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CHAPTER I 

 
INTRODUCTION 

CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND 
 
Uncontrollable and increasing of travel demand according to the growing of economic 
and several activities in everyday lives in this century has become a serious reason of 
many problems that widely occur especially in developing country.  Traffic 
congestion is one of the serious problems affected by these activities that result in 
three main problems including congestion related, transportation safety, and 
environmental impact especially global warming caused by fossil energy consumption.  
Conventional approaches conducted to mitigate these problems are aimed to increase 
service capacity of infrastructures; for examples, new road construction, additional 
lane expansion, new transportation system, and etc.  However, these approaches have 
been unable to respond the increasing of travel demand within the financial and 
environmental constraints.  Unfortunately, it could not be the approach to achieve the 
concept of sustainable transportation development.  Due to these constraints, the 
improvement of existing infrastructure by means of performance maximization was 
considered. 
 
In recent years, growing of wireless communications, computational technologies, 
and sensing technologies have integrated and applied into transportation system 
known as intelligent transportation system (ITS) which aims to adopt additional 
information and communications technology to transportation infrastructure, vehicle, 
and users to improve transportation safety, mobility, energy consumption, and 
pollution.  Three major applications of ITS in highway and traffic engineering are 
advanced traveler information system (ATIS), advanced traffic management system 
(ATMS), and advanced vehicle control system (AVCS).  These applications are 
designed on the basis of existing infrastructure performance maximization using the 
integration of advanced technologies.  In this research, ATIS application was 
considered in the mechanism of getting reliability of travel information disseminated 
to travelers especially travel time information that is suggested to be a main key 
information for travelers to consider for their travel options. 
 
ATIS is one of the ITS applications which provides travel information for travelers in 
order to plan the shortest travel route due to their trip purpose during both pre-trip and 
en-route.  Three main components of AITS components consist of data collection, 
data processing, and data dissemination.  Data collection module is designed for 
measuring and collecting required information from the field which the required 
information is not only traffic parameters but also weather condition, lane closure, 
road maintenance section, incident, accident, special event, and etc.  These kinds of 
field data are sent to traffic management center (TMC) to further analyze and estimate 
travel information which is necessary for travelers to make a decision on the best 
route to reach their destination.  The data is arranged in suitable format and stored on 
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efficient database at TMC.  Subsequently, dissemination module is broadcast the 
travel information to the travelers using several kinds of user interfaces, for example 
traffic radio broadcasting, internet website, variable message sign board, in-vehicle 
car navigation device, etc.  In order to accomplish ATIS application, reliable real-time 
traffic information is required. 
 
Reliable real-time traffic information is required to accomplish the ATIS application 
especially travel time information.  In order to provide reliable real-time travel time 
information, real-time traffic data is measured using several kinds of traffic 
surveillance system. Inductive loop detector is the most common point-based traffic 
detector that widely uses for measuring traffic data including traffic volume, 
occupancy, and speed.  In practice, travel time information is estimated using the link 
length and average link speed relationship.  Therefore, accuracy of traffic data using 
point-based detector depends on the number of detector and placement that equips on 
road section.  More detectors are equipped; more accuracy of traffic data is measured.  
However, it is costly to improve accuracy of traffic data by increasing the number of 
detectors on road section. 
 
Mobile-based detector is another kind of traffic surveillance system that can be used 
to measure traffic data, where travel time information can be directly measured.  
Mobile-based detectors are included automatic vehicle location (AVL) and automatic 
vehicle identification (AVI).  The accuracy of traffic data using mobile-based detector 
depends on the number of probes currently running on road sections. Presently, 
sufficient mobile-based detector is still difficult to achieve on real road network.  Low 
number of samples of mobile-based detector is currently provided by GPS probe 
which normally use GPS equipped taxis as probes.  Toll tag ID can also be used to 
measure traffic data but most are used on toll roads or expressways.  However, low 
number of sample traffic data can not reflect good representative traffic data during 
normal condition but it can provide good data during congested condition. 
 
In the past, the estimation of real-time travel time information is a product of traffic 
state estimation which is further estimated from speed-based travel time information 
and flow-based travel time information (Vanajakshi et al., 2009).  Most of past studies 
relied on traffic data which provided by point-based detectors with short spacing of 
detectors.  Macroscopic traffic flow models were also proposed in order to estimate 
real-time traffic state and further estimate travel time information (Nanthawichit, 
2003).  State-space model and standard Kalman Filter (KF) and developed form for 
nonlinear systems such as Extended Kalman Filter (EKF) have been used as the 
dynamic state estimators.  However, it is known that EKF provides only an 
approximation to optimal nonlinear estimation.  Moreover, it is complicated and 
inflexible to adapt with a dynamic traffic state estimation such as the concept of on-
line microsimulation that can parallel operated by real-time basis to estimate traffic 
state and also travel time information.  The other filter for nonlinear system with 
performance superior to that of the EKF but at the same order of computational 
complexity and also compatible with on-line microsimulation was considered. 
 
Unscented Kalman Filter (UKF) was first developed in the mid of 1990s by Julier et 
al. (1995) and has attracted a number of researchers in various fields.  This filter has a 
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number of unique advantages over the EKF such as the ability to capture the true 
mean and covariance accurately to second-order Taylor expansion.  In contrast, the 
EKF only achieves first-order accuracy.  The UKF also has an important inherent 
property that it does not require explicit computation of matrix derivative or Jacobian 
matrix.  This property of the UKF is extremely important and provides a new way to 
develop on-line microsimulation framework of real-time traffic state and travel time 
estimation. 
 
In this research, the possibility and potential of UKF was investigated and developed 
the new frameworks for estimating real-time traffic state and travel time information 
on road section with have limited amount of point-based detector data.  Moreover, 
short-term travel time estimation was also developed to enhance the dynamic traffic 
state and travel time estimation framework.   
 

1.2 PROBLEM STATEMENT 
 
In past researches on the subject of real-time traffic state and travel time estimation, 
the macroscopic flow models were the most popular traffic model applied to 
formulate dynamic traffic state estimation model, with travel time information as a 
byproduct of traffic state estimation model.  Macroscopic model is relied on traffic 
data measured by traffic surveillance system such as inductive loop detector or other 
detector with similar performance.  Traffic state estimation model using macroscopic 
model is formulated based on the law of conservation of traffic stream.  It is known as 
the conservation or continuity Equation.  The limitation of macroscopic model is 
depended on the quality of traffic data measured by traffic surveillance system.  It is 
difficult to know accurate traffic states data in case of long length of road section 
which point detectors are equipped far apart.  Previous studies adapted filtering 
techniques to develop dynamic traffic state estimator (Mihaylova et al., 2007, 
Nanthawichit, 2003, van Lint, 2008, Ye et al., 2006). 
 
The EKF has been the most widely used estimation algorithm for nonlinear systems.  
However, the estimation community was shown that it is difficult to implement, tune, 
and only reliable for a system that is almost linear on the time scale of the updates.  
Many of these difficulties arise from its use of linearization.  To overcome this 
limitation, the unscented transformation (UT) was developed as a method to 
propagate mean and covariance information through nonlinear transformations.  It is 
more accurate, easier to implement, and uses the same order of calculations as 
linearization (Julier and Uhlmann, 2004). 
 
The accuracy of traffic data measured by point-based detection system is limited by 
the types and amount of traffic detectors which toward affect the accuracy of traffic 
state estimator processed by macroscopic model.  Spacing and placement are also the 
main factors that affect to the traffic state and travel time estimation.  In practice, the 
extrapolation method is a simple way of estimating average travel time using point-
based detection system because it assumes that a spot speed measured by traffic 
detector is applicable over short segments of roadway with typically less than 0.8 km.  
However, there are many road sections that traffic detector are equipped far apart 
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which extrapolation method is not suitable to reflect traffic situation.  Reducing the 
space by increased number of traffic detectors is concerned in order to improve the 
accuracy.  However, it is costly to install detectors for retrieving reliable traffic data 
according to the extrapolation method.  Mobile-based detection system can be used to 
measure traffic data especially link travel time information.  Therefore, the reliability 
of mobile detection system is also dependent on sample size of probe vehicle that 
report traffic data during a time interval.  It is difficult to get sufficient amount of 
probe samples in present operation but it should be increased in the near future. 
 
The above two issues could be improved by adapting microscopic traffic simulation 
model instead of macroscopic traffic model.  Moreover, the UKF can be easily 
implemented with microscopic simulation model.  Furthermore, the modern 
technology of traffic surveillance systems, for example GPS probe and AVI data are 
introduced for measuring traffic parameters such as link speed and travel time to 
support real time traffic information.  It is interesting to study and develop real time 
traffic state and travel time estimation framework based on on-line microscopic 
simulation integrated with feedback estimation using UKF. 
 
Since ATIS will provide travel information such as list of the kth shortest path that 
travelers can receive travel information from a variable message sign, portable 
navigator, and in-vehicle navigation system disseminated traveler information from 
TMC via FM radio.  Travel time information on selected route is an expected travel 
time that travelers could reach the destination which it is estimated while travelers 
arrive at the origin point on selected route.  In past researches, several travel time 
prediction methods were proposed in the case of short-term and long-term prediction 
for ATIS.  In case of short-term prediction methods, it can be categorized under two 
approaches included regression methods and time series estimation methods.  The 
third approach may be describes as combining the first two methods known as data 
fusion (Li et al., 2009, Yuh-Horng et al., 2005).  The methodologies that were 
proposed such as historical data estimation method by Yanying and McDonald (2002), 
artificial intelligence by Bielli et al (1994) and Park and Rilett (1999), statistical 
techniques by Kothuri et al (2007).  EKF was also proposed on prediction module in 
case of short-term prediction to predict traffic state and then further estimate travel 
time (Nanthawichit, 2003).  However, a few studies integrated prediction module into 
real-time traveler information framework using on-line microsimulation model.  
Given such a few studies, it would be interesting to study prediction a method that 
could be applied with on-line microsimulation for predicting travel time information. 
 
Furthermore, in order to develop on-line microsimulation model to support real-time 
traffic state and travel time estimation, consistency of microscopic traffic simulation 
model should be emphasized.  The components of microscopic traffic simulation 
model generally include physical component of road network, traffic control system, 
and driver-vehicle units which driver behavior models and route choice models are 
associated.  The complex data and numerous model parameters are required by these 
components.  These parameters need to be calibrated for a particular study area 
(Mcnally and Oh, 2002).  Conventional model calibration procedure adjusts 
parameters in driver behaviors model and route choice model until simulation outputs 
are corresponded with those of field observation in both qualitative and quantitative 
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aspects.  The trial-and-error method is normally employed for calibrating parameters 
based on engineering and experience decision, and this method is a time consuming 
and tedious process.  Some previous studies attempted to introduce a systematic 
procedure to calibrate a network level simulation model for both freeways and their 
adjacent parallel surface streets by focusing on one component of the simulation 
model while assuming other components held constant at present values (Chu et al., 
2004).  Some studies presented calibration framework which also focused on route 
choice model calibration when the O-D flow was an unknown variable (Toledo et al., 
2004, Toledo et al., 2003).  However, with this conventional calibration procedure, 
calibrated traffic parameters are not guaranteed to be used in all range of various 
traffic system environments.  The parameters may require re-adjustment which would 
again consume great effort based on the conventional model calibration.  This 
limitation could improve by artificial intelligence approach such as genetic algorithm 
instead of conventional methods to calibrate model parameters that calibration time 
should be decreased.  Genetic algorithm method is often introduced to reduce time on 
calibration process by treating parameters calibration to be an optimization problem 
and searching optimal combinatorial parameters values that can minimize a fitness 
function within defined number of generations in genetic algorithm procedure (Cheu 
et al., 1998, Lee and Yang, 2001, Ma et al., 2007, Park and Qi, 2006, Schultz and 
Rilett, 2004). 
 

1.3 RESEARCH OBJECTIVES 
 
The following research objectives are defined according to problems described in the 
previous section: 
 

• Develop a combinatorial model parameters calibration for microscopic traffic 
simulation model using genetic algorithm. 

• Develop a framework of real-time traffic state and travel time estimation using 
microsimulation. 

• Apply Unscented Kalman Filter to improve the accuracy of traffic state and 
travel time information estimated by on-line microsimulation. 

• Study short-term prediction for OD travel time information. 
 

1.4 SCOPE AND LIMITATIONS 
 
In this research, the real-time traffic state and travel time estimation for travel time 
prediction was developed and evaluated for the traffic characteristics on expressway’s 
corridor which the route choice process was not concerned.  Moreover, only existing 
point-based detector was the traffic data source available in practice.  The proposed 
on-line microsimulation can not directly applied with other types of road section for 
example arterial road or road with traffic signal control and also route travel time for 
large network with multiple origins and destinations. 
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1.5 ORGANIZATION OF DISSERTATION 
 
The structure of this research proposal is as follows. 
 
Chapter 2 provides the reviews of the related literatures including the historical and 
fundamental background on travel time estimation, on-line simulation using 
microscopic traffic flow approach, the Kalman filtering technique for both linear and 
nonlinear problems, particle filtering technique, data fusion techniques in order to 
improve the reliability of travel time information, the methods to deal with short term 
and long term prediction.  
 
Chapter 3 presents the methodology adopted to develop on-line micro-simulation 
framework for estimating dynamic OD travel time.  Initially, a framework is 
presented to give an overview of this study.  First, the step on how to develop 
microscopic traffic simulation model is presented.  Then, the process of model 
parameters calibration for microscopic traffic simulation is presented which genetic 
algorithm is proposed instead of conventional calibration methods.  Second, on-line 
microscopic traffic simulation model will be operated as real-time traffic state and 
travel time estimator, where point detector system will be used to update traffic states 
estimated by on-line microscopic traffic simulation.  Here, the estimation algorithm 
with the UKF as the estimator is presented.  Third, prediction algorithm is presented 
to be able to forecast travel time information and the prediction algorithm in case of 
short term prediction is presented.  Finally, data fusion techniques are presented in 
order to combine several traffic information estimated by on-line microscopic traffic 
simulation model and mobile detection system if available in the future practice, GPS 
probe and AVI data, is presented.  
 
Chapter 4 presents traffic data that were conducted in this research in order to 
evaluate the proposed method for estimating traffic state and travel time information 
on expressway section.  Two road sections were selected which the first site is 
Matsubara line on Hanshin Expressway in Japan.  The second site is Chalerm 
Mahanakhon line on Bangkok expressway in Thailand.  Physical alignment of sites 
was explained in detail.  Finally, the results of model parameter calibration using 
genetic algorithm of two study site were reported. 
 
Chapter 5 presents the numerical analysis of experiments that were proposed.  Finding 
of four main parts of this dissertation were presented and discussed.  The first part is 
the evaluation of link speed estimation based on point detection system on 
expressway.  The second part is the real-time traffic state and travel time estimation 
using microsimulation.  The third part is the improvement of microsimulation by 
feedback estimation using Unscented Kalman Filter.   The final part is the study of 
short-term travel time prediction. 
 
Chapter 6 presents the conclusion of the findings in dissertation and then 
recommendations of future research are proposed. 
 



 
 

 
CHAPTER II 

 
LITERATURE REVIEWS 

 
 
This chapter reviews related literature including overview of advanced traveler 
information system, traffic state estimation, filtering techniques, travel time 
estimation and prediction, and traffic simulation tools and model parameters 
calibration. 

CHAPTER 2 LITERATURE REVIEWS 

2.1 ADVANCED TRAVELER INFORMATION SYSTEM 
 
Increasing of travel demand affects the congestion level on a road network especially 
during the rush hour period.  Travelers intend to spend the shortest travel time 
possible on their trip from origin to destination.  Typically, the route selection logic is 
based on each traveler’s experience, but the proper decision using the past experience 
along may not yield the optimum (best) selection due to the fact that traffic condition 
on selected route might vary from the past and could not be predicted based on their 
experience without any update or current traffic condition information.  The growing 
of advanced technologies for informing traffic condition to travelers and guiding 
shortest route based on their trip destination while pre-trip and en-route and a group of 
these technologies are called an advanced traveler information system (ATIS).  In this 
part, the review of the advanced traveler information is described.  
 

2.1.1 General Background 
 
The system of advanced traveler information consists of three main parts including 
data collection, data processing, and data dissemination.  The framework of a typical 
ATIS is shown in Figure 2-1. 
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                            Data Collection         Data Processing          Travel Information  
        Dissemination 
 

Figure 2-1 Framework of ATIS (ITS America, 2000) 
 
From Figure 2-1, in the first component of ATIS, the data collection component 
collects several data such as present traffic condition, road activities, and travel 
environments from road network such as traffic volume, lane closure, road 
maintenance, incident, accident, special event, and weather condition.  Traffic 
detection and surveillance technologies play an essential role to data collection part.  
There are several kinds of traffic detection such as single inductive loop detector, dual 
inductive loop detector, microwave, close circuit television (CCTV), infrared, video 
image processing, and etc.  Most of existing traffic surveillance as described are 
called “point-based detection”.   
 
In present practice, traffic detection and surveillance devices are typically available at 
specific discrete points through a freeway corridor.  Most of deployed traffic sensors 
are single inductive loop detectors that have limited detection capabilities.  The cost 
of large scale detection and surveillance with point-based detector is one of the 
biggest obstacles for implementation.  Using modern traffic detection technology 
could widely increase traffic detection and implementation with affordable cost but 
high accuracy of traffic data. 
 
States of the art in detection and surveillance replace traditional single loop detectors 
with sensors that provide additional types of data, merge infrastructure-based point 
detection techniques with a variety of newer techniques, including cellular-based geo-
location, Global Positioning Systems (GPS), and move toward the Vehicle 
Infrastructure Integration (VII) concept.  Improvements in positioning, computing, 
and detection technologies have also provided the potential to update and improve 
upon detection algorithms.  Some traffic management centers (TMC) are equipped 
with computerized algorithms that can identify locations where significant congestion 
exists and trigger operators to find congestion-prone locations and reduce the delay 
from incident response and management. 
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In fact, inductive loop detectors are still the most utilized type of traffic sensor in 
existing traffic management system (Klein et al., 2006).  They are commonly used as 
single loops at discrete locations on road section with only traffic volume and lane 
occupancy being measured while other traffic condition indicators such as traffic 
speed and traffic density must be inferred from algorithms that interpret the 
mentioned measured data.  Several studies developed algorithms for detecting the 
onset of congestion and incident using these single loop measurements (Dailey, 1999, 
Coifman et al., 2003, Wang and Nihan, 2003).  In order to measure traffic speed and 
vehicle length, inductive loops are sometimes configured as dual loops or a speed trap 
that is formed by two consecutive single-loop detectors placed several meters apart.  
Dual loop detectors are ideal for collecting speed and vehicle length data.  Operators 
at a traffic management center (TMC) on freeway use visual surveillance from field-
located cameras or closed circuit television (CCTV) to verify incidents when these 
take place.  
 
In the second component of ATIS, the data processing component receives field 
traffic data from the data collection part.  Traffic management center is the place that 
retrieves data and processes raw data into travel information which can be used to 
indicate congestion location, incident detection, traffic management, and traffic 
planning.   
 
In the third component of ATIS, many channels can be used to disseminate travel 
information to travelers which can be divided by stage of pre-trip and en-route.  The 
pre-trip information is essential for travelers to make decision about their route 
selection before the trips start.  They can receive travel information from traffic 
information website, radio, or television while they do not depart from their origins.  
The en-route information can be received from dynamic message signs (DMS), traffic 
radio broadcast, Personal Navigation Device (PND), and in-vehicle route guidance. 
 

2.1.2 State of Practice 
 
Three zones in the world including several states in the United States of America and 
North America, countries in Europe, and countries in Asia were explored on the state 
of practice.  State of practice is summarized as follows. 
 

• In United State of America and North America 
 
A number of states in the United States of America and North America have provided 
travel time information or have plans to provide such information in the near future.  
The summary of the state of practice is shown in Table 2-1 (Kothuri et al., 2007b). 
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Table 2-1 State of Practice on ATIS in United State of America  
States State of Practice 

Portland, Oregon The Oregon Department of Transportation currently provides 
travel times on three DMS along the I-5 corridor.  Travel times 
are provided in a 2-3 minutes range.  These times are estimated 
from speeds reported by dual loop detectors embedded in the 
pavement.  Currently approximately data from 500 loop detectors 
are reported every 20 seconds to the TMC.  The midpoint 
algorithm which uses a ratio of distance to speed is used to 
estimate travel times. 

Seattle, 
Washington 

Travel times are estimated using occupancy measurements from 
single loop detectors which are spaced 0.25 – 0.5 mile apart.  The 
speeds and segment lengths are used to estimate travel time for 
different links.  These current travel times are compared to the 
historical travel times and are adjusted if the historical travel times 
report a higher value.  These travel times are disseminated 
through DMS as well as internet and are updated approximately 
every two minutes.  Tests show accuracy greater than 90%. 

Minneapolis-
St.Paul, 
Minnesota 

Travel time are estimated based on speeds which are calculated 
from volume and occupancy measurements from single loop 
detectors spaced approximately 0.5 mile apart.  A modified 
midpoint algorithm is used to estimate travel times based on the 
calculated speeds.  These travel times are reported on DMS and 
software developed by the Minnesota DOT’s (MnDOT) Traffic 
Management Center is used to control the signs and post 
messages.  Estimated travel times have been found accurate in 
most of the time except when traffic conditions are changing. 

Chicago, Illinois Illinois DOT operates the un-tolled highway network where loop 
detectors are present every 0.5 mile.  Travel times are calculated 
as a simple ratio of distance to speed with the algorithms 
including a fudge factor to account for extremely congested 
conditions where occupancy is greater than 95%.  Travel times are 
posted on DMS as well as on the website. 

San Francisco-
Bay Area 

Travel times are estimated from data obtained by a variety of 
sources included loop detectors, AVI toll tag readers and spot 
speed loop sensors.  The travel time algorithms are employed for 
calculating travel time using data from all three sources to predict 
travel times and display them on DMS.  The travel time 
estimation errors are less than 20%. 

Milwaukee, 
Wisconsin 

Loop detectors are spaced every 0.25 miles in the urban area and 
be greater in the suburban areas.  In some cases, microwave 
detectors are also employed to supplement additional data.  Travel 
time is calculated as the ratio of distance to speed.  Travel time is 
not reported if more than 33% of the detectors are not available.  
Travel times information is updated on the website every three 
minutes and the DMS is updated every minute. 
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Table 2-1 State of Practice on ATIS in United State of America (con’t) 
States State of Practice 

Houston, Texas Travel times are primarily derived from AVI toll tag transponders.  
Over 200 toll tag readers are present in addition to the toll plazas.  
Travel times are posted automatically onto the DMS every ten 
minutes.  Public response to the posting of travel times has been 
highly favorable and the travel times are generally considered 
accurate.  Based on the information provided, users were observed 
to change routes. 

Nashville, 
Tennessee 

RTMS sensors form the primary source of data collection which 
are spaced 0.25 mile apart and subjected to periodic maintenance 
to ensure optimal performance.  Travel times are calculated 
knowing the distance and average speed that is obtained from the 
RTMS sensors. Travel times are posted to destinations that are not 
more than 5 miles away from the DMS. 

Atlanta, Georgia Video Detection System cameras are present on the highways in 
Atlanta and continuously record speed and volume and transmit 
these data to the TMC, where travel times are generated and 
posted onto the DMS.  Travel times are calculated from average 
speeds obtained from the VDS cameras. 

San Antonio, 
Texas 

Travel times in San Antonio are obtained from speeds measured 
by loop detectors and video detection systems.  These sensors are 
placed 0.5 mile apart.  The travel time algorithm assumes that a 
segment is bounded by detector stations on either end, and the 
speed for the segment is chosen as the lower of the speed 
displayed by the upstream or downstream station. The ratio of the 
distance covered by each method of detection to the speed 
generates the travel times.  The posting of travel times on the 
website as well as on DMS has been well received by the public. 

Toronto, Canada Loop detectors are placed every one third mile to provide speeds 
that are used to calculate travel times. The initial travel time 
algorithm is used to generate times using distance over speed to 
compute the estimated travel time.  Travel times are displayed on 
the DMS in ranges of times.  When travel times exceed 40 
minutes, the DMS does not display travel times information but 
display “stop and go conditions” instead.  Public reaction has been 
positive. 

 
• In European Countries 

 
There are many projects on ATIS implemented in European countries.  They are 
summarized as shown in Table 2-2 (Bob Rupert, 2003). 
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Table 2-2 State of Practice on ATIS in European Countries 
Countries State of Practice 

Barcelona, Spain The Catalan Traffic Service is responsible for regional and 
interregional traffic management and operates the TMC.  300 
detector stations both inductive loops and vision processing 
collected and sent traffic data every minute in which travel 
information is displayed on DMS. 

Munich, 
Germany 

The detection system on motorway has 58 weather stations, 120 
visibility (fog) meters, 452 sensor loops, and 93 video cameras.  
Data are collected every minute.  Traveler information can be 
viewed on the internet and also personnel travel assistants such as 
cell phones, PDAs, and etc.  

Berlin, Germany Radio Data System-Traffic Message Channel (RDS-TMC) and 
DMS are the main channel to disseminate travel information to 
traveler.  

Stockholm, 
Sweden 

ITS plays a major role in network operations which focus on 
traffic information in winter condition.  However, traffic 
congestion is not the major focus but road weather data are 
provided every half an hour at 700 stations. 

Glasgow, 
Scotland 

The core functions of the system include a monitoring network 
(CCTV, loop detectors, incident detection, etc), traffic control, 
and informing users (DMS, lane signals).  

Newcastle, 
England 

The system by highways agency is considered a video information 
highway.  Twenty police control center have a CCTV system.  
RDS-TMC is also available. 

 
• In Asian Countries  

 
In Asian countries, there are few countries that comprehensively implemented ATIS.  
Japan is the leader of using ATIS and also other ITS s.  Vehicle Information and 
Communication System (VICS) is the most popular system which users can receive 
traffic information using their own in-vehicle car navigation system.  VICS center 
gather traffic data from expressway using radio wave beacons and ordinary trunk 
roads using infrared beacons.  After that, VICS center processes data and then 
disseminates travel information using NHK local FM multiplex broadcasting stations.  
VICS provides information including traffic congestion, travel time, location of 
accidents and roadwork, speed limits and lane regulations, and parking lot locations 
and availability.  Other expressway operators also measure traffic data and display 
traffic information on their DMS and also transfer data to VICS.  Hanshin 
Expressway Company limited is a company that provides travel time information to 
motorists.  The information gatherings are provided by vehicle detectors that are 
installed at entrances and exits and above the thruways to measure traffic volume, 
speed, and time occupancy ratio.  There are also monitoring cameras that visually 
check traffic conditions on the road.  Some cameras on sharp curb sections can 
automatically detect accidents and disabled vehicles with special image processing 
technology.  The detectors are placed every 500 meters in order to measure volume, 
occupancy, and speed then derived for travel time information (VICS, 1995). 
 



 
 

13

 
In Thailand, there are 40 traffic information sign boards installed in Bangkok in order 
to provide traffic information to road users.  Three congestion levels consisting of red, 
yellow, and green are displayed as the colors represent high, medium, and low 
congestion respectively.  Occupancy ratio is measured using video image processing 
camera and additional CCTV for monitoring real-time situation.  
 

2.2 TRAFFIC STATE ESTIMATION 
 
Traffic state is required by traffic operators in order to perceive traffic condition on 
roadway. Common traffic state includes traffic flow, speed, and density.  Traffic state 
can be measured or approximated using traffic detector and also estimated using 
traffic flow model that is presented as follows. 
   

2.2.1 Field Measurement and Approximation 
 
In practice, most of traffic operators attempt to estimate traffic state based on existing 
traffic detectors which are installed on their road section.  Single inductive loop 
detector is a typical traffic detector that is normally selected by most of traffic 
operators.  The mechanism of single inductive loop detector is illustrated in Figure 
2-2 which the single inductive loop detector is turned on when vehicle passing over 
the detection area and turned off when no vehicle passing over the detection area 
(Sisiopiku et al., 1994). 
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60 scans 

1 sec

 
Figure 2-2 Output Signal from Presence Type Detector 

 
However, traffic data consists of only traffic volume and occupancy can be provided 
by a single inductive loop detector.  Traffic speed is a good traffic state that reflects 
what the level of convenience for traveling on road section and also used to estimate 
travel time.  However, speed can be directly measured by a single inductive loop 
detector. 
 
Speed can be approximated from a single loop detector but needs to rely on 
predefined vehicle length and occupancy.  Total number of scanning intervals “ON” 
over a time period of T seconds is referred to as occupancy and denoted as OCC (in 
scans).  Given that the scanning frequency is 60 scans/sec, ONT in seconds is 

equal
60

OCC  and % 100 ONTOCC
T

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, the average speed over a detector in m/sec is 



 
 

14

shown in Equation (2-1) where VL  is average vehicle length (m) which is assumed 
4.72 m and DL  is detection zone (m) which is assumed 1.83 m.   

 

 ( )V D
ON

VOL L L
T

µ = +  (2-1) 

 

Substitute 
60ON

OCCT ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 into Equation (2-1), and then Equation (2-2) is shown where 

µ  is average speed (in m/sec), VOL  is volume (in veh/5-min), and OCC is 
occupancy (in scans/5-min) 
 

 ( )60 V D
VOL L L
OCC

µ ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (2-2) 

 
Note that µ  is space mean speed since they are based on the average of vehicle 
occupancy times not on an average of individual vehicle speeds.  The speed estimate 
is calculated on each influence section due to detection zone as shown in Figure 2-3. 
 

 
Di-1 Di Di+1 

Mi-1 Mi+1 

Si-1 Si+1 

Speed 

µi-1 
µi µi+1 

 
 

Figure 2-3 Influence Area of Detection Zone 
 
Speed is also indirectly estimated from other traffic data obtained from a single loop 
detector, which are flow and occupancy, without heavily relying on the flawed speed 
calculation. Previous studies on speed (travel time) estimation based on single loop 
detectors can be broken into two broad classes.  The first class is to use one detector 
data to determine the speed at that detector and then extrapolates it to get a link travel 
time.  The speed estimation is derived using flow and occupancy as shown in 
Equation (2-3): where g is the average effective vehicle length (EVL); the sum of the 
vehicle length and the width of the loop detector (EVL ~vehicle length + detector 
length).  The g  factor is simply converted occupancy into density.  The second class 
is to use information from two single loop detectors, one at either end of the link to 
estimate the link travel time directly (Petty et al., 1998). 
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 flowspeed
occupancy g

=
×

 (2-3) 

 
Several studies present a different approach, using a new aggregation methodology to 
estimate speed and to reduce the impact of long vehicles in the original traffic 
measurement.  In contrast to conventional practice, the new estimate significantly 
reduces velocity estimation errors when it is not possible to control for a wide range 
of vehicle lengths (Coifman, 2003).  Many researchers investigated techniques to 
reduce the influence of long vehicles (Coifman, 2001, Dailey, 1999, Pushkar et al., 
1994, Wang and Nihan, 2000).  All of these studies used aggregated flow (q) and 
occupancy (occ) to estimate mean velocity.  Rather than manipulating aggregate data, 
Coifman (2003) examined new aggregation methods to reduce the estimation errors.  
Provided that vehicle lengths and vehicle velocities are uncorrelated, harmonic mean 
velocity (mean v) and arithmetic mean vehicle length (L) for a given sample are 
related as shown in Equation (2-4). 
 

 mean q Lv
occ
⋅

=  (2-4) 

 
Note that, two variables in this Equation cannot be measured independently with a 
single loop.  Typically, an operating agency will set L  to a constant value and use this 
Equation to estimate a velocity from the single loop measurement.  For this fact, this 
approach fails to account for a percentage of long vehicles which may change during 
the day or this value may not be included in typical vehicle length.  Particularly 
during low traffic flow, when the number of vehicles in a sample is small, a long 
vehicle can skew occupancy simply because it takes more time to pass the detector.  
For example, approximately 85 percent of the individual vehicle lengths observed at 
one detector station are between 15 and 22 feet but some vehicle are as long as 85 feet 
or roughly four times the median length (Coifman, 2001). 
 
However, traffic state especially speed as previously presented reflects the traffic 
condition only on the location that a detector is equipped, not the traffic state that 
occur along the length of road segment.  In order to approximate average speed on 
road segment, several detector stations have to be installed in practice.  Three simple 
methods of conventional segment speed estimation that are normally used in practice 
(Kothuri et al., 2007), namely average speed, weighted average speed, and San 
Antonio, which are described as follows. 
 

• Average Speed  
 
The average speed is one of the simplest methods to estimate segment speed based on 
spot speed measurement using point detector data.  Spot speeds are measured at 
upstream and downstream end of the segment in every time step. Then the average 
speed is calculated using simple arithmetic mean as shown in Equation (2-5).  Traffic 
speed on a segment is assumed to be uniformly distributed under short time interval 
and short segment length. 
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 ( ) ( ) ( )
2

u d
s

v k v k
v k

+
=  (2-5) 

 
where ( )sv k is the estimated segment speed at time k, ( )uv k and ( )dv k is the measured 
spot speed at upstream and downstream detector at time k respectively.  
 

• Weighted Average 
 
The weighted average method is proposed to estimate segment speed using spot speed 
data measured by upstream and downstream detector.  This method takes account of 
traffic flows (volumes) that are also simultaneously measured with spot speeds in 
each time interval.  Estimated segment speed is calculated as shown in Equation (2-6). 
 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

u u d d
s

u d

q k v k q k v k
v k

q k q k
+

=
+

 (2-6) 

 
where ( )uq k and ( )dq k are traffic flow (volume) on upstream and downstream 
detector station respectively.  
 

• San Antonio 
 
This method has been used according to San Antonio Transguide project which 
employs the minimum spot speed value between upstream and downstream detector 
station to represent link speed as illustrated in Equation (2-7). 
 
 ( ) ( ) ( )( )min ,s up downv k v k v k=  (2-7) 
 
As seen from these three simple methods for estimating segment speed, it is obvious 
shown that these methods just attempt to approximate segment speed based on what 
happens at the detection station.  It is necessary that traffic state on the segment must 
be reflected by the traffic data at the detection points and hence a requirement for 
short span detector stations limits the applicability of these methods. 
 

2.2.2 Traffic Flow Model 
 
In previous studies, macroscopic traffic flow model was introduced to estimate 
dynamic traffic state on road section which relies on traffic flow conservation 
equation, dynamic speed equation, and stationary speed equation.  The macroscopic 
model represents in discrete space-time frame which consists of four main traffic 
values including traffic density, space mean speed, traffic flow, and on-ramp inflow 
and off-ramp outflow.  The dynamic macroscopic model equations are shown as 
follows. 
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 (2-8)   

 ( ) ( ) ( )1i i is k k q kβ −= ⋅  (2-9) 
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 ( ) 1exp
a

f
cr

V v
a

ρρ
ρ

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2-11) 

 ( ) ( ) ( ) ( )q
i i f i iq k k v k kρ λ ξ= ⋅ ⋅ +  (2-12) 

 
A road section is subdivided into a number of N segments with lengths i∆  (i = 1,.., N) 
while the discrete time is based on a time step T with the discrete time index k = 0, 1, 
2,…  From Equation (2-8), it is the conservation equation where ( )i kρ  (veh/km/lane) 
is the number of vehicles in the segment i at time instant kT, divided by the segment 

i∆  and lane number iλ .  ( )iv k  (km/h) is the average speed of all vehicles included in 

segment i at time instant kT.  ( )iq k  (veh/h) is the number of vehicles leaving segment 

i during the time period [kT, (k+1)T], divided by T.  The ( )ir k and ( )is k are on-ramp 
inflow and off-ramp outflow respectively at segment i (if any).  From Equation (2-9),  

( )i kβ  is the dimensionless denoted the exiting rate at the off-ramp in segment i (if 
any). The τ ,ν ,κ ,δ , fv , crρ , and a  are model parameters which need to be calibrated, 
subject to individual case, which fv and crρ  are the free speed and critical density 

respectively. The v
iξ  and ( )q

i kξ denote zero mean noise acting on the empirical speed 
equation as shown in Equation (2-10) and the approximate flow equation as shown in 
Equation (2-12) to reflect the modeling inaccuracies (Nanthawichit, 2003, Wang et al., 
2007) 
 

2.3 TRAVEL TIME ESTIMATION 
 
In this part, the reviews of previous studies that proposed several methods in order to 
estimate travel time information are presented.  Travel time estimation and prediction 
are described as follows. 
 

2.3.1 Travel Time Estimation 
 
Travel time has been identified by Austroads as an important system performance 
measure (Cunningham et al., 1995).  Travel time information is applied in various 
usage and purposes.  In Advanced Traveler Information System (ATIS) application, 
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travel time information is used as an index to indicate traffic situation of road network 
and helps travelers to save trip time through better path selection.  Accurate travel 
time estimation could help reduce transport costs by avoiding congested sections and 
increase the service quality of commercial delivery goods. 
 
One of the most important issues, before the travel time information begins to be 
provided for ATIS, is the acquirement of travel time data.  Due to practical operation, 
travel time data can be obtained from both indirect and direct measurement.  The 
indirect measurement is the basic method that several traffic agencies have conducted 
in their own system using traffic data measured on site-based detector, which 
normally is an inductive loop detector.  The travel time information is derived due to 
simple traffic parameters measured by these existing inductive loop detectors, which 
measured traffic data are volume, speed, and occupancy.  The direct measurement is 
the method that directly measures travel time data from the field which several 
applications can be applied, for example license plate matching, floating vehicle 
testing, AVI, and location tracking by GPS and cellular probe.  The review of indirect 
and direct travel time measurement is described as follows. 
 

• Indirect Travel Time Measurement 
 
The indirect measurement is based on the field traffic data collected using inductive 
loop detectors or any kind of point-based detectors that can measure volume, speed, 
and occupancy.  Travel time on a road section is composed of running time, or time in 
which the mode of transport is in motion, and stopped delay time (Turner et al., 1998) 
as shown in Figure 2-4. 
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Figure 2-4 Illustration of running time and stopped time 

 
According to the definition of travel time, it can be simply estimated as shown in 
Equation (2-13) and Equation (2-14). 
 
 Running Time + Stopped TimesTT =  (2-13) 
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 Stopped Times
s

s

dTT
v

= +  (2-14) 

 
where sTT is segment travel time, sd is the segment length, and sv is an average 
segment speed.  Due to simplified travel time definition, the average segment speed is 
an important parameter to estimate travel time that vehicles transverse on road 
segment.  In practice, approximated average segment speed discussed in previous part 
appeared in Equation (2-5), Equation (2-6), and Equation (2-7) are conducted to 
estimate segment travel time.  
 
In transportation planning, one of the several travel time estimation methods is 
proposed by United States Bureau of Public Roads which later becomes the Federal 
Highway Administration. This method of travel time estimation uses travel time 
function is known as BPR function (Bureau of Public Road, 1964).  The function can 
estimate travel time based on the relationship of volume to capacity ratio and ideal 
travel time as shown in Equation (2-15); where TT  is the estimated travel time, 0TT  is 
an ideal travel time (distance/speed), V/CP is volume to capacity ratio, and a and b is 
coefficient. Note that this travel time estimation is good only for planning purpose and 
requires only traffic volume at a given time and a basic (ideal) travel time in the 
function 0TT , which is basically the travel time at free flow speed. 
 

 0 1
b

P

VTT TT a
C

⎡ ⎤⎛ ⎞
⎢ ⎥= + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2-15)  

 
The other travel time function is introduced by the use of the conversion of occupancy 
and traffic volume passing loop detector during time interval into travel time 
information as shown in Equation (2-16): where iTT  is the travel time of section 
i, iOcc is the occupation rate of the section, iQ is the flow, fiTT is the travel time 
prevailing at free flowing condition, and maxN is a maximum number of vehicles 
within the section (Nour-Eddin, 2005). 
  

 ( ) ( )max 1i
i i fi

i

Occ N
TT Occ TT

Q
⋅

= + −  (2-16) 

 
However, travel time can be directly measured using simple methods and also modern 
applications which were continuous presented.  
 

• Direct Travel Time Measurement 
 
Travel time data may be recorded through a wide variety of methods.  An individual 
traveler may register his/her time using a stop watch.  More generally applicable 
methods, which do not involve the individual travelers to determine the travel time, 
make use of for instance license plate recognition, toll gates, in-car systems (Grol et 
al., 1999, Taylor et al., 2000a).  The measurement methods can be simply divided to 
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two types; the first, logging the passage of vehicles from selected points along a road 
section or route, and the second, using moving observation platforms traveling in the 
traffic stream itself and recording information about their progress. The site-based 
methods include registration plate matching, remote or indirect tracking and input-
output methods and so on.  The stationary observer techniques include loop detectors, 
transponders, radio beacons, video surveillance, etc (D'Este et al., 1999).  Meanwhile, 
the moving observer methods (vehicle-based methods) include the floating car, 
volunteer driver and probe vehicle methods.  The following sections introduce the 
main techniques of travel time measurements in there two method groups included 
site-based measurement and vehicle-based measurement. 
 
For site-based measurement, registration plate matching techniques consist of 
collecting vehicle license plate characters and arrival times at various checkpoints, 
matching the license plates between consecutive checkpoints, and computing travel 
times from the difference between arrival times (Turner et al., 1998).  The essential 
survey method is manual transcription of paper or tape records.  Nowadays, the 
license plate can be recorded by speech and video and then transfer to digital data by 
speech recognition and image recognition techniques (Taylor et al., 2000a, Yu, 2002).  
It has been shown in the previous research, using automatic vehicle identification 
(AVI) data that travel time prediction error decreased by fifty percent when 
forecasting fifteen minutes into the future.  It is shown that the usefulness of the real 
time AVI data, as compared to average historical information, is extended from 
approximately fifteen to thirty minutes (Kisgyorgy and Rilett, 2002). 
 
Remote or indirect tracking uses the vantage points to observe vehicle movements.  
Travel times of individual vehicles along relatively short stretches of road can be 
obtained by monitoring them from a vantage point which has a view start and end of 
the route (Taylor et al., 2000a). 
 
Signpost based system, typically used by transit agencies for tracking bus locations, 
relies on transponders attached to roadside signposts.  Automatic vehicle 
identification (AVI) transponders are located inside vehicles and are used in 
electronic toll collection applications.  A practical case of signpost based system in 
Sydney is ANTTS (Automatic Network Travel Time System).  Moreover, the 
development and application of Radio Frequency Identification (RFID) might extend 
to the real time goods tracking in freight transport and the travel time measurement in 
transport research in the near future. 
 
Cellular phone systems are one of the potential techniques to provide travel time 
information.  In a survey of 2000 in France, 80% of drivers carried at least one mobile 
telephone and 60% carried at least one switched on mobile.  The information shows 
the high density of on-trip cellular phone, providing an environment to build a 24-
hours travel time monitoring system.  However the preliminary results show the 
location accuracy that 30% of positioning is better than 30 meters and 100% is better 
than 500 meters (Remy, 2001).  The accuracy of position might satisfy the survey of 
travel time in a long section.  For short sections, the accuracy is not enough to 
estimate to high random variation (Lum et al., 1998). 
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For vehicle-based measurement, floating car is the most common travel time 
collection method. The technique utilizes one or more vehicles that are specifically 
dispatched to travel with the traffic stream for the purpose of data collection (Turner 
et al., 1998).  The simplest method to perform the survey is the manual record on 
travel times at when traveling on designated links using a clipboard and stopwatch, or 
computer instrumentation may be used to record vehicle speed, travel times or 
distance at preset checkpoints or intervals.  By fitting a GPS receiver to a vehicle, it is 
possible to obtain time stamped location information which can be used to track 
location and determine travel times (Zito and Taylor, 1994).  Furthermore the GPS-
GIS combination form contributes the efficiency in both data collection and results 
analysis (Zito and Taylor, 1994, Taylor et al., 2000b). 
 
Volunteer drivers and fleets of probe vehicles can help to collect traffic data more 
comprehensively, not only travel time but also geographic data and travel behavior 
(Hawkins et al., 2004).  The cooperation with commercial fleet such as taxis and 
delivery companies can get huge number of data set with a reasonable survey cost. 
 
GPS can be used for collecting historical travel time data including link travel time 
and intersection signal delay information for an arterial road network.  A study by Pan 
et al. (2008) used two GPS data sets with different GPS accuracy from Shanghai in 
China, and Aachen in Germany to calibrate and verify the post-trip map matching 
algorithm.  Travel time and intersection delay information was extracted from the 
GPS data sets.  When a vehicle traveled through an arterial roadway link, there would 
be three types of delay included acceleration delay (D1), deceleration delay (D2), and 
time in queue delay (D3) which summation of D1, D2, and D3 were total link delay. 
(Pan et al., 2008) 
AVI data is also used to predict average roadway travel time with a low pass adaptive 
filtering algorithm.  The algorithm is unique in three aspects. First, it is designed to 
handle both stable (constant mean) and unstable (varying mean) traffic conditions,. 
Second, the algorithm can be successfully applied for low levels of market penetration 
(less than 1%), and third the algorithm works for both freeway and signalized arterial 
roadways.  The proposed algorithm utilizes a robust data filtering procedure that 
identifies valid data within a dynamically varying validity window.  The size of the 
validity window varies as a function of the number of observations within the current 
sampling interval, the number of observations in the previous intervals, and the 
number of consecutive observations outside the validity window (Dion and Rakha, 
2006). 
 
Moreover, emerging and non-traditional techniques are currently researched or 
developed or may be considered non-traditional when compared to existing methods.  
These techniques use a variety of methods such as inductance loops, weigh in motion 
stations, or aerial video to estimate or calculate travel time.  Most of the emerging 
techniques are currently in developmental or testing and have not been extensively 
field-tested or applied (Taylor et al., 2000). 
 
However, accurate travel time estimation and prediction is difficult and complex and 
needs a lot of necessary traffic data.  In order to understand the effect of traffic factors 
to the travel time information, the related traffic factors and accuracy improving 
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approaches are reviewed.  Human, vehicles, and infrastructure are the main 
components of traffic environment.  Various factors affect three main components and 
finally influence travel time information.  Different drivers and road conditions could 
cause large differences in travel time.  Even in the same time interval and on the same 
link, different vehicles can have quite different travel times.  One of the factors 
affecting travel time is free flow travel speed not only on road geometry but also on 
the traffic flow characteristics and traffic signal coordination (Lum et al., 1998). 
 

2.3.2 Travel Time Prediction 
 
In a view point of time period, current travel time information might help for a short 
term travel decision, but for long term scheduling predicted travel time information is 
essential.  In the other viewpoint of traffic condition in area with rapidly changing 
conditions, a travel time prediction is essential because the travel time is a sensitive 
element and affected by various factors.  A single incident on roadway might impact 
traffic stream that will consume long time periods to recover and it can cause a great 
amount of delay to travelers not only who travel at the time incident takes place but 
also who travel during the affected time periods.  In the near future, travel time 
prediction is essential for ATIS that operates in real time for disseminating travel 
information to travelers at both pre-trip and en-route (Ishak and Al-Deek, 2002). 
 
The methods of travel time prediction are proposed using several methodologies in 
which most of the conventional short-term prediction techniques can be categorized 
under two approaches; regression methods and time series estimation methods 
(Anderson and Bell, 1998).  The third approach may be described as combining the 
first two methods known as data fusion.  Other proposed methodologies are for 
examples historical data estimation method (Yanying and McDonald, 2002), artificial 
intelligence (Billi et al., 1994), statistical techniques (Grol et al., 1999). 
 
Other main factors related to travel time prediction, that have also been referred in 
previous studies, include holiday and special incidents (Karl and Trayford, 1999), 
signal delay (Wu, 2001), weather conditions (Chien and Kuch, 2003), traffic 
operation (level of disturb), and congestion level.  The greater the period is predicted, 
the higher the prediction error is (Kisgyorgy and Rilett, 2002).  The adoption of 
specific variables for prediction would determine the efficiency and accuracy of the 
travel time prediction model. 
 
Linear model is proposed to predict freeway travel time in which the coefficients vary 
as smooth functions of the departure time.  The method is straight forward to 
implement, computationally efficient, and applicable to widely available freeway 
sensor data.  For the first test by Zhang and Rice (2003), the method was implemented 
with data from I-880 which was small scale but very high in quality, containing 
information from probe vehicles and double loop detectors.  The results indicate that, 
using this data set, the prediction error ranged from 5% for a trip leaving immediately 
to 10% for a trip leaving 30 min or more in the future.  For the second test, the 
method was applied with a larger scale from Caltrans district 12 in Los Angeles.  
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Using this data set, the errors ranged from about 8% at zero lag to 13% at a time lag 
of 30 min or more. 
 
Another study by Wei et al. (2007) used a linear model for forecasting short-term 
travel time information based on Hanshin expressway data.  Hanshin Expressway 
Corporation has provided travel time information in some major segments using 
Variable Message Sign (VMS).  Travel time information are only so called 
instantaneous travel time, as it is a simple accumulation of link travel times calculated 
from the length of a link divided by the current velocity of that link in the segment.  If 
traffic flow is stable and the link travel time is constant, the instantaneous travel time 
is equal to real travel time.  However, the link travel time may change due to traffic 
conditions. Therefore the instantaneous travel time is not equal to the real travel time.  
Traffic condition information is updated every 5-minute interval.  time is the moment 
of traffic condition detected by detectors.  This study by Wei et al. was carried out on 
6 km of Hanshin Expressway from Osaka city to Kobe city.  The section was 
equipped 12 pairs of supersonic detector stations spaced approximately every 500 
meters.  The information of volume, occupancy, and speed at every 5 min interval 
from this monitoring system was collected by Hanshin Expressway control center.  In 
this study, the prediction of travel time under extremely abnormal traffic condition 
(for bad weather or accident) was not considered. 
 
V-support vector machines were proposed to forecast short-term freeway volume.  
Traffic volume in the near future was often estimated based on historical volumes that 
many previous studies used neural networks to predict short-term traffic volume.  The 
v-support vector machine (v-SVM) model was proposed by Zhang and Xie (2008) 
and the results were compared with a widely used multilayer feed-forward neural 
network (MLFNN).  Testing results show that, for both one-step and two-step 
forecasting, the v-SVM model outperforms the MLFNN for all data sets in term of 
mean absolute percentage error and root-mean-square error.  Most short-term traffic 
volume forecasting studies are based on data aggregated into 5 min or 15 min 
intervals; 3 min, 9 min, and 30 min interval have also been used but less frequently.  
From the previous study, 15 minute interval is appropriate and thus adopted in this 
study. 
 
Modeling future travel time using real time and historical data, the Kalman filter 
algorithm is applied for travel time prediction.  Results of the study by Chien and 
Kuch (2003) reveal that, during peak hours, the prediction based on historical path-
based data are better than the prediction with link-based data due to smaller travel 
time variance and larger sample size.  An interval of 5 min is chosen, for instance, 
there would be 288 intervals (in a 24 hour time period).  The path-based travel time is 
recorded when a vehicle finished a particular path, which can be determined based on 
the difference between the recorded times when the vehicle was entering and exiting 
the path.  The link-based travel time is the sum of travel times of vehicles in the 
consecutive individual links that constitute the whole path. 
 
An online short-term prediction of point-to-point freeway travel time using the 
integration of statistical forecasting techniques and traffic simulation was proposed by 
Juri et al. (2007). VISSIM was used to generate traffic volume at detector locations.  
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At every freeway entrance point, a time series analysis model based on traffic detector 
counts was used to predict traffic demands whose flow through the freeway segment 
was simulated by a cell transmission model (CTM). This CTM, which first introduced 
by Daganzo, simulated traffic behaviors at a mesoscopic level. 
 
Most of travel time prediction models in the literature fall into one of two broad 
categories: Statistical models and Heuristic models.  Statistical approach uses 
regression techniques or time series analysis to compute future travel time based on 
historical and/or time information.  In general, purely statistical techniques have been 
found to perform poorly during abnormal traffic condition.  Vehicle inflows are 
predicted using auto regressive integrated moving average (ARIMA) time series 
model.  Another approach is the Heuristic model.  Neural network is one of popular 
heuristic techniques.  However, choosing the method for predicting travel time data 
using time series is not appropriate when actual travel time is unavailable from field 
measurement but statistical models could be applied for short-term prediction. 
 

2.4 ACCURACY AND RELIABILITY OF TRAVEL TIME INFORMATION 
 
There are several effects on accuracy and reliability of travel time information 
described as follows. 
 

2.4.1 Effect of Effective Vehicle Length on Single Loop Detector 
 
The occupancy variance obtained from single loop data can be used to estimate long 
vehicle percentage and how a log linear regression model for mean vehicle length 
estimation based on single loop outputs can be developed.  The previous study, Wang 
and Nihan (2000), has used the fitness of the relationship based on the theoretical 
derivation of the occupancy and effective vehicle length relationship, and a log linear 
model for mean effective vehicle length estimation is employed.  The estimated mean 
effective vehicle lengths (LV) are used to calculate a conversion factor, g value, of 
each time interval in order to get more accurate speed estimation.  Typically, to 
calculate space mean speed, a constant g is often adopted to convert lane occupancy 
to traffic density.  Hence, the speed estimation with fixed g value is biased when the 
LV percentage is higher than the average; it means that speed is underestimated.  In 
the other hand, it becomes an overestimated speed when LV percentage is lower than 
the average.  However, it is shown in their study that the formulae consistently under 
estimates speed whenever a significant number of trucks and/or other longer vehicles 
are present. This is due to the fact that the g value is actually not a constant; g value 
varies with occupancy.  A cuspcatastrophe theory model was proposed by Pushkar et 
al. (1994) to estimate speed and indicated that the cuspcatastrophe theory model gives 
more reasonable results.  Random errors were considered in the measurement and a 
Kalman filter was used to estimate speed.  The estimation results were basically 
consistent with the observed speeds, but with a smaller variance.  To apply the 
aforementioned models, several parameters must be calibrated, and the calibrations 
require information beyond the measurement of single loops.  Such estimation bias 
may be corrected using the proper g value for each time interval (Dailey, 1999). 
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The applicable method was proposed by Hellinga (2002) for freeway traffic 
management system (FTMS) that contained both single and dual loop detector 
stations.  It does not require modification to field hardware or additional field 
equipment.  It is argued that the proposed method can reduce root mean square speed 
estimation error by 23% on average over the traditional speed estimation method of 
using a constant average divided by an effective vehicle length for the entire day.  The 
proposed method did not show that the regression model was transferable to other 
FTMS or even to other detector locations within the same FTMS although their 
results indicated a 41% increase in the speed estimation accuracy when compared 
with a constant g value for entire day.  Speed estimation methodologies were 
proposed in this study, including base case, direct correlation, filtered correlation, and 
bias correction. For the base case, the study assumed the case consisting of estimating 
single loop speeds on the basis of average effective vehicle length measured at a dual 
loop station over the entire 24 hour period.  This assumed base case is likely to 
provide speed estimates that are more accurate than what would normally be obtained 
for FTMS with only single loop detector, as in these systems an average vehicle 
length must be assumed as it cannot be measured. 
 
For the direct correlation, when some of the FTMS loop detectors are dual loop 
detectors, it is possible to estimate average speed for each single station on the basis 
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=  and the average effective vehicle length measured at a nearby dual loop 

station during the same polling interval.  This method is used by COMPASS system 
in Toronto.  Of course, when iL is taken from a nearby dual loop station for use in 
above Equation, the implicit assumption is that the average effective vehicle length 
computed during the polling interval at the dual loop station is highly correlated with 
the unknown average effective vehicle length at the single loop station for the same 
time period.  If the average effective vehicle length at the single loop station is not 
highly correlated with the average effective vehicle length at the dual loop station, 
then additional error is introduced into the calculation of speed at the single loop 
detector station. 
 
For filtered correlation, it is shown that the direct correlation method does not perform 
well, primarily as a result of the lack of correlation between the average effective 
vehicle length at the single loop detector station and nearby dual loop detector station.  
During the short time period of 20 seconds time interval, the average vehicle length 
measured from each station is likely to be different, because the vehicles passing each 
station represent different samples from the population of vehicles.  The average 
length of vehicles passing a detector station during a polling interval is the result of a 
random sampling process in which the variation of the sample mean vehicle length is 
a function of the sample size and the variation of vehicle lengths within the population.  
If the population mean vehicle length is not constant but varies with time of day, then 
averaging over a long period of time will result in estimates that do not adequately 
reflect these temporal trends.  One way to avoid the problem of having to select a 
fixed sampling period duration is to use an exponentially weighted moving average 
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(EWMA).  Exponential smoothing is an average technique that can be used when the 
appropriate averaging period duration is not known (Hellinga, 2002). 
 

2.4.2  Effect of Data Collection Time Interval 
 
Typically, Highway Capacity Manual (HCM) suggests data collection time interval of 
15 minutes to aggregate flow data for getting the stable flow rate measures.  Guo et al 
(2008) tested spectrum of data collection time intervals with an online forecasting 
algorithm based on the SARIMA+GARCH (Stochastic seasonal Autoregressive 
Integrated Moving Average plus Generalized Autoregressive Conditional 
Heteroscedasticity) structure to determine the applicable data collection time intervals.  
With respect to flow rate aggregation, the data collection time interval is a key 
determinant of the discrete traffic flow data series characteristics and the 
corresponding forecasting approach.  Clearly, an understanding of the impact of data 
collection time interval is crucial in short-term traffic forecasting, because different 
applications will require different data collection time intervals.  For example, 
incident detection based on short-term traffic condition prediction will require a short 
forecasting horizon, while a predictive route guidance application will likely require a 
longer forecasting horizon.  The investigation by Smith and Ulmer (2003) 
quantitatively demonstrated the effects of the data collection time interval on traffic 
flow rate measurement series.  It is shown that with the increase of the data collection 
time interval, the traffic flow rate measures tend to become more stable.  However, 
for shorter data collection time intervals, the number of lags within the seasonality 
period (usually 1 week) increases.  For example, there are 2016 lags per week for a 5 
min interval and 10080 lags per week for 1 min intervals.  From this study, it is shown 
that forecasting accuracy improves with the increasing data collection time interval 
length.  This follows the expectation that the increase of the data collection time 
interval will reduce the embedded traffic flow series noise, thereby improving the 
signal-to-noise ratio and making the series more stable and thus more predictable. 
 
There is a strong, priori expectation that the observed association of increased forecast 
accuracy with increased data collection time interval length will be a consistent 
feature for other valid forecasting methods, such as nonparametric regression and 
neural network models.  In other words, this finding is not considered to be unique to 
the SARIMA based forecast model.  A sharp increase of forecast accuracy is observed 
for all the measures and all the stations when the data collection time interval is 
increased from 1 to 5 min.  At time intervals of 10 min and longer, the forecast 
accuracy is fairly consistent with a pronounced flattening of the rate of increase in 
accuracy versus interval length.  The performance for data collection time intervals 
between 5 and 10 min may be considered acceptable for certain applications. 
 
The impact of the time interval was proposed by Smith and Ulmer (2003) to quantify 
the impact and usage of freeway traffic flow measurement.  It is found that stable 
freeway flow rate may be calculated using measurement intervals as short as 10 min, 
and that statistical significant improvement in stability can be achieved by adding 2 
min to any measurement interval. 
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Different aggregation time intervals was examined by Oh et al. (2005) to characterize 
various levels of traffic dynamics representations and to investigate their effects on 
prediction accuracy.  They employed three techniques including adaptive exponential 
smoothing (AES), adaptive autoregressive model using Kalman filtering (AAR), and 
recurrent neural network (RNN) with genetically optimized parameters.  There are 
various prediction methodologies used in existing studies: historical and real time 
profiles, statistical modeling, Kalman filtering and artificial intelligence techniques 
including artificial neural network (ANN) and fuzzy logic.  The study by Oh et al. 
(2005) also summarized the previous studies in this matter.  It shows that the ANN 
based prediction approaches provide better prediction performance than the others.  
However, the drawbacks of the ANN based approach should not be disregarded.  
ANN requires not only huge efforts for establishing network architecture and training 
network parameters but also large data storage.  The main results from this study 
indicate that AES and RNN outperform the AAR in short-term period such as less 
than 5 minutes.  The purpose of short term travel time prediction the RNN can be a 
viable candidate, providing the highest accuracy in regard to Mean Absolute 
Percentage Error (MAPE).  The RNN shows the best performance with aggregation 
interval of 4 minutes. 
 

2.4.3 Probe Vehicle Percentage Requirement 
 
A study by Long Cheu et al. (2002) investigated speed estimation on arterial network 
in Clementi town area in Singapore using INTEGRATION traffic simulation package. 
The study varied traffic volumes and percentages of probe vehicles (PV), which were 
taxis in this case.  The study was conducted on 216 simulation runs with 
INTEGRATION model.  Three parameters were varied with different levels; 6 levels 
of OD volumes which based OD in morning peak (60%, 70%, 80%, 90%, and 110%), 
6 levels of PV (3%, 6%, 9%, 12%, 15%, and 18%), and 6 levels of randomness in 
vehicle headway (0.5, 0.6, 0.7, 0.8, 0.9, and 1.0).  Runs had a warm up period of 500 
sec followed by a data collection interval of 700 sec.  They argued that this setup 
would lie within the practical range of pooling frequency for communication between 
vehicles and management center and it is a multiple of signal cycle time of 140 sec. 
 
The result showed that estimated link speed error was less than 5 km/hr at least 95 % 
of the time, and the network needed to have active probe vehicles of 4 % to 5 % or at 
least ten probe vehicles must passed through a link within the sampling period.  By 
the way, the problem arose that probe vehicles might not be distributed onto the 
overall network.  It might be concentrated in some areas, and some link might not be 
passed by probes or passed with small number of probes. 
 
Equation (2-17) shows the formulation for estimating sample size of probe vehicles 
derived from central limit theorem, where n  is the number of probe, aε  is allowable 
error in estimated speed (use 5.0 km/hr), and s  is sample standard deviation of speed. 
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A slightly different approach, but still based on the standard deviation that is used the 
relative speed error rε instead of aε  (Chen and Chien, 2000) as shown in Equation 
(2-18) where x  is average speed computed from n samples. 
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In order to evaluate the feasibility of using probe vehicles to collect real time traffic 
information, it is necessary to determine the number of vehicles that should be 
equipped as “Probe”.  Vanajakshi et al (2009) studied using CORSIM to generate 
traffic data for freeway segment with 5 minutes time interval, which has been widely 
regarded as an appropriate interval for real time traffic parameter.  The statistical 
sampling methodology to find the minimum required number of probe vehicles is 
shown in Equation (2-19), where ltn  represents the number of probe vehicles required, 

ltµ  represents the “true” mean of link travel time, ltσ  represents the “true” variance in 
link travel time, maxε  represents the maximum relative error, r  represents the 
percentage of time that the absolute value of relative error is less than maxε , and ( )xΦ  

represents the cumulative distribution function evaluated at x and 1−Φ  is the inverse. 
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The statistical principle behind Equation (2-19) is the central limit theorem, which is 

based on sample size is large enough.  lt

lt

σ
µ

 is obtained from historical data.  It is 

commonly assumed that vehicle travel time on a link is normally distributed which 
justifies the use of Equation (2-19) for small sample size cases.  Distribution of link 
travel time is considered as it is affected by many factors including both geometric 
and traffic conditions.  A heuristic method by Chen and Chien (2000) was developed 
to find the minimum number of probe vehicles on a freeway segment which consists 
of link will both normally and non-normally distributed travel times.  Vehicle travel 
time distribution could affect the required minimum number of probe vehicles for a 
statistically accurate estimation in several ways.  First, the method to be used in 
obtaining the minimum number of required probe vehicles is determined by the type 
of travel time distribution.  If it is normally distributed, the minimum number of probe 
vehicles under a given significance level can be determined using Equation (2-19) 
based on a pre-specified permitted error and historical coefficient of variation.  
Secondly, the variance of the distribution would affect the minimum number of probe 
vehicle requirement despite the type of distribution.  It is observed that when link 
traffic volume is very light or very heavy, the minimum percentage of probe vehicles 
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that should be sampled tends to be higher than that the number of probes obtained 
when link traffic volume is at the medium level.  The stability of the distribution 
would also affect the minimum number of probe vehicles necessary.  In this study, 5-
minute time interval was selected since it was generally regarded as an appropriate 
time interval for real time traffic parameter estimation.  This presumed that the travel 
time distribution would not change in this time frame.  However, in real world 
applications, this assumption needed to be examined and validated for each specified 
case. 
 
The sample of probe vehicles was conducted to detect freeway incident detection.  
PARAMICS microscopic traffic simulation model was used to simulate incidents and 
to collect section travel time data from probe vehicles for evaluating the sampling 
strategies.  The simulation was modeled based on a 8.6-km southbound segment of 
the central expressway (CTE) in Singapore.  Three different methods were tested 
including fixed sample size (FSS), fixed time interval (FTI), and rolling interval.  
Incident detection performance was analyzed in terms of detection rate (DR), false 
alarm rate (FAR), mean time to detection (MTTD), number of algorithm applications, 
and number of false alarms.  It was found that the FTI data aggregation method 
outperformed other methods for all the indicators when the probe vehicle percentage 
was less than 20.  When the probe vehicle percentage exceeded 30 and both FSS and 
FTI data aggregation methods had high DR, the FSS method gave the lowest number 
of false alarm cases and fastest mean time detection.  All three data aggregation 
methods showed similar performance when the probe-vehicle percentage ranged 
between 20 and 30.  MOSES Algorithm detected incidents on the basis of the change 
in average travel time of probe vehicles in a freeway section. 
 
The MOSES algorithms uses a one-tail hypothesis test on the difference between two 
mean section travel times from two sets of sample as shown in Equation (2-20) where 

1n is the number of most recently observed probe vehicles, 2n is the number of probe 
vehicles that had exited the section just before the 1n  probe vehicles, 

1 2, 2n ntα + − is the t-
statistic with tail-end probability of α and 1n + 2n -2 degree of freedom. 
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When an incident has occurred in a section of the freeway, 1T is expected to be 
significantly higher than 2T when Equation (10) is true, the MOSES algorithm will 
declare an incident in that particular freeway section. 
 
In the study by Cheu and Tay (2004), using FSS data aggregation method, the values 
of 2T =10 and 2n =30 were retained, and the algorithm was applied for every 1n =10 
probe vehicle observed on a different freeway.  The FSS method controlled the 
sample size 1n and 2n  such that the estimated 1T and 2T were more reliable.  FTI Data 
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Aggregation Method was time based.  Here 1n was the number of probe vehicles that 
had passed the freeway section every 60 sec and 2n was the number of probe vehicles 
in the previous 180 sec. In this case, the algorithm was applied every 60 sec.  The 180 
sec sampling of 2n was to make 2n about three times 1n , to be consistent with the ratio 
of sample sizes in the FSS method.  With FTI data aggregation method, the value of 

1n and 2n varied for every algorithm application, but the frequency of application over 
a 1 hour period remained constant. 
 
This method of aggregating probe vehicle data is similar to the confidence limit 
algorithm (CLA).  However, the two studies are different in that Equation(2-20) 
assumes the probe-vehicle travel time follows a normal distribution whereas the CLA 
assumes a log normal distribution, and the hypothesis test is conducted using t-
statistics, whereas the CLA uses log normal statistics. 
 
There was a study on arterial speed estimation using taxi equipped with global 
positioning receivers as probe vehicles.  100 GPS receivers were equipped on taxis in 
Guangzhu city, China.  The accuracy of travel time increases with the sample size.  It 
was conclude that, if the absolute error in the estimated average link speed is to be 
less than 5.0 km/h at least 95% of the time.  It should be at least 10 probe vehicles 
within a sampling period (Liang et al., 2005). 
 
There was a feasibility study on the use of probe in order to collect traffic information 
in an advantage city in term of cost efficiency.  There are several problems to use 
probe vehicles instead of detectors for traffic information collection e.g. coverage area 
and frequency per each link and requirement of number of probe vehicles to collect 
traffic information with high reliability.  In their study, 5 taxis were equipped GPS as 
probe vehicle and compared the travel time data obtained by a probe vehicle and 
license plate matching survey, the travel time estimated by probe vehicles seem to be 
statistically accurate.  They argued that 5 second interval was found suitable to record 
location of probe vehicles and found that vehicle running frequency is high only on 
main roads connected to central area (Ishizaka et al., 2005). 
 

2.5 FILTERING TECHNIQUES 
 
In 1960, R.E. Kalman published his famous paper describing a recursive solution to 
the discrete-data filtering on linear dynamics system problem.  During that time, the 
technique was employed in large part in digital computation.  Kalman filter has been 
the subject of extensive research and application particularly in the area of 
autonomous or assisted navigation (Welch and Bishop, 2006).  Kalman filter is the 
most popular filtering technique that is widely used in military and engineering field.  
Kalman filter is an efficient recursive filter that estimates the state of linear and 
nonlinear dynamic system from a series of noisy measurements.  In this section, four 
filtering techniques are reviewed including Kalman filter (KF), extended Kalman 
filter (EKF), unscented Kalman filter (UKF), and particle filter described as follows. 
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2.5.1 Kalman Filter (KF) 
 
Kalman filter is a recursive estimator which the only estimated state from the previous 
time step and the current measurement are required to estimate the current state.  It 
assumes that the true state at time k is evolved from the state at k-1 which is 
formulated as shown in Equation (2-21). 
 
 1k k k k k k−= + +X F X B u w  (2-21) 
 
where kF is the state transition model which is applied to the previous state 1k−X , kB is 
the control input model which is applied to the control vector ku , and kw is the process 
noise which is assumed to be drawn from a zero mean multivariate normal 
distribution with covariance kQ .  At time k, an observation or measurement kz of the 
true state kX is made as shown in Equation (2-22) 
 
 k k k k= +z H X v  (2-22) 
 
where kH is the observation model which maps the true state space into the observed 
space and kv is the observation noise which is assumed to be zero mean Gaussian 
white noise with covariance kR .  The initial state and the noise vectors at each time 
step are assumed to be mutually independent.  The Kalman filter has two distinct 
phases; predict and update. The predict phase uses the state estimate from the 
previous time step to produce an estimate of the state at the current time step, and then 
the update phase uses measurement information at the current time step to refine 
predicted state to arrive a more accurate state.  The process is shown as follow. 
 
Predict Phase: 
  
Predicted state 
 1 11 1 1

ˆ ˆ
k k k kk k k k − −− − −= + +X F X B u w  (2-23) 

Predicted estimate covariance 
 T

11 1 1k k kk k k k −− − −= +P F P F Q  (2-24) 
 
Update Phase: 
 
Measurement residual 
 1

ˆ
k k k k k−= −y z H X�  (2-25) 

Covariance 
 T

1k k k kk k−= +S H P H R  (2-26) 
Optimal Kalman gain 
 T 1

1k k kk k
−

−=K P H S  (2-27) 
Updated state estimate 



 
 

32

 1
ˆ ˆ

k kk k k k−= +X X K y�  (2-28) 
Updated estimate covariance 
 ( ) 1k kk k k kI −= −P K H P  (2-29) 
 
However, the basic Kalman filter was developed for linear system and it was claimed 
to be inefficiently performed when it is adopted with nonlinear system.  Nevertheless, 
this drawback can be optimized using EKF which will be described in the next part. 
 

2.5.2 Extended Kalman Filter (EKF) 
 
In the estimation theory, EKF is the nonlinear version of the KF which current mean 
and covariance are linearized. To do so, a Jacobian matrix is conducted to transform 
nonlinear system into KF form as shown in Equation (2-30) and Equation (2-31). 
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1
, kk k

k
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−

∂
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 (2-30) 

 
1

1
k k

k
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−

−

∂
=
∂ X

H
X �

 (2-31) 

 
However, EKF is difficult to implement, difficult to tune, and only reliable for 
systems that are almost linear on the time scale of the updates.  It has a number of 
serious limitations, which are (1) linearization transformations are only reliable if the 
error propagation can be well approximated by a linear function, (2) linearization and 
be applied only if the Jacobian matrix exists, and (3) calculating Jacobian matrix can 
be a very difficult and error-prone process as the Jacobian Equations frequently 
produce many pages of dense algebra that must be converted to code (Julier and 
Uhlmann, 2004). 
 

2.5.3 Unscented Kalman Filter (UKF) 
 
An improvement to the EKF has led to the development of the Unscented Kalman 
filter (UKF) which also a nonlinear filtering technique.  In the UKF, the probability 
density is approximated by the nonlinear transformation of a random variable which 
returns much more accurate results than the first-order Taylor expansion of the 
nonlinear functions in the EKF.  The approximation utilizes a set of sample points, 
which guarantees accuracy with the posterior mean and covariance to the second 
order for any nonlinearity (Julier and Uhlmann, 2004). 
 
When predict and update functions ( ( )f i and ( )h i ) are highly nonlinear, EKF can 
give particularly poor performance because mean and covariance are propagated 
through linearization of the underlying nonlinear model.  UKF uses a deterministic 
sampling technique known as the unscented transform to pick a minimal set of sample 
points as called sigma points around the mean.  These sigma points are propagated 
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through the nonlinear functions which the mean and covariance of the estimate are 
then recovered.  The result is a filter which captures more accurate true mean and 
covariance.  In addition, this technique removes the requirement to explicitly calculate 
Jacobian Equation.  The process of UKF also consists of predict phase and update 
phase which are described as follows. 
 
Predict Phase: 
 
As with the EKF, the UKF prediction can be used independently from the UKF 
update.  The estimated state and covariance are augmented with the mean and 
covariance of the process noise as shown in Equation (2-32) and Equation (2-33). 
 

 1 1 1 1
ˆ T

a T T
kk k k k E− − − −

⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦X X w  (2-32) 

 1 1
1 1

0

0
k ka

k k
k

− −
− −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

P
P

Q
 (2-33) 

 
A set of 2L+1 sigma points is derived from the augmented state and covariance where 
L is the dimension of the augmented state. 
 
 0

1 1 1 1
a

k k k k− − − −=χ X  (2-34) 

 ( )( )1 1 1 1 1 1 for 1...i a a
k k k k k k

i
L i Lλ− − − − − −= + + =χ X P  (2-35) 

 ( )( )1 1 1 1 1 1 for 1,...2i a a
k k k k k k

i
L i L Lλ− − − − − −= − + = +χ X P  (2-36) 

 
where ( )( )1 1

a
k k

i
L λ − −+ P is the i th column of the matrix square root 

of ( ) 1 1
a
k kL λ − −+ P using the definition: square root A of matrix B satisfies ( )TB AA= .  

The matrix square root should be calculated using numerically efficient and stable 
methods such as the Cholesky decomposition.  The sigma points are propagated 
through the transition function ( )f i . 
 
 ( )1 1 1 for 0.2i i

k k k kf i L− − −= =χ χ  (2-37) 

 
The weighted sigma points are recombined to produce the predicted state and 
covariance: 
 

 
2

1 1
0

ˆ
L

i i
sk k k k

i

W− −
=

= ∑X χ  (2-38) 

 
2

1 1 1 1 1
0

ˆ ˆ
L T

i i i
ck k k k k k k k k k

i

W− − − − −
=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑P χ X χ X  (2-39) 

 
where the weights for the state and covariance are given by: 
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+
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= + − +
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 (2-41) 

 
( )

1
2

i i
s cW W

L λ
= =

+
 (2-42) 

 ( )2 L Lλ α κ= + −  (2-43) 
 
α andκ control the spread of the sigma points.  β is related to the distribution of x. 
Normal values ofα andκ are 310− and 0 respectively.  The optimal value of β is equal 
to 2, if the true distribution of x is Gaussian. 
 
Update Phase: 
 
The predicted state and covariance are augmented as before, except now with the 
mean and covariance of the measurement noise: 
 

 1 1
ˆ T

a T T
kk k k k E− −

⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦X X v  (2-44) 
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 (2-45) 

 
As earlier mentioned, a set of 2L + 1 sigma points is derived from the augmented state 
and covariance where L is the dimension of the augmented state: 
 
 0

1 1
a

k k k k− −=χ X  (2-46) 

 ( )( )1 1 1 for 1...i a a
k k k k k k

i
L i Lλ− − −= + + =χ X P  (2-47) 

 ( )( )1 1 1 for 1,...2i a a
k k k k k k

i L
L i L Lλ− − −

−
= − + = +χ X P  (2-48) 

 
Alternatively if the UKF prediction has been used the sigma points themselves can be 
augmented along the following lines. 
 

 ( )1 1:
T

T T a
k kk k k k E L λ− −

⎡ ⎤⎡ ⎤= ± +⎣ ⎦⎣ ⎦χ χ v R  (2-49) 
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The sigma points are projected through the observation function h. 
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 ( )1 for 0...2i i

k k kh i L−= =γ χ  (2-51) 

 
The weighted sigma points are recombined to produce the predicted measurement and 
predicted measurement covariance. 
 

 
2

0

ˆ
L

i i
k s k

i

W
=

= ∑z γ  (2-52) 

 
2

0

ˆ ˆ
k k

L Ti i i
z z c k k k k

i

W
=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑P γ z γ z  (2-53) 

 
The state-measurement cross-covariance matrix, 
 

 
2

1 1
0

ˆ ˆ
k k

L Ti i i
x z c k kk k k k

i

W − −
=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦∑P χ x γ z  (2-54) 

 
k kz zP and

k kx zP are used to compute the UKF Kalman gain. 
 
 1

k k k kk x z z z
−=K P P  (2-55) 

 
As with the KF, the updated state is the predicted state plus the innovation weighted 
by the Kalman gain, 
 
 ( )1ˆ ˆ ˆk k kk k k k−= + −x x K z z  (2-56) 
 
And the updated covariance is the predicted covariance, minus the predicted 
measurement covariance, weighted by the Kalman gain. 
 
 1 k k

T
k z z kk k k k P−= −P P K K  (2-57) 

 

2.6 TRAFFIC SIMULATION TOOLS AND MODEL PARAMETER 
CALIBRATION 

 

2.6.1 Traffic Simulation Tools 
 
In recent years, microscopic traffic simulation model is widely employed for 
analyzing transportation problems which cannot be carried out by conventional 
analysis methods, especially when network-wide study is conducted.  The high 
performance of computer technology has been developed to analyze complicated 
problems with less time consuming.  Computational performance of microscopic 
traffic simulation modeling makes it possible to analyze individual travelers’ 
behaviors.  Microscopic traffic simulation is used to enhance the capability of 
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operation, control, and management for both freeway and surface street traffic.  There 
are many commercial suites; for example PARAMICS, MITSIM, VISSIM, and 
AIMSUN. 
 
Fries et al. (2007) conducted a feasibility study on using the traffic simulation as a 
decision support in real-time regional traffic management. The result shows that 
microscopic traffic simulation programs can help the operator in regional traffic 
management center.  It makes an operational decision by predicting future traffic 
conditions caused by traffic incidents.  The speed for traffic data processing is a key 
factor to determine the viability of using simulation in real time decision support.  
There are several commercial software packages in the market.  However, 
PARAMICS microscopic traffic simulation is one of the software that is widely used 
because it has a flexible application programming interface and can be integrated with 
traffic control and simulate special cases, for example toll plaza operation and ramp 
metering.  PARAMICS Modeler is the preferred simulation tool because it offers 
advantages over other decision support tools by providing traffic management 
personnel with visual representative of the traffic impacts. 
 
On-line simulation can be used to provide real time traffic information and to select 
the best control and management strategies according to the interpretation of results 
from simulation runs of candidate control strategies using predicted traffic demands.  
Chu and Recker (2004) performed a study to enhance the capabilities of PARAMICS 
to enable its application for on-line simulation.  The study established the connection 
between real world loop detector data and simulation.  A simple Origin Destination 
(OD) estimation method was developed for the estimation of dynamic OD demand 
matrices for a freeway network based on real world loop detector data.  A Kalman 
filtering based traffic flow prediction algorithm was also developed.  The predicted 
traffic flows served for the prediction of future demand matrices.  
 

2.6.2 Model Parameters Calibration 
 
The components of microscopic traffic simulation model generally include physical 
component of road network, traffic control system, and driver-vehicle units which 
driver behavior models and route choice models are associated.  The complex data 
and numerous model parameters are required by these components.  These parameters 
need to be calibrated for a particular study area (Mcnally and Oh, 2002). 
 
Car following behavior, in particular, has a significant impact on the accuracy of the 
simulation model in replicating traffic behavior on the road.  Car following considers 
the situation of one vehicle following another in a single lane.  In general, the trailing 
vehicle of a two-car following pair in the same lane will respond to observed stimulus 
from the leading driver according to the relationship of response and λ stimulus.  The 
stimulus is composed of factors such as speed, relative speed, inter-vehicle spacing, 
accelerations, vehicle performance, and driver thresholds.  A proportionality factor λ 
equates the stimulus function to the driver response.  This relationship forms the basic 
philosophy behind the car following theories.  Other critical parameters that govern 
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car following models include mean headway and mean reaction time, which are 
assigned random values for each individual vehicle according to a predefined 
distribution function.  A number of studies have suggested using headway values in 
the range of 1.65 – 2.0 sec and reaction times in the range of 0.3 – 2.0 sec (Ma and 
Abdulhai, 2002). 
 
Conventional model calibration procedure adjusts parameters in driver behavior 
model and route choice model until simulation output is corresponded with field 
observation in both qualitative and quantitative aspects.  The trial-and-error method is 
normally employed for calibrating parameters based on engineering and experience 
decision, and this method is a time consuming and tedious process.  Some previous 
studies attempted to introduce a systematic procedure to calibrate a network level 
simulation model for both freeways and their adjacent parallel surface streets by 
focusing on one component of the simulation model while assuming others 
component held constant at present values (Chu et al., 2004).  Some studies presented 
calibration framework which also focused on route choice model calibration when the 
O-D flow was an unknown variable (Toledo et al., 2004, Toledo et al., 2003).  
However, with this conventional calibration procedure, calibrated traffic parameters 
are not guaranteed to be used in all range of various traffic system environments. The 
parameters may require re-adjustment which would again consume great effort based 
on the conventional model calibration. 
 
Another calibration approach is artificial intelligence approach in which genetic 
algorithm method was often introduced to reduce time of calibration process by 
treating parameters calibration to be an optimization problem and searching optimal 
combinatorial parameters values that can minimize a fitness function within defined 
number of generations in genetic algorithm procedure (Cheu et al., 1998, Lee and 
Yang, 2001, Ma et al., 2007, Park and Qi, 2006, Schultz and Rilett, 2004).  A study 
introduced pilot software which was a genetic optimizer for traffic microscopic traffic 
simulation models (Ma and Abdulhai, 2002).  However, those studies used different 
calibration frameworks and fitness functions according to their purposes of 
microscopic traffic simulation model applications. 
 
Several optimization methods are available to find some suitable solutions; for 
example, hill climbing, tabu search, simulated annealing, and genetic algorithm.  
These methods are often considered for searching a good solution though it might not 
be the real optimal solution.  As a matter of fact, in many cases it is not possible to 
verify what the real optimum is. 
 
Genetic algorithm is a stochastic search space method based on the principle of 
natural evolution theory of Charles Robert Darwin.  The algorithm initiates a set of 
solutions that are represented as “chromosomes” called population.  Solutions 
included in one population are selected and used to produce a new population if the 
new population performs better than the previous population.  The previous 
population is selected according to their fitness which means the more chance it will 
be selected to produce a new population. 
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One string element in the genetic algorithm is the chromosome that is encoded as a 
single solution which means one set of combinatorial parameters prepared for 
simulation model.  Standard genetic algorithm is based on binary representative 
characterized by zero and one.  Real value is also proposed to represent genes 
(Wright, 1991).  There are many types of genetic algorithm; for example, simple GA, 
steady-state GA, and crowding-based GA.  The simple GA is a very common method 
that is based on non-overlapping population in each generation.  If the elitism 
mechanism is enumerated, the best fitness of each population will be carried over 
from parent to child without reproduction.  Steady-state GA is another standard 
genetic algorithm based on overlapping population in each generation in which a 
portion of the population is substituted by the new generated.  If only one or two 
members may be substituted in each generation, it is called incremental GA but it will 
become a simple GA when entire population is substituted. Crowding-based GA is a 
generalization of pre-selection which selection and reproduction are the same as 
steady-state but the new generation will perform a comparison with population 
individually using a distance function as a similarity measurement before 
replacement.  The most similar member in the population between parent and child is 
substituted by the child. 
 
The reproduction process consists of selection, crossover, and mutation in order to 
produce new generation.  There are many selection methods for choosing members 
from a parent for example, roulette wheel, Boltzmen, tournament, rank, and steady 
state.  After choosing a parent, a child will be produced using a simplest way, called 
crossover, by randomly choosing everything before chosen point from a father and 
then everything after a crossover point copied from a mother.  After the crossover is 
performed, mutation process randomly changes child in order to prevent falling all 
solutions in population into a local optimum of solved problem. 
 
The genetic algorithm is performed by iterative loop basis until the final result meets 
predefined criteria on the number of generations and fitness function.  The number of 
generation is defined in order to constrain the genetic algorithm optimizer to repeat 
reproduction loops.  The fitness function is defined to check the matching between 
model output from several configurations and observed data. 
 

2.7 CONCLUSION REMARKS 
 
According to the review of general background and the state of practice of travel time 
estimation, travel time saving is the first priority concerned in transport and logistics.  
For travel time information in travelers’ points of view, it can help travelers to 
achieve the traffic situation in advance and to save travel time based on shortest route 
guidance system during pre-trip and en-route.  Several approaches for estimating 
traffic sate and travel time information have been proposed and tested with different 
algorithms and frameworks so that the resulting travel time is obtained  with accuracy 
and reliability.  In general, the provision of travel times has called a positive response 
from the public in almost all places where the information has been provided.  Most 
states in the United States have been providing travel times and maintain them with 
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high quality standards of data by periodic checks on accuracy.  The accuracy of travel 
time information is the most important that should highly concerned. 
 
Traffic state and travel time estimation have usually been constrained by traffic data 
sources. Most of studies estimated traffic state and travel time based on only data 
from one traffic surveillance system, which typical detector is point detection system.  
Normally, existing installation of detectors on road sections is unable to provide 
sufficient data to represent actual traffic situation.  Even a well equipped area still 
encounters difficulties in providing enough traffic data in both quality and quantity 
aspects.  Other studies attempted to estimate traffic state and travel time information 
using mobile detection system such as GPS probes.  Unfortunately, GPS probes 
provide poor traffic data especially in urban areas due to the potential for high 
obstruction of GPS signals and the amount of probe vehicle data.  Moreover, getting 
sufficient (minimum) requirement of probe vehicle data in a particular estimation time 
step is quite difficult in practice. 
 
Currently, microscopic traffic simulation modeling has been improved and validated 
in various projects.  This provides the opportunity to adopt simulation model as a real-
time traffic state and travel time estimator.  However, calibration process is the 
important process when microscopic traffic simulation model is adopted.  
Conventional model parameter calibration has consumed much time and is inflexibly 
operated when applying the simulation with real-time estimation framework.  Genetic 
algorithm could be adopted to develop model parameters calibration module instead 
of conventional methods.  It should be flexible for multiple model parameters 
consideration which several sets of model parameters combination can be generated 
and evaluated. 
 
Unless using microscopic traffic simulation model only, feedback estimation could be 
improved the accuracy of traffic state and travel time.  Furthermore, short-term and 
long term prediction would be developed to solve time lag of estimation due to the 
time spent on data collection and processing procedure.  As mentioned above, there 
are only few studies on the development of traffic state and travel time estimation 
using microscopic traffic simulation model as an estimator and enhance traffic state 
and travel time’s accuracy by feedback estimation using Unscented Kalman Filter.  
Moreover, short-term prediction is also required to inform traveler in advance which 
the concept of statistical model should be concerned in case of real-time travel time 
data is unavailable.  It is necessary to study and develop the estimation and prediction 
framework for ATIS. 

 



 
 
 

CHAPTER III 
 

RESEARCH METHODOLOGY 
 
 
In this chapter, methods for developing real-time traffic state and travel time 
estimation using microsimulation with feedback estimation are presented.  The study 
framework consisted of three main components which included the development of 
real-time traffic state and travel time estimation, the development of feedback 
estimation with microsimulation, and the development of traffic state and travel time 
prediction.  The organization of this chapter starts with an overview of study 
framework.  Secondly, real-time microscopic traffic simulation for traffic state 
estimation toward travel time estimation is described. It contains details mainly on the 
development of microsimulation using microscopic traffic model and model 
parameters calibration.  Thirdly, the development of feedback estimation with 
microsimulation using Unscented Kalman Filter is described in order to improve 
accuracy of travel time information.  Finally, the development of traffic state and 
travel time prediction is presented.   

CHAPTER 3 RESEARCH METHODOLOGY 

3.1 OVERVIEW OF STUDY FRAMEWORK 
 
A framework of the study was specified in order to develop comprehensive real-time 
traffic state and travel time estimation toward travel time prediction.  An overview of 
this study framework was illustrated in Figure 3-1. 
 

 
 

Figure 3-1 Study Framework 
 

Study short-term travel time 
prediction 

Development of microsimulation 
model for real-time traffic state 

and travel time estimation 
 

Development of 
microsimulation model using 
microscopic traffic simulation 

Development of real-time traffic 
state and travel time estimation 
using microsimulation model 

Accuracy improvement using 
Unscented Kalman Filter 

Development of combinatorial 
model parameters calibration 

using genetic algorithm 

Traffic state and travel time 
estimation using 

microsimulation model 



 
 

41

From Figure 3-1, the framework consists of three main components. First, the 
development of real time traffic state and travel time estimation which is subdivided 
into three processes.  They are 1) the development of microsimulation using 
microscopic traffic simulation model, 2) the development of combinatorial model 
parameters calibration using GA, and 3) the development of traffic state and travel 
time estimation using microsimulation.  For the first subsection, the process of 
microsimulation modeling was presented.  The second subsection, in the process of 
microsimulation modeling, the procedure of several model parameters calibration was 
described that was aimed to get output data from simulation model close to the actual 
traffic data.  Genetic algorithm was conducted in this step for calibrating 
combinatorial model parameters instead of conventional calibration methods.  Third 
subsection, calibrated microsimulation model was further processed in order to 
estimate traffic state and travel time information. 
 
Second, the development of feedback estimation with microsimulation was carried 
out by introducing a filtering techniques namely Unscented Kalman Filter.  It was 
introduced in order to improve the accuracy of traffic state and travel time 
information which prior estimated by microsimulation model. 
 
Third, the development of traffic state and travel time prediction aimed to increase the 
capability of ATIS in order to predict future traffic condition and also travel time 
information in short-term basis.   
 
The above three main components are successively described in the following 
sections.  
 

3.2 DEVELOPMENT OF REAL-TIME TRAFFIC STATE AND TRAVEL 
TIME ESTIMATION 

 
Microscopic traffic simulation model was used as a traffic state and travel time 
estimator instead of using macroscopic traffic estimators which were mostly proposed 
in previous studies.  In order to develop microsimulation model, commercial 
simulation software package was selected in this study for developing traffic state and 
travel time estimator which focus on expressway section.  Firstly, development of 
microsimulation model was explained.  Secondly, development of combinatorial 
model parameters calibration using genetic algorithm was described.  Finally, 
development of traffic state and travel time estimation using on-line microsimulation 
model was described. 
 

3.2.1 Development of Microsimulation Model 
 
A commercial package of microscopic traffic simulation model was selected in this 
study, namely PARAMICS, in order to model an artificial expressway corridor.  
Several aerial photos which covered the whole section of site study needed to be 
captured and then imported and scaled in the program.  In the concept of traffic 
simulation, artificial expressway sections on the study site are denoted as nodes and 
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links which are digitized according to road section on aerial photos which nodes and 
links are layout as same as actual geometry relied on scaled aerial photos.  The 
process of microscopic traffic simulation modeling is illustrated as shown in Figure 
3-2. 
 
 

Capture aerial photo from 
Google Earth.  Import and scale 
on Simulation software 

Digitize nodes and links on the 
layout of aerial photos 

 

Layer 1 

Layer 2 

Layer 3 

Demand loading either OD or 
TMC 

 
Figure 3-2 Development of Microsimulation Model 

 
Figure 3-2 illustrates the main three layers on the process of microscopic traffic 
simulation modeling.  As described above, the first layer shows the aerial photo that 
import and scale.  The second layer shows a road network which build by a concept of 
node and link.  It is digitized based on the geometry of roadway on aerial photos.  The 
third layer shows a travel demand on road network which is normally represented by 
either OD flow or traffic movement count data.  However, microsimulation model 
needs to be calibrated before implementation which the process of model parameters 
calibration is described in next part. 
 

3.2.2 Development of Combinatorial Model Parameters Calibration 
using Genetic Algorithm 

 
In this study, the calibration of combinatorial model parameters was concerned 
because of several model parameters jointly affected a simulation result.  The 
practical procedure such as trial and error is widely used but this study conducted a 
genetic algorithm in the calibration procedure which is illustrated the procedure as 
shown in Figure 3-3.  The on-line model calibration was concerned in this study 
which genetic algorithm can be operated.  However, only off-line calibration was 
analyzed in this part but the consideration of using predefined control definition was 
relied on the performance when on-line calibration could be implemented.  The 
optimal result could received with in limited of calculation time. 
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Figure 3-3 Calibration Process using GA 

 
From Figure 3-3, calibration process using GA begins with data preparation and then 
subsequent initial generation of first set of combinatorial model parameters.  After 
that the process of GA is operated.  Finally, the optimal combinatorial model 
parameters under predefined criteria are received.  The calibration processes using 
Genetic Algorithm is described in detail as follows. 
 

3.2.2.1 Data Preparation 
 
Basic input data include network geometry, OD demand, and traffic control system. 
These input data are necessary to develop realistic simulation model.  Normally, 
available travel demand can be observed by field observation such as roadside survey 
and vehicle license plate matching, or reference OD matrix from transport demand 
model (as a starting point of time-dependent traffic demand), although these data are 
not practical for time-dependent traffic consideration.  However, based on lack of 
those described data, the OD demand used in this study was estimated from point 
traffic data by distributing downstream volume to upstream volume.  This method is 
originally from FREQ model which is based on the intuitive proportional scheme as 
shown in Equation (3-1). 
 

  i
ij j

i
i A

OOD D
O

∈

= ⋅
∑

 (3-1)

  
where ODij is the OD demand from zone i to j.  Dj is total amount of volume at 
destination zone j.  Oi is total amount of volume at origin zone i.  The demand profile 
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needs to be defined to release traffic demand as time-dependent function.  The OD 
demand profile is aggregated to time intervals of five minutes. 
 

3.2.2.2 Fitness Function 
 
The fitness function used in this study was a combination of traffic volume and speed 
between observed data as shown in Equation (3-2) and simulation outputs which were 
the traffic volume and speed measured on the location of traffic detector station.  The 
optimization process aimed to minimize the value of fitness function within 
predefined control definitions.  Fitness function value of zero was an ideally expected. 
 

 
detector interval run

obs sim obs sim

obs obs

vol vol speed speed
F

vol speed
− −

= +∑ ∑ ∑  (3-2) 

 
where volobs and volsim are traffic volumes from field observation and simulation 
output respectively.  speedobs and speedsim are traffic speeds from field observation 
and simulation output respectively. 
 

3.2.2.3 Control Definitions 
 
During genetic algorithm procedure, population size for each generation, number of 
generations for simulation, representative coding, selection method, crossover rate, 
and mutation rate, were implemented in this study.  Definitions and recommended 
values for these parameters as shown in Table 3-1 were specified or recommended by 
previous studies which the control definitions could further conducted for on-line 
model calibration (Lee and Yang, 2001, Ma and Abdulhai, 2002).  Due to this control 
definition, 400 times totally of simulation run were processed in this study. 
 

Table 3-1 Control Definitions 
Control Definition 

Population size  20 
No. of generations 20 
Representative coding Binary with 5 bits for each parameter 
Selection method Roulette wheel with elitism 
Crossover rate 0.80 
Mutation rate 0.01 

 

3.2.2.4 Parameters Selection 
 
Each microscopic traffic simulation suite has its own set of parameters that affect on 
simulating of vehicle movements.  It is a responsibility of a modeler in order to verify 
their traffic simulation model.  A final simulation needs to be well calibrated and 
reflects traffic characteristics similar to the actual traffic as observed.  Generally, 
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driver behaviors and route choice models are important elements affecting core 
module of microscopic traffic modeling and are advisably adjusted for getting 
simulation output corresponding with field observation data.  Driver behavior models 
have two core modules, car following and lane changing models.  The model 
parameters can be divided by type of traffic network namely freeway facilities and 
signalized intersections (surface streets).  For freeway facilities, four key model 
parameters are introduced: 
 

• Mean following headway 
• Driver reaction time 
• Critical gap for lane changing 
• Minimum separation under stop-and-go conditions 

 
For signalized intersections, three key model parameters are introduced: 

• Startup lost time 
• Queue discharge headway 
• Gap acceptance for unprotected left turns 

 
Those model parameters may have different names in different microscopic traffic 
simulation suites and normally mean headway is a good global model parameter for 
calibration process.  Route choice models have two model parameters that are 
perturbation and familiarity (Dowling et al., 2004). 
 
In this study, PARAMICS microscopic traffic simulation suite was selected as it 
allows users to adjust these two core models; car following and lane changing models.  
Car following model determines the acceleration and deceleration.  Lane changing 
model determines suitable gap when a lane change is made.  The core parameters are 
queue gap distance, queuing speed, heavy vehicles weight, mean target headway, 
mean driver reaction time, speed memory, and minimum gap.  However, two 
important key parameters were considered in this study because these two parameters 
obviously affect to the simulation results in the past studies (Lee and Yang, 2001).  
Two key parameters and their value ranges were defined as follows: 
 

• Mean target headway ranged from 0.6 – 2.4 seconds 
• Mean driver reaction time ranged from 0.4 – 1.6 seconds 

 
For these two parameters, the program developer initiated a default value of one 
second for both parameters based on the validation under United Kingdom’s traffic 
characteristics where program was originated.  However, these model parameters 
need to be calibrate subject to the traffic characteristics of site study that apply 
microscopic traffic simulation model in implementation.  However, the default values 
for both model parameters were also considered in order to understand the importance 
of the calibration on traffic characteristics in the simulation modeling. 
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3.2.3 Development of Traffic State and Travel Time Estimation using 
On-line Microsimulation Model 

 
The concept of on-line microsimulation was proposed to be an alternate method for 
estimating traffic state and travel time information on road segment as shown in 
Figure 3-4.  From the figure, the on-line microsimulation is used as an estimator 
instead of conventional methods or macroscopic traffic model. 
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Figure 3-4 On-line Microsimulation in ATIS Framework 

 
The components of microscopic traffic simulation model generally include physical 
component of road network, traffic control system, and driver-vehicle units which 
driver behavior models and route choice models are associated.  The complex data 
and numerous model parameters are required by these components which need to be 
calibrated for a particular study area (Mcnally and Oh, 2002). 
 
On-line microsimulation model can be used instead of conventional traffic state and 
travel time estimation methods as well as macroscopic traffic model for estimating 
travel time.  Traffic data measured on point detection devices need to be transmitted 
to the traffic control center using communication system using cable optic or several 
wireless communications such as Asymmetric Digital Subscriber Line (ADSL), 
General Packet Radio Services (GPRS), and Worldwide Interoperability for 
Microwave Access (WIMAX).  Traffic data are checked for outliers and correctness 
and then input to the on-line microsimulation model in order to estimate traffic state 
and travel time which occurrs on each road segment.  The use of microsimulation 
model should result in more accurate traffic state and travel time information than 



 
 

47

conventional methods in case of using on expressway with low density of point 
detectors or long segment length. 
 
In order to develop on-line microsimulation model for estimating traffic state and 
travel time information, the process of on-line microsimulation was designed as 
shown in Figure 3-5.   
 
 

Input Data 
(e.g. OD Flow 

Microsimulation Model 

Initial time k 

Traffic Information on Road Segment 
(e.g. Speed, Density, and Travel Time) 

Save Traffic 
Information 
to Database 

Database 

k = k+1 

 
 

Figure 3-5 Flow chart of on-line microsimulation model 
 
From Figure 3-5, the process starts for at kth time interval, in which the corresponding 
OD flow demand is called as the input of the simulation model.  Microsimulation 
model provides traffic state on segment for example speed, flow, density, stop time, 
and travel time information which are not directly measured from the field in real-
time basis.  Estimated traffic state and travel time information can be used to describe 
traffic state or traffic condition on each road segment.  After that traffic information is 
saved on traffic database and then continues the input data at k+1 time interval.  It is 
an advantage of using microsimulation for estimating travel time information in case 
of low density of detectors on roadway. 
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3.3 DEVELOPMENT OF FEEDBACK ESTIMATION FOR IMPROVING 
MICROSIMULATIN MODEL ACCURACY 

 
In this study, microscopic traffic simulation was proposed to be a traffic state and 
travel time estimator instead of macroscopic traffic flow model which mostly 
proposed in previous studies.  The numerical process of traffic state and travel time 
estimator was developed based on space-time discrete.  At every time step, traffic 
state and travel time were estimated and further updated by feedback estimation 
procedure as illustrated in Figure 3-6. 
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Figure 3-6  Feedback Estimation of Traffic State and Travel Time Framework 

 
Following the flow in Figure 3 6, at every time step (i.e. 5 minutes time interval), 
traffic demand was estimated based on traffic volume measured by point detectors 
equipped on road section similar to the procedure of microsimulation model as shown 
in Figure 3 5.  Consequently, traffic states including link flow, link density, link speed, 
and travel time were estimated provided by microsimulation model.  Virtual traffic 
detector stations were developed on the same location as actual traffic detector 
equipped on road section.  Actual traffic data on point detector was treated as 
measurement variables including flow and speed which was used to adjust prior 
estimated traffic state variables.  Feedback estimation using Unscented Kalman Filter 
was developed in order to improve the accuracy of traffic state and travel time 
estimation which was estimated only by microsimulation model. 
 
An efficient feedback estimation using Unscented Kalman Filter was defined the state 
variable x and measurement variables y as shown in Equation (3-3) and Equation 
(3-4) where where j

sv and j
sρ  are average speed and density on segment j (where j = 

1,...,N) and i
sw and i

sq  are speed and flow measured on virtual traffic detector i (where 
i = 1,...,N).  State variable and measurement variable were estimated by only 
microsimulation model.  The detail of Unscented Kalman Filter was described in 
Chapter 2. 
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 , ,..., ,j j N N

s s s sv vρ ρ⎡ ⎤= ⎣ ⎦x  (3-3) 

 , ,..., ,i i N N
s s s sw q w q⎡ ⎤= ⎣ ⎦y  (3-4) 

 

3.4 STUDY ON SHORT-TERM TRAVEL TIME PREDICTION 
 
One of the important components supporting ATIS and ATMS is a prediction which 
can help traffic operator in order to make decision in advance for managing the traffic 
with appropriate plan based on the future trend.  The proper strategy for traffic 
management can be provided, for example informs the message to the traveler for 
rerouting on the in-vehicle route guidance or inform the traffic congested location on 
DMS. 
 
Simple and easy to implement in practice was considered.  Moreover, only estimated 
travel time in past time steps are available which receives from the microsimulation 
and microsimulation with UKF as shown in Figure 3-7. 

 
Figure 3-7 Flow Chart of Short-Term Travel Time Prediction as Connected with 

Microsimulation and Microsimulation+UKF 
 
Two statistic methods for short-term prediction were studies which included simple 
moving average and exponential moving average.  It is not complicated to apply with 
the proposed framework for short-term travel time prediction.  Two methods were 
described as follow. 
 

• Simple Moving Average (SMA) 
 
The simple moving average is commonly used in finance applications with time series 
data to smooth out short-term fluctuation and show data trend (Harvey, 1990).  

Microsimulation Model 

Accuracy Improvement using 
Unscented Kalman Filter 

Short-Term Travel Time 
Prediction 

Initial time k 

k = k+1 
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Simple moving average is a mean of previous N data points.  The simple moving 
average was shown in Equation (3-5). 
 

 ( ) ( )* * *
1 1...t t t N

t

T T T
SMA N

N
− − ++ + +

=  (3-5) 

 
The value of N affects the estimation quality of the time series which the largest value 
of N will provide good estimation when mean of time series are constant.  In the other 
hand, the smallest value of N will provide good estimation when mean of time series 
data are fluctuated change.  The prediction for any number of periods in the future is 
the same as the latest estimate under the assumption of constant underlying mean.  
The prediction equation was shown in Equation (3-6). 
 
 ˆ     for 1, 2,...T tT SMAτ τ+ = =  (3-6) 
 
The variability of the noise has the largest effect for smaller of N value.  The 
conflicting desires to increase N value to reduce the effect of variability due to the 
noise and to decrease N value to take the prediction more responsive to change in 
mean of time series data.  However, the intermediate value of N is required in 
practical prediction. 
 

• Exponential Moving Average (EMA) 
 
The exponential moving average is also known as an exponentially weighted moving 
average which is a type of infinite impulse response filter.  It applies weighting 
factors to exponentially decrease. The weighting for each older data point decreases 
exponentially, never reaching zero (Harvey, 1990).  The exponential moving average 
is adopted in this study to predict short-term travel time as shown in Equation (3-7). 
 
 ( )*

1 11t t tEMA T EMAα α− −= + −  (3-7) 
 
where α is weighting factor, 0 1α< ≤ .  *

1tT − is the estimated travel time at time t-1.  
For any number of periods prediction in the future, the future value of travel time is 
the same as the latest estimate travel time in previous time step as shown in Equation 
(3-8). 
 
 ˆ     for 1, 2,...T tT EMAτ τ+ = =  (3-8) 
 
The variance of the estimation error increases when the value of α increases.  In order 
to minimize the effect of noise, it would like to make α as small as possible but this 
makes the prediction unresponsive to a change in the underlying of time series data.  
In order to make the prediction responsive to changes, the value of α as large as 
possible is required.  However, the intermediate value of α is required in practical 
prediction. 
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In this study, four scenarios were designed to understand the benefit of Unscented 
Kalman Filter and the performance of travel time prediction separately by each 
segment.  The four scenarios were defined as follows. 
 

• Scenario 1: Travel time prediction using the route travel time which 
estimated by microsimulation. 

• Scenario 2: Travel time prediction using the route travel time which 
estimated by micosimulation with UKF improvement. 

• Scenario 3: Sum of the travel time prediction of estimated travel 
time using microsimulation by each segment  

• Scenario 4: Sum of the travel time prediction of estimated travel 
time using microsimulation with UKF improvement by 
each segment.  

 

3.5 MODEL EVALUATION 
 
In order to evaluate estimated traffic state and travel time information, estimated and 
observed were plotted as diagonal plot link by link in order to investigate the under or 
over estimation of each method.  Consequently, absolute percentage error (APE) and 
mean absolute percentage error (MAPE) were determined in this study to measure 
how large of estimation error by comparing observed and estimated traffic state and 
travel time information.  Moreover, percentage error and mean square error were 
determined to understand positive and negative percentage error by period of time and 
amount of error.  There were presented as shown in Equation (3-9), Equation (3-10), 
Equation (3-11), and Equation (3-12). 
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where ( )obsx k and ( )estx k  is observed and estimated traffic state respectively (e.g. 
speed and travel time) at time k.  MAPE of speed and travel time estimation are 
separately calculated. 
 
 



 
 
 

CHAPTER IV 
 

TRAFFIC DATA 
 
 
In this chapter, the field data and study area in which two selected expressway 
sections of Hanshin Expressway and Bangkok Expressway are located in Japan and 
Thailand respectively are described.  Moreover, the result of model parameters 
calibration is reported which it is further conducted in the development of 
microsimulation model for traffic state and travel time estimation. 

CHAPTER 4 TRAFFIC DATA 

4.1 FIELD DATA AND STUDY AREA 
 
In order to develop microsimulation for estimating traffic state and travel time and 
also predicting travel time for expressway traffic, the actual site study was conducted 
which the factor of physical alignment and detector location were ignored.  The site 
selection was considered the expressway corridor composed by main line, on-ramp, 
and off-ramp.  There were two selected expressway sections conducted in this study 
which used in difference study. 
 
The first site study was Matsubara line on Hanshin Expressway in Osaka, Japan.  This 
site study was initiated to use in the study of model parameters calibration using 
genetic algorithm and further investigated the accuracy of link speed estimation using 
conventional methods in order to understand the performance of link speed estimation 
which affect the accuracy of travel time estimation. 
 
The second site study was Chalerm Mahanakhon line on Bangkok Expressway in 
Bangkok, Thailand.  This site study was conducted to use in the study of on-line 
microsimulation for traffic state and travel time estimation and also travel time 
prediction.  The proposed method was evaluated against the observed travel time 
which conducted in this site study.  In this site study, the performance of proposed on-
line microsimualtion model was analyzed. 
 
The two selected site studies were described in details as follows. 
 

4.1.1 Hanshin Expressway Site 
 
A 11.22 km. road section of the Matsubara line of the Hanshin expressway in Osaka, 
Japan in an outbound direction between Nanba and Matsubara junction was selected 
as the first study area that traffic data were collected 24 hours using overhead 
ultrasonic detectors on November 1, 1994. This data was used to calibrate traffic 
simulation model.  Figure 4-1 and Figure 4-2 illustrate the location of study area and 
schematic diagram of study section on Hanshin expressway. 
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Figure 4-1 Location of Matsubara Line of Hanshin Expressway Network 
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Figure 4-2 Schematic Diagram of Matsubara Line 

 
From Figure 4-2, the selected expressway section was divided into seven links which 
have equipped with eight traffic detector stations.  The distances of the links range 
between 1210 and 2070 meters.  There were two lanes for the whole length of the 
study section with two on-ramps, and five off-ramps.  Overhead ultrasonic detectors 
have been installed to measure traffic data on this expressway section as shown in 
Figure 4-3.  Traffic data, volume, time mean speed, and occupancy, were collected by 
the detectors at 5-minute aggregation. For this Japan expressway study, these data 
were used to evaluate the performance of link speed estimation based on point traffic 
speed on the border of link and the difference of link speed estimation using 
conventional methods and microsimulation model was discussed. 
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Figure 4-3 Ultrasonic Detector on Hanshin Expressway, Osaka, Japan 

 

4.1.2 Bangkok Expressway Site 
 

About 11-km expressway section of the Chalerm Mahanakhon line on Bangkok 
Expressway Network in Bangkok, Thailand directional from Daokanong  to Port 
junction as shown in Figure 4-4 is selected to be second study area in this study and 
schematic diagram of this site is shown in Figure 4-5. 
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Figure 4-4 Daokanong – Port Junction on Bangkok Expressway Network 
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Figure 4-5 Schematic Diagram of Chalerm Mahanakhon Line 
 
For the numerical analysis, the road section was divided into ten segments ranging 
from 390 meters to 1977 meters with four on-ramps and two off-ramps.  The number 
of lanes varies from two to three lanes in some sections. 
 
Based on the data collection plan, eleven stations of video image processing camera 
were planned and installed as shown in Figure 4 5.  However, equipment at few data 
collection stations were broken, seven stations which were station no. 2, 3, 5, 6, 7, 9, 
and 10 were completed and the traffic data on June 9, 2010 from these stations were 
used in the study. Available detector stations measured traffic data on the predefined 
area which have field of view as shown in Figure 4 6.  At the same time, digital video 
recorders were installed and recorded video from video image cameras on station no.2 
and 10. The video data were further post processed in laboratory using vehicle 
matching manually in order to measure travel time data.  The manual travel time 
(ground truth) data were used as a benchmark for accuracy evaluation which the 
sample size of observed travel time was followed the suggestion of travel time data 
collection manual (1998) which suggest the average coefficient of variation of 25% 
for congested traffic (15 – 30 minute per period).  It was calculated the sample size 
according to Equation (4-1). 
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2. . z c vSample size

e
×⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (4-1) 

 
where z is z-statistic which the value of 1.96 (95% confidence) was used.  c.v. is the 
average coefficient of variation which the suggested value of 25% was used 
(congested traffic, 15 – 30 minute time period).  e is the relative error of 5%.  From 
the calculation based on Equation (4-1), the calculated sample size that required for 
observing travel time was 96 vehicles in one hour, then 8 vehicles were observed for 
travel time per time interval of 5 minute.  The observed vehicles from 06:00 until 
21:00 of 1440 vehicles were totally observed in this study.  Collected field traffic data 
were used to develop real-time traffic state and travel time estimation using 
microsimulation model. 
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(a) Station No.2 (b) Station No.3 

  
(c) Station No.5 (d) Station No.6 

  
(e) Station No.7 (f) Station No.9 

 
(g) Station No.10 

Figure 4-6 Field of View of Seven Point Detectors using  
Video Image Processing Camera 
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4.2 CALIBRATION RESULT OF SIMULATION MODEL 
 

4.2.1 Calibration Result of Hanshin Expressway Site 
 
In order to calibrate microsimulation model of Hanshin Expressway site on 
Matsubara line, traffic data from 08:00 until 10:00 were obtained to determine the 
proper model parameters.  Based on Genetic Algorithm (GA) process, a total of 
1200 (20 population, 3 replicated runs, and 20 generations) simulation runs were 
carried out.  Each simulation run took approximately one minute to replicate 4 hours 
of traffic operation in the site study using a personal computer with CPU of 1.6 
GHz.  After complete 20 GA generations, genetic algorithm process showed the 
performance toward fitness function minimization by searching the optimal 
combinatorial model parameters within desired constraints as shown in Figure 4 7. 
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Figure 4-7 The Value of Fitness Function of Hanshin Expressway Site. 
 
Figure 4-7 illustrates the plot of average, minimum, and standard deviation of fitness 
function for each generation.  The figure shows that average value of fitness 
function decreases and is close to minimum value, with the number of generation 
increases.  Moreover, the standard deviation value also decreases.  It could be 
implied that the optimal combinatorial model parameters can be found for a defined 
generation number.  The calibrated model parameters, after completion of the 
defined calibration criteria, yielded the values as shown in Table 4-1. 
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Table 4-1 Calibrated Value of Model Parameters for Hanshin Expressway Site 
Model Parameters Calibrated Value 

Mean Target Headway 0.500 seconds 
Mean Driver Reaction Time 1.135 seconds 

 
Using the Expressway data in Japan, the calibrated parameters had the mean target 
headway of 0.500 second, which was much smaller than the default value of one 
second, calibrated under UK traffic condition suggested by program developer.  
According to the finding value, it could be implied that the drivers on Matsubara 
line of Hanshin expressway tend to accept smaller headway.  The mean driver 
reaction time was 1.135 seconds, higher than default value of one second.  It could 
be implied that drivers under UK traffic condition are more sensitive to the change 
of traffic condition than drivers on Matsubara line in Japan.  Larger mean driver 
reaction time will lead to more occurrences of shock wave due to car following 
theory. 
 
The effectiveness of the calibrated model parameters was verified by common 
comparison between variations of PARAMICS point processing data against 
observed traffic data on both traffic volume and speed.  The mean absolute 
percentage errors (MAPE) were reported as shown in Figure 4-8 and Figure 4-9 as 
compared to MAPE of simulation output using default model parameters. 
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Figure 4-8 MAPE of Traffic Volume at Hanshin Expressway Site 
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Figure 4-9 MAPE of Traffic Speed at Hanshin Expressway Site 

 
Using the calibrated parameters, it is shown that volume for 5-minute time interval 
at each point detector by PARAMICS microsimulation is quite close to the observed 
traffic volume.  MAPE ranges from 3.30% to 10.08% with the average of 6.48% and 
the minimum and maximum MAPE are at the first and eighth detector station 
respectively.  For traffic speed comparison, MAPE ranges from 3.25% to 20.86% 
with the average of 10.75% and the minimum and maximum MAPE are at the 
second and sixth detector station. 
 
However, the average MAPE from microsimulation using default model parameters 
is higher than those using calibrated model parameters as shown in Table 4-2. 
 

Table 4-2 Average Mean Absolute Percentage Error 
Parameters Volume Speed 

Default 7.10 12.37 
Calibrated 6.48 10.75 

 
Simulation outputs using calibrated model parameters are close to observed traffic 
data although a bit improvement was observed, compared with simulation output 
using default model parameters.  Although the only 20 generations of genetic 
algorithm process were designed in this study.  However, the results have shown the 
level of MAPE better than the results using defaults model parameters.  The MAPE 
could be reduced if more generations of genetic algorithm process were performed 
and the simulation output would be closer to observed traffic data.  The comparison 
of traffic volume and speed between observed and simulated data are shown in 
Figure 4-11 and Figure 4-10. 
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Figure 4-10 Observed and Simulated Traffic Volume on Matsubara Line at 
Hanshin Expressway Site 
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Figure 4-11 Observed and Simulated Traffic Speed on Matsubara Line at 
Hanshin Expressway Site 
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From Figure 4-11 and Figure 4-10, it shows that even the optimal model parameters 
were received using genetic algorithm.  There are shown the difference between 
observed and estimated on both volume and speed which measured on point detector 
on the site study.  However, estimated traffic volume is similar trend with observed 
traffic volume but estimated traffic speed is less than observed traffic speed about 10 
kilometers but it is in the same trend. 
 

4.2.2 Calibration Result of Bangkok Expressway Site 
 
Traffic data from 06:00 until 10:00 were used in calibrating model parameters for 
Bangkok Expressway site.  The calibration process was conducted in similar manner 
as the calibration of Hanshin Expressway site.  From the result of model parameters 
calibration using GA, the value of fitness function is shown in Figure 4-12.  
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Figure 4-12 The Value of Fitness Function of Bangkok Expressway Site. 
 
Figure 4-12 illustrates the plot of average, minimum, and standard deviation of 
fitness function for each generation.  The figure shows that average value of fitness 
function decreases and is close to minimum value.  Moreover, the standard deviation 
value also decreases in a similar manner as the value of fitness function of Hanshin 
Expressway site.  It could be implied that a better combinatorial model parameters 
could be found for a defined generation number.  The model parameter calibration 
with predefined criteria gives the model parameters as shown in Table 4-3. 
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Table 4-3 Calibrated Value of Model Parameters for Bangkok Expressway Site 
Model Parameters Calibrated Value 

Mean Target Headway 0.550 seconds 
Mean Driver Reaction Time 1.560 seconds 

 
From Table 4-3, it is shown that the calibrated value of mean target headway and 
mean driver reaction time which are 0.550 second and 1.560 second respectively.  
Two model parameters for traffic characteristics of Bangkok Expressway site are a 
bit higher than the calibrated values of traffic characteristics on Hanshin Expressway 
site. 
 
The impact of the calibrated model parameters was verified by common comparison 
between variations of PARAMICS point processing data against observed traffic 
data on both traffic volume and speed.  The mean absolute percentage errors 
(MAPE) were reported as shown in Figure 4-13 and Figure 4-14. 
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Figure 4-13 MAPE of Traffic Volume at Bangkok Expressway Site 
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Figure 4-14 MAPE of Traffic Speed at Bangkok Expressway Site 
 
From Figure 4-13, it is shown that MAPE of traffic volume between observed and 
estimated at seven traffic detector stations are ranged from 12.05 % (detector station 
no.2) to 73.98 % (detector station no.9) with the average MAPE value of 37.87 %.  
The calibrated model could emulate traffic volume at Bangkok Expressway site with 
an error under 20 % at traffic detector station no.2 and 6.  For detector station no.3, 
5, 7, 9, and10, it could emulate traffic volume with an error more than 20 %. 
 
Figure 4-14 shows that MAPE of traffic speed at seven traffic detector stations range 
from 8.33 % (detector station no.) to 37.04 % (detector station no.9) with the 
average MAPE value of 22.28 %.  The calibrated model could emulate traffic speed 
at Bangkok Expressway site with an error under 20 % on traffic detector station no.5, 
6, and 7.  For detector station no.2, 3, 9, and10, it could emulate traffic speed with 
an error more than 20 %. 
 
The comparison of traffic volume and speed between observed and simulated data 
are shown in Figure 4-15 and Figure 4-16. 
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Figure 4-15 Observed and Simulated Traffic Volume at Detector Station at 

Bangkok Expressway Site 
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Figure 4-16 Observed and Simulated Traffic Speed at Detector Station at 

Bangkok Expressway Site 
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From Figure 4-15, most of detector stations show that estimated traffic volume is 
higher than observed traffic volume except detector station no.5 which the estimated 
traffic volume is less than observed traffic volume.  A big difference in traffic volume 
comparison was occurred even the optimal model parameters received by genetic 
algorithm.  It is note that the traffic condition under calibration period is congested. 
 
From Figure 4-16, it shows that speed drop produced by microsimulation model occur 
faster than observation and it recover to normal speed slower than the observation.  It 
can implied that even receiving the optimal model parameters by genetic algorithm, 
the estimated traffic speed still have difference when compared with observed traffic 
speed by discrete time step. 
 
The microsimulation model attempted to replicate traffic based on calibrated model 
parameters which mean characteristics are defined but individual characteristic of 
driver occur in the actual traffic which microsimulation can not perfectly replicated.  
However, two study sites were calibrated and received optimal model parameters 
within predefine control criteria which the model parameters calibration using genetic 
algorithm can operate and also it can developed to be an on-line model parameters 
calibration for on-line microsimulation in order to repeat calibration by demand or 
integrate with the consistency checking module to monitor the error of on-line 
microsimulation model along the operation period. 
 

4.3 CONCLUSION REMARKS 
 
In this study, two expressway corridors in difference country were conducted as study 
sites consist of Matsubara line on Hanshin expressway in Japan and Chalerm 
Mahanakhon line on Bangkok expressway in Thailand.  Two sites were used in 
difference parts which are summarized as follows. 
 
For the study at the first site, the process of the development of combinatorial model 
parameters calibration using genetic algorithm was investigated.  Matsubara line of 
Hanshin Expressway in Japan was selected in this study.  Moreover, segment speed 
approximation based on point based detector station using conventional methods were 
evaluated to understand the performance for segment speed estimation which the 
conventional methods were further conducted to estimate segment travel time 
information. 
 
For the study at the second site, the performance of microsimulation model was 
carried out on Chalerm Mahanakhon line of Bangkok Expressway Network in 
Bangkok in Thailand. .  Moreover, this study site would also be used to evaluate the 
performance of microsimulation model with UKF improvement.  Furthermore, it was 
also used to evaluate the performance of travel time prediction model. 
 
Even the optimal model parameters were received by genetic algorithm within the 
predefined control criteria which the application of on-line calibration was concerned, 
but it was shown that a big difference are shown on both traffic volume and traffic 
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speed when compared observation and estimation especially Bangkok expressway site 
in Thailand which the traffic data used in the calibration process is on the congestion 
period.  In contrast, traffic data used in the calibration of Japan site study is 
uncongested.  The microsimulation model show the estimation similar to the 
observation on both traffic volume and traffic speed.  It can implied that replication 
error of microsimulation model has a big difference with actual traffic which it might 
have other model parameters which should study in the future study in order to 
improve the calibration process using genetic algorithm.  However, mean target 
headway and mean driver reaction time were enough for this study in order to develop 
microsimulation model for estimating traffic state and travel time for travel time 
prediction. 
 
 



 
 

CHAPTER V 
 

NUMERICAL ANALYSIS 
 
 
In order to assess the performance of the proposed approaches in order to reach the 
research objectives, the numerical analysis were performed in this chapter which 
included four parts.  First, the evaluation of link speed estimation based on point 
detection system on expressway.  Second, the dynamic traffic state and travel time 
estimation using microsimulation model.  Third, the improvement of microsimulation 
model with feedback estimation using Unscented Kalman Filter.  Final, the 
development of travel time prediction was presented. 

CHAPTER 5 NUMERICAL ANALYSIS 

5.1 EVALUATION OF LINK SPEED ESTIMATION BASED ON POINT 
DETECTION SYSTEM ON EXPRESSWAY 

 
In this part, the link speed was estimated based on point detection system and the 
effectiveness of link speed estimation was evaluated.  Traffic data on Matsubara line 
of Hansin expressway in Japan was used in this part. Seven links were defined by 8 
traffic detection stations equipped with ultrasonic detectors on Matsubara line of 
Hanshin expressway.  Three selected simple methods including average speed, 
weighted speed, and San Antonio were employed to calculate link speed based on 
traffic speed measured on upstream and downstream detector. 
 
Figure 5-1 shows the range of observed speed and the result of link speed estimation.  
The observed speeds on the 1st, 2nd, and 3rd link ranged between 60 and 80 km/h in 
which three simple methods performed quite well to estimate the link speed using 
speed data from upstream and downstream detectors.  However, large error can be 
noticed on the 4th link, almost all of estimated link speed is higher than the observed 
link speed.  For the 5th, 6th, and 7th link the observed and estimated speeds range 
between 60 and 80 km/h, similar to those the first three links.  Estimated link speed 
values higher 80 km/h are observed on the 4th, 5th, 6th, and 7th link during 7:00 and 
7:10.  Since this was the initial period of simulation running, the speed may be 
ignored. 
 
Estimated and observed link speed of each link was plotted as shown in Figure 5-1 to 
realize the over and under estimation using three simple methods. 
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Figure 5-1 Diagonal Plot between Estimated and Simulated Link Speed on 
Hanshin Expressway Site 

 
The absolute percentage error (APE) was calculated every 5 minutes and then 
minimum, maximum, average, and standard deviation of APE are summarized in 
Table 5-1.  If MAPE of 20% is the maximum MAPE that could be accepted, three 
simple methods have shown the MAPE below 20% except on the 4th link where 
MAPE is higher than 20%.  The exception is the speed estimated by San Antonio 
method on the 4th link in which all MAPE is below 20%.  However, the other three 
simple methods show the highest APE and standard deviation is also quite high on the 
4th link.  The 4th link was investigated in more details to understand why the estimated 
speed on this link had the high value of APE. 
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Table 5-1 MAPE and APE of Speed as Minimum, Maximum, and Standard 

Deviation (%) on Hanshin Expressway Site 
  Link No. 

Method  1 2 3 4 5 6 7 
MAPE 4.38 5.14 4.16 20.28 3.78 7.16 5.03 
Min. 0.00 0.03 0.05 0.04 0.06 1.69 0.27 
Max. 11.30 19.00 20.52 127.27 16.61 28.53 16.77 

Average 

S.D. 2.38 3.39 2.30 29.08 2.50 3.49 2.44 
MAPE 4.56 5.10 3.97 20.37 3.80 6.72 5.42 
Min. 0.09 0.06 0.05 0.01 0.03 1.48 0.08 
Max. 11.39 19.00 12.07 127.70 16.88 25.09 19.51 

Weighted 
average 

S.D. 2.43 3.33 2.00 29.19 2.55 2.99 2.91 
MAPE 2.50 3.91 3.10 17.40 2.72 4.01 1.70 
Min. 0.04 0.08 0.00 0.02 0.00 0.08 0.00 
Max. 11.27 18.80 34.55 124.54 15.32 23.76 17.76 

San Antonio 

S.D. 2.23 3.00 3.83 25.99 2.15 2.92 1.70 
 
As mentioned in Figure 5-1 and Table 5-1, a large disparity between the observed and 
estimated speed can be seen on the 4th link where three simple methods show an over 
estimation in representing link speed.  Furthermore, the maximum value of APE is 
quite high although the MAPE is close to 20% when using average and weighted 
average method or below 20% when using San Antonio method.  In order to 
investigate in details, time dependent of link speed and APE on the 4th link are 
plotted as shown in Figure 5-2 and Figure 5-3. 
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Figure 5-2 Time-Dependent Link Speed on the 4th Link on Hanshin Expressway 
Site 
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Figure 5-3 Time-Dependent Absolute Percentage Error of Link Speed on the 4th 
Link on Hanshin Expressway Site 

 
Figure 5-3 shows that the link speed on the 4th link drops during 17:15 until 19:55 
when three methods are badly performed during this period with high value of APE as 
illustrated in Figure 5-3.  Therefore, the value of MAPE during uncongested and 
congested traffic condition was separately calculated and is shown in Table 5-2.  The 
authors define period with speed drop as the congested condition and otherwise as the 
uncongested condition.  It is found that three simple methods are quite well performed 
during uncongested condition but are badly performed during congested condition. 
 

Table 5-2 Mean Absolute Percentage Error (%) 

Method Uncongested 
Traffic 

Congested 
Traffic 

Average 9.77 70.94 
Weighted average 9.93 70.88 
San Antonio 8.32 61.17 

 
In this study, even if the effects of detector spacing and placement are neglected, we 
can not deny that these two effects seriously impact the reliability of link speed 
represented by the estimation of upstream and downstream speed of the link.  Length 
of the 4th link is 1941 m, which is considered a long link so that traffic data from 
upstream and downstream detectors may not well represent link speed.  Traffic speed 
measured at detector number 4 (upstream) and 5 (downstream) were plotted and 
compared with the observed link speed as shown in Figure 5-4. 
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Figure 5-4 Observed Traffic Speed on Upstream and Downstream Detector 
Station and Observed Link Speed on the 4th Link on Hanshin Expressway Site 

 
Figure 5-4 shows that observed link speed initially drops at 17:15 while detector 
station can capture speed drop at 18:20.  It is too much lag that either upstream or 
downstream detector can capture this speed drop.  The link length is too long to use 
spot speed from upstream and downstream detector station for representing link speed 
especially during congested condition.  Traffic analyzer should realize this fact when 
they have to estimate link speed on expressway corridor with low density of detector 
stations similar to this case study.  However, the effect of detector station numbers 
(reducing spacing) on the reliability of link speed estimation using simple methods 
can not be reported within this study. 
 
The findings in this part illustrate that the weakness of using the three simple methods 
to estimate link speed on expressway are mainly due to large error under a congested 
traffic condition but it is quite well performed under an uncongested condition.  Most 
of estimated link speeds during congestion period are overestimated.  The effect of 
detector spacing and placement might be the serious factors that impact the reliability 
of estimated link speed using these simple methods.  According to the case study, the 
length of the 4th link is too long to conduct the spot speed measured from upstream 
and downstream detector stations for representing link speed. 
 
Moreover, it can notice that capability of conventional speed estimation methods are 
limited by their own algorithm.  Estimated link speed using average, weighted 
average, and San Antonio methods provide only the value of link traffic speed 
between upstream and down stream traffic speed while simulated link speed use as 
benchmark are slower than the estimated speed which conventional can approximated 
based on upstream and downstream traffic speed measured by detectors. 
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5.2 REAL-TIME TRAFFIC STATE AND TRAVEL TIME ESTIMATION 
USING MICROSIMULATION 

 
Traffic state and travel time were estimated by means of microsimulation.  For this 
part, the study site on Chalerm Mahanakhon Line, Bangkok was used.  Seven road 
segments were defined by 7 detection stations equipped with video image processing 
camera (camera at station no.1, 4 and 8 was unavailable), starting from station no.2 to 
station no.11.  The three selected conventional methods of speed estimation as earlier 
presented included average, weighted average, and San Antonio speed estimation 
methods were employed for calculating segment travel time.  However, the observed 
travel time information was available by matching vehicles started from detector 
station no.2 and finished at detector station no.10.  So, seven segment travel times 
were aggregated into path travel time in which vehicle traversed from station no.2 and 
finish on station no.10.  Real-time travel time estimated by on-line microsimulation 
and the three conventional methods were shown in Figure 5-5. 
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Figure 5-5 Comparison of Observed and Estimated Travel Time 
 
From Figure 5-5, travel time estimated by on-line microsimulation is quite lower than 
the observed travel time from 07:00 until 09:00, higher than the observed travel time 
from 09:00 until 10:00, and lower than the observed travel time during off-peak and 
evening-peak period.  Comparing the three conventional travel time estimation 
methods, San Antonio method is quite close to the observed travel time on three 
periods but it shows over estimation from 17:30 to 18:40 while on-line 
microsimulation method and average and weighted average method result in 
estimated travel time quite close to the observed travel time.   
 

Morning-peak (Calibration) Off-peak Evening-peak 
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In order to illustrate over or under estimation on travel time of on-line 
microsimulation and the three conventional methods, estimated and observed travel 
time were plotted as shown in Figure 5-6.  Figure 5-6(a) illustrates that travel time 
estimates by on-line microsimulation model are both under and over estimated during 
the morning-peak period (06:00-10:00). Note that this data set was also used for 
calibrating model parameters.  During off-peak period and evening-peak period, travel 
time estimates are over and under estimation respectively.   Figure 5-6(b) illustrates 
travel time estimation by average method in which the estimated travel time is under 
estimated in all three time periods.   Figure 5-6(c) illustrates travel time estimation by 
weighted average method in which, similar to average method, the estimated travel 
time is under estimated in all three time periods.  Figure 5-6(d) illustrates travel time 
estimation by San Antonio method, in which the estimated travel time is both under 
and over estimation in three time periods.  The general trend of the estimation from 
the three methods is as follows: in the morning-peak period is most of methods give 
over estimation, during off-peak period they give both under and over estimation, and 
they give quite over estimation in the evening peak period.  

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Observed Travel Time (Seconds)

E
st

im
at

ed
 T

ra
ve

l T
im

e 
(S

ec
on

ds
)

06:00 - 10:00 10:00 - 16:00 16:00 - 21:00

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Observed Travel Time (Seconds)

E
st

im
at

ed
 T

ra
ve

l T
im

e 
(S

ec
on

ds
)

06:00 - 10:00 10:00 - 16:00 16:00 - 21:00

(a) Microsimulation (b) Average 

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Observed Travel Time (Seconds)

E
st

im
at

ed
 T

ra
ve

l T
im

e 
(S

ec
on

ds
)

06:00 - 10:00 10:00 - 16:00 16:00 - 21:00

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Observed Travel Time (Seconds)

E
st

im
at

ed
 T

ra
ve

l T
im

e 
(S

ec
on

ds
)

06:00 - 10:00 10:00 - 16:00 16:00 - 21:00

(c) Weighted Average (d) San Antonio 
 

Figure 5-6 Diagonal Plots between the Observed and Estimated Travel Time 
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From Figure 5-6, it shows that average and weighted average method always provide 
estimated travel time less than the observed travel time or under estimation because it 
is the limitation of method as mention in previous part.  Microsimulation model and 
San Antonio provide estimated travel time on both under and over estimation 
especially the estimation under congested condition. 
 
As previously described on how under and over estimation of each travel time 
estimation methods, the levels of percentage error were calculated and plotted by 
departure time as shown in Figure 5-7.  The figure could show how much the 
percentage error on each travel time estimation methods every 5 minutes. 
 
Figure 5-7(a) illustrates that the travel time estimated by on-line microsimulation 
deviates approximately within lower and upper bound of 50%, except from 09:00 to 
10:00 which the estimated travel time is higher than the observed travel time more 
than 50%.  Figure 5-7(b) and Figure 5-7(c) show that the estimated travel times by 
average and weighted average method are under estimated with most of estimation are 
lower than the observed travel time about 50% with smallest error at 18:30.  Figure 
5-7(d) shows that the travel time estimated by San Antonio has a huge percentage 
error of travel time estimation, about 150% higher than the observed travel time at 
18:30 while other methods yield more accurate travel time estimates. 
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(b) Average 
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(c) Weighted Average 
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(d) San Antonio 

 
Figure 5-7 Percentage error of travel time estimated by microsimulation and 

three conventional methods 
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According to the deviation of percentage error of travel time estimates as shown in 
Figure 5-7, minimum, maximum, mean absolute percentage error, and MAPE 
standard deviation of travel time estimates by on-line microsimulation model and 
three conventional methods were analyzed and shown by three time periods in Table 
5-3. 
 
Table 5-3 Minimum, Maximum, Mean Absolute Percentage Error, and Standard 

Deviation of Travel Time Estimates by On-Line Microsimulation and Three 
Conventional Methods 

(a) Morning-peak period (06:00-10:00) 
Methods Min Max MAPE Std. 

Microsimulation -38.29 84.12 28.66 23.99 
Average -53.65 -8.71 33.22 9.71 

Weighted average -57.34 -14.26 33.92 9.53 
San Antonio -33.26 52.66 16.90 13.50 

(b) Off-peak period (10:00-16:00) 
Methods Min Max MAPE Std. 

Microsimulation -32.42 38.17 17.65 7.21 
Average -53.25 -12.83 25.92 7.75 

Weighted average -53.68 -10.28 25.21 8.31 
San Antonio -44.23 42.20 14.17 9.88 

(c) Evening-peak period (16:00-21:00) 
Methods Min Max MAPE Std. 

Microsimulation -36.56 -2.42 16.13 8.61 
Average -36.92 3.15 18.48 9.14 

Weighted average -35.02 9.90 16.82 8.82 
San Antonio -26.37 158.68 19.31 27.35 

 
Table 5-3(a) shows that the estimated travel time during morning-peak period 
estimated by the on-line microsimulation model has the minimum error of -38.29%, 
the maximum error of 84.12%, a mean absolute percentage error of 28.66%, and a 
MAPE standard deviation of 23.99%.  The estimated travel time by San Antonio is the 
most accurate which has the minimum error of -33.26%, the maximum error of 
52.66%, a mean absolute percentage error of 16.90%, and a MAPE standard deviation 
of 13.50%.  Travel time estimated between 06:00 and 10:00 using San Antonio is 
more reliable than using microsimulation but the maximum errors of San Antonio is 
quite high and fluctuates in all time periods. 
 
Table 5-3(b) shows that estimated travel time during off-peak period estimated by on-
line microsimulation model has the minimum error of -32.42%, the maximum error of 
38.17%, a mean absolute percentage error of 17.65%, and a MAPE standard deviation 
of 7.21%.  The estimated travel time by San Antonio is still the most accurate which 
has the minimum error of -44.23%, the maximum error of 42.20%, a mean absolute 
percentage error of 14.17%, and a MAPE standard deviation of 9.88%.  However, the 
minimum and maximum error of travel times by San Antonio deviates greater than 
those by microsimulation.  Furthermore, the MAPE standard deviation of San Antonio 
is higher than that of microsimulation as the error of travel time by San Antonio 
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fluctuates more than the error of travel time by microsimulation during off-peak 
period. 
 
Table 5-3(c) shows that estimated travel time during evening-peak period estimated 
by on-line microsimulation model has the minimum error of -36.56%, the maximum 
error of -2.42%, a mean absolute percentage error of 16.13%, and a MAPE standard 
deviation of 8.61%.  San Antonio has the minimum error of -26.37%, the maximum 
error of 158.68%, a mean absolute percentage error of 19.31%, and a MAPE standard 
deviation of 27.35%.  It is obviously shown that the estimated travel time using 
microsimulation model is more reliable than San Antonio during evening-peak period. 
 
Furthermore, the absolute percentage error was plotted as shown in Figure 5-8 in 
order to clearly illustrate the fluctuation of absolute error.  The errors of travel time by 
microsimulation were compared against the three convention methods.  Figure 5-8 
shows that the absolute percentage error of estimated travel time using 
microsimulation model is higher than those by the conventional methods between 
09:00 and 10:00 and then the absolute percentage error of estimated travel time 
information by San Antonio is higher than microsimulation model and other 
conventional methods between17:30 and 18:30.  MAPE is illustrated by compared 
microsimulation with three conventional methods as shown in Figure 5-9. 
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Figure 5-8 Absolute Percentage Errors of On-line Microsimulation and Three 
Conventional Methods by Departure time. 
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Figure 5-9 Mean Absolute Percentage Errors of Travel Time Estimated by On-
line Microsimulattion and Three Conventional Travel Time Estimation Methods 
 
Referring to Figure 5-9, from 06:00 to 10:00 (morning-peak period), on-line 
microsimulation for travel time estimation is quite well performed.  It is more 
accurate than conventional methods average and weighted average but less accurate 
than C3 which has MAPE value less than 20%.  MAPE of average and weighted 
average during morning-peak period has MAPE value more than 30%.  From 10:00 to 
16:00 (off-peak period), travel time estimation by average and weighted average 
deviate by approximately 25% while travel time estimation by on-line 
microsimulation is less than 20% and that of San Antonio is less than 15%.  From 
16:00 to 21:00 (evening-peak period), on-line microsimulation model shows the best 
performance for estimating travel time with less MAPE value than the conventional 
methods. 
 
From this part, it was found that microsimulation model provides more accurate and 
reliable travel time than average, weighted average, and San Antonio.  The average 
and weighted average methods have their own limitation in order to capture link 
speed which carries to the estimation error on travel time estimation.  During 
congestion periods which is the challenge of estimation model, microsimulation 
model was still shown the best method to estimate travel time even the San Antonio 
method is more accurate but it is unreliable as obviously shown huge error in the 
evening while traffic is uncongested.  The traffic speed on detector was drop in the 
evening but it was affected to the link speed during evening period. 
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5.3 IMPROVEMENT OF MICROSIMULATION BY FEEDBACK 
ESTIMATION USING UNSCENTED KALMAN FILTER 

 
In this part, Unscented Kalman Filter was employed to improve the accuracy of traffic 
state and travel time estimate over the method of only straightforward 
microsimulation modeling being previous used.  Prior estimated traffic states included 
traffic speed and traffic density on the seven links on Bangkok Expressway site.  
Real-time traffic speed and traffic flow measured on seven detector stations on site 
study were collected as measurement update based on feedback estimation using 
Unscented Kalman Filter procedure.  Traffic states on seven links were posterior 
estimated as shown in Figure 5-10 and Figure 5-11.  Moreover, the comparisons of 
traffic speed and traffic flow on both observed and simulated are shown in Figure 
5-12 and Figure 5-13. 
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Figure 5-10 Prior Estimated Link Speed using Microsimulation and Posterior 

Estimated Link Speed using Microsimulation+UKF 
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Figure 5-11 Prior Estimated Link Density using Microsimulation and Posterior 

Estimated Link Density using Microsimulation+UKF 
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Figure 5-12 Observed and Simulated Traffic Speed at Detector Station on 

Bangkok Expressway 
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Figure 5-13 Observed and Simulated Traffic Flow at Detector Station on 

Bangkok Expressway 
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From Figure 5-10 and Figure 5-11, the seven expressway’s links were divided based 
on detector stations which are described as shown in Table 5-4.  The figures present 
link speed and link density respectively which compare prior estimated value using 
microsimulation model and posterior estimated value using microsimulation model 
with UKF improvement.  It is shown that posterior estimated traffic states on 
expressway segments are fluctuated along discrete time based on prior estimated 
traffic states using microsimulation model only.   
 

Table 5-4 Definition of Divided Link on Bangkok Expressway 
Link No. From End 

1 Detector No.2 Detector No.3 
2 Detector No.3 Detector No.4 
3 Detector No.4 Detector No.5 
4 Detector No.5 Detector No.6 
5 Detector No.6 Detector No.7 
6 Detector No.7 Detector No.9 
7 Detector No.9 Detector No.10 

 
From Figure 5-12 and Figure 5-13, the comparison between observed and estimated 
traffic speed and traffic flow are displayed respectively.  The data came from actual 
traffic detector station on Bangkok Expressway site study and virtual traffic detector 
station on microsimulation model. 
 
In order to evaluate the proposed methods, similar to the data analysis of the previous 
section, the observed travel time was considered starting from detector station no.2 
and then finishing at detector station no.10.  It is noted that the route travel time (from 
station no.2 to station no.10) would be compared rather than individual link travel 
time comparison.  The comparison of travel time information between observed and 
posterior estimated travel time information is illustrated in Figure 5-14. 
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Figure 5-14 Comparison of Travel Time Information estimated by 
Microsimulation and Microsimulation+UKF 

 
From Figure 5-14, Figure 5-14(a) shows the comparison between observed and prior 
estimated of travel time information using microsimulation model.  Figure 5-14(b) 
shows the comparison between observed and posterior estimated of travel time 
information using microsimulation with UKF improvement.  The diagonal plot 
between observed and posterior estimated travel time information is illustrated in 
Figure 5-15 which is classified by three time periods. 
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Figure 5-15 Diagonal Plot of Observed and Estimated Travel Time using 
Microsimulation+UKF 
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From Figure 5-15, the diagonal plot between observed and estimated travel time is 
illustrated in order to understand over and under estimation of estimation models.  
Figure 5-15(a) shows a diagonal plot of microsimulation model only and Figure 
5-15(b) show the diagonal plot of microsimulation with UKF improvement.  It is 
shown that Figure 5-15(a) and Figure 5-15(b) are quite similar which it is both over 
and under estimation of travel time during the first time period (06:00 – 10:00).  For 
the second period (10:00 – 16:00) and third period (16:00 – 21:00), most of travel 
times are under estimated. 
 
For further evaluation analysis, a percentage error was calculated and illustrated by 
discrete time as shown in Figure 5-16 in order to understand the magnitude of error.  
Furthermore, an absolute percentage error is illustrated in Figure 5-17. 
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Figure 5-16 Percentage Error of Travel Time Information Estimated by 

Microsimulation and Microsimulation+UKF 
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Figure 5-17 Absolute Percentage Error of Travel Time Estimated by 

Microsimulation and Microsimulation+UKF 
 
From Figure 5-17 shows that the absolute percentage errors of travel time estimated 
by microsimulation and microsimulation with UKF improvement are quite similar.  
However, posterior estimated travel time information is more accurate than prior 
estimated.  In order to summarize the accuracy of estimated travel time information, 
the mean absolute percentage error were determined as shown in Figure 5-18 by three 
periods.  Two models were compared and the values of MAPE were listed in Table 
5-5. 
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Figure 5-18 Comparison of MAPE of Travel Time between Microsimulation and 
Microsimulation+UKF 
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Figure 5-19 Comparison of MSE of Travel Time between Microsimulation and 
Microsimulation+UKF 
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Table 5-5 MAPEs Values by Time period from Microsimulation and 
Microsimulation+UKF (%) 

Period 
Model 06:00 – 10:00 10:00 – 16:00 16:00 – 21:00 

Microsimulation only 28.66 17.78 16.13 
Microsimulation+UKF 28.53 17.54 15.67 
 

Table 5-6 MSE Values by Time period from Microsimulation and 
Microsimulation+UKF 

Period 
Model 06:00 – 10:00 10:00 – 16:00 16:00 – 21:00 

Microsimulation only 53223.43 6713.28 5478.63 
Microsimulation+UKF 52739.80 6592.70 5356.91 
 
From Table 5-5, microsimulation model can provided travel time information during 
period of 06:00 – 10:00, 10:00 – 16:00, and 16:00 – 21:00 with MAPE of 28.66%, 
17.78%, and 16.13% respectively.  Furthermore, microsimulation with UKF can 
improve the accuracy of prior estimated travel time information with microsimulation 
model only.  The values of MAPE are 28.53 %, 17.54%, and 15.67% for the three 
period of time respectively.  The feedback estimation using UKF can improve travel 
time information which prior estimated by microsimulation model with 0.13%, 0.25%, 
and 0.46% for three periods of time respectively. 
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Figure 5-20 Difference of Estimated Travel Time between Microsimulation and 

Microsimulation+UKF 
 
From Figure 5-20, it shows the difference of estimated travel time between 
microsimulation and microsimulation with UKF improvement.  It is shown that 
difference of 23% occurs between 07:00 and 08:00.  Other differences are in the range 
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of 10%.  It can imply that Unscented Kalman Filter was large improved prior 
estimated travel time by microsimulation model during congested periods which the 
difference between observed and estimated speed on detector station are large.  In 
contrast, a small improvement during uncongested periods because of the difference 
between observed and estimated speed on detector station are small. 
 
However, Unscented Kalman Filter can help a bit improvement of the accuracy on 
travel time provided by microsimulation model.  The Unscented Kalman Filter could 
help a big improvement if the measurement equation is changed to be a travel time 
instead of point flow and speed.  Therefore, probe vehicle data is required in this case 
in order to receive the observed real-time travel time which it is interest to improve 
the proposed method in the future study when probe vehicle is available in practice. 
 

5.4 TRAVEL TIME PREDICTION 
 
In this part, short-term travel time prediction was studied relied on estimated travel 
time provided by microsimulation model and microsimulation with accuracy 
improvement by Unscented Kalman Filter.  The predefined four scenarios were 
repeated as follows. 
 

• Scenario 1: Travel time prediction using the route travel time which 
estimated by microsimulation. 

• Scenario 2: Travel time prediction using the route travel time which 
estimated by micosimulation with UKF improvement. 

• Scenario 3: Sum of the travel time prediction of estimated travel 
time using microsimulation by each segment  

• Scenario 4: Sum of the travel time prediction of estimated travel 
time using microsimulation with UKF improvement by 
each segment.  

 
Due to four scenarios, two simple statistic methods including simple moving average 
and exponential moving average were applied in order to predict travel time by 
considered the time series pattern of estimated travel time.  The results were shown by 
each method according to four scenarios. 
 

• Simple Moving Average  
 
Due to the study of applying simple moving average of N time steps for predicting 
travel time, it was found that four scenarios are not show significant difference in the 
accuracy when compare with observed travel time.  The time series data patterns of 
estimated travel time on Bangkok expressway site was fluctuated along the evaluation 
period especially during congestion period which time series data pattern is rapidly 
changed.  From 06:00 until 09:00, the estimated travel time on test section was 
showed positive slope or the travel time was increased due to traffic congestion.  
From 09:00 until 10:00, the estimated travel time on test section was show negative 
slope or the travel time was decreased according to the recovery of traffic condition 
after congestion period.  After 10:00 until 21:00, estimated travel time was showed 
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neither positive nor negative slope which can implied that estimated travel time in this 
period are constant mean with varying noise by discrete time. 
 
Based on the changing of time series pattern of estimated travel time as earlier 
mention, the N value was highly concerned in order to capture the changing of time 
series pattern of estimated travel time.  The N values of 2 until 6 were conducted to 
determine the proper N value and understand the effect of N value and responsive 
change of time series pattern of estimated travel time. 
 
Observed travel time was used to compare with four scenarios to show the magnitude 
of accuracy which mean square error and mean absolute percentage error were 
calculated and summarize into three period of time which are 06:30 until 10:00, 10:00 
until 16:00, and 16:00 until 21:00 as shown in Table 5-7. 
 

Table 5-7 Mean Absolute Percentage Error and Mean Absolute Percentage 
Error of Four Scenarios 
Scenario 1: Microsimulation 

Mean Square Error Mean Absolute Percentage Error 
 06:30-10:00 10:00-16:00 16:00-21:00 06:30-10:00 10:00-16:00 16:00-21:00
MA(2) 59386.47 7154.65 5454.21 30.37 18.04 16.09 
MA(3) 59628.54 7670.85 5429.37 30.31 18.56 16.06 
MA(4) 59823.98 8221.23 5413.27 30.17 19.09 16.01 
MA(5) 60211.33 8804.16 5400.25 30.12 19.53 15.97 
MA(6) 60801.68 9444.29 5387.75 30.22 20.03 15.93 

Scenario 2: Microsimulation+UKF 
Mean Square Error Mean Absolute Percentage Error 

 06:30-10:00 10:00-16:00 16:00-21:00 06:30-10:00 10:00-16:00 16:00-21:00
MA(2) 58821.34 7061.98 5305.14 30.52 17.79 15.59 
MA(3) 59042.60 7622.96 5275.08 30.44 18.30 15.56 
MA(4) 59359.74 8204.69 5259.64 30.12 18.84 15.52 
MA(5) 59801.10 8792.36 5241.07 29.95 19.28 15.49 
MA(6) 60483.10 9382.65 5220.66 29.70 19.76 15.44 

Scenario 3: Microsimulation (by segment) 
Mean Square Error Mean Absolute Percentage Error 

 06:30-10:00 10:00-16:00 16:00-21:00 06:30-10:00 10:00-16:00 16:00-21:00
MA(2) 59386.39 7154.79 5454.12 30.37 18.04 16.09 
MA(3) 59628.63 7671.01 5429.27 30.31 18.56 16.06 
MA(4) 59824.12 8221.43 5413.19 30.17 19.09 16.01 
MA(5) 60211.54 8804.39 5400.16 30.12 19.53 15.97 
MA(6) 60801.90 9444.54 5387.67 30.22 20.03 15.93 

Scenario 4: Microsimulation+UKF (by segment) 
Mean Square Error Mean Absolute Percentage Error 

 06:30-10:00 10:00-16:00 16:00-21:00 06:30-10:00 10:00-16:00 16:00-21:00
MA(2) 58820.30 7061.90 5304.90 30.52 17.79 15.59 
MA(3) 59041.51 7622.94 5274.85 30.44 18.30 15.56 
MA(4) 59358.75 8204.70 5259.39 30.12 18.84 15.52 
MA(5) 59800.23 8792.36 5240.79 29.95 19.28 15.48 
MA(6) 60482.28 9382.66 5220.38 29.70 19.76 15.44 
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From Table 5-7, it shows that mean square error and mean absolute percentage error 
of four scenarios are not significant different.  From 06:30 until 10:00, mean square 
error is increased when the N value is increased which the N value of two is shown 
the smallest value of mean square error in every scenarios.  From 10:00 until 16:00, 
mean square error is also increased when the N value is increased which the N value 
of two is also shown the smallest value of mean square error in every scenarios.  The 
last period from 16:00 until 21:00 is shown that the mean square error is decreased 
when the N value is increased which the N value of six is shown the smallest mean 
square error based on this analysis.  Observed and predicted travel time of four 
scenarios was illustrated as shown in Figure 5-21 and Figure 5-22. 
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Figure 5-21 Observed and Predicted Travel Time by Scenario 1 and Scenario 2 

using Simple Moving Average 
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Figure 5-22 Observed and Predicted Travel Time of Scenario 3 and Scenario 4 
using Simple Moving Average 

 
Due to the predicted travel time of four scenarios, the magnitude of prediction error in 
second were calculated and illustrated in Figure 5-23 and Figure 5-24 to present the 
variation of prediction error by discrete time series. 
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Figure 5-23 The Travel Time Prediction Error of Scenario 1 and 2 
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Figure 5-24 The Travel Time Prediction Error of Scenario 3 and 4 
 
From Figure 5-23 and Figure 5-24, it shows the variation of prediction error for four 
scenarios which during the first congested period from 06:00 until 09:00, it is shown 
that prediction errors are fluctuated from over estimated of 200 second and under 
estimated of 300 seconds.  From 09:00 until 11:00, the traffic congestion is relieved 
which estimated travel time is decrease across time.  The prediction error is over 
estimated about 400 seconds.  After 11:00 until 21:00, the prediction error is under 
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estimated which fluctuated from 0 to 100 seconds.  However, prediction error of 
scenario 2 and 4 about 08:00 are different compared with scenario 1 and 3 which it 
can implied that individual prediction by each segment provide different prediction 
value.  It can capture individual pattern of estimated travel time in each segment and 
then reflected the total route travel time differ from the prediction which relied on 
total of estimated travel time. 
 
From the finding of applied simple moving average for predicting travel time, it can 
concluded that scenario 4 or the sum of the travel time prediction of estimated travel 
time using microsimulation with UKF improvement by each segment shows more 
accuracy than other scenarios by using N value of two is proper for the congested 
traffic period but N value of six is proper for the uncongested traffic period.  The 
benefit of using scenario 4 could reflect estimated travel time if there are some 
incidents on any segment of travel route. 
 

• Exponential Moving Average 
 

Due to the finding of applied exponential moving average for predicting travel time 
using time series data of estimated travel time provided by microsimulation model, 
the patterns of estimated travel time were as same as earlier described.  The optimal 
α values were analyzed in order to get minimum value of mean square error relied on 
the first period estimated travel time using SPSS.  The mean square error was 
calculated by compared with observed travel time as shown in Table 5-8. 
 

Table 5-8 Mean Square Error of Predicted Travel Time of Four Scenarios 
Period Scenario 1 Scenario 2 Scenario 3 Scenario 4 

06:10-10:00 56049.40 55838.17 56344.08 56482.49 
10:00-16:00 7959.15 8071.44 4336.47 4523.74 
16:00-21:00 5432.38 5290.63 1606.27 1594.91 
 
From Table 5-8, it shows the mean square error of predicted travel time of four 
scenarios performed in the same direction that the first period 06:10 until 10:00 has 
highest value of mean square error, and then it has smallest value of mean square 
error at the last period 16:00 until 21:00.  Due to the mean square error of four 
scenarios, it can imply that scenario 2 provides smallest value of mean square error 
compared with others scenario during 06:10 until 10:00.  Scenario 3 has smallest 
value of mean square error compared with others scenario during 10:00 until 16:00.  
Scenario 4 has smallest value of mean square error compared with others scenarios 
during 16:00 until 16:00. 
 
In order to illustrate observed and predicted travel time, it was plotted and illustrated 
as shown in Figure 5-25 and it was calculated to understand the magnitude of 
prediction error across discrete time as shown in Figure 5-26. 
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Figure 5-26 The Travel Time Prediction Error of Four Scenarios 
 
From Figure 5-25 and Figure 5-26, it shows that a huge error occur between 09:00 
and 10:00 which over estimation of 400 second on every scenarios.  The travel time 
prediction using microsimulation model improved by Unscented Kalman Filter 
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(scenario 4) show less error than others scenario especially after 12:00 which is 
uncongested period. 
 
In this part, it was found that moving average with two time step or MA(2) provided 
by microsimulation with Unscented Kalman Filter improvement by segment is shown 
the lowest mean square error in all periods.  The time series of travel time was 
fluctuated and changed quickly by time discrete. 
 
In the case of travel time prediction using exponential moving average, the 
microsimulation with Unscented Kalman Filter improvement (scenario 2) show the 
smallest value of mean square error during 06:10 until 10:00.  The travel time 
prediction using the microsimulation model by segment shows the smallest value of 
mean square error during 10:00 until 16:00.  The microsimulation with Unscented 
Kalman Filter improvement by segment shows the smallest value of mean square 
error.  Moreover, the exponential moving average shows the performance over the 
moving average. 
 
 



 
 

CHAPTER 6 
 

CONCLUSION AND RECOMMENDATION 
 

CHAPTER 6 CONCLUSION AND RECOMMENDATION 
Due to the drawback of using travel time calculation by speed base and flow base for 
approximating traffic state and travel time information on expressway section using 
traffic data measured by traffic detection system.  The accuracy of estimation is 
depending on the number of equipped detectors on road section.  The more detectors 
are equipped, the more accuracy can estimate.  However, the accuracy improvement 
by increasing the number of detector is necessary but it requires much more budget.  
In order to overcome the drawback, this study was proposed an alternative method to 
estimate traffic state and travel time information for short-term prediction on 
expressway section.  The microscopic traffic simulation software was proposed to be 
a real-time microsimulation model acting as a traffic state and travel time estimator 
instead of practical calculation methods or using macroscopic traffic flow model. 
 
In order to develop microsimulation model for traffic state and travel time estimation, 
four objectives were defined in this study.  First, to develop a combinatorial model 
parameter calibration for microscopic traffic simulation model using genetic 
algorithm.  Second, to develop a framework of real-time traffic state and travel time 
estimation using microsimulation.  Third, to apply Unscented Kalman Filter to 
improve the accuracy of traffic state and travel time information estimated by on-line 
microsimulation model.  Fourth, to study short-term prediction for OD travel time 
information. 
 
In order to accomplish the objectives, three modules were designed according to four 
objectives which three modules were as follows. 
 

• Development of microsimulation model for real-time traffic state and 
travel time estimation. 

• Development of real-time traffic state and travel time estimation using 
microsimulation model. 

• Study short-term travel time prediction. 
 
First module, the development of microsimulation model for real-time traffic state and 
travel time estimation consist of two sub module inside which were the 
microsimulation modeling and model parameters calibration.  In this study, 
microsimulation modeling did not strict to any software package of microscopic 
traffic simulation.  Any software can employ to use as an on-line microsimulation 
model if it has the capability to operate as on-line estimator.  For the model 
parameters calibration, genetic algorithm was introduced in this study to calibrate 
model parameters which the further development for on-line calibration is considered. 
 
Second module, the development of real-time traffic state and travel time estimation 
using microsimulation model has two sub modules.  The first sub module was the 
using microsimulation only to estimate traffic state and travel time.  Three 
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conventional methods conducted in practices which are the methods using for 
approximating link speed based on traffic speed measured from upstream and 
downstream detectors.  Three conventional methods were average, weighted average, 
and San Antonio which it was compared with the estimated travel time provided by 
microsimulation model.  The comparison of conventional methods and 
microsimulation model were presented to understand the performance in order to 
estimate travel time on both uncongested and congested traffic condition on 
expressway corridor.  In order to enhance the accuracy of traffic state and travel time 
information which prior estimated using microsimulation model, the accuracy 
improvement using feedback estimation with Unscented Kalman Filter was developed 
in order to give posterior estimate traffic state and travel time information.  Traffic 
state and travel time information was posterior estimated using virtual and observed 
traffic speed and traffic flow that were measured from traffic detectors both 
simulation model and actual expressway.  The estimated travel time using 
microsimulation only and microsimulation with Unscented Kalman Filter 
improvement were compared in order to present how much the Unscented Kalman 
Filter can improve the accuracy. 
 
The final module, the study short-term travel time prediction was introduce simple 
methods which the main considerations were easy to implement and proper with the 
series data of estimated travel time provided by microsimulation model and 
microsimulation with Unscented Kalman Filter improvement.  Two simple methods 
are simple moving average and exponential moving average.  Four scenarios were 
designed for experimental analysis in order to determine the suitable approach and 
method to use for predicting short-term travel time.  The predefined four scenarios 
were designed as follows. 
 

• Scenario 1: Travel time prediction using the route travel time which 
estimated by microsimulation. 

• Scenario 2 Travel time prediction using the route travel time which 
estimated by micosimulation with UKF improvement. 

• Scenario 3 Sum of the travel time prediction of estimated travel time 
using microsimulation by each segment 

• Scenario 4 Sum of the travel time prediction of estimated travel time 
using microsimulation with UKF improvement by each 
segment. 

 
Due to the three main modules, five parts of experiment were analyzed in order to 
accomplish the objectives of this study were as follows 
 

• Combinatorial model parameter calibration using genetic algorithm. 
• Comparison of link speed estimation based on point detection system on 

expressway 
• Real-time traffic state and travel time estimation using microsimulation. 
• Improvement of microsimulation by feedback estimation using Unscented 

Kalman Filter 
• Study short-term travel time prediction. 
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The conclusion and recommendation of five experiments were discussed as follows. 
 

• Combinatorial Model Parameters Calibration using Genetic Algorithm 
for Microscopic Traffic Simulation Model 

 
Two key model parameters including mean target headway and mean driver reaction 
time were optimized to yield the optimal parameter calibration.  The calibration used 
genetic algorithm instead of conventional model parameters calibration procedure.  
Matsubara line on Hanshin expressway in Japan was selected as the site study and this 
section was modeled on PARAMICS microsimulation suite.  The calibration process 
using genetic algorithm optimizer and PARAMICS microsimulation suite could 
produce simulated traffic outputs closely corresponding with the observed traffic data 
although only 20 generations of genetic algorithm process were conducted in this 
study.  The MAPE could be more improved with additional generations of genetic 
algorithm process. 
 
However, this study selected only two key parameters of several model parameters 
that PARAMICS microsimulation allow users to readjust to yield the best fit with 
local conditions.  The better fit to the reality should be accrued when calibrating all 
these parameters.  Therefore, it is not always true that simulated traffic model can 
provided goodness of fit when adjusted only two model parameters as shown in this 
study. 
 
For the future study, additional model parameters should be considered in order to 
find the optimal combination of model parameters to get simulation model closest to 
the actual traffic.  The fully automatic process of genetic algorithm optimizer would 
be developed with several genetic algorithm types, real value representative, others 
selection method, different crossover and mutation rate.  The investigation on these 
optimization procedures could lead to higher computation performance.  Moreover, 
different fitness function might be tested to get several sets of combinatorial model 
parameters.  The validation with different sets of observed traffic data should be 
processed when available, especially travel time data.  Moreover, automated 
parameters optimization concept could be used to dynamically readjust the simulation 
model when consistency checking module could check the excess error between 
observed and simulated data to make the simulation model consistently close to the 
real network throughout the operation.  Moreover, the study of on-line model 
parameters calibration using genetic algorithm is challenge in the future study in order 
to calibrate on demand or predefined criteria on consistency checking module which 
application programming interface (API) is required. 
 

• Evaluation of Link Speed Estimation based on Point Detection System on 
Expressway 

 
Traffic speed on expressway especially link speed is an important traffic parameter 
that traffic operators are required.  Traffic detectors such as loop detector, ultrasonic, 
infrared, and video image processing are conducted on expressway operation system 
in many countries.  There are several limitations of this equipment such as detector 
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station spacing, detector placement, and aggregation time interval.  Traffic analyzers 
should realize these limitations when analyze traffic parameters using traffic data 
measured by these traffic detection system.  Especially, simple methods that are 
normally used to estimate link speed using upstream and downstream speeds 
measured on both side of the links. 
 
The findings in this study illustrate that the weakness of using the three simple 
methods to estimate link speed on expressway are mainly large error under congested 
condition but it is quite well performed under uncongested condition.  Most of 
estimated link speeds during congestion period are overestimated.  The effect of 
detector spacing and placement might be the serious factors that impact with the 
reliability of estimated link speed using simple methods.  According to the case study, 
the length of the 4th link is too long to conduct the spot speed measured from 
upstream and downstream detector stations for representing link speed.  However, 
average, weighted average, and San Antonio method have their own limitation based 
on the calculation because it can not provided estimated link speed less than the value 
of traffic speed measured on upstream or downstream detector while simulated link 
speed is smaller.  It means that conventional methods can not capture a good 
estimated link speed which also carries to the error on the travel time estimation. 
 
For the future study, the improvement of speed estimation method could improve the 
reliability of estimated link speed based on upstream and downstream detector data 
which normally and presently equipped on expressways.  Improved methods should 
be uncomplicated to implement.  However, detector density improvement is the 
suitable solution but it is a huge cost to invest on infrastructure.  The benefit of using 
these kinds of traffic data and investment cost that expressway operators have to be 
traded-off.  Another solution to improve the reliability of estimated link speed is the 
application of intelligent transportation system such as automatic vehicle location 
(AVL) and automatic vehicle identification (AVI) which is vehicle equipped GPS unit 
and toll tag readers in case of expressway.  There are several techniques to integrate 
these ITS data with the existing detector to improve the reliability of estimated link 
speed. 
 

• Microsimulation Model for Traffic State and Travel Estimation 
 
Travel time information on expressway is an important piece of traffic parameters that 
are required by operators and travelers.  In practice, traffic detectors such as loop 
detector, ultrasonic, infrared, and video image processing are employed on 
expressways in many countries.  There are several limitations of these kinds of 
equipment such as detector station spacing, detector placement, and aggregation time 
interval.  Traffic analyzers should realize these limitations when analyzing traffic 
parameters using traffic data measured from these traffic detection arrangements.  The 
travel time estimation can be inaccurate when it is estimated on a segment with low 
density of point detectors, or long segment length, using conventional methods that 
are normally used for estimating segment speed using upstream and downstream 
speeds measured at both ends of the segment. 
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On-line microsimulation is found to be a good method for estimating travel time.  The 
findings in this study illustrate that the on-line microsimulation model is quite well 
performed.  Nonetheless, a closer look at the estimation shows that this method gives 
under and over estimation during morning-peak period and under estimation in both 
off-peak and evening-peak period.  MAPE values are calculated for three periods 
which are 28.66%, 17.65%, and 16.13% respectively.  These values can be compared 
with those from three conventional methods; average, weighted average, and San 
Antonio.  MAPE values on three time periods imply that San Antonio is the most 
accurate method during both evening-peak and off-peak-period with a MAPE value 
lower than 20%. Microsimulation is shown the best performance for estimating travel 
time during evening-peak period when San Antonio has a huge over estimation in this 
period while on-line microsimulation model, average, and weighted average are more 
accurate. 
 
Moreover, it could be interpreted that the estimated travel time using microsimulation 
is the most reliable method, compared to the conventional methods in this study.  
MAPE value of travel time estimated by microsimulation is comparatively low in the 
first period and then the smallest in the third period while the values of MAPE by San 
Antonio vary by time periods and are more unpredictable.  The algorithm of San 
Antonio is highly sensitive because it relies on the minimum value of measured traffic 
speeds between upstream and downstream detector station.  Travel time estimation by 
San Antonio is easily over estimated when traffic speed decreases especially at the 
location where detector station is located close to merging area.  Spot speeds at ends 
of the segment are not a good proxy of a link speed, and thus resulting in less accurate 
travel time.  However, detector density improvement is another suitable solution but it 
is a huge cost to invest on infrastructure.  The benefit of using these kinds of traffic 
data and investment cost that expressway operators have to be traded-off. 
 
For the future study, the estimation of travel time by on-line microsimulation should 
be further improved by integrating dynamic feedback estimation using filtering 
techniques and by model refinement on model parameters for specific periods.  The 
improved methods should be uncomplicated to implement in practice.  Furthermore, 
the study to improve the reliability of estimated travel time by integrated intelligent 
traffic detector such as automatic vehicle location (AVL) and automatic vehicle 
identification (AVI).  Traffic data gathering by these detectors could be combined 
with on-line microsimulation for increasing the accuracy of traffic state and also 
travel time information.  
 

• Feedback Estimation using Uncented Kalman Filter to Enhance Traffic 
Information provided by Microsimulation Model 

 
From the numerical result, it was shown that feedback estimation using Unscented 
Kalman Filter can improve the accuracy of travel time information which prior 
estimated by microsimulation.  MAPE are 28.53 %, 17.54%, and 15.67% by three 
period of time respectively.  It could be said that feedback estimation using UKF can 
improve travel time information which prior estimated by microsimulation model 
with 0.13%, 0.25%, and 0.46% at three period of time respectively on Bangkok 
Expressway site study which have low density of traffic detector stations. 
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For the direction of future study, the accuracy of travel time information could be 
improved if mobile traffic data such as GPS probe data or cellular probe data are 
available in real-time basis.  It could be used as measurement variables in order to 
improve prior estimated travel time estimation provided by microsimulation model.  It 
maybe increases the accuracy of travel time information on expressway section.  
However, this mobile traffic data is unavailable in practice on Bangkok Expressway 
in Thailand. 
 

• Travel Time Prediction 
 
In this study, travel time prediction based on the time series of travel time which 
provided by difference scenarios were analyzed using difference prediction methods.  
Two prediction methods were moving average and exponential moving average which 
are the simple and easy to implement on existing time series data that provided by 
microsimulation model.  It was found that moving average with two time step or 
MA(2) provided by microsimulation with Unscented Kalman Filter improvement by 
segment is shown the lowest mean square error in all periods.  The time series of 
travel time was fluctuated and changed quickly by time discrete. 
 
In the case of travel time prediction using exponential moving average, the 
microsimulation with Unscented Kalman Filter improvement (scenario 2) show the 
smallest value of mean square error during 06:10 until 10:00.  The travel time 
prediction using the microsimulation model by segment shows the smallest value of 
mean square error during 10:00 until 16:00.  The microsimulation with Unscented 
Kalman Filter improvement by segment shows the smallest value of mean square 
error.  Moreover, the exponential moving average shows the performance over the 
moving average. 
 
For the future study, the historical travel time should be measured in order to under 
stand the seasonal or pattern of travel time which it could conduct to develop accurate 
travel time prediction model in both short-term and long-term basis.  The long-term 
travel time prediction is very importance for advance traffic management system that 
traffic operator can make decision on the traffic management plan to operate the 
expected traffic state which will occur in the near future. 
 
Even the microsimulation model with Unscented Kalman Filter is well performed but 
it was develop based on the traffic characteristic on expressway corridor.  If the 
application of large network is required, the advance origin and destination flow 
estimation and also traffic assignment should be considered which is more 
complicated and challenge for the future study. 
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