are done. If not
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at least one of them is reducible , say b, . By definition , there are nonzero non-unit
b,c, in R such that b= b,c,, so (b,) = (b,). Continuing this process, we get a strictly
ascending chain of principal ideals (a) = (b,) < (b,) < ... . By the ACCP of R, this
chain terminates at some (b,) , and b, must then be irreducible.

We have proved that for an element a which is neither zero nor a unit in R,
either a 1s irreducible or a =r;s, for r, an irreducible and s, is not a unit. By an
argument similar to the one just made , in the latter case we can conclude (a) c (s)).
If s, is reducible , then s,=r1,8, for an irreducible element r, with s, not a unit.
Continuing , we get a strictly ascending chain (a) < (s,) < (s;) < ... . By assumption

the chain must terminates at some (s,) and s, must be irreducible . Then

a=r,I,...I'mSm , wherer, .15, ...,I'm,Sm are irreducible . &
Lemma 2.6 D satisfies the ACCP.

Proof Let (a))c (a) < (a) < ... be an ascending chain of principal ideals of D .
Without loss of generality we may assume that a, #0 ; then a; #0 for all1>1 . Then

a; ‘ a, foralli>2. Since unique factorization holds in D , the number of factors of a,

1s finite , so the chain terminates. &

Lemma 2.7 Every nonzero non-unit element of {2 is a product of a finite number

of irreducible factors.

Proof First we shall show that Q satisfies the ACCP. Let (o)) < (o) < (o3) < ...
be an ascending chain of principal ideals of Qp. Without loss of generality we may
assume that o,#0 ; then a; #0 forall1> 1. Fix i = 1. Since (o) < (0ti+1) , & = Qs *P;
for some nonzero element a; of sQp.Then (o ) = (s 1*Bi) = (i) Bi) = (Ati+,) . Since

(o) = | a; | for some a; € S, we have a nonincreasing chain | a, | >| a, b | a; |2 ...

Since Ng(x) is finite for all x >0, Ng( | a, | ) if finite , so there is n € Ny such that

forj=>n, | a; | =l a,l ie. (o) = (O =|a,l. Letj =n. Then 0 # oj(a,) = (o4+*B;)( an)
= 3 0 00B )= X o (OB (¥) * oan) Bi(1) = 0 (an) By(1) - Thus (ax(an)

< (0+1(ay)) . Then we have an ascending chain (an(an)) < (0n+i(an)) < ... of nonzero

principal ideals of D . By Lemma 2.6, D satisfies the ACCP , so there is an integer m



such that (am(a,)) = (aj(an)) forallj=m. Letj > m . Then am(an) =u;-aja,) for
some unit uj of D. Since (am) < (o) , there is a nonzero element 7v; of €2 such

that om = op*y; . Then ujpoj(an) = am(an) = 20 o;(x)y;(¥)= oy(an)y(1). By unique

Xy=a,
factorization in D, u; = y;(1).By Proposition 1.28 , v; is a unit of sQp . Then (o) = (ctm) .
Then Q, satisfies the ACCP. By Theorem 2.5, every nonzero non-unit element of

€2 is a product of a finite number of irreducible factors. 4

Theorem 2.8 If unique factorization property fails in €25, there exists an element of
the form axf3= y* &, where a By O are irreducible elements having the same order

and a not associated with either yor 6.

Proof Assume that unique factorization property fails in sQ,.Let A be the set of all
nonzero non-unit elements of (Qp whose factorization into irreducible elements is
unique and let B be the set of all nonzero non-unit elements of sQp which can be
factored into irreducible elements into two essentially different ways. Clearly every
irreducible element of sC2p is in A by definition.

We shall prove that if o is an element of B of minimum order (o) , and o =
Bi*Bo*...4Bn = yi*v2*...#ym  are two essentially different factorizations of a into
irreducible elements , then necessarily n=m =2 and B,, B2, ¥, Y. all have the same
order.

Note first that neither n nor m 1is 1 since an irreducible element is in A.
Moreover , no B is the associate of any y; , for if so , cancellation would produce an
element in B of order less that (). Without loss of generality , we may assume that
Br=Br<...<Bny By <y and ({y)) <{12) < ... <{ym) . Then Bixy) = B Xy
< Yy < C7iXyz) < (o) . Suppose that (Bixy,) <(o). Let 8 =a- By, . If o= By,
then B,*...*B, =17, and since y, 1is irreducible , n =2 and y,~pB,, a contradiction .
Then o # B*y, 1.e. 8 # 0. Since B, 1s irreducible and 3, B , 0 1s a non-unit .Let aeS
be such that |al =(B*y,) <(a).Then (B*y.)(a)=0 and a(a) =0, so &(a) = a(a) -
(Br*y)(a) = <(B#y.)(a) # 0 . For all beS such that |bl< lal, (B+y)(b) =0 = a(b),
so 8(b) = 0. Thus (8) = |a|<(a), so & e A . Since the non associates B, ,y, both
divide 8, MB, =3 =24y, for some A},A; € sQp. Sinced e A, By~A2, 503 =nupy,
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for some unit p e §Qp. Then By, 10, so B*y, lo e o= Bi*y,*c for some ¢ € Q2p.
Thus Bo*...*By =v,*c . But (Bo*...#Bn ) <{a) and P,*...*B, 1s nonzero non-unit so
B*...*By=v*c is in A and vy, is associated with some B, a contradiction . Then

Brryi) = o). Thus By = (B Xy = Xy = Xy = (o), s0 (Bi) = {yi) = (y,) and
m = 2. Thus {y,) 2 =(a) = (B XBo) - (PBu) 2 (B)"={y)" impliesn<2.But n>1,so

n=2 and (B,)=(p,). Hence B*P,=a=7y*y,. 4

Lemma 2.9 Let D be a unique factorization domain . Assume that D; is a unique
factorization domain for all j 2 1 . Then all irreducible elements of D, are finitely

irreducible.

Proof We first show that if f is a nonzero non-unit element in D, and ( f'); reducible
in Dj for all j > the index L of f, then f is reducible in D,

Let f be a nonzero non-unit element in D,, with index L and suppose that for
every j = L ,(f); = gih; where gj and A; are true factors of ( f); in D; . Now observe
that any true factorization (f)m =gmhm, m > L induces a true factorization of ( f )m
= (frm = (@m)m-1(Am)m-1 = Em-1Am- and so down to ( /). = gih , where the sequence
of true factors (g., gir1 » --- » @m) 1S telescopic. From the assumption of f, we have
the existence of a sequence K, = (go) , Ki = (g0, &11) » Ko = (820> €21, €22) » ... 0f
telescopic chains K; of true factors gy ( = 0,1,...,1) of ( f )+ . Since unique
factorization holds in D; for all j =1 , the number of true factors of (f); is finite. Then
there is a true factor T, of ( f ). such that there is an infinite set of the chains K;
having their first entries associate to T, .Choose one of this set and call it K. Of this
infinite set , there is an infinite subset of K; whose second entries are associate to
some one true factor T, of (f).+;. Choose one and call it K, . Continuing in this way
we have a sequence of telescopic chains K,= (g0, ---) » K,= (810,811 ) » ---
each of which extends at least to the main diagonal , such that the entries on the
diagonal and below have the property that , for each j =0,1,2,..., g,j ~T; foralli>].

Now we construct a telescopic infinite chain K" working only with the main

diagonal and the diagonal next below it , as follows:

Define G M = g,,. Since g,~ To~ gy, in D, , there is a unit u, of D, such

that G = g, u, = (g, u). . Define G = g in Dy, . Then G & = (G &),
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G ™Y is a true factor of ()41, and G ¥V~ T, in Dy, . Since g~ T~ G & in
Dy+,, there is a unit #+, in Dy4, such that G &V = g w4, = (g5, #i+) 1. Define
G = g5, U+ in D4, Then G Ll (G (L+2))L+| , G2 g a true factor of ™
and G~ T, in D.+,. Continuing in this way , we have an infinite telescopic chain
of true factors K'= (G L g &2 ...).Thenforallj20,(f)+=G LHdpr O
where H ™ is a nonzero non-unit element in D4 . Thusforallj=20, G LA gy )
= (M = (D) = (G T Ty = G EUH TP 50 HED =
(H (L+j+l))]_+j by unique factorization of Dy+; and G @) % 0 . Then the sequence
(HO, &Y g&2 ) jsalso a telescopic chain . By Lemma 1.17 , the chains
GO, ¢ gD Yand HP, HED, gD ) have limits in D, , say G and
H , respectively. Then (G);=G Dor (G (L))j ,and (H)j=H O or (H (L))j , according
asj>L or j<L for j>0.Then forj>L, (f)=GYH Y =(G)y(H);=(GH);, and
forj <L, (f) = () = GPHY); = (GOWHP) = (G)(H); = (GH); . Hence
for every j > 0, (f); = (GH); . It follows that f= }gg ()= El_g.} (GH); = GH for the

weight topology. Clearly, G and H are non-units of D, , so f 1is reducible in D, .
Therefore if f is irreducible in D, then there is a least integer P > L such that ( /) is
irreducible in D, and for all j 2 P, ( f'); is irreducible in D; by Lemma 1.22 , so f is

finitely irreducible.

Theorem 2.10 Let D be a unique factorization domain . Assume that D; is a unique

factorization domain for all j 2 1. Then {2, is a unique factorization domain.

Proof Suppose that unique factorization into irreducible elements fails in (Qp which
is isomorphic to D,, . By Theorem 2.8, we must have an element in D, of the form fg
=pq where f, g, p, q are irreducible in D, and f is not associated with p or ¢ . By
Lemma 2.9, f, g, p, ¢ are finitely irreducible , so there exists an integer k > 0 such
that (f);(8); = (/&) = (pq); = (P)i(g); , where (f);,(8); ,(p); » and (g); are irreducible in
D; for all j >k . Since unique factorization holds in D; for all j >k, (f); must be
associated with either (p); or (¢); in D; . Then there is an infinite increasing
subsequence 4 of integers m > k such that either ( f )m ~ (P)m or ( f Im ~ (@)m in Dy,
for all me .. Without loss of generality , we may assume the first case. Then for each

me o (f )m = Um(D)m, Where up, is a unit of Dp, . If m <n are any two integers in .#;
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then un(@)m = (f Im = (()m = @)m(@))m = Un)m(P)m » SO Um = (un)m by unique

factorization of Dy,. Thus the sequence (#4m)me 4, 1S telescopic and so has a limit in Dy,
say u. Clearly , u is a unit of Dy,. Then f= lim (f)m=lim (up)m = him (1), im (p)n

= up . Therefore f~ p, a contradiction . Hence unique factorization holds in D, so

does (Qp.  #

The next corollary follows from Theorem 2.10 and (sQp)x = D[[x, ... ,xx]] = Dk .
Corollary 2.11 Let D be a unique factorization domain such that the subrings (s$2)i

of s are unique factorization domains for all k > 1. Then (2, is a unique

Jactorization domain .



CHAPTER 111
CASE OF ZERO DIVISORS

Chin Pi-Lu[10] has proved that under appropriate conditions the ring of all
arithmetic functions over a unique factorization domain is a unique factorization

domain. In this chapter , we consider the case where the unique factorization domain
is replaced by a unique factorization ring R with zero divisors . We shall prove that

under similar conditions the ring of all arithmetic function over R is a unique

factorization ring with zero divisors.

Proposition 3.1 2% has zero divisors .

Proof Let x be a zero divisor of R .Then there exists a ye R-{0} such that
xy = 0. Define two functions o, € vNQz by a(l) =x, B(1) =y and o(a) = 0 = B(a)
for all a = 1. Then (o)1) = a(1)B(1) =xy=0 and for all a = 1, (a*P)(a) =

> a(b)B(c) =0.Thus o and P are nonzero elements in nQ2x and o*P = 0. Hence

be=a

nQx has zero divisors. &

Proposition 3.2 The ring R, of formal power series over & has zero divisors.

Proof Since R is a subring of R, , zero divisors in R are zero divisors in R, t00. &

Lemma 3.3 Let A and B be any commutative rings with identity . Assume that A is

isomorphic to B. If A satisfies the ACCP then so does B.

Proof Let ¢ be an isomorphism between A and B. Let (B)c (B)c (Bs) < ... be
an ascending chain of principal ideals in B. Since Bi., ‘ Bi in B, there is §; eB such
that Bi = Pi.i &i . Since ¢ is onto , Bi = o(e;) and & = @(y;) for some o; ,y; € A .
Then o(o) = Bi = Biri 6 = (i) (i) = @(i+ryi) - By injectivity of @ , o = oiryy; -
Then for all 121, (o) < (0i+1) . By the ACCP in A, thereis an r>1 such that for

all 120, (ay) = (0u+i) . Then for all i 20, o+j = oy i for some unit p; in A . Thus for
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120, Brai = @(0tr+i) = @00 1) = ou) (i) = Brp(pi) ; obviously , o(pi) is a unit in B.
Then (B;) = (Brx) for all i >0 . Hence B satisfies the ACCP. 4

Lemma 3.4 % satisfies the ACCP.

Proof Let (a) < (a;) ¢ (a;) c ... be an ascending chain of principal ideals of R .
Without loss of generality we may assume that a, #0 ; then a; #0 for alli>1. Then
a; | a, foralli> 2. Since unique factorization holds in R , the number of factors of a,

1s finite , so the chain is finite. 4

Proposition 3.5 Every nonzero non-unit element in R, is a product of a finite

number of irreducible factors.

Proof First we shall show that Qs satisfies the ACCP. Let (o)) < (o) < (o3) € ...
be an ascending chain of principal ideals of R, .Without loss of generality we may
assume that o,#0 ; then o;#0 foralli> 1. Fix12> 1. Since (o) < (i) , 04 = ity *Bi
for some nonzero element B; of vQx .Then (o) = (v 1*Pi) = (i+1) {Bi) = (air) . Thus
we have a decending chain of positive integers (o) = (o) > ... , so there are n,k eN
such that for j 2 n, (o) = (o,) =k . Let j 2n . Then 0 # ajk) = (o+*B;)(k) =
2 05 (OB ()= X a (x)B;(y) +oy (K)Bj(1) = i (K)B;(1). Thus (oy(k))=(atj+i(k)) -

Xy= xy=
yel

Then we have the ascending chain (o,(k)) < (otn+i(k)) < ... of nonzero principal ideals
of R .By Lemma 3.4, R satisfies the ACCP , so there is an integer m such that (o
(k)) = (0j(k)) forallj>m. Letj>m.Then om(k)=y;-0i(k) for some unit u; of R
. Since (am) < (o) , there is a nonzero element y; of nQx such that o, = oy * ;.

Then u; -aj(k) = am(k) = X o;(x)y;(y) = (k) v}(1) . Since R satisfies a weak
k

Xy=

cancellation law, uj ~ v;(1) ,so y; is a unit of {2z by Proposition 1.28.Thus ()= (0tm).
Then nQg satisfies the ACCP, so R, satisfies the ACCP by Lemma 3.3 . By
Theorem 2.5,every nonzero non-unit element of R, is a product of a finite number of

irreducible factors. &
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Lemma 3.6 Let R be a UFRZ such that &; is a UFRZ for all j 21 and R, is

compact. Then all irreducible elements of R, are finitely irreducible .

Proof We claim that if f is a nonzero non-unit element in R, and ( f); reducible in
R; for all j > the index L of f, then f is reducible in Ry,.

Let f be a nonzero non-unit element in R, with index L and suppose that for
every j > L ,(f); 1s reducible in R; . Then we can construct an infinite telescopic
chain (G RNCARN A ), where G () is a true factor of (f)u+ In R 14, by the
same method as in Lemma 2.9 . This chain has a limit in R, , say G . Then for all

]20, () =G (L) g (L) , Where H ) is a nonzero non-unit element in Ry
s G Ly L) — (i = (D) g = (G (L+j+1))L+j(H (L+j+1))L+J =G (L+j)(H (L+j+l))L+j )
Then H & ~ (7 &™)y by the weak cancellation law of Ry . Thus the
sequence (H V), 7D gDy is a pseudo-telescopic chain . By Lemma 1.20 ,
there is a subchain (F %) of (77 7) which converges to a H € R, . Then f =

lim (f);= lim(G 3oy &y = Jjm G EH }l(imH(“ k)= GH . Clearly, G and H

k—>c0 —w®

are non-units of R, , so f is reducible in R, . Thus we have the claim . Therefore if f
is urreducible in R, then there is a least integer P > L such that ( /'), 1s irreducible in
Rp and for all j = P, ( f); is irreducible in R; by Lemma 1.22 , so f 1is finitely

irreducible. 4

Lemma 3.7 Let X be a UFRZ such that & is a UFRZ forall j 21, f,g any
elements of R, and DY ¢ greatest common divisor of (f); and (g); in K;. Then

(DTD). <D for all j > a certain non-negative integer, J(f.g).

Proof If for g is zero then the assertion is trivial. Assume that fand g are nonzero.

Let n be the least positive integer such that (/). # 0, (g)n # 0 and 1 any integer > n.
Since R 1s a UFRZ , we can represent D M a5 a finite product of irreducible elements

of R ; denote by A(D") the number of all irreducible factors (not necessarily distinct)

of DV, Since (D), is a factor of DY, A(DW) > 2(D™V). Note that the projection
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of each irreducible factor of DV on R, may not be irreducible in R; . Thus we have

the following decending chain of non-negative integers :
MD™) = (D) > ... . Then there exists integers j and k such that k = (D™

for all m > 0 . This means that for every m > n+j , the projection of each irreducible

factor of D™ on R, is also irreducible and moreover (D™V),, ~ D'™  We donote

ntj by I(fg). =

Theorem 3.8 Let & be a UFRZ such that &; is a UFRZ for all j =2 1 and R, is

compact . Then Ry, is a UFRZ .

Proof Since R is a UFRZ , R satisfies the ACCP by Lemma 3.4. By Theorem 2.5 ,
every nonzero non-unit element of R,, is a finite product of irreducible factors. We
shall apply Proposition 1.35 to show that R, is a UFRZ. First we shall prove that any
two elements fand g of R, , not both zero , have a greatest common divisor. Since
the assertion is trivial for the case where either /=0 or g = 0, we assume that fand g

are nonzero. Let n be the least positive integer such that ( /), # 0 and (g), # 0. Let

DY be a greatest common divisor of ( f)i and (g);i for alli > n . We construct an
infinite telescopic chain (EY,EYV, ... ) with the initial term in R, , where J=1J (:2)
is as in Lemma 3.7, as follows. Put £¥=DY. By Lemma 3.7, DY~ (D'"Y), in R,
so there exists a unit % in R, such that DY = u(J)(D(H))J = (u(J)D(H))J , we take
EYD = OpU*h Then (EY, = ED and EMD jsa greatest common divisor of ()
and (g)+ in Ry, . By Lemma 3.7, EUD (D(JJ"Z)),+l in R+, , so there exists a unit
" in Rywy such that ETD = DDy = IDDIDy - We take ECP =
O Then (EY*P)y, =E™Y and EY*? is a greatest common divisor of ( /)y
and (g)s2 In Ry, . Continuing in this way , we have a telescopic chain
(ED, E9*Y EU* ) . This chain has a limit £ in R, . Let F” and GY be two
elements in R; such that (f);=EYFY and (g);= EYGY forall j>17; then EVFY
= ()= () = ETONET) = EOFETV) | s0 (FUD); ~ FY by the weak
cancellation law in R; .Similarly , we have (GGH))J- ~GY  for all j = J. Then the

sequences (FU, F™*Y, FO 'y and (G, GV, G, . ) are pseudo-telescopic
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chains . Since R,’is compact , there are convergent subchains (FU* %% and (G

of (F') and (G") , respectively. These two subchains have limits in R, ,

say  Fand G, respectively. Then [ = lim(f), = lim (£ OHiOF i)y =

HmE 9% imFY% = EF and g= &im ()i = 11<im (E Ui g Ok )) =

ko k—»

imE " lim G %)= EG . Thus E is a common divisor of fand g . To show that

Ko Koo
E is a greatest common divisor of f and g in R,,, we let E’ be any common divisor of
f and gin R, . Letj=1]. Then (E*)j is a common divisor of ( f);and (g); in R;.
Since (£); is a greatest common divisor (f); and (g); in R;, (E); = h(j)(E*)j , where
K e & . Then WYE) =@ = @) = G"E )Y = GTNEY) , so
K9 ~ (h(j+1))j by the weak cancellation law in &R;. Thus we get a pseudo-telescopic

chain (A%, %V, ... ), so by compactness this chain has a subchain (A" %))

which converges to a limit 2 in R, by Lemmal.20 .Then E = ll(im E)p=
Lim ( RIOEN ) = lim h(J”“)ll(im (E")+3, = hE" . Hence E is a greatest common

divisor of f and g in R,,. Lastly we show that R, satisfies a weak cancellation law.

Let f,gand 2 € R, be such that fg =fh # 0.Then there are integers n and k for
which (fg); = (fh); #0 forall j=2n and (f)i #0 forall 1>k . Choose m = max{nXkj}.
Letj>m . Then we get (f);(g); = (f2); = (fh); = (f)(h); # 0 . By the weak cancellation
law in R; , (g); ~ (h); , so there is a unit uY in R; such that (g); = u(j)(h)j . Thus we get

a sequence (1™, ™),

...) of units in R,. The definition of compactness of R,
implies that this sequence have a subsequence (x™ %*7) which converges to a

unit % in Re. Then g = lim (g);, = lim( I ) = lim (ot e ) lim (B) e g, =

uh. Therefore R, satisfies a weak cancellation law . By Proposition 1.35 , R, is a

UFRZ . 4

The following Corollaries are consequences of Theorem 3.8 .

Corollary 3.9 If R is a UFRZ such that X; is a UFRZ for each positive integer j

and R, is compact , then n{2z is a UFRZ .
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Corollary 3.10 If R is a UFRZ such that the subring (vQz)r of ~Q2z is a UFRZ

for each positive integer k, then n$2z is a UFRZ .
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