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In the state ¢* dynamic traffic information in

order to make decisi operational plan that could
mobilize traffic safer ar \heoretical as well as practical

challenges are the irfipre Waicd travel time using available

or lower amount of da¥ . This study aimed to propose

on-line microsimulation integre= ed Kalman Filter for traffic state and

LN

travel time estimation tg ar estimating link travel time on

 expressway, Wwhit .;, . .;"[ el was calibrated using

genetic algorithm. ' imae er jiked for predicting short-term

i 4 4F

future travel time and ‘.mcompllcated angfasny to implement prediction methods

were evaluaﬁ ueElaEJ w H&nﬁ ‘Wn&l!'}rﬂ@ressway in Japan and

Chalerm Mat¥hakorn Expressway in Thailand. The results show that travel time

AR I Y

convefional estimation method. The Unscented Kalman filter can further but slightly
improve the accuracy of travel time. The accuracy of travel time estimation and

prediction depends on traffic condition, uncongested or congestion conditions.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Uncontrollable and increasing of tray & § jaind according to the growing of economic
and several activities in everyda ‘ F ntury has become a serious reason of
many problems that widgh AU, //w developing country.  Traffic
congestion is one 0Of the wmm—roblems Jy these activities that result in
three main problems ™ == transportation safety, and
environmental impact e oy fossil energy consumption.
Conventional approach, ioblems are aimed to increase
service capacity of intr- i road construction, additional
lane expansion, new L Ve ana BN SR HERever, these approaches have
been unable to respon 4 - and within the financial and
environmental constr ##. AL t W the approach to achieve the
concept of sustainable , : S8Due to these constraints, the
improvement of existi#g ' L P®formance maximization was
considered.

In recent years, growing # ﬁ:{,a it '. jcathns, computational technologies,
and sensing technologies have = applied into transportation system
known as intelligent transg -’9* vhich_aims to adopt additional

information and colz4
and users to impi V.

zL£1on infrastructure, vehicle,
EY Inergy consumption, and
pollution. Three may= v T and traffic engineering are
advanced traveler inf4 natlon SyStein \~11o), advanc I} traffic management system
(ATMYS), and advanced vehlcle control system (AVCS). These applications are
designed on t aximization using the
integration o g W%ﬂﬂ ﬁ}iﬂe“iﬂs application was
considered in th mechanism of gettlng rehiability of travel information disseminated
to travelers esF]ually travel time $nformation #at is Eigg]stado be a main key

oA TG PEF U HIR AW

ATIS is 3ne of the ITS applications which provides travel information for travelers in
order to plan the shortest travel route due to their trip purpose during both pre-trip and
en-route. Three main components of AITS components consist of data collection,
data processing, and data dissemination. Data collection module is designed for
measuring and collecting required information from the field which the required
information is not only traffic parameters but also weather condition, lane closure,
road maintenance section, incident, accident, special event, and etc. These kinds of
field data are sent to traffic management center (TMC) to further analyze and estimate
travel information which is necessary for travelers to make a decision on the best
route to reach their destination. The data is arranged in suitable format and stored on
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efficient database at TMC. Subsequently, dissemination module is broadcast the
travel information to the travelers using several kinds of user interfaces, for example
traffic radio broadcasting, internet website, variable message sign board, in-vehicle
car navigation device, etc. In order to accomplish ATIS application, reliable real-time
traffic information is required.

Reliable real-time traffic information is required to accomplish the ATIS application
especially travel time information. In order to provide reliable real-time travel time
information, real-time traffic data is measured using several kinds of traffic
surveillance system. Inductive loory 'y is the most common point-based traffic
detector that widely uses fq /ffic data including traffic volume,

occupancy, and speed. In pag = ﬁmation is estimated using the link
length and average link s onship. == ¢ accuracy of traffic data using

point-based detector depe: ' NUT Ibe s 0r and placement that equips on
road section. More de®®tT: e \;y of traffic data is measured.
S S by increasing the number of

all Y
However, it is costly t- g
detectors on road sectior

Mobile-based detectors
vehicle identification (
depends on the numbet

“¥ocation (AVL) and automatic
dat® using mobile-based detector
1 on road sections. Presently,
it tC. % hieve on real road network. Low
number of samples of muBilaEas- << s onrrently provided by GPS probe
which normally use GPS equir. ' bes. Toll tag ID can also be used to
measure traffic data but ma or expressways. However, low
number of sample &4 “<htative traffic data during
normal condition bul 7 X Jted condition.
- -

In the past, the estim: 1' bn of real-time uavel time infc ‘r” \ation is a product of traffic
state estimation which igﬁwher estimatedJy)m speed-based travel time information
and flow-base . f i i ; . ). Most of past studies
relied on traffﬂiﬁﬁmpm}uwm;mﬁﬁcﬁ with short spacing of

detectors. Mad¥bscopic traffic flow models were also proposed in order to estimate

real-tin ic_state and_ furth stimat ' time . inf #0pn  (Nanthawichit,
2003). pdt saM rﬁ ;ildI %rﬁ I {gifi fjloped form for
nonline tems~such as’ EXt d*“Kalman "Filte ) ha en used as the

dynamic state estimators. However, it is known that EKF provides only an
approximation to optimal nonlinear estimation. Moreover, it is complicated and
inflexible to adapt with a dynamic traffic state estimation such as the concept of on-
line microsimulation that can parallel operated by real-time basis to estimate traffic
state and also travel time information. The other filter for nonlinear system with
performance superior to that of the EKF but at the same order of computational
complexity and also compatible with on-line microsimulation was considered.

Unscented Kalman Filter (UKF) was first developed in the mid of 1990s by Julier et
al. (1995) and has attracted a number of researchers in various fields. This filter has a
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number of unique advantages over the EKF such as the ability to capture the true
mean and covariance accurately to second-order Taylor expansion. In contrast, the
EKF only achieves first-order accuracy. The UKF also has an important inherent
property that it does not require explicit computation of matrix derivative or Jacobian
matrix. This property of the UKF is extremely important and provides a new way to
develop on-line microsimulation framework of real-time traffic state and travel time
estimation.

In this research, the possibility and potential of UKF was investigated and developed
the new frameworks for estimatino e traffic state and travel time information
on road section with have limg AP F £ 4 oint-based detector data. Moreover,
short-term travel time esting #2d to enhance the dynamic traffic

In past researches or«#c 4 2 , sie™sand travel time estimation,
the macroscopic flow - N\ wosar traffic model applied to
formulate dynamic t#7ic g i itfi™avel time information as a
byproduct of traffic ste Soynic model is relied on traffic
data measured by trafi#CT ¢ incuctive loop detector or other
detector with similar per g## ( tion model using macroscopic
model is formulated based  gFthe = va. W of traffic stream. It is known as
the conservation or contirfityasa- < = litfitation of macroscopic model is
depended on the quality of tra T d by traffic surveillance system. It is
difficult to know acgurataglit === . 0f lang length of road section
which point deteciga =/ studies adapted filtering
techniques to devi& i X ) Mihaylova et al., 2007,
Nanthawichit, 2003, :l L .
i

|

The EKF has been the ngogt widely used egtimation algorithm for nonlinear systems.

However, the mraﬂi ‘ ﬂﬂﬁﬂﬂf}s Wffiult to implement, tune,
and only relia m i5 Nlinag n inge scale of the updates.

Many of theseWlifficulties arise frfm its use of linearization. To overcome this

limitatign, ~unscented. tral ati J v P s, a method to
propagﬂﬁﬁﬁ}aﬁ@ﬁ% r%éz%ﬂ(ho hﬂﬁﬁ n&rmations. It is
more acgurate, easier t0 implement,”and uses the same order of calculations as
linearization (Julier and Uhlmann, 2004).

The accuracy of traffic data measured by point-based detection system is limited by
the types and amount of traffic detectors which toward affect the accuracy of traffic
state estimator processed by macroscopic model. Spacing and placement are also the
main factors that affect to the traffic state and travel time estimation. In practice, the
extrapolation method is a simple way of estimating average travel time using point-
based detection system because it assumes that a spot speed measured by traffic
detector is applicable over short segments of roadway with typically less than 0.8 km.
However, there are many road sections that traffic detector are equipped far apart



4

which extrapolation method is not suitable to reflect traffic situation. Reducing the
space by increased number of traffic detectors is concerned in order to improve the
accuracy. However, it is costly to install detectors for retrieving reliable traffic data
according to the extrapolation method. Mobile-based detection system can be used to
measure traffic data especially link travel time information. Therefore, the reliability
of mobile detection system is also dependent on sample size of probe vehicle that
report traffic data during a time interval. It is difficult to get sufficient amount of
probe samples in present operation but it should be increased in the near future.

The above two issues could be img v adapting microscopic traffic simulation
model instead of macroscopicass s Moreover, the UKF can be easily
implemented with microsg ) /el Furthermore, the modern
technology of traffic surv: /ste S, ', le GPS probe and AVI data are

introduced for measurinu,,aarar etel an speed and travel time to
support real time traffy S 0" study and develop real time

traffic state and travi, _sased on on-line microscopic
simulation integrated w**,

Since ATIS will provicgfr# 4 — S\t of the k™ shortest path that
travelers can receiv#®re & A Mar™le message sign, portable
navigator, and in-vehic’ ted traveler information from
TMC via FM radio. & %Ccd route is an expected travel
time that travelers coulc “RIGA it is estimated while travelers
arrive at the origin poirt ¢ In " Wst researches, several travel time
prediction methods were p# I sirt-term and long-term prediction
for ATIS. In case of short- ter"u hods, it can be categorized under two
approaches included.regrasgs = ' series_estimation methods. The
third approach may= 4+ methods known as data
fusion (Li et al., 7% AY Jmethodologies that were
proposed such as hlst( - < nying and McDonald (2002),
artificial intelligence Blelll et al (Lyv4) and Parkédnd Rilett (1999), statistical
techniques by Kothuri eyaHZOO?) EKF also proposed on prediction module in
case of short- urther estimate travel
time (Nanthaﬂuﬁﬂmﬁmg %j !graleﬁf)rediction module into

real-time travefdr information framework using on-line microsimulation model.

ST e

Furthermore in order to develop on-line microsimulation model to support real-time
traffic state and travel time estimation, consistency of microscopic traffic simulation
model should be emphasized. The components of microscopic traffic simulation
model generally include physical component of road network, traffic control system,
and driver-vehicle units which driver behavior models and route choice models are
associated. The complex data and numerous model parameters are required by these
components. These parameters need to be calibrated for a particular study area
(Mcnally and Oh, 2002). Conventional model calibration procedure adjusts
parameters in driver behaviors model and route choice model until simulation outputs
are corresponded with those of field observation in both qualitative and quantitative
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aspects. The trial-and-error method is normally employed for calibrating parameters
based on engineering and experience decision, and this method is a time consuming
and tedious process. Some previous studies attempted to introduce a systematic
procedure to calibrate a network level simulation model for both freeways and their
adjacent parallel surface streets by focusing on one component of the simulation
model while assuming other components held constant at present values (Chu et al.,
2004). Some studies presented calibration framework which also focused on route
choice model calibration when the O-D flow was an unknown variable (Toledo et al.,
2004, Toledo et al., 2003). However. with this conventional calibration procedure,
calibrated traffic parameters areg ged to be used in all range of various
traffic system environments. \ ) / ¢ require re-adjustment which would
again consume great effo:™ h/'“fional model calibration. This
limitation could iMpProv e il li ===mmm0ach such as genetic algorithm
instead of conventiona; ameters that calibration time
should be decreased. Gz 2 introduced to reduce time on
calibration process by r g# \ 10 pe an optimization problem
and searching optimzg#C | e R SRIUSSEhat can minimize a fitness
function within defined - exic algorithm procedure (Cheu
et al., 1998, Lee anc#ar# N : o™ and Qi, 2006, Schultz and
Rilett, 2004). . '

1.3 RESEARCH OBJ%!

The following research ObjeCtl _,9
previous section:

gcording to problems described in the

e Develop a cadt RX Jon for microscopic traffic
simulation moJT} USESE T

e Develop a frar®work of real-time taffic state ai
microsimulation.q g,

- s SR AN n e

e Study srﬂrt term predlctlon for OD travel Ame |nformat|o

QAN IUNAIINYAE

1.4 S@EOPE AND LIMIT

travel time estimation using

In this research, the real-time traffic state and travel time estimation for travel time
prediction was developed and evaluated for the traffic characteristics on expressway’s
corridor which the route choice process was not concerned. Moreover, only existing
point-based detector was the traffic data source available in practice. The proposed
on-line microsimulation can not directly applied with other types of road section for
example arterial road or road with traffic signal control and also route travel time for
large network with multiple origins and destinations.



1.5 ORGANIZATION OF DISSERTATION

The structure of this research proposal is as follows.

Chapter 2 provides the reviews of the related literatures including the historical and
fundamental background on travel time estimation, on-line simulation using
microscopic traffic flow approach, the Kalman filtering technique for both linear and
nonlinear problems, particle filtering technique, data fusion techniques in order to
improve the reliability of travel time information, the methods to deal with short term
and long term prediction.

Chapter 3 presents the Me 4 S o velo

p on-line micro-simulation
framework for estimatin ™ SS— _.-ﬂ.ne. Initially, a framework is
presented to give an ov‘ i S the step on how to develop
microscopic traffic SV " hen, the process of model
parameters calibratioz* ‘ o is presented which genetic
algorithm is proposed ‘ 4#C IR SHUNGeN methods.  Second, on-line

microscopic traffic s#®
travel time estimator, v
estimated by on-line#®
with the UKF as the es

a"ee real-time traffic state and
1% used to update traffic states
R, the estimation algorithm
Lasliction algorithm is presented
vl Ey " &% prediction algorithm in case of

i3 /. SR L8N techniques are presented in
1C.2 i firi ad by on-line microscopic traffic
simulation model and mobfie (HEEE-< < avuilable in the future practice, GPS
probe and AVI data, is presen° 7 773

Chapter 4 presentsga: “>/his research in order to
evaluate the propossde ") d travel time information
on expressway secticJij T : W sefficted which the first site is
Matsubara line on F&hshin Expressway in Japan. *#ne second site is Chalerm
Mahanakhon line on Ba#glpk expresswaygip Thailand. Physical alignment of sites

was explainecm 0. r1 n/ ’ @eter calibration using

genetic algorit % mgy i eﬁtﬂeﬁtﬂ Mﬂmﬁl

Chaptgy tsthe ri& ‘I i S osed. Finding

of fou ﬁzﬁ Lﬁsﬁ? ﬁr r);ie iq: d¢ Ihe first part is
Ria of lin imati on poi

the evaRyation speed estimation base point detection system on
expressway. The second part is the real-time traffic state and travel time estimation
using microsimulation. The third part is the improvement of microsimulation by
feedback estimation using Unscented Kalman Filter. The final part is the study of

short-term travel time prediction.

Chapter 6 presents the conclusion of the findings in dissertation and then
recommendations of future research are proposed.



CHAPTER II

LITERATURE REVIEWS

This chapter reviews related literature including overview of advanced traveler
information system, traffic state estimation, filtering techniques, travel time
estimation and prediction, and traffic simulation tools and model parameters
calibration.

2.1 ADVANCED TR

Increasing of travel dg

; n a road network especially
during the rush hour =

Wend the shortest travel time
possible on their trip «#Sir a, the route selection logic is
based on each traveler’; \ \sion using the past experience
along may not yield ez 1s W C%e fact that traffic condition
on selected route might 1A ot be predicted based on their
experience without an °n information. The growing
of advanced technologi, ition to travelers and guiding
shortest route based on thei |p - 2-1rip and en-route and a group of
these technologies are callef a| r formation system (ATIS). In this
part, the review of the advances: f_,},.- ,w tion is described.

<

211 GenlZ - Y]

The system of advang traveler information consists™% three main parts including
data collection, data progegsing, and data dgsgemination. The framework of a typical

A '““"WFTH“EF’WIEW]?W 81173
ammﬂﬁmummmaa



INFRASTRUCTURE

Travel Information
Dissemination

,

'merica, 2000)

' S\he"data collection component

L, road activities, and travel

. volume, lane closure, road
vent B weather condition.  Traffic
eyl ntial role to data collection part.
as single inductive loop detector, dual
+teIeV|5|on (CCTV), infrared, video
veillance as described are

There are several kinds of i/ aff £ ==
inductive loop detector micre; _.91'"
image processing,
called “point-based$ | : ‘
In present practice, tre jC Oecs v d€ \ces are typically available at
specific discrete point®through a freeway corridor. MESt of deployed traffic sensors
are single inductive loog datectors that hawgslimited detection capabilities. The cost
of large scal ﬁﬂ d}nﬂﬂnw ﬂfa‘jetector is one of the
biggest obsta i USin er detection technology

could widely in€rease traffic detectjon and mph&nentatlon wit ordable cost but

h'ghaﬂw"lﬁﬁdﬂ‘ifuuﬁﬁ’mﬁl’]ﬂﬂ

States offthe art in detection and surveillance replace traditional single loop detectors
with sensors that provide additional types of data, merge infrastructure-based point
detection techniques with a variety of newer techniques, including cellular-based geo-
location, Global Positioning Systems (GPS), and move toward the Vehicle
Infrastructure Integration (VII) concept. Improvements in positioning, computing,
and detection technologies have also provided the potential to update and improve
upon detection algorithms. Some traffic management centers (TMC) are equipped
with computerized algorithms that can identify locations where significant congestion
exists and trigger operators to find congestion-prone locations and reduce the delay
from incident response and management.
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In fact, inductive loop detectors are still the most utilized type of traffic sensor in
existing traffic management system (Klein et al., 2006). They are commonly used as
single loops at discrete locations on road section with only traffic volume and lane
occupancy being measured while other traffic condition indicators such as traffic
speed and traffic density must be inferred from algorithms that interpret the
mentioned measured data. Several studies developed algorithms for detecting the
onset of congestion and incident using these single loop measurements (Dailey, 1999,
Coifman et al., 2003, Wang and Nihan, 2003). In order to measure traffic speed and
vehicle length, inductive loops are sometimes configured as dual loops or a speed trap
that is formed by two consecutive § 'g00 detectors placed several meters apart.
Dual loop detectors are ideal fomt d and vehicle length data. Operators
at a traffic management cer . ise visual surveillance from field-
located cameras or Close( — -Ie\"smt__-ﬂ' to verify incidents when these
take place . '—_d

In the second compc/ ; ,_\ .;. w0 component receives field

traffic data from the dat- . ement center is the place that
retrieves data and pr«#s ' o e\ fo.. ption which can be used to
indicate congestion I = §fic management, and traffic
planning. '

n 22 used to disseminate travel
' of pre-trip and en-route. The
, Anake decision about their route
2iv® travel information from traffic
ey do not depart from their origins.
alle mnssage signs (DMS), traffic
rehicle route guidance.
\

b |
2.1.2 State 'ractice i

Three zones |m ﬂ w mﬂahil:ﬂv States of America and
North Ameri w "rlaE ﬂ explored on the state

of practice. Sta¥ of practice is summarlzed as follows

PRI MURIINYAR Y

A number of states in the United States of America and North America have provided
travel time information or have plans to provide such information in the near future.
The summary of the state of practice is shown in Table 2-1 (Kothuri et al., 2007b).

In the third componel# o’
information to travelers 1 g
pre-trip information is ‘es¢
selection before the trips:
information website, radio, or t==
The en-route information do i
radio broadcast, Peyz=
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Table 2-1 State of Practice on ATIS in United State of America

States State of Practice

Portland, Oregon The Oregon Department of Transportation currently provides
travel times on three DMS along the 1-5 corridor. Travel times
are provided in a 2-3 minutes range. These times are estimated
from speeds reported by dual loop detectors embedded in the
pavement. Currently approximately data from 500 loop detectors
are reported every 20 seconds to the TMC. The midpoint
algorithm which uses a ratio of distance to speed is used to
estimate travel tig

Seattle, Travel timegs sy ' 4 1sing occupancy measurements from
Washington i \ el / spaced 0.25 — 0.5 mile apart. The

S 1614 |l ™ isedl to estimate travel time for

‘ d_4\ el times are compared to the
auseed if the historical travel times
’ - ‘el times are disseminated
thro g#® sidad are updated approximately
-’y o |\ W iscU®ey greater than 90%.

Minneapolis- Tre;
St.Paul,
Minnesota dete

d "%speeds which are calculated
L ea®rements from single loop
5 mile apart. A modified
iniate travel times based on the
Anes are reported on DMS and
N Jnesota DOT’s (MnDOT) Traffic
2d o control the signs and post
times have been found accurate in
| cgaditions are changing.

Chicago, lllinois sgos—————— = 2= way network where loop

oI "W Jravel times are calculated
asiy Sis 2 tqfispeed with the algorithms
inefiding a fudge factor to acco®=ft for extremely congested

conditiggs where occupgncy is greater than 95%. Travel times are

o ll'_é. U

SR U ORI WEp e
Al dcd dstintltell ¥rlsh dbda loldained by a variety of
Bay Area Y sources includeg, loop detectors, AVI toll tag readers and spot
, . r 't lgoxit re employed for
VB E DT bt ) Tl
q travel times and display them on DMS. The travel time
estimation errors are less than 20%.

Milwaukee, Loop detectors are spaced every 0.25 miles in the urban area and

Wisconsin be greater in the suburban areas. In some cases, microwave
detectors are also employed to supplement additional data. Travel
time is calculated as the ratio of distance to speed. Travel time is
not reported if more than 33% of the detectors are not available.
Travel times information is updated on the website every three
minutes and the DMS is updated every minute.
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Table 2-1 State of Practice on ATIS in United State of America (con’t)

States State of Practice

Houston, Texas  Travel times are primarily derived from AVI1 toll tag transponders.
Over 200 toll tag readers are present in addition to the toll plazas.
Travel times are posted automatically onto the DMS every ten
minutes. Public response to the posting of travel times has been
highly favorable and the travel times are generally considered
accurate. Based on the information provided, users were observed
to change route

Nashville, RTMS sengg v ry source of data collection which
Tennessee . }Jubjected to periodic maintenance
el e  Travel times are calculated

S— ed that is obtained from the
tooed to destinations that are not
- n_‘ ‘q.

Atlanta, Georgia id- /B S casie present on the highways in
J o sp® and volume and transmit

“Wsel times are generated and
‘ , amesWire calculated from average
sper ed 4 N as.

bained from speeds measured
on systems. These sensors are
2| time algorithm assumes that a

San Antonio,
Texas by lc
2 1

segmerX LCtCl stations on either end, and the
speed for _,9,-’ hosen as the lower of the speed
ispl3 astraam station. The ratio of the

o ———————————————32/ detection to the speed
oI P )i of travel times on the
WATH eSS woceriell received by the public.

Toronto, Canada L¢*) detectors are placed every on‘hlrd mile to provide speeds
that ergsused to calcuggge travel times. The initial travel time

F’T 1R EL T TIN EL W i o cprave o

the DMS in rapges of times. When travel tlmes exceed 40

q " S A R e e

positive.

¢ In European Countries

There are many projects on ATIS implemented in European countries. They are
summarized as shown in Table 2-2 (Bob Rupert, 2003).
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Table 2-2 State of Practice on ATIS in European Countries

Countries State of Practice

Barcelona, Spain The Catalan Traffic Service is responsible for regional and
interregional traffic management and operates the TMC. 300
detector stations both inductive loops and vision processing
collected and sent traffic data every minute in which travel
information is displayed on DMS.

Munich, The detection system on motorway has 58 weather stations, 120
Germany visibility (fog) meters, 452 sensor loops, and 93 video cameras.
Data are collecy jv, minute. Traveler information can be
1so personnel travel assistants such as

Berlin, Germany ) - w200 Channel (RDS-TMC) and
S , %%minate travel information to

Stockholm, Sy S operations which focus on
Sweden \ adition.  However, traffic
WsuS™but road weather data are

Chgtions.
Glasgow, , In¢lude a monitoring network
Scotland ptection, etc), traffic control,
oAy 1 igrials).

Newcastle, . 2iafa0el W Wconsidered a video information
England : " oi| center have a CCTV system.

-
-
P

In Asian countries, W Jively implemented ATIS.
Japan is the leader o | SING ™ U ITSQE.  Vehicle Information and
Communication Systé¥ (VICS) is the most popular sysiem which users can receive
traffic information using’ tegir own in-vehigle car navigation system. VICS center
gather traffic ﬂﬂﬁrw ﬂgrﬂm ﬁﬁw and ordinary trunk
roads using i céhs! e 4 centéripMcesses data and then
disseminates travel information using NHK Iocal&M multiplex broadcasting stations.
VICS, f inAQrngatien o in i st 4nge, location of
acmdeﬂ%%ﬂﬁﬁﬁﬁi&%@ﬁ%ﬂﬁ rkipg lot locations
and avaRability. Other expressway operators also measure traffic data and display
traffic information on their DMS and also transfer data to VICS. Hanshin
Expressway Company limited is a company that provides travel time information to
motorists. The information gatherings are provided by vehicle detectors that are
installed at entrances and exits and above the thruways to measure traffic volume,
speed, and time occupancy ratio. There are also monitoring cameras that visually
check traffic conditions on the road. Some cameras on sharp curb sections can
automatically detect accidents and disabled vehicles with special image processing

technology. The detectors are placed every 500 meters in order to measure volume,
occupancy, and speed then derived for travel time information (VICS, 1995).




13

In Thailand, there are 40 traffic information sign boards installed in Bangkok in order
to provide traffic information to road users. Three congestion levels consisting of red,
yellow, and green are displayed as the colors represent high, medium, and low
congestion respectively. Occupancy ratio is measured using video image processing
camera and additional CCTV for monitoring real-time situation.

2.2 TRAFFIC STATE ESTIMATION

Traffic state is required by traiss N wder to perceive traffic condition on
roadway. Common traffic S Ss , Speed, and density. Traffic state
can be measured or appi— c'ng _..—ﬂ’ector and also estimated using
traffic flow model that is ™ s {1 10V m—

traffic detectors whi# ; 3 d i o 08N Single inductive loop
detector is a typical t g ( selected by most of traffic

operators. The mech&liis JF Finaa =) dewector is illustrated in Figure
2-2 which the single inc #t 7 %8 on when vehicle passing over
the detection area and tur; gl oE==—"——==oh| @ passing over the detection area

(Sisiopiku et al., 1994).

cd)1111111111111112:000000000

., 4

0000000000011111111111 55

U Sual IS i¥ | g

€ 1sec q|

“ ﬂummmmm Mo
oy s oy mmmmw Lo {3 118 4% ot

what thellevel of convenience for traveling on road section and also used to estimate

travel time. However, speed can be directly measured by a single inductive loop
detector.

Speed can be approximated from a single loop detector but needs to rely on
predefined vehicle length and occupancy. Total number of scanning intervals “ON”
over a time period of T seconds is referred to as occupancy and denoted as OCC (in
scans). Given that the scanning frequency is 60 scans/sec, T, in seconds is

equal occ and %0CC =100(TTﬂj, the average speed over a detector in m/sec is
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shown in Equation (2-1) where L, is average vehicle length (m) which is assumed
472 mand L, is detection zone (m) which is assumed 1.83 m.

VOL
TON

ﬂ:

(L +Lo) (2-1)

Substitute T, = (%} into Equation (2-1), and then Equation (2-2) is shown where

H is average speed (in m/secat | gsolume (in veh/5-min), and OCC is
occupancy (in scans/5-min) '

(2-2)

- \
— . - ’ A BN, . .
Note that z is space / = >\ on the average of vehicle

occupancy times not€ icicopeeds. The speed estimate
is calculated on each ir \ _ “%ne as shown in Figure 2-3.

Din

A\ 4

Speed
P A

Hi+1

Ugﬂ l’ﬂﬂjﬂﬁ ﬂﬂ okl B
is;imm LAY AR GRS 3 e L

calculatiin. Previous studies on speed (travel time) estimation based on single loop
detectors can be broken into two broad classes. The first class is to use one detector
data to determine the speed at that detector and then extrapolates it to get a link travel
time. The speed estimation is derived using flow and occupancy as shown in

Equation (2-3): where g is the average effective vehicle length (EVL); the sum of the
vehicle length and the width of the loop detector (EVL ~vehicle length + detector
length). The g factor is simply converted occupancy into density. The second class

is to use information from two single loop detectors, one at either end of the link to
estimate the link travel time directly (Petty et al., 1998).
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speed = _ flow (2-3)
occupancy x g

Several studies present a different approach, using a new aggregation methodology to
estimate speed and to reduce the impact of long vehicles in the original traffic
measurement. In contrast to conventional practice, the new estimate significantly
reduces velocity estimation errors when it is not possible to control for a wide range
of vehicle lengths (Coifman, 2003). Many researchers investigated techniques to
reduce the influence of long vehicles, (Coifman, 2001, Dailey, 1999, Pushkar et al.,
1994, Wang and Nihan, 2000). studies used aggregated flow (q) and
occupancy (occ) to estimate rigs \ ' # e than manipulating aggregate data,
Coifman (2003) examined s aud /‘is to reduce the estimation errors.
Provided that vehicle leng i@ véﬂ, uncorrelated, harmonic mean

velocity (mean v) and 2 necll Vo th (L) for a given sample are
related as shown in EV. O

(2-4)

Note that, two variables
single loop. Typically

easured independently with a
1 _W a constant value and use this
Equation to estimate a ve % Weasurement. For this fact, this
approach fails to accoun long e cles which may change during
the day or this value ma\ o> tyMcal vehicle length. Particularly
during low traffic flow, when®s = vehicles in a sample is small, a long
vehicle can skew occupancv. ﬂ,l-" ikes more time to pass the detector.
For example, apprqx | 42 fvphicle lengths observed at
one detector station{=z .E-" licle are as long as 85 feet
or roughly four time$ ' , .',.
| ! |

i . ¥
However, traffic state eEpecially speed as previously presented reflects the traffic

condition only_gn_the n th t IS equipped, not the traffic state that
occur along th@jle rda eﬂl)% Xlnate average speed on
road segment, tector’s VE t0 beMstafléd in"practice. Three simple

methods of conventional segment sgeed estimatigg, that are normglly used in practice
pteede 1 WD EI RN e (5 9 B 1 R 1
Antoni q h dr@des¥ribdd ﬁﬂ GWIE]@I ﬁ

e Average Speed

The average speed is one of the simplest methods to estimate segment speed based on
spot speed measurement using point detector data. Spot speeds are measured at
upstream and downstream end of the segment in every time step. Then the average
speed is calculated using simple arithmetic mean as shown in Equation (2-5). Traffic
speed on a segment is assumed to be uniformly distributed under short time interval
and short segment length.
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v, (k) :M (2-5)

where v, (k)is the estimated segment speed at time k, v, (k) andv, (k)is the measured
spot speed at upstream and downstream detector at time k respectively.

e Weighted Average

tp estimate segment speed using spot speed

The weighted average method is prag.
\ A gector. This method takes account of

data measured by upstream anc

traffic flows (volumes) thata™ A/ /.mly measured with spot speeds in
each time interval. EStimomm Nt spect=emated as shown in Equation (2-6).
— : ——
(2-6)
. L N \\
where q, (k) and q, (k #f¢ - \\: %0 upstream and downstream
\ Ny
detector station respe#ve, (
e San
This method has been us A T R tonio Transguide project which
employs the minimum spc- f“f—» 2 N Ugstream and downstream detector
station to represent link speed 2 9 gujation (2-7).
#_—t 3 2-7
7 - ‘ (2-7)
As seen from these tt |3 SIMpIC T e e— esumatirdl| >egment speed, it is obvious

shown that these methodf just attempt to approximate segment speed based on what

happens at the ﬁ on the segment must

be reflected b u %ﬂ i@} _ ;E’v‘% %ce a requirement for

short span detegpr sta I e ods.
azmmlnm URIINYAY

In previous studies, macroscopic traffic flow model was introduced to estimate
dynamic traffic state on road section which relies on traffic flow conservation
equation, dynamic speed equation, and stationary speed equation. The macroscopic
model represents in discrete space-time frame which consists of four main traffic
values including traffic density, space mean speed, traffic flow, and on-ramp inflow
and off-ramp outflow. The dynamic macroscopic model equations are shown as
follows.
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plkD)=a) [ -s K] @9

5,(K)= 4. (K) 5., (k) 29)

(k1) =3 (0)+ 1V (1 ()= ) J+ L (0 () 4 ()] o
Slofat. 2 o

2\ ] (2-11)

w0 (k) (2-12)

A road section is sub0d’ g s with lengths A, (i=1,.., N)

while the discrete time :
2,... From Equation{Z-8,

2 discrete tlme index k=0, 1,

is the number of vehi
A; and lane number 4. 4

9 N KT, divided by the segment

c \ ced of all vehicles included in
segment i at time insta; pber of vehicles leaving segment

i during the time period K

inflow and off-ramp outflof r(
B, (k) is the dimensionless _,9,,..

Ther, (k)ands, (k)are on-ramp
ne i (if any). From Equation (2-9),
ate at the off-ramp in segment i (if
any). The 7 ,v,x, (% iS£7 nich need to be calibrated,
subject to individu‘ N J peed and critical density
respectively. The &' "| Gy .|0|sc ctlng on the empirical speed
equation as shown in Iaatlon (2-10) and the apprOX|mate flow equation as shown in

Egg%non (2-1 3 % WWW Ej(yi ﬁ %phlt 2003, Wang et al.,
erfm‘wﬁwmé’ﬂ

In this part, the reviews of previous studies that proposed several methods in order to
estimate travel time information are presented. Travel time estimation and prediction
are described as follows.

2.3.1 Travel Time Estimation

Travel time has been identified by Austroads as an important system performance
measure (Cunningham et al., 1995). Travel time information is applied in various
usage and purposes. In Advanced Traveler Information System (ATIS) application,
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travel time information is used as an index to indicate traffic situation of road network
and helps travelers to save trip time through better path selection. Accurate travel
time estimation could help reduce transport costs by avoiding congested sections and
increase the service quality of commercial delivery goods.

One of the most important issues, before the travel time information begins to be
provided for ATIS, is the acquirement of travel time data. Due to practical operation,
travel time data can be obtained from both indirect and direct measurement. The
indirect measurement is the basic method that several traffic agencies have conducted
in their own system using traffl neasured on site-based detector, which
normally is an inductive loop Ciis # 4 cl time information is derived due to
simple traffic parameters mge ™ 311y ég inductive loop detectors, which
measured traffic data are " Jeeql Az Cy. The direct measurement is
the method that directlv A S from the field which several
applications can be affic e ari -l b oowe matching, floating vehicle
testing, AVI, and loca! \ ™srobe. The review of indirect

The indirect measurem 4 SV W lata collected using inductive
loop detectors or any #inc ind ar 2o can measure volume, speed,
and occupancy. Travel t! T A bsed of running time, or time in
which the mode of transpor 45 in A= LRSS tol |d delay time (Turner et al., 1998)
as shown in Figure 2-4. ‘ '

mning time

»

F’T‘UEJ’J‘VI .V'IiWEJ na
W’]Mﬂ‘im . Vl’TJ 818 Y

Time (seconds)

iﬁpeed (kph)

v

Figure 2-4 Illustration of running time and stopped time

According to the definition of travel time, it can be simply estimated as shown in
Equation (2-13) and Equation (2-14).

TT, = Running Time + Stopped Time (2-13)
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1T, = $+Stopped Time (2-14)
vV

S

where TT, is segment travel time, d, is the segment length, and v, is an average

segment speed. Due to simplified travel time definition, the average segment speed is
an important parameter to estimate travel time that vehicles transverse on road
segment. In practice, approximated average segment speed discussed in previous part
appeared in Equation (2-5), Equatlon (2-6), and Equation (2-7) are conducted to
estimate segment travel time.

In transportation planning 8 te veI time estimation methods is
proposed by United Stateimm i Pubi gvhich later becomes the Federal
Highway Administratiom tho of——ﬂe estimation uses travel time
function is known as P ' ' ad, 1964). The function can
estimate travel time baz spe to capacity ratio and ideal
travel time as shown 1IN F ¢ \ e estimated travel time, TT, is
an ideal travel time ( L, IO pacity ratio, and a and b is
coefficient. Note that th, oGanly for planning purpose and
requires only traffic « bt (ideal) travel time in the
functionTT,, which is b W speed.

(2-15)

The other travel time¥ug i af £ conversion of occupancy

and traffic volumeds . = interval into travel time
i - -

information as ShO\lv = —"he travel time of section

' I~ - -
I, Occ, is the occupat il rate of tie sccuon, Q, is theldlow, TT, is the travel time
prevailing at free flowisigagondition, andg\ . is a maximum number of vehicles

within the secﬁ PEEERYIEY) J w BN
ammnmmﬁﬁ‘%m@ﬂ

However travel time can be directly measured using simple methods and also modern
applications which were continuous presented.

e Direct Travel Time Measurement

Travel time data may be recorded through a wide variety of methods. An individual
traveler may register his/her time using a stop watch. More generally applicable
methods, which do not involve the individual travelers to determine the travel time,
make use of for instance license plate recognition, toll gates, in-car systems (Grol et
al., 1999, Taylor et al., 2000a). The measurement methods can be simply divided to
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two types; the first, logging the passage of vehicles from selected points along a road
section or route, and the second, using moving observation platforms traveling in the
traffic stream itself and recording information about their progress. The site-based
methods include registration plate matching, remote or indirect tracking and input-
output methods and so on. The stationary observer techniques include loop detectors,
transponders, radio beacons, video surveillance, etc (D'Este et al., 1999). Meanwhile,
the moving observer methods (vehicle-based methods) include the floating car,
volunteer driver and probe vehicle methods. The following sections introduce the
main techniques of travel time measurements in there two method groups included
site-based measurement and vehicley peasurement.

For site-based measureme e /ématching techniques consist of

collecting vehicle license racters "= | times at various checkpoints,
matching the license plam”n C nse—“?fckpoints, and computing travel
times from the differe/ @& prif ol M e et al., 1998). The essential
survey method is m/ ‘ se records. Nowadays, the
license plate can be rec” / s, isthen transfer to digital data by
speech recognition ar«#in ("™or et al., 20003, Yu, 2002).
It has been shown in ‘' 4® tomatic vehicle identification
(AVI) data that tres® |

re®ed by fifty percent when
forecasting fifteen minu

) that the usefulness of the real
Irormation, is extended from
Rilett, 2002).

)il to observe vehicle movements.
ively short stretches of road can be
' ich_has a view start and end of

Remote or indirect trackir#
Travel times of individual vehFr—+
obtained by monitoring tha "9!‘!'
the route (T ay |0 g
T~ = X

Signpost based systersaty g for tracking bus locations,
relies on transpondsd; attached (0 roadside sigidbsts.  Automatic vehicle
identification (AVI) trwﬁ,_p.onders are Io&gted inside vehicles and are used in
electronic toll e@lkgcii lgatign ' ggnpost based system in
Sydney is A Tﬁ( taoﬁam ﬂwgm&ﬁﬂy em). Moreover, the

development arfid application of Radio Frequency ldentification (RFID) might extend

ATV A

Cellular phone systems are one of the potential techniques to provide travel time
information. In a survey of 2000 in France, 80% of drivers carried at least one mobile
telephone and 60% carried at least one switched on mobile. The information shows
the high density of on-trip cellular phone, providing an environment to build a 24-
hours travel time monitoring system. However the preliminary results show the
location accuracy that 30% of positioning is better than 30 meters and 100% is better
than 500 meters (Remy, 2001). The accuracy of position might satisfy the survey of
travel time in a long section. For short sections, the accuracy is not enough to
estimate to high random variation (Lum et al., 1998).
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For vehicle-based measurement, floating car is the most common travel time
collection method. The technique utilizes one or more vehicles that are specifically
dispatched to travel with the traffic stream for the purpose of data collection (Turner
et al., 1998). The simplest method to perform the survey is the manual record on
travel times at when traveling on designated links using a clipboard and stopwatch, or
computer instrumentation may be used to record vehicle speed, travel times or
distance at preset checkpoints or intervals. By fitting a GPS receiver to a vehicle, it is
possible to obtain time stamped location information which can be used to track
location and determine travel times (Zito and Taylor, 1994). Furthermore the GPS-
GIS combination form contributes “piency in both data collection and results

/éielp to collect traffic data more

Volunteer drivers and fle ve vehi
comprehensively, not (yme ut hic data and travel behavior
(Hawkins et al., ZOOV i | ™ rcial fleet such as taxis and

delivery companies Ca g . "l reasonable survey cost.

GPS can be used for#i1- ¢ 3 15 08 including link travel time

et al. (2008) used tw#FGF 4 2t | >HFaccuracy from Shanghai in
ot €%/ the post-trip map matching
crietion was extracted from the
erial roadway link, there would
lela’ 8D 1), deceleration delay (D2), and
L, 222, and D3 were total link delay.

algorithm. Travel tin
GPS data sets. When a\g¥
be three types of delay iiicl
time in queue delay (D3) w&

AVI data is also used. to prag
filtering algorithm.y=4

el time with a low pass adaptive
424ts. First, it is designed to
handle both stable §Z85 X Jmean) traffic conditions,.
Second, the algorithmz s *ic levels of market penetration
(less than 1%), and thad the algoritnim works for both L eway and signalized arterial
roadways. The proposgd élgorithm utiIiz&; a robust data filtering procedure that
identifies vali Ahip=g . i i il gadow. The size of the
validity Windm\m gummmmmmons within the current

sampling interdl, the number of observations in the previous intervals, and the

SNSRI

Moreover, emerging and non-traditional techniques are currently researched or
developed or may be considered non-traditional when compared to existing methods.
These techniques use a variety of methods such as inductance loops, weigh in motion
stations, or aerial video to estimate or calculate travel time. Most of the emerging
techniques are currently in developmental or testing and have not been extensively
field-tested or applied (Taylor et al., 2000).

However, accurate travel time estimation and prediction is difficult and complex and
needs a lot of necessary traffic data. In order to understand the effect of traffic factors
to the travel time information, the related traffic factors and accuracy improving
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approaches are reviewed. Human, vehicles, and infrastructure are the main
components of traffic environment. Various factors affect three main components and
finally influence travel time information. Different drivers and road conditions could
cause large differences in travel time. Even in the same time interval and on the same
link, different vehicles can have quite different travel times. One of the factors
affecting travel time is free flow travel speed not only on road geometry but also on
the traffic flow characteristics and traffic signal coordination (Lum et al., 1998).

2.3.2 Travel Time Predicti

In a view point of time per:

//’nformation might help for a short

M Sehe = dicted travel time information is
—

essential. In the other vi of ti ffic ~Lin area with rapidly changing
conditions, a travel tiy Y W ﬁﬂmthe travel time is a sensitive
element and affected L g L8Nt on roadway might impact
traffic stream that will 2 o, , W, (scover and it can cause a great
amount of delay to <4 e L cahe™sime incident takes place but
also who travel durinr . the near future, travel time
prediction is essentia# al ™Mae for disseminating travel
information to travelers (WRak and Al-Deek, 2002).

sing several methodologies in
which most of the conven! fFal. —==edi’ on techniques can be categorized
under two approaches; r\.gre"'--:'i, na™ime series estimation methods
(Anderson and Bell, 1998). ,,. T b may be described as combining the
first two methods koowpglit === aropased methodologies are for
examples historicalig= =4 cDonald, 2002), artificial
intelligence (Billi e& e N al., 1999).

- .'"
Other main factors resded to travel time prediction, ti 2. have also been referred in
previous studies, includgmnday and speai!al incidents (Karl and Trayford, 1999),
signal delay = VAt I i wt* Kuch, 2003), traffic
operation (Ievﬂ%ﬂﬁﬂeﬁﬁeﬁ ﬂﬂrﬂgﬁhe period is predicted,

the higher the $kediction error is (Kisgyorgy and Rilett, 2002). The adoption of
specifigvariaples for predictio , termingthe efficienc ccuracy of the
travel Qe Jdi \qp )ﬁﬂ WH 91

9

Linear model is proposed to predict freeway travel time in which the coefficients vary
as smooth functions of the departure time. The method is straight forward to
implement, computationally efficient, and applicable to widely available freeway
sensor data. For the first test by Zhang and Rice (2003), the method was implemented
with data from 1-880 which was small scale but very high in quality, containing
information from probe vehicles and double loop detectors. The results indicate that,
using this data set, the prediction error ranged from 5% for a trip leaving immediately
to 10% for a trip leaving 30 min or more in the future. For the second test, the
method was applied with a larger scale from Caltrans district 12 in Los Angeles.




23

Using this data set, the errors ranged from about 8% at zero lag to 13% at a time lag
of 30 min or more.

Another study by Wei et al. (2007) used a linear model for forecasting short-term
travel time information based on Hanshin expressway data. Hanshin Expressway
Corporation has provided travel time information in some major segments using
Variable Message Sign (VMS). Travel time information are only so called
instantaneous travel time, as it is a simple accumulation of link travel times calculated
from the length of a link divided by the current velocity of that link in the segment. If
traffic flow is stable and the link try j is constant, the instantaneous travel time

is equal to real travel time. He , ravel time may change due to traffic
}s not equal to the real travel time.

conditions. Therefore the irgs
e te interval. time is the moment

Traffic condition informat ‘ater* ev
of traffic condition detV - 4 TWel et al. was carried out on
6 km of Hanshin Exg™Cs ) . (U"™Robe city. The section was
equipped 12 pairs of/ GO S ed approximately every 500
meters. The informatic ¢#® - W cassoeed at every 5 min interval
from this monitoring «#5ie; (IS Moressway control center. In
this study, the predicti- \ W'y abnormal traffic condition

V-support vector mac# : astshort-term freeway volume.
Traffic volume in the nei Jf e T5s = >t edlased on historical volumes that
many previous studies useC’ JuradidesL i pri \ct short-term traffic volume. The
v-support vector machine #-SiEas - < préposed by Zhang and Xie (2008)
and the results were compare 7 e used multilayer feed-forward neural
network (MLFNN).. Testigii ==& & or bath one-step and two-step
forecasting, the v-G4 i4£)r all data sets in term of
mean absolute percy7 .,‘rl . Most short-term traffic
volume forecasting snk goieqgied into 5 min or 15 min
intervals; 3 min, 9 mixdand 30 min inerval have also MJ en used but less frequently.
From the previous studw g minute mtervells appropriate and thus adopted in this

Y ﬂuEI’JVIEJ‘VliW?J’]ﬂ‘i

Modeling futurﬁltravel time usmg real time and hlstorlcal data, the Kalman filter

algoritt c |0 by Chien and
Kuch (ﬁq %ﬁrl }j%i istorical path-
based dgta are belle -Ba smaller travel

time variance and larger sample size. An mterval of 5 min is chosen for instance,
there would be 288 intervals (in a 24 hour time period). The path-based travel time is
recorded when a vehicle finished a particular path, which can be determined based on
the difference between the recorded times when the vehicle was entering and exiting
the path. The link-based travel time is the sum of travel times of vehicles in the
consecutive individual links that constitute the whole path.

An online short-term prediction of point-to-point freeway travel time using the
integration of statistical forecasting techniques and traffic simulation was proposed by
Juri et al. (2007). VISSIM was used to generate traffic volume at detector locations.
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At every freeway entrance point, a time series analysis model based on traffic detector
counts was used to predict traffic demands whose flow through the freeway segment
was simulated by a cell transmission model (CTM). This CTM, which first introduced
by Daganzo, simulated traffic behaviors at a mesoscopic level.

Most of travel time prediction models in the literature fall into one of two broad
categories: Statistical models and Heuristic models. Statistical approach uses
regression techniques or time series analysis to compute future travel time based on
historical and/or time information. In general, purely statistical techniques have been
found to perform poorly during_é raffic condition. Vehicle inflows are
predicted using auto regressi ving average (ARIMA) time series
model. Another approach i Neural network is one of popular
heuristic techniques. Hov for predicting travel time data
using time series is not a: 0 time is unavailable from field

measurement but statiV . S o Srshort-term prediction.

2.4 ACCURACY 40 & _;-‘ "1 L VES, TIME INFORMATION

There are several e#€ct 40 4 (1<) ANitySof travel time information

2.4.1 Effect of f JFtiv: = 2ot An single Loop Detector

The occupancy variance obtai 2k @op data can be used to estimate long
vehicle percentage apd hag TPV modal for mean vehicle length
estimation based ofges 2/ he previous study, Wang
and Nihan (2000), &4 : PJ based on the theoretical
derivation of the occufnCy™ *Ehigtifielationship, and a log linear
model for mean effecae vehicle length estimation is esbloyed. The estimated mean
effective vehicle lengths¢(ls)/) are used toggalculate a conversion factor, g value, of
each time intﬂ?ﬂm %m?ﬂﬁqeﬁ mation. Typically, to
calculate spac edfa nf g igdo optell 1o @onvert lane occupancy
to traffic densitﬂ Hence, the speed‘estimation with fixed g value is biased when the
LV pejs is high Jhe.ave, . it me t snegd istdhderestimated. In
the otrﬁrﬁﬁie,’:i aﬁﬁﬁ\mtﬁwﬂe %gﬁ%anﬁe is lower than
the avergge. However, it is shown In their study that the formulae consistently under
estimates speed whenever a significant number of trucks and/or other longer vehicles
are present. This is due to the fact that the g value is actually not a constant; g value
varies with occupancy. A cuspcatastrophe theory model was proposed by Pushkar et
al. (1994) to estimate speed and indicated that the cuspcatastrophe theory model gives
more reasonable results. Random errors were considered in the measurement and a
Kalman filter was used to estimate speed. The estimation results were basically
consistent with the observed speeds, but with a smaller variance. To apply the
aforementioned models, several parameters must be calibrated, and the calibrations
require information beyond the measurement of single loops. Such estimation bias
may be corrected using the proper g value for each time interval (Dailey, 1999).
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The applicable method was proposed by Hellinga (2002) for freeway traffic
management system (FTMS) that contained both single and dual loop detector
stations. It does not require modification to field hardware or additional field
equipment. It is argued that the proposed method can reduce root mean square speed
estimation error by 23% on average over the traditional speed estimation method of
using a constant average divided by an effective vehicle length for the entire day. The
proposed method did not show that the regression model was transferable to other
FTMS or even to other detector locations within the same FTMS although their
results indicated a 41% increase_ i} 7eed estimation accuracy when compared
with a constant g value for ' #eed estimation methodologies were
proposed in this study, inclisg: &rrelation, filtered correlation, and
bias correction. For the ba e study = he case consisting of estimating
single loop speeds on tyver' e ecle length measured at a dual
loop station over the T™&Y o e " umed base case is likely to
provide speed estimat/ S " would normally be obtained
for FTMS with only <'.g#€ : W, e systems an average vehicle

av

For the direct correl#®or #7 S0if NS op detectors are dual loop
7 ach single station on the basis

of S, =\% and the aver

measured at a nearby dual loop
meihd is used by COMPASS system

a nearby dual loop station for use in

above Equation, the implici e average effective vehicle length
computed during thi223 gL)) is highly correlated with
the unknown avera{~z lf" loop station for the same
time period. If the a=4 &% Q= ic single loop station is not
highly correlated witl ;| Ne averaye chmiccave venicle | | jth at the dual loop station,
then additional error Is J',ntroduced into the calculation of speed at the single loop

eecorsa'oﬂ}%lﬁl?ﬂ YNaINgIn‘g

_statlon during the same po g0 T
in Toronto. Of course, when % —

For filtered co n, It is shown correlation method does not perform
well, primarily as a result of the léck of correlasion between tlgraverage effective
vehicld rw ﬂtMﬂo?&mﬁﬂq mﬂdﬂr@c;gjetector station.
During thefsMor idd ©f n@sitinte htérvak=theld vehicle length
measured from each station is likely to be different, because the vehicles passing each
station represent different samples from the population of vehicles. The average
length of vehicles passing a detector station during a polling interval is the result of a
random sampling process in which the variation of the sample mean vehicle length is
a function of the sample size and the variation of vehicle lengths within the population.
If the population mean vehicle length is not constant but varies with time of day, then
averaging over a long period of time will result in estimates that do not adequately

reflect these temporal trends. One way to avoid the problem of having to select a
fixed sampling period duration is to use an exponentially weighted moving average
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(EWMA). Exponential smoothing is an average technique that can be used when the
appropriate averaging period duration is not known (Hellinga, 2002).

2.4.2 Effect of Data Collection Time Interval

Typically, Highway Capacity Manual (HCM) suggests data collection time interval of
15 minutes to aggregate flow data for getting the stable flow rate measures. Guo et al
(2008) tested spectrum of data collection time intervals with an online forecasting
algorithm based on the SARIM. "p°H (Stochastic seasonal Autoregressive

Integrated Moving Averanag ¥ #lized Autoregressive Conditional
/',able data collection time intervals.

With respect to flow rat’ 1107y tI = lcction time interval is a key
determinant of the Vﬂ:ic flo‘-__“?«%ries characteristics and the
corresponding forecastivy - 7w ancotanding of the impact of data
collection time interv/ y recasting, because different

applications will requ': 4 , SOMie intervals.  For example,
incident detection ba«# ¢; e ) aariediction will require a short
forecasting horizon, wk, conmplication will likely require a
longer forecasting #&ii y™5mith and Ulmer (2003)
quantitatively demonstr aection time interval on traffic

time interval, the traffic % : _ CWl:come more stable. However,
for shorter data collection L = uiRer of lags within the seasonality
period (usually 1 week) indfeadfaas- <= there are 2016 lags per week for a 5
min interval and 10080 lags pewf : intervals. From this study, it is shown
that forecasting accuracv.imi === « ing data collection time interval
length. This folloyes - the data collection time
interval will reduc 8 P Je, thereby improving the
signal-to-noise ratio a ‘n.u. Bic i I-;J- 1 thus more predictable.
| ‘

i

There is a strong, priori @(Ectation that theepserved association of increased forecast

accuracy witl‘ﬂw e ﬁo‘ﬁ ‘ mmrﬂw“ t will be a consistent
feature for otlje u r % o¢s, s pdnpagmetric regression and

neural network $odels. In other wcyds, this finding is not considered to be unique to

the SARI ed.forecast modal. A S [ of forecas racy is observed
for allahe Fa ﬂﬂlﬁi sﬁﬁ e Jht cﬁe gme interval is
increaseg from 1 1o 5 min. "Al time Intervals of 10 min and longer, the forecast

accuracy is fairly consistent with a pronounced flattening of the rate of increase in
accuracy versus interval length. The performance for data collection time intervals
between 5 and 10 min may be considered acceptable for certain applications.

The impact of the time interval was proposed by Smith and Ulmer (2003) to quantify
the impact and usage of freeway traffic flow measurement. It is found that stable
freeway flow rate may be calculated using measurement intervals as short as 10 min,
and that statistical significant improvement in stability can be achieved by adding 2
min to any measurement interval.
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Different aggregation time intervals was examined by Oh et al. (2005) to characterize
various levels of traffic dynamics representations and to investigate their effects on
prediction accuracy. They employed three techniques including adaptive exponential
smoothing (AES), adaptive autoregressive model using Kalman filtering (AAR), and
recurrent neural network (RNN) with genetically optimized parameters. There are
various prediction methodologies used in existing studies: historical and real time
profiles, statistical modeling, Kalman filtering and artificial intelligence techniques
including artificial neural network (ANN) and fuzzy logic. The study by Oh et al.
(2005) also summarized the previous studles in this matter. It shows that the ANN
based prediction approaches proviig ~j prediction performance than the others.
However, the drawbacks of f! [/ proach should not be disregarded.

& network architecture and training

ANN requires not only hugs o
network parameters but & daf sl__-ﬂle main results from this study

indicate that AES andk-” —“ﬂhort -term period such as less
than 5 minutes. They o+ | S erprediction the RNN can be a

viable candidate, pro e regard to Mean Absolute
Percentage Error (MAP erformance with aggregation
interval of 4 minutes.

2.4.3 Probe V:

A study by Long Cheu e g1 §- ; | estimation on arterial network
in Clementi town area in' Si gfapc VG R TION traffic simulation package.
The study varied traffic volimifass-si -4 5 O probe vehicles (PV), which were
taxis in this case. The ,4'97" “J cted on 216 simulation runs with
INTEGRATION m del iod Wi h different levels; 6 levels
of OD volumes whig= 5240, 80%, 90%, and 110%),
6 levels of PV (3%& 4 AE ) levels of randomness in
vehicle headway (0.5, '| Ny Mad a warm up period of 500
sec followed by a da coIIectlon Interval of 700 sec: L They argued that this setup
would lie within the pragtiggl range of poolwg frequency for communication between

vehicles and nﬂw ejutwaﬂlﬁajlwwhlgﬂ 3c|e time of 140 sec.

The result shovilld that estimated I| speed error was less than 5 km/hr at least 95 %

ofthe ev % to 5 % or at
least te W ﬁ sﬁ B)? ng period. By
the waygq the” problem arose at probe vehicles mlght not istributed onto the

overall network It might be concentrated in some areas, and some link might not be
passed by probes or passed with small number of probes.

Equation (2-17) shows the formulation for estimating sample size of probe vehicles
derived from central limit theorem, where n is the number of probe, &, is allowable

error in estimated speed (use 5.0 km/hr), and s is sample standard deviation of speed.

2
t .S
n> [Lj (2-17)
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A slightly different approach, but still based on the standard deviation that is used the
relative speed error ¢, instead of ¢, (Chen and Chien, 2000) as shown in Equation

(2-18) where X is average speed computed from n samples.

t sy
n> (’2—_1j (2-18)
£X
In order to evaluate the feasibilit nrobe vehicles to collect real time traffic

sumber of vehicles that should be

equipped as “Probe”. Varmg S g idied using CORSIM to generate
traffic data for freeway se™ st Cami interval, which has been widely
regarded as an appropri2 e tfic parameter. The statistical
sampling methodology (0 s s =rca number of probe vehicles is
shown in Equation (2%~ € » Saauser of probe vehicles required,

N Wlesents the “true” variance in
' stive error, r represents the

percentage of time the® th v (EDf rois less than ¢, , and @ (x)
represents the cumulat; toat x and @' is the inverse.
(2-19)

\7Z Y
The statistical princip ben...v_ pslie gitral limit theorem, which is
¥ i¥ |
based on sample size is..lgge enough. 9k s obtained from historical data. It is

commonly asﬂw%ﬂ@i%ﬂ%% %ﬁﬂj}@ally distributed which
justifies the use‘pf quation (2- or small Sample size cases. Distribution of link
travel time is considered as it is afected by magy factors including both geometric
and tr mﬁmﬁmmq@ w ﬂﬂl ﬁ was developed
to find the ¥riini nénber Gf lestor¥a Frécway which consists
of link will both normally and non-normally distributed travel times. Vehicle travel
time distribution could affect the required minimum number of probe vehicles for a
statistically accurate estimation in several ways. First, the method to be used in
obtaining the minimum number of required probe vehicles is determined by the type
of travel time distribution. If it is normally distributed, the minimum number of probe
vehicles under a given significance level can be determined using Equation (2-19)
based on a pre-specified permitted error and historical coefficient of variation.
Secondly, the variance of the distribution would affect the minimum number of probe

vehicle requirement despite the type of distribution. It is observed that when link
traffic volume is very light or very heavy, the minimum percentage of probe vehicles
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that should be sampled tends to be higher than that the number of probes obtained
when link traffic volume is at the medium level. The stability of the distribution
would also affect the minimum number of probe vehicles necessary. In this study, 5-
minute time interval was selected since it was generally regarded as an appropriate
time interval for real time traffic parameter estimation. This presumed that the travel
time distribution would not change in this time frame. However, in real world
applications, this assumption needed to be examined and validated for each specified
case.
The sample of probe vehicles wac 'gted to detect freeway incident detection.
F el was used to simulate incidents and
to collect section travel tirs / @icles for evaluating the sampling
strategies. The simulatiomm Jeled b 8.6-km southbound segment of
— 5ing ‘Lpor'—ddifferent methods were tested
including fixed sample™&” Silegiin c® (FTI), and rolling interval.
Incident detection perigs® A S e f detection rate (DR), false
alarm rate (FAR), mean g ot saber of algorithm applications,
and number of falses#®ar 4. A g N o data aggregation method
outperformed other me* 4 - /i the probe vehicle percentage

was less than 20. W t 6 “VE _ : ®eceded 30 and both FSS and
FTI data aggregation m: (P 5 ~thod gave the lowest number
of false alarm cases # v 3 or All three data aggregation
methods showed simila e ‘A be-vehicle percentage ranged
between 20 and 30. MCSF Al Sted Weicents on the basis of the change

in average travel time of pr#fe fEaE-< - 4 vayisection.

The MOSES algorithms usagii === liast on the difference between two
mean section travelg: 4+ in Equation (2-20) where
n is the number of &8 AX J n,is the number of probe
vehicles that had exitgjjthe ST g oe vehicles, t, . ,isthe t-
statistic with tail-end propability of a and rk;nz -2 degree of freedom.
IUEAINBINENT .,

= “a,n+n,-2

QRN TU RN

When an incident has occurred in a section of the freeway, T, is expected to be
significantly higher than T, when Equation (10) is true, the MOSES algorithm will
declare an incident in that particular freeway section.

In the study by Cheu and Tay (2004), using FSS data aggregation method, the values
of T,=10 and n,=30 were retained, and the algorithm was applied for every n =10
probe vehicle observed on a different freeway. The FSS method controlled the
sample size nand n, such that the estimated T, and T, were more reliable. FTI Data
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Aggregation Method was time based. Here n was the number of probe vehicles that
had passed the freeway section every 60 sec and n,was the number of probe vehicles

in the previous 180 sec. In this case, the algorithm was applied every 60 sec. The 180
sec sampling of n,was to make n,about three timesn,, to be consistent with the ratio

of sample sizes in the FSS method. With FTI data aggregation method, the value of
n,and n,varied for every algorithm application, but the frequency of application over

a 1 hour period remained constant.

This method of aggregating prchy ata is similar to the confidence limit
algorithm (CLA). However, ' ' 4 are different in that Equation(2-20)
assumes the probe-vehicle t oy ‘mal distribution whereas the CLA

assumes a log normal . ' asis test is conducted using t-
statistics, whereas the Cl,f ‘ -

There was a study / RN SIS taxi equipped with global
positioning receivers ac ' L O SeWers were equipped on taxis in

Guangzhu city, Ching
was conclude that, if

ceses with the sample size. It
average link speed is to be
d e at least 10 probe vehicles

There was a feasibility s’ Il 20, 00e " R COWer to collect traffic information
in an advantage city in te! #F of Mere are several problems to use
probe vehicles instead of ddlectE ‘5"-? 22 srmiation collection e.g. coverage area
and frequency per each link AT e £ number of probe vehicles to collect
traffic information ysith highfs === 5 gaxis were equipped GPS as
probe vehicle and %= =~/ by a probe vehicle and
license plate match 4 orobe vehicles seem to be
statistically accurate. Jihey g meerviiwas found suitable to record
location of probe veh®ies and found that vehicle runr=y frequency is high only on
main roads connected togeafral area (Ishizaga et al., 2005).
AUHINENINEINT

2.5 FILTERMG TECHNIQUE§

o s A AR LR RH AR e o

the discite-data filtering on linear dynamics system problem. During that time, the
technique was employed in large part in digital computation. Kalman filter has been
the subject of extensive research and application particularly in the area of
autonomous or assisted navigation (Welch and Bishop, 2006). Kalman filter is the
most popular filtering technique that is widely used in military and engineering field.
Kalman filter is an efficient recursive filter that estimates the state of linear and
nonlinear dynamic system from a series of noisy measurements. In this section, four
filtering techniques are reviewed including Kalman filter (KF), extended Kalman
filter (EKF), unscented Kalman filter (UKF), and particle filter described as follows.
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2.5.1 Kalman Filter (KF)

Kalman filter is a recursive estimator which the only estimated state from the previous
time step and the current measurement are required to estimate the current state. It
assumes that the true state at time k is evolved from the state at k-1 which is
formulated as shown in Equation (2-21).

X, =FX ,+Bu, +w, (2-21)

where F, is the state transition mc ey
the control input model whig! S

noise which is assumer
distribution with covariar

true state X, is made as she

4 2pplied to the previous state X, ,, B, is
ﬂol vectoru, , and w, is the process
=10 mean multivariate normal

vation or measurementz, of the

(2-22)

where H, is the obset W c"Nate space into the observed
i\

space andv, is the ob: | I\ to be zero mean Gaussian

white noise with covaria g S e the noise vectors at each time

step are assumed to be m aII\: : o, e ‘Kalman filter has two distinct

phases; predict and upda#. ' 2 Mses the state estimate from the

previous time step to produce ar* 7 tate at the current time step, and then

the update phase uses ms " he current time step to refine

predicted state to a ,:, 4= shown as follow.

\7 A )

Predict Phase: l
W

Predicted state

o

Yaneminens o
Predicted esti an
AN I NE Y
Undatﬂhase a - a
Measurement residual
Y=z, —H X, (2-25)
Covariance
S, =H/P, H{+R, (2-26)
Optimal Kalman gain
K, =P, HS’ (2-27)

Updated state estimate
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~ A

Xy =Xy, + K3, (2-28)

klk-1
Updated estimate covariance
Pk\k = ( I -K.H, ) Pk\k—l (2-29)

However, the basic Kalman filter was developed for linear system and it was claimed
to be inefficiently performed when it is adopted with nonlinear system. Nevertheless,
this drawback can be optimized using EKF which will be described in the next part.

2.5.2 Extended Kalm

In the estimation theory, |

and covariance are linear ‘0 S
nonlinear system intoy

n.ég of the KF which current mean
a . - 2atrix is conducted to transform
i 2.(2-30) and Equation (2-31).

' .-\-.,'.
\ | (2-30)

(2-31)
However, EKF is diffilul’ CAdlliffic it o tune, and only reliable for
systems that are almost lir#ar SYaidins < 2 CWthe updates. It has a number of
serious limitations, which are (1 = ransformations are only reliable if the
error propagation can be wal==—==s inear function, (2) linearization and

be applied only if th<d
be a very difficultf
produce many pages =
Uhlmann, 2004). |

‘a o
s> AP INBRTINEINT
An improvement to the EKF_ha 1€d to the de ment of the@nscented Kalman
filter ﬁﬁlﬁ@r\j @ﬂﬁmm% %ﬂﬂ’ﬂt Jthe probability
density 1§ dpproximate t iredr Transtorrhati a offTvariable which

returns much more accurate results than the first-order Taylor expansion of the
nonlinear functions in the EKF. The approximation utilizes a set of sample points,
which guarantees accuracy with the posterior mean and covariance to the second
order for any nonlinearity (Julier and Uhlmann, 2004).

4L ating Jacobian matrix can

-
-

iy Jian Equations frequently
= e 'uverted to code (Julier and

iF |

When predict and update functions ( f («)andh(+)) are highly nonlinear, EKF can

give particularly poor performance because mean and covariance are propagated
through linearization of the underlying nonlinear model. UKF uses a deterministic
sampling technique known as the unscented transform to pick a minimal set of sample
points as called sigma points around the mean. These sigma points are propagated
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through the nonlinear functions which the mean and covariance of the estimate are
then recovered. The result is a filter which captures more accurate true mean and
covariance. In addition, this technique removes the requirement to explicitly calculate
Jacobian Equation. The process of UKF also consists of predict phase and update
phase which are described as follows.

Predict Phase:

As with the EKF, the UKF prediction can be used independently from the UKF
update. The estimated state and bl hange are augmented with the mean and
covariance of the process noise g :

(2-32)

(2-33)

A set of 2L+1 sigma po’ 4

N1 "\ed state and covariance where
L is the dimension of NN

(2-34)

) fori=1.L (2-35)

Ticar = Xic_ 1> ‘kl) fori=L+1,..2L (2-36)

where ( (L+2)P 7 f‘j matrix square root

of (L+ )P, , WEEUA of ffatrix B satisfies (B = AA").

The matrix square root should be calculated using numerically efficient and stable
methods such gj% m oints are propagated
through the tr ct W i i 5

IR ’l AINTHIRINGNY o

The weighted sigma points are recombined to produce the predicted state and
covariance:

using fje detirees

~ 2L . .
Xk\k—l = ZWSIXL\H (2-38)
i~0
2L A . - T
Pk\k—l = ch |:Xk\k—1 - Xk\k—1:| [Xk\k—l - Xk\k—J (2-39)
i-0

where the weights for the state and covariance are given by:
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W = 4 (2-40)

L+A
WS = Li - +(1-a®+p) (2-41)
Wo=wi= (2-42)

(2-43)

a and x control the spread of ' # 40 is related to the distribution of x.

Normal values of & and k&
to 2, if the true distributiC™

Update Phase:

The predicted state 3 ™ pfore, except now with the

mean and covariance of 4
(2-44)

(2-45)

As earlier mentioned, a set gfad=s
and covariance whey

is derived from the augmented state
ol <jate:

o

(2-46)

-IE i¥ |
X +( L+ )P’ ) ori=1.L 2-47
waﬁ. k-1 ( U) K-t ) (2-47)

UIINUATNYAAG- 2 co
S T T

)
Ls 1=[xl\k_1 E[vm +J(L+2)R? (2-49)
where
.o o
e 0] -

The sigma points are projected through the observation function h.
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¥ = h(x{(‘kfl) fori=0..2L (2-51)

The weighted sigma points are recombined to produce the predicted measurement and
predicted measurement covariance.

2L
2= W, (2-52)
i=0

Jlr-2.] (2-53)

The state-measurement ¢

Al (2-54)

P,, andP,, are used t- g
(2-55)

As with the KF, the upc tate plus the innovation weighted

by the Kalman gain,

(2-56)

And the updated Y 3 ."e, minus the predicted
measurement covariar "i : - Froaing

K P K]
ﬂuﬂawﬂw§WHﬁnﬁ
2.6 TRAF FIC SIMULATION "I()OL S ANDE&4ODEL PARAMETER

FRANN U ANTINETRY

2.6.1 Traffic Simulation Tools

(2-57)

In recent years, microscopic traffic simulation model is widely employed for
analyzing transportation problems which cannot be carried out by conventional
analysis methods, especially when network-wide study is conducted. The high
performance of computer technology has been developed to analyze complicated
problems with less time consuming. Computational performance of microscopic
traffic simulation modeling makes it possible to analyze individual travelers’
behaviors. Microscopic traffic simulation is used to enhance the capability of
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operation, control, and management for both freeway and surface street traffic. There
are many commercial suites; for example PARAMICS, MITSIM, VISSIM, and
AIMSUN.

Fries et al. (2007) conducted a feasibility study on using the traffic simulation as a
decision support in real-time regional traffic management. The result shows that
microscopic traffic simulation programs can help the operator in regional traffic
management center. It makes an operational decision by predicting future traffic
conditions caused by traffic incidents. The speed for traffic data processing is a key
factor to determine the V|ab|I|ty ol simulation in real time decision support.
There are several commercisgs i S RIFF & Lages in the market.  However,
PARAMICS microscopic tr é;f the software that is widely used
because it has a flexible ar

Arface and can be integrated with
traffic control and simul2 W’J toll plaza operation and ramp
metering. PARAMICS™ | suidlation tool because it offers
advantages over Othzs#C: o 4 “ cviding traffic management
personnel with visual re ' ‘

On-line simulation car 4 ! - AN NN fic information and to select
; : g 1C"the interpretation of results

ba! . 8ng predicted traffic demands.

Chu and Recker (20047 pr Y '_' trie capabilities of PARAMICS

to enable its application . ; . udy established the connection
between real world loop d ,c_"-_ === || %n. A simple Origin Destination
(OD) estimation method was &E==2 esumation of dynamic OD demand

matrices for a freeway networ
filtering based traff fI
traffic flows serveds

vorld loop detector data. A Kalman
alsqg eveloped The predicted

J Y]"

| » I
2.6.2 Model lirameters Calibration ”J

The compone d%mg'uﬁﬂqﬂﬁrally include physical
component of r-vehicle units which

driver behavior odels and route ghoice modelgaare associated.q Jhe complex data

ey e TR

Car followmg behavior, in particular, has a significant impact on the accuracy of the
simulation model in replicating traffic behavior on the road. Car following considers
the situation of one vehicle following another in a single lane. In general, the trailing
vehicle of a two-car following pair in the same lane will respond to observed stimulus
from the leading driver according to the relationship of response and A stimulus. The
stimulus is composed of factors such as speed, relative speed, inter-vehicle spacing,
accelerations, vehicle performance, and driver thresholds. A proportionality factor A
equates the stimulus function to the driver response. This relationship forms the basic
philosophy behind the car following theories. Other critical parameters that govern
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car following models include mean headway and mean reaction time, which are
assigned random values for each individual vehicle according to a predefined
distribution function. A number of studies have suggested using headway values in
the range of 1.65 — 2.0 sec and reaction times in the range of 0.3 — 2.0 sec (Ma and
Abdulhai, 2002).

Conventional model calibration procedure adjusts parameters in driver behavior
model and route choice model until simulation output is corresponded with field
observation in both qualitative and quantitative aspects. The trial-and-error method is

normally employed for calibratir 255 based on engineering and experience
decision, and this method is 2.8 \ " d tedious process. Some previous
studies attempted to introd i éiure to calibrate a network level

simulation model for bet —cNt parallel surface streets by
focusing on one com“”“ ‘ 'Wdel while assuming others
component held constanf/ /1 2.2004). Some studies presented
calibration framework®¥i: 4 N80 model calibration when the
O-D flow was an ur ' W R004, Toledo et al., 2003).
However, with this con: 4’ e N\ (i, calibrated traffic parameters
are not guaranteed to 4 | e L\ NSl system environments. The

parameters may require “%ain consume great effort based
on the conventional m® ‘

Another calibration appio: telWeriCe approach in which genetic
algorithm method was of # GEaess 25 U time of calibration process by
treating parameters calibration IF=———= ation problem and searching optimal
combinatorial parameters vat S bl A 2 3 fitness function within defined
number of generatio-k: ' P A jeu et al., 1998, Lee and
Yang, 2001, Ma et [ vs=====-= iy hd Rilett, 2004). A study
introduced pilot softvv=4:% Zc=ur traffic microscopic traffic
simulation models (M :l and AbGUihan 2oon). Howevdl those studies used different

calibration frameworks ,and fitness functions according to their purposes of

e AT SN
Several optimiggtion methods are available to gT!d some suitable solutions; for
example, hill climbing, tabu searéh, simulatednnnea%i, and&gdenetic algorithm.

i v ab R LA
be the rgal"optimar Sol . of fdct,"In"nalty caSes 1t TS not possible to

verify what the real optimum is.

Genetic algorithm is a stochastic search space method based on the principle of
natural evolution theory of Charles Robert Darwin. The algorithm initiates a set of
solutions that are represented as “chromosomes” called population.  Solutions
included in one population are selected and used to produce a new population if the
new population performs better than the previous population. The previous
population is selected according to their fitness which means the more chance it will
be selected to produce a new population.
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One string element in the genetic algorithm is the chromosome that is encoded as a
single solution which means one set of combinatorial parameters prepared for
simulation model. Standard genetic algorithm is based on binary representative
characterized by zero and one. Real value is also proposed to represent genes
(Wright, 1991). There are many types of genetic algorithm; for example, simple GA,
steady-state GA, and crowding-based GA. The simple GA is a very common method
that is based on non-overlapping population in each generation. If the elitism
mechanism is enumerated, the best fitness of each population will be carried over
from parent to child without reprodugtion. Steady-state GA is another standard

genetic algorithm based on oveyy ulation in each generation in which a
portion of the population is / ew generated. If only one or two
geneu”//* called incremental GA but it will

Op Suti Commmmmiited. Crowding-based GA is a

members may be substitutes
Sy e pre7 ~h $sel. production are the same as

become a simple GA wk

steady-state but the nz , S Sacomparison with population

individually using a . P Saminiarity  measurement  before

replacement. The mc#®ir ‘ A between parent and child is
. . v R

substituted by the child

yer, and mutation in order to
produce new generatie. ni&:hods for choosing members
from a parent for exam: %8 tournament, rank, and steady
state. After choosing a pa: JFft, =S8, pro iced using a simplest way, called
crossover, by randomly crifosiiaadas - 4 foiT chosen point from a father and
then everything after a CroSSOMZ-75 TR om a mother. After the crossover is
performed, mutatiorsorog Bl ™ L ingarder to prevent falling all
solutions in populat (7 - .,‘-'J ‘m.

The genetic algorithir ) peri™ ; #oop b giis until the final result meets
predefined criteria on®ie number of generations and fitriess function. The number of
generation is defined in®gsler to constraingtlte genetic algorithm optimizer to repeat

e S TN TR o oo
» JRIMAIN UNINEIAY

According to the review of general background and the state of practice of travel time
estimation, travel time saving is the first priority concerned in transport and logistics.
For travel time information in travelers’ points of view, it can help travelers to
achieve the traffic situation in advance and to save travel time based on shortest route
guidance system during pre-trip and en-route. Several approaches for estimating
traffic sate and travel time information have been proposed and tested with different
algorithms and frameworks so that the resulting travel time is obtained with accuracy
and reliability. In general, the provision of travel times has called a positive response
from the public in almost all places where the information has been provided. Most
states in the United States have been providing travel times and maintain them with

The reproduction proce
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high quality standards of data by periodic checks on accuracy. The accuracy of travel
time information is the most important that should highly concerned.

Traffic state and travel time estimation have usually been constrained by traffic data
sources. Most of studies estimated traffic state and travel time based on only data
from one traffic surveillance system, which typical detector is point detection system.
Normally, existing installation of detectors on road sections is unable to provide
sufficient data to represent actual traffic situation. Even a well equipped area still
encounters difficulties in providing enough traffic data in both quality and quantity
aspects. Other studies attempted toy ~j2 traffic state and travel time information
using mobile detection systensas hrobes.  Unfortunately, GPS probes
provide poor traffic data g™ :"//35 due to the potential for high
— = vehicle data. Moreover, getting
“=Td in a particular estimation time

Currently, microscopic ‘g ' N G, been improved and validated
in various projects. T«#S 4 4 \ (O simulation model as a real-
time traffic state and 4
important process #®
Conventional model pa:

=r, calibration process is the

imtion model is adopted.
4d much time and is inflexibly
edimation framework. Genetic
rers calibration module instead
exil’ % Tor multiple model parameters
nedrs combination can be generated

of conventional methods..
consideration which severd#
and evaluated.

4<JIback estimation could be
improved the accur{ 2§ RX J-thermore, short-term and
long term prediction 74 Ui& winmiag of estimation due to the
time spent on data ccafction and processing procedurid As mentioned above, there
are only few studies on‘tmdevelopment f, traffic state and travel time estimation
using microscesi i ot ! and enhance traffic state
and travel tmﬁﬁﬁﬂ%ﬂ% mmaﬁJﬁiented Kalman Filter.
Moreover, shorfkerm prediction is also required to inform traveler in advance which
the conge _statjstical mode I 0 i of fed|-time travel time
data is@%ﬁﬁ@ ﬁ% ﬁ%rﬁﬁ% ﬁ?ﬁi tly and prediction
kfor ATIS.

framew

Unless using microg=



CHAPTER III

RESEARCH METHODOLOGY

In this chapter, methods for developing real-time traffic state and travel time
estimation using microsimulation with feedback estimation are presented. The study
framework consisted of three main components which included the development of
real-time traffic state and travel gtimation, the development of feedback
estimation with microsimulatiogs! # oment of traffic state and travel time
prediction. The organizase ™ \ /, &ms with an overview of study
framework.  Secondly, Te— Mg os\_.._i ic simulation for traffic state
estimation toward travel AtioF IS ( [ contains details mainly on the
development of micir ¥y ' o traffic model and model
parameters calibratior feedback estimation with
microsimulation using ' ascribed in order to improve
accuracy of travel ti pment of traffic state and
travel time prediction ic

3.1 OVERVIEW OF

A framework of the study
traffic state and travel time est|
this study framework was.i

- tO¥develop comprehensive real-time
avel time prediction. An overview of

( “ V_ |r‘ ' ~N

Development of npi} ro: 10hent of real-time traffic

model for real-ti= traffic state state a&d travel time estimation
and travel time ggtjation using microsimulation model

atedand travel time
estimation using
= microsimulawh model

| L] ]
&elopment of
m|cr05|mulat|on model usmgf

Accuracy |mprovement using
Unscented Kalman Filter

Development of combinatorial
model parameters calibration
using genetic algorithm A
Study short-term travel time
prediction

Figure 3-1 Study Framework
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From Figure 3-1, the framework consists of three main components. First, the
development of real time traffic state and travel time estimation which is subdivided
into three processes. They are 1) the development of microsimulation using
microscopic traffic simulation model, 2) the development of combinatorial model
parameters calibration using GA, and 3) the development of traffic state and travel
time estimation using microsimulation. For the first subsection, the process of
microsimulation modeling was presented. The second subsection, in the process of
microsimulation modeling, the procedure of several model parameters calibration was
described that was aimed to get output data from simulation model close to the actual
traffic data.  Genetic algorithm gonducted in this step for calibrating
combinatorial model parameteizss /entional calibration methods. Third
subsection, calibrated micig ™ @5 further processed in order to
estimate traffic state and tiw

Second, the developm{ - e microsimulation was carried
out by introducing a ‘s S o™anted Kalman Filter. It was

introduced in order to ! W Saffic state and travel time
information which pra#cs 4 Srat BN el

pi¥iction aimed to increase the
ondition and also travel time

Third, the developme##
capability of ATIS in -
information in short-te#

The above three main cr
sections.

Wely described in the following

3.2 DEVELOPNA&:
TIME ESTII 78—
- .'"
Microscopic traffic .ulation model was used as asdaffic state and travel time
estimator instead of using macroscopic traffjg estimators which were mostly proposed
in previous ﬂ S & msﬂﬂ? ior mﬁ] model, commercial
simulation sof u ngj cled i m,my loping traffic state and
travel time estifator which focus gn expressway section. Firstly, development of
microsj | d s £xplatned e de m combinatorial
modelﬁauﬁ‘;t ag&ﬁ(ﬁx 19 gideﬂi'ccial Wrﬁwﬁ sgi)ed. Finally,
developrgent of traffic State and travel't mati -
model was described.

W LUATE AND TRAVEL
A

Ime estimation using on-line microsimulation

3.2.1 Development of Microsimulation Model

A commercial package of microscopic traffic simulation model was selected in this
study, namely PARAMICS, in order to model an artificial expressway corridor.
Several aerial photos which covered the whole section of site study needed to be
captured and then imported and scaled in the program. In the concept of traffic
simulation, artificial expressway sections on the study site are denoted as nodes and
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links which are digitized according to road section on aerial photos which nodes and
links are layout as same as actual geometry relied on scaled aerial photos. The
process of microscopic traffic simulation modeling is illustrated as shown in Figure
3-2.

Eol Demand loading either OD or
A P TMC

ﬂ[[_éi't'ze nodes and links on the

=t Of aerial photos

/ \ '

\\ \\

W oRire aerial photo from
N\ oS Earth. Import and scale
imuiation software

\ ici Ri*ulation Model
. . SEEL
Figure 3-2 illustrates the maif
simulation modeling. As desdcf2/s 24
import and scale. . s

°n the process of microscopic traffic
layer shows the aerial photo that
rl mlch build by a concept of
node and link. It is s - vay on aerial photos. The
third layer shows a &, 2 *s normally represented by
either OD flow or trif| I C IMOVCTT TO——rTC. Hollver, microsimulation model

iF |

needs to be calibrated dﬁore |mplementat|on which the process of model parameters

ﬁﬁi FynIngIng

3.2.2 evelopment of Coggbinatorial Ylodel Parametgyy Calibration

QRIRITITARANING 18 8

In this gtudy, the calibration of combinatorial model parameters was concerned
because of several model parameters jointly affected a simulation result. The
practical procedure such as trial and error is widely used but this study conducted a
genetic algorithm in the calibration procedure which is illustrated the procedure as
shown in Figure 3-3. The on-line model calibration was concerned in this study
which genetic algorithm can be operated. However, only off-line calibration was
analyzed in this part but the consideration of using predefined control definition was
relied on the performance when on-line calibration could be implemented. The
optimal result could received with in limited of calculation time.
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Data
Preparatlon

In|t|al New
Generation Generation
v 1
Microsimulation Mutation

..... fpun

rossover

From Figure 3-3, calibre, OCE 9317 i) - I8 with data preparation and then
subsequent initial generati. of = ' atorial model parameters. After
that the process of GA * @ §, U.e optimal combinatorial model
parameters under predefined g+ ’;.;m 2 J /) gd. The calibration processes using
Genetic Algorlthmu desal

7
3.2.2.1 '! Ala

Basic input data includeshefvork geometrygOD demand, and traffic control system.
These input uﬂcﬁjﬂ[&m@ Iﬁ’iﬂ%n model. Normally,
available trav dibyfiél er ch as roadside survey
and vehicle licefse plate matchlng or reference OD matrix frog transport demand
model these data are
A N T S T e o
those def§cribed data, the OD demand used in this study was estlmated from point
traffic data by distributing downstream volume to upstream volume. This method is

originally from FREQ model which is based on the intuitive proportional scheme as
shown in Equation (3-1).

ODij = Dj —I (3'1)

where ODj; is the OD demand from zone i to j. Dj is total amount of volume at
destination zone j. O; is total amount of volume at origin zone i. The demand profile
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needs to be defined to release traffic demand as time-dependent function. The OD
demand profile is aggregated to time intervals of five minutes.

3.2.2.2 Fitness Function

The fitness function used in this study was a combination of traffic volume and speed
between observed data as shown in Equation (3-2) and simulation outputs which were
the traffic volume and speed measured on the location of traffic detector station. The
optimization process aimed to .\ 4he value of fitness function within
predefined control definitionsa B g lue of zero was an ideally expected.

obs SPEEdsim | (3_2)

Fo N
speed
where Volops and volgi- ##C & b\ - observation and simulation
output respectively. p NCrEr 3 " Seds from field observation
and simulation output r N
3.2.2.3
During genetic algorithm | — 20 O for each generation, number of

generations for simulation, re fig, selection method, crossover rate,
and mutation rate, were imp! _r,!'.v.‘» ) Definitions and recommended
values for these par¥ W sg<rified or recommended by
previous studies ;—t er conducted for on-line
model calibration (%5, £ #2002). Due to this control
definition, 400 times t4Jully OF SiTIo eRERRRCTe prodf] ‘sed in this study.

No of generations

A RS W%M@Mﬁﬂ.@ﬁ”

Crossover rate 0.80
Mutation rate 0.01

3.2.2.4 Parameters Selection

Each microscopic traffic simulation suite has its own set of parameters that affect on
simulating of vehicle movements. It is a responsibility of a modeler in order to verify
their traffic simulation model. A final simulation needs to be well calibrated and
reflects traffic characteristics similar to the actual traffic as observed. Generally,
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driver behaviors and route choice models are important elements affecting core
module of microscopic traffic modeling and are advisably adjusted for getting
simulation output corresponding with field observation data. Driver behavior models
have two core modules, car following and lane changing models. The model
parameters can be divided by type of traffic network namely freeway facilities and
signalized intersections (surface streets). For freeway facilities, four key model
parameters are introduced:

Mean following headiway

simulation suites and r AL Wl global model parameter for
calibration process. 4 NIy 20 model parameters that are

P iz
In this study, PARAMICS m

allows users to adjust these fadibe Lollowing and lane changing models.
Car following mo ..'~ i chjleration. Lane changing
model determines :‘Vf-. fy") The core parameters are
queue gap distance, == Fimiynt, mean target headway,
mean driver reactior{fime, specu oy, and middnum gap. However, two
important key parameterg were considered 'H}_this study because these two parameters

obviously affegift it des=fl ee and Yang, 2001).
Two key paraﬁe %lmraq[ﬂa sﬂ/e E]wﬁ s Foldows:

QU REREEtei T ia il ae (1

For these two parameters, the program developer initiated a default value of one
second for both parameters based on the validation under United Kingdom’s traffic
characteristics where program was originated. However, these model parameters
need to be calibrate subject to the traffic characteristics of site study that apply
microscopic traffic simulation model in implementation. However, the default values
for both model parameters were also considered in order to understand the importance
of the calibration on traffic characteristics in the simulation modeling.

FC simulation suite was selected as it
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3.2.3 Development of Traffic State and Travel Time Estimation using
On-line Microsimulation Model

The concept of on-line microsimulation was proposed to be an alternate method for
estimating traffic state and travel time information on road segment as shown in
Figure 3-4. From the figure, the on-line microsimulation is used as an estimator
instead of conventional methods or macroscopic traffic model.

Data Collection 22> Data Processing > > > Data Dissemination

Segment Length

X
Figure rI i i ATHLS Framework

i¥ |

The components of micgogcopic traffic sigulation model generally include physical
component offinuﬂog Mﬂﬁ ﬁﬂ&lﬁ ?r -vehicle units which
driver behavi ia@d. The complex data

and numerous fWbdel parameters arg required by these componeqbwhlch need to be

TR T e A Y

On-line fhicrosimulation model can be used instead of conventional traffic state and
travel time estimation methods as well as macroscopic traffic model for estimating
travel time. Traffic data measured on point detection devices need to be transmitted
to the traffic control center using communication system using cable optic or several
wireless communications such as Asymmetric Digital Subscriber Line (ADSL),
General Packet Radio Services (GPRS), and Worldwide Interoperability for
Microwave Access (WIMAX). Traffic data are checked for outliers and correctness
and then input to the on-line microsimulation model in order to estimate traffic state
and travel time which occurrs on each road segment. The use of microsimulation
model should result in more accurate traffic state and travel time information than

Onboard Device
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conventional methods in case of using on expressway with low density of point
detectors or long segment length.

In order to develop on-line microsimulation model for estimating traffic state and
travel time information, the process of on-line microsimulation was designed as
shown in Figure 3-5.

k =k+1

i

VDR (11 EAL12N
From Figure 3 e process starts for at k"' time interval, in WhICh the corresponding

D flow demand is called as the fhput of the &mulation modd” Microsimulation

zﬂn%dfﬂm AN SN DR R Bk, op e

time b Estimated traffic state and travel time information can be used to describe
traffic state or traffic condition on each road segment. After that traffic information is
saved on traffic database and then continues the input data at k+1 time interval. It is
an advantage of using microsimulation for estimating travel time information in case
of low density of detectors on roadway.
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3.3 DEVELOPMENT OF FEEDBACK ESTIMATION FOR IMPROVING
MICROSIMULATIN MODEL ACCURACY

In this study, microscopic traffic simulation was proposed to be a traffic state and
travel time estimator instead of macroscopic traffic flow model which mostly
proposed in previous studies. The numerical process of traffic state and travel time
estimator was developed based on space-time discrete. At every time step, traffic
state and travel time were estimated and further updated by feedback estimation
procedure as illustrated in Figure 3-6.

Y (k)
Measurement Variables
X (k-1) AN X(k)
™ Traffic State & - ; _, , - Y (k)
Link Travel Time ™| v ' Predictor

K=k+1 X Fr _ M=Y(k)-Y(k)

Figure 3-6 Feedback e and Travel Time Framework

-
-

Following the flow{™# iy | 5 minutes time interval),
traffic demand was e I'& miemiieasured by point detectors
equipped on road sec -1|‘ similar w0 uic proveaure of m 1 hsimulation model as shown
in Figure 3 5. Consequegtl , traffic states including link flow, link density, link speed,
and travel ti r i Icrasinaylatiopsmodel.  Virtual traffic
detector statwugﬁlw&nwiﬁ gﬁﬁg‘gztueﬂ traffic detector
equipped on r€gd section. ua

Actual traffic data on point detector was treated as

measurement variables including ffow and speesk which was @&é&d to adjust prior
estim S@ﬁ crﬁﬁﬁ%moﬁmwsﬂ%ﬁrﬂ Kalman Filter
was develdpeéd In¥drdér"t e¥the¥atcura fi nd travel time
estimatioh which was estimated only by microsimulation model.

An efficient feedback estimation using Unscented Kalman Filter was defined the state
variable x and measurement variables y as shown in Equation (3-3) and Equation

(3-4) where where v)and p! are average speed and density on segment j (where j =

1,..,N) and w! and q! are speed and flow measured on virtual traffic detector i (where

i = 1,..N). State variable and measurement variable were estimated by only
microsimulation model. The detail of Unscented Kalman Filter was described in
Chapter 2.
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x=[vl,p,... s“,ps“} (3-3)
y=[wal gl | (3-4)

3.4 STUDY ON SHORT-TERM TRAVEL TIME PREDICTION

One of the important components supp rtlng ATIS and ATMS is a prediction which
can help traffic operator in order g\ ~gion in advance for managing the traffic
with appropriate plan based &% # 2. The proper strategy for traffic

management can be provi éjgs the message to the traveler for

rerouting on the in-vehicl<™ —dge traffic congested location on

DMS.

Simple and easy to irs ; . Moreover, only estimated
travel time in past tim ##n, E \ :es from the microsimulation
and microsimulation ®ith g% ¥ ‘

k=k+1

¢ Short-Term Traygl, Time

AU 79

Figure 3-7 Flow Chart of Short-T¢rm Travel Eiyne Predictiongs Connected with

QR RGBSR TR 8

Two staflstic methods for short-term prediction were studies which included simple
moving average and exponential moving average. It is not complicated to apply with
the proposed framework for short-term travel time prediction. Two methods were
described as follow.

e Simple Moving Average (SMA)

The simple moving average is commonly used in finance applications with time series
data to smooth out short-term fluctuation and show data trend (Harvey, 1990).
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Simple moving average is a mean of previous N data points. The simple moving
average was shown in Equation (3-5).

T +T  +..+T
SMA(N):(t th tN+l) (3_5)

The value of N affects the estimation quality of the time series which the largest value
of N will provide good estimation when mean of time series are constant. In the other
hand, the smallest value of N will proy/ie'p ood estimation when mean of time series
data are fluctuated change. Tha 2 - any number of periods in the future is
the same as the latest estim

™ ' . /u on of constant underlying mean.
The prediction equation WSS /

(3-6)

smaller of N value. The
ct of variability due to the
pore responsive to change in
value of N is required in

The variability of the
conflicting desires tc
noise and to decrease '
mean of time seriess
practical prediction.

e Exponential

The exponential moving av s & exponentially weighted moving
average which is a type of i ﬁ,, T asponse filter. It applies weighting
factors to exponentiglly de ? cack.older data point decreases
exponentially, neveg i— == honential moving average
is adopted in this st Py _Jown in Equation (3-7).

T
|
W

EMA =aT, +(1 ) EI\/.‘ (3-7)

unee e i) 240 A RINN S PRI G are e 1.

For any numbeflof periods predlctlon in the future, the future value of travel tlme is

AW RIS

=EMA forr=12,. (3-8)

T+r

The variance of the estimation error increases when the value of « increases. In order
to minimize the effect of noise, it would like to make « as small as possible but this
makes the prediction unresponsive to a change in the underlying of time series data.
In order to make the prediction responsive to changes, the value of « as large as
possible is required. However, the intermediate value of « is required in practical
prediction.
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In this study, four scenarios were designed to understand the benefit of Unscented
Kalman Filter and the performance of travel time prediction separately by each
segment. The four scenarios were defined as follows.

. Scenario 1:  Travel time prediction using the route travel time which
estimated by microsimulation.

o Scenario 2:  Travel time prediction using the route travel time which
estimated by micosimulation with UKF improvement.

. Scenario 3: Sum of the travel time prediction of estimated travel

rasimulation by each segment
# sime prediction of estimated travel

; /Iation with UKF improvement by
[ — 4

° Scenario 4:

In order to evaluate €5Tin 40, &) NN tiric information, estimated and
' ' “er to investigate the under or

over estimation of ealil r, o5 g' 2 oY Wit percentage error (APE) and
mean absolute percent 4 nlog 2Ied in this study to measure
how large of estimation ¢ #f JFasd@ =) | and estimated traffic state and
travel time information, ] ' ,‘I- and mean square error were

determined to understand p tl‘ = :ntage error by period of time and
amount of error. There were == n i Equation (3-9), Equation (3-10),
Equation (3-11), and Equatlon _,:-r"' ,u

¢ MAPE = vLObS X (K] x100 (3-10)

ﬂUB? ans
ammnﬁsmgwhmwaa

where x, (k) and x, (k) is observed and estimated traffic state respectively (e.g.

speed and travel time) at time k. MAPE of speed and travel time estimation are
separately calculated.

k

‘ v.'- f"" (3-9)

Error

(3-11)



CHAPTER 1V

TRAFFIC DATA

In this chapter, the field data and study area in which two selected expressway
sections of Hanshin Expressway and Bangkok Expressway are located in Japan and
Thailand respectively are described. Moreover, the result of model parameters
calibration is reported which ity ¥ Fgrer conducted in the development of
microsimulation model for traffaad | time estimation.

In order to develop mic g I/ § o ffic state and travel time and
also predicting trave ’ o | 3 asmal site study was conducted
which the factor of phy; gation were ignored. The site
selection was considg SN ®sed by main line, on-ramp,

tions conducted in this study

The first site study was Iv|a 15 NS ohi W xpressway in Osaka, Japan. This
site study was initiated e (A n¥del parameters calibration using
genetic algorithm and further i in: — curacy of link speed estimation using
conventional methods in Qg === aormance of link speed estimation
which affect the aci 4

\Z )
The second site stua! mjves mon Bangkok Expressway in
Bangkok, Thailand. ||5 site stuay was Londucted Huse in the study of on-line
microsimulation for traffic_state and traygel, time estimation and also travel time
prediction. observed travel time
which conducﬁ upg wm%%%j OT?Ifsnance of proposed on-

line microsimudfion model was ana )/zed

e R RN FEY HPNARHIR Y

4.1.1 Hanshin Expressway Site

A 11.22 km. road section of the Matsubara line of the Hanshin expressway in Osaka,
Japan in an outbound direction between Nanba and Matsubara junction was selected
as the first study area that traffic data were collected 24 hours using overhead
ultrasonic detectors on November 1, 1994. This data was used to calibrate traffic
simulation model. Figure 4-1 and Figure 4-2 illustrate the location of study area and
schematic diagram of study section on Hanshin expressway.
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Kobe Airport

Kansali Alrport

N Expressway Network

Tennouji Fuminos? i vari  Miyake Obori
\Y | #
g/l_lnk 1 Link2 ok a / Link Link 6 Link 7
Osaka - | Matsubara

I
1510 m. 4010 m. 1210 m.

¢ ',"i‘ ara Line

From Figure 4-2, the 'E ected expressway section was &¥ided into seven links which
have equipped with eiglat feaffic detector gfgtions. The distances of the links range
between 121 ﬂﬂﬂnﬁrz Erldﬂ\‘zm !Im e whole length of the
study section Wwith d ultrasonic detectors

have been mst ed to measure traf ic data on thls expressway section as shown in

Flgur re collected by
the de ﬁ\ gj/dy, these data
were usegl 10 eval e per ormance of link speed es |mat|on ased on point traffic

speed on the border of link and the difference of link speed estimation using
conventional methods and microsimulation model was discussed.
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\ F b “
About 11-km expr j_ v 1anakhon line on Bangkok
Expressway Network: _| Bangrow,amtt irectiondl§ from Daokanong to Port
junction as shown in Figure 4-4 is selected to be second study area in this study and

AN IR EN S
PAATUAMINYAE
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For the numerical an: 1 SIS, SwIgRll into ten segments ranging

from 390 meters to 144 meters with four on-ramps ari=.wo off-ramps. The number
of lanes varies from two gothree lanes in sogig sections.

Based on the ﬂ:ﬂuﬂ@ %ﬂenﬁamsﬂmﬂ iﬁage processing camera

were planned afMl installed as shown in Figure 4 5. However, equipment at few data

collectj iQns wer k VEn, stati ' eLe sjati 42,3,5,6,7,9,
and 1 eﬁgr’iyﬁé& $ i@&aﬁﬁu A ;ﬁ
used in e study. Available detector stations measured traffic

stations were
ta on the predefined
area which have field of view as shown in Figure 4 6. At the same time, digital video
recorders were installed and recorded video from video image cameras on station no.2
and 10. The video data were further post processed in laboratory using vehicle
matching manually in order to measure travel time data. The manual travel time
(ground truth) data were used as a benchmark for accuracy evaluation which the
sample size of observed travel time was followed the suggestion of travel time data
collection manual (1998) which suggest the average coefficient of variation of 25%
for congested traffic (15 — 30 minute per period). It was calculated the sample size
according to Equation (4-1).
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2
Sample size = ( : xec.v.) (4-1)

where z is z-statistic which the value of 1.96 (95% confidence) was used. c.v. is the
average coefficient of variation which the suggested value of 25% was used
(congested traffic, 15 — 30 minute time period). e is the relative error of 5%. From
the calculation based on Equation (4-1), the calculated sample size that required for
observing travel time was 96 vehicles in one hour, then 8 vehicles were observed for
travel time per time interval of 5 mg§‘g. , The observed vehicles from 06:00 until
21:00 of 1440 vehicles were tota! 4 ,this study. Collected field traffic data

AULINENINYINT
IR TN ININY
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Figure 4-6 Field of View of Seven Point Detectors using
Video Image Processing Camera
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4.2 CALIBRATION RESULT OF SIMULATION MODEL

4.2.1 Calibration Result of Hanshin Expressway Site

In order to calibrate microsimulation model of Hanshin Expressway site on
Matsubara line, traffic data from 08:00 until 10:00 were obtained to determine the
proper model parameters. Based on Genetic Algorithm (GA) process, a total of
1200 (20 population, 3 replicated rugs, and 20 generations) simulation runs were
carried out. Each simulation run a\ nately one minute to replicate 4 hours
of traffic operation in the Sime S NE /_sonal computer with CPU of 1.6
GHz. After complete 20 ™SS ation? Igorithm process showed the
performance toward fis e (O M= Dy Searching the optimal
combinatorial model pa i X "sts as shown in Figure 4 7.

Fitness Function

3 4 i! 6 7 8 Y 1 11 12 1;14 15 16 17 18 19 20
Gengpation

UL IRURTHEART-

Figure 4-Alhe Value of Fltn?s Function of Hanshin Expressway Site.

o ARAN DT RN NG Bt 1o

functiongfor each generation figure shows th alue of fitness
function decreases and is close to minimum value, with the number of generation
increases. Moreover, the standard deviation value also decreases. It could be
implied that the optimal combinatorial model parameters can be found for a defined
generation number. The calibrated model parameters, after completion of the
defined calibration criteria, yielded the values as shown in Table 4-1.




59

Table 4-1 Calibrated Value of Model Parameters for Hanshin Expressway Site

Model Parameters Calibrated Value
Mean Target Headway 0.500 seconds
Mean Driver Reaction Time 1.135 seconds

Using the Expressway data in Japan, the calibrated parameters had the mean target
headway of 0.500 second, which was much smaller than the default value of one
second, calibrated under UK traffic condition suggested by program developer.
According to the finding value, it coy'd.be implied that the drivers on Matsubara

— 2re more sensitive to the change
of traffic condition thar: | VSUl == Japan. Larger mean driver
reaction time will leas wave due to car following

vas verified by common

comparison between 4 : \ Sot processing data against
observed traffic dat; LAt WY ®2d.  The mean absolute
percentage errors (MAF 4 qu %Y, I%igure 4-8 and Figure 4-9 as

compared to MAPE of€ir AAZ S 2N odel parameters.

Detector Station No.

Default parameters B Calibrated parameters

Figure 4-8 MAPE of Traffic Volume at Hanshin Expressway Site
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Wi Expressway Site

W\ for 5-minute time interval
< quite close to the observed
/ith the average of 6.48% and
st and eighth detector station
APE ranges from 3.25% to 20.86%
& and maximum MAPE are at the

Using the calibrated pa:
at each point detector
traffic volume. MAPE r,
the minimum and maxim.
. . .
respectively. For traffic spee
with the average of 10.75%. 2 ,u
second and sixth de*agtox

However, the averah ' ‘ efault model parameters
is higher than those usf |}y callsiees e Lers il hown in Table 4-2.

Calibrated ¢ 648

3 Rnagiinaneni.....

data althbugh a bit improvement was observed, compared with simulation output
using default model parameters. Although the only 20 generations of genetic
algorithm process were designed in this study. However, the results have shown the
level of MAPE better than the results using defaults model parameters. The MAPE
could be reduced if more generations of genetic algorithm process were performed
and the simulation output would be closer to observed traffic data. The comparison
of traffic volume and speed between observed and simulated data are shown in
Figure 4-11 and Figure 4-10.
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From Figure 4-11 and Figure 4-10, it shows that even the optimal model parameters
were received using genetic algorithm. There are shown the difference between
observed and estimated on both volume and speed which measured on point detector
on the site study. However, estimated traffic volume is similar trend with observed
traffic volume but estimated traffic speed is less than observed traffic speed about 10
kilometers but it is in the same trend.

4.2.2 Calibration Resu't ok Expressway Site

Traffic data from 06:00 unMsss
Bangkok Expressway site_
as the calibration of Harz
calibration using GA, the .

# alibrating model parameters for

2 0ragon }-‘.ﬁ conducted in similar manner
SSWHy <. “oe result of model parameters
own in Figure 4-12.

500 ‘
450 T
400 +
350 - ; ‘
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|
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T T

7 8 91011121314151617181920

ﬂ i) nﬂﬁfwmmm
AN TET e TR e

Figure A12 illustrates the plot of average, minimum, and standard deviation of
fitness function for each generation. The figure shows that average value of fitness
function decreases and is close to minimum value. Moreover, the standard deviation
value also decreases in a similar manner as the value of fitness function of Hanshin
Expressway site. It could be implied that a better combinatorial model parameters
could be found for a defined generation number. The model parameter calibration
with predefined criteria gives the model parameters as shown in Table 4-3.
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Table 4-3 Calibrated Value of Model Parameters for Bangkok Expressway Site

Model Parameters Calibrated Value
Mean Target Headway 0.550 seconds
Mean Driver Reaction Time 1.560 seconds

From Table 4-3, it is shown that the calibrated value of mean target headway and
mean driver reaction time which are 0.550 second and 1.560 second respectively.
Two model parameters for traffic characteristics of Bangkok Expressway site are a
bit higher than the calibrated values of traffic characteristics on Hanshin Expressway
site. /

The impact of the calibratec o erified by common comparison
between variations of P . j . (ata against observed traffic
data on both traffic ve! 1d. 3 2 absolute percentage errors
(MAPE) were reported « 1B ure 4-14

ﬂuﬁmmﬁumm
W'Ta«a“nﬁmwm*z% Teve
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Figure 4-14 M / ok Expressway Site

From Figure 4-13, it is ¢ ] N Molume between observed and
estimated at seven traffic d Al an % 1rom 12.05 % (detector station
no.2) to 73.98 % (detector Mauiiadas <% average MAPE value of 37.87 %.
The calibrated model could emu==== me at Bangkok Expressway site with
an error under 20 %.At traff Lty aad 6. _For detector station no.3,
5,7,9,and10, it coggadsmmTe 4+J1ore than 20 %.

Y N

Figure 4-14 shows theg N/ . 1fic detector stations range
from 8.33 % (detect: J station no.) 10 /.04 % (det¥&or station no.9) with the

average MAPE value of@% %. The callnjﬁed model could emulate traffic speed

at Bangkok E detector station no.5,
6, and 7. For ﬁw n te traffic speed with
The Wl@?m@ﬁé qu@%gq@gmmm cata
are sho

an error more tm 20 %.
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Figure 4-15 Observed and Simulated Traffic Volume at Detector Station at
Bangkok Expressway Site
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From Figure 4-15, most of detector stations show that estimated traffic volume is
higher than observed traffic volume except detector station no.5 which the estimated
traffic volume is less than observed traffic volume. A big difference in traffic volume
comparison was occurred even the optimal model parameters received by genetic
algorithm. It is note that the traffic condition under calibration period is congested.

From Figure 4-16, it shows that speed drop produced by microsimulation model occur
faster than observation and it recover to normal speed slower than the observation. It

The microsimulation ted 0 rt'—ﬂrﬁc based on calibrated model
parameters which mea™® ¥ el e individual characteristic of
driver occur in the a(/ i\ \ s.can not perfectly replicated.
However, two study s* ‘ ‘ od optimal model parameters
within predefine conte# Cr ¢ g\ Osa™ers calibration using genetic
algorithm can operate 4% - an on-line model parameters

( , o8t calibration by demand or
integrate with the cor g m ! monitor the error of on-line

4.3 CONCLUSION RE

In this study, two exgressy ; ountry were conducted as study
sites consist of MNgge———rm =2/ in Japan and Chalerm
Mahanakhon line & R J Two sites were used in
difference parts whic '| ese I

For the study at the firstgsi Sife, the process of jhe development of combinatorial model
parameters caﬂm ﬂL d Matsubara line of
Hanshin Exprds nﬂﬁn Wﬂtu reover, segment speed

approximation msed on pomt based etector station using conventional methods were
evalua ta v ion which the
convers c{q 0 E?‘?ﬂ t travel time

mformatqon

For the study at the second site, the performance of microsimulation model was
carried out on Chalerm Mahanakhon line of Bangkok Expressway Network in
Bangkok in Thailand. . Moreover, this study site would also be used to evaluate the
performance of microsimulation model with UKF improvement. Furthermore, it was
also used to evaluate the performance of travel time prediction model.

Even the optimal model parameters were received by genetic algorithm within the
predefined control criteria which the application of on-line calibration was concerned,
but it was shown that a big difference are shown on both traffic volume and traffic
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speed when compared observation and estimation especially Bangkok expressway site
in Thailand which the traffic data used in the calibration process is on the congestion
period. In contrast, traffic data used in the calibration of Japan site study is
uncongested. The microsimulation model show the estimation similar to the
observation on both traffic volume and traffic speed. It can implied that replication
error of microsimulation model has a big difference with actual traffic which it might
have other model parameters which should study in the future study in order to
improve the calibration process using genetic algorithm. However, mean target
headway and mean driver reaction time were enough for this study in order to develop
microsimulation model for estimasu#§ p§fic state and travel time for travel time
prediction. '

AUEINENINYINS
RN ITUUMING AT



CHAPTER V

NUMERICAL ANALYSIS

In order to assess the performance of the proposed approaches in order to reach the
research objectives, the numerical analysis were performed in this chapter which
included four parts. First, the evaluation of link speed estimation based on point
detection system on expressway. Second, the dynamic traffic state and travel time
estimation using microsimulation ng: hird, the improvement of microsimulation
model with feedback estimasaiy! ; ‘Pnted Kalman Filter.  Final, the
development of travel time g™

5.1 EVALUATION % ¢/7/L |\ . USSEON BASED ON POINT
DETECTION SY y

In this part, the link s fr). 3 int detection system and the
effectiveness of link 4 i ' \ ffic data on Matsubara line
of Hansin expressway %even links were defined by 8
traffic detection static#5 de®ctors on Matsubara line of
Hanshin expressway. . ' hds including average speed,
weighted speed, and Sai / flonisaS“5S oy R0 calculate link speed based on
traffic speed measured on L_ > _ﬂ bal ¥ detector.

Figure 5-1 shows the rangs
The observed speeya4:
which three simple{ 78

be result of link speed estimation.
(4 ween 60 and 80 km/h in
A Jhate the link speed using
speed data from upsts *>. miowever, large error can be
noticed on the 4™ lint& LImost all o1 esuiniaied link spe 1 is higher than the observed
link speed. For the 5Ih 6th and 7" link the observed and estimated speeds range
between 60 a Estimated link speed
values higherﬁ%@%ﬂm wmﬂ% link during 7:00 and
7:10. Since tHj$ was the initial perlod of S|mulat|on runnlng, the speed may be
ignored

camy 1 ) AINIAIIANE N, e

realize the over and under estimation using three simple methods.
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minimunm, maximum, average, and standard deviation of APE are summarized in
Table 5-1. If MAPE of 20% is the maximum MAPE that could be accepted, three
simple methods have shown the MAPE below 20% except on the 4™ link where
MAPE is higher than 20%. The exception is the speed estimated by San Antonio
method on the 4™ link in which all MAPE is below 20%. However, the other three
simple methods show the highest APE and standard deviation is also quite high on the
4™ link. The 4™ link was investigated in more details to understand why the estimated
speed on this link had the high value of APE.
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Table 5-1 MAPE and APE of Speed as Minimum, Maximum, and Standard
Deviation (%) on Hanshin Expressway Site
Link No.

Method 1 2 3 4 5 6 7
Average MAPE 438 514 416 2028 378 7.16 5.03
Min. 000 003 005 004 006 169 0.27
Max. 11.30 19.00 20.52 127.27 16.61 28.53 16.77
S.D. 238 339 230 2908 250 349 244
Weighted ~ MAPE  4.56 .\ 1297 2037 380 6.72 542
average Min. S\ ' 001 0.03 148 0.08

Y 12170 1688 2500 1951
e

255 299 291
272 401 1.70
0.00 0.08 0.00
a4 1532 2376 17.76
) 215 292 170

San Antonio

" J b \ _ iy between the observed and
estimated speed can be s o % simple methods show an over

imati ' ‘ > maximum value of APE is
n using average and weighted
ntonio method. In order to
d and APE on the 4th link are

quite high although the °
average method or bel
investigate in details, tim, g
plotted as shown in Figure 5-2 &

% .
PR | B S gl

AW mmmum’iw 5

Link Speed (km/h)
w

N

7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00
Time of Day

—— Simulated --=-- Average - - Weighted average - >- San Antonio

Figure 5-2 Time-Dependent Link Speed on the 4™ Link on Hanshin Expressway
Site
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Figure 5-3 shows that the link link drops during 17:15 until 19:55

Ris period with high value of APE as
. @2, during uncongested and
congested traffic c ; )] shown in Table 5-2. The
authors define perio®= ' #dition and otherwise as the
uncongested conditior ‘I It is TOUN S et D ie meflhds are quite well performed
during uncongested cond‘ition but are badly performed during congested condition.

when three methods are badly==a42/4 =4
illustrated in Figunz¥%- :

Method

3 m%%m 9] um 9 m;a ]

In this study, even if the effects of detector spacing and placement are neglected, we
can not deny that these two effects seriously impact the reliability of link speed
represented by the estimation of upstream and downstream speed of the link. Length
of the 4™ link is 1941 m, which is considered a long link so that traffic data from
upstream and downstream detectors may not well represent link speed. Traffic speed
measured at detector number 4 (upstream) and 5 (downstream) were plotted and
compared with the observed link speed as shown in Figure 5-4.
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Flgure 5-4 Observed r - \ nd Downstream Detector
. Hanshin Expressway Site

Figure 5-4 shows that ! QP2 init §I®drops at 17:15 while detector
station can capture speed #p : toslnuch lag that either upstream or
downstream detector can capt @ ®0. The link length is too long to use
spot speed from upstream and. =ik 2 4 station for representing link speed
especially during cge e ; ".\ uld realize this fact when
they have to estim ‘ th low density of detector
stations similar to (%= #. detector station numbers
(reducing spacing) or "I 1€ rEliawe eCcu est j J ‘atlon using simple methods

can not be reported Wlunn thls study.

The findings i M EJ %M” ﬁawﬂ(}m three simple methods
to estimate lin rés rror under a congested
traffic condition™dut it is quite well gerformed unger an uncongesjegl condition. Most
of estimmgt t The effect of
detecttﬂ wmﬁpﬁﬁ mﬁ’l mﬂg mﬂ elﬂ t the reliability
of estlm&ed link speed using these simple methods. According to the case study, the

length of the 4™ link is too long to conduct the spot speed measured from upstream
and downstream detector stations for representing link speed.

Moreover, it can notice that capability of conventional speed estimation methods are
limited by their own algorithm. Estimated link speed using average, weighted
average, and San Antonio methods provide only the value of link traffic speed
between upstream and down stream traffic speed while simulated link speed use as
benchmark are slower than the estimated speed which conventional can approximated
based on upstream and downstream traffic speed measured by detectors.
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5.2 REAL-TIME TRAFFIC STATE AND TRAVEL TIME ESTIMATION
USING MICROSIMULATION

Traffic state and travel time were estimated by means of microsimulation. For this
part, the study site on Chalerm Mahanakhon Line, Bangkok was used. Seven road
segments were defined by 7 detection stations equipped with video image processing
camera (camera at station no.1, 4 and 8 was unavailable), starting from station no.2 to
station no.11. The three selected cug 3l methods of speed estimation as earlier

presented included average, \as nd San Antonio speed estimation
' /a wel time. However, the observed

methods were employed fomg
travel time information Ve _.-d‘ vehicles started from detector

station no.2 and finishea ™" o seven segment travel times
were aggregated into pa&an il g cicuaversed from station no.2 and
finish on station no.1 ™ ¥ LS8l by on-line microsimulation
and the three conventior g ! e 5-5.

1600 -

Morning-peak (Calit gfo: v & Evening-peak
1400 ¢————

\ 4
A
v

1200 -
1000 -
800 -

600 | AN S Rk B LRG EEEEEEEEE

Travel Time (Seconds)

400 ¥

200 {-------- | ‘ 777777777777777777777 ) ]

°6ooﬂumwmwmnw

Departure Time

T?WW TSR AT TR

1gure 5-5 Comparison of Observed and Estimated Travel Time

From Figure 5-5, travel time estimated by on-line microsimulation is quite lower than
the observed travel time from 07:00 until 09:00, higher than the observed travel time
from 09:00 until 10:00, and lower than the observed travel time during off-peak and
evening-peak period. Comparing the three conventional travel time estimation
methods, San Antonio method is quite close to the observed travel time on three
periods but it shows over estimation from 17:30 to 18:40 while on-line
microsimulation method and average and weighted average method result in
estimated travel time quite close to the observed travel time.
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In order to illustrate over or under estimation on travel time of on-line
microsimulation and the three conventional methods, estimated and observed travel
time were plotted as shown in Figure 5-6. Figure 5-6(a) illustrates that travel time
estimates by on-line microsimulation model are both under and over estimated during
the morning-peak period (06:00-10:00). Note that this data set was also used for
calibrating model parameters. During off-peak period and evening-peak period, travel
time estimates are over and under estimation respectively. Figure 5-6(b) illustrates
travel time estimation by average method in which the estimated travel time is under
estimated in all three time periods. Figure 5-6(c) illustrates travel time estimation by
weighted average method in whicty M 7 1o average method, the estimated travel
time is under estimated in all thad&" # & _Figure 5-6(d) illustrates travel time
estimation by San Antonio gz ™ 14 /-‘,timated travel time is both under
and over estimation in thiws . = 12| trend of the estimation from

Estimated Travel Time (Seconds)

Estimated Travel Time (Seconds)

the three methods is as 10 : = veriod is most of methods give
over estimation, during™®® ” R 0™ hder and over estimation, and
they give quite over esi, : Y
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Figure 5-6 Diagonal Plots between the Observed and Estimated Travel Time
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From Figure 5-6, it shows that average and weighted average method always provide
estimated travel time less than the observed travel time or under estimation because it
is the limitation of method as mention in previous part. Microsimulation model and
San Antonio provide estimated travel time on both under and over estimation
especially the estimation under congested condition.

As previously described on how under and over estimation of each travel time
estimation methods, the levels of percentage error were calculated and plotted by
departure time as shown in Fioug %8 # 4 The figure could show how much the
percentage error on each travel s %

#ethods every 5 minutes.

Figure 5-7(a) illustrates 'Zted by on-line microsimulation
deviates approximately v S\ 5006, except from 09:00 to
10:00 which the estim 8" "’ ' .arene observed travel time more
than 50%. Figure 5-7 o "waihe estimated travel times by
” ) “\\- with most of estimation are
lower than the obsers Y e 7 \ S lest error at 18:30. Figure

e £ I = \ stonio has a huge percentage
ha®ithe observed travel time at

]
AULINENINYINT
IR TN ININY
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Figure 5-7 Percentage error of travel time estimated by microsimulation and

three conventional methods
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According to the deviation of percentage error of travel time estimates as shown in
Figure 5-7, minimum, maximum, mean absolute percentage error, and MAPE
standard deviation of travel time estimates by on-line microsimulation model and
three conventional methods were analyzed and shown by three time periods in Table
5-3.

Table 5-3 Minimum, Maximum, Mean Absolute Percentage Error, and Standard
Deviation of Travel Time Estimates by On-Line Microsimulation and Three
Conventional Methods

Methods MAPE Std.
Microsimulation 28.66 23.99
Average 33.22 9.71
Weighted average 33.92 9.53
San Antonio 16.90 13.50

[l i 5 3%0):00-16:00)
Methods R\ N MAPE Std.

Microsimulatio L7.65 7.21
Average 25.92 7.75
Weighted averag® 25.21 8.31
San Antonio W 1417 9.88
‘ou (16:00-21:00)
Methods MAPE Std.
Microsimulation 16.13 8.61
Average 18.48 9.14
Weighted average -3'% ;9 , 16.82 8.82
San Antoni ' #9.31 27.35
Table 5-3(a) showssds S .ng morning-peak period
estimated by the on-I1 MICTos ras thgminimum error of -38.29%,

the maximum error 0™34.12%, a mean absolute perceériage error of 28.66%, and a
MAPE standard deviatioff 623.99%. The gstimated travel time by San Antonio is the
most accurat ﬁs}mmg ﬂmﬂ ’ﬁe maximum error of
52.66%, a me PE standard deviation

of 13.50%. el time estimatedgbetween 06: 2,2 and 10:00 u 309 San Antonio is

it ﬂﬁ“’lﬁﬂ SR TR g

Table 5- 3(b) shows that estimated travel time during off-peak period estimated by on-
line microsimulation model has the minimum error of -32.42%, the maximum error of
38.17%, a mean absolute percentage error of 17.65%, and a MAPE standard deviation
of 7.21%. The estimated travel time by San Antonio is still the most accurate which
has the minimum error of -44.23%, the maximum error of 42.20%, a mean absolute
percentage error of 14.17%, and a MAPE standard deviation of 9.88%. However, the
minimum and maximum error of travel times by San Antonio deviates greater than
those by microsimulation. Furthermore, the MAPE standard deviation of San Antonio
is higher than that of microsimulation as the error of travel time by San Antonio
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fluctuates more than the error of travel time by microsimulation during off-peak
period.

Table 5-3(c) shows that estimated travel time during evening-peak period estimated
by on-line microsimulation model has the minimum error of -36.56%, the maximum
error of -2.42%, a mean absolute percentage error of 16.13%, and a MAPE standard
deviation of 8.61%. San Antonio has the minimum error of -26.37%, the maximum
error of 158.68%, a mean absolute percentage error of 19.31%, and a MAPE standard
deviation of 27.35%. It is obviously shown that the estimated travel time using
microsimulation model is more relli N 7 San Antonio during evening-peak period.

ﬁotted as shown in Figure 5-8 in
— = ror. The errors of travel time by
microsimulation were cC' raire. ‘dmvention methods. Figure 5-8
shows that the absTWRT e ~ Sllimated travel time using
microsimulation modg v /! S M ventional methods between
09:00 and 10:00 and t' 4. , ' scror of estimated travel time
information by San, P aulation model and other
conventional methods '4 \VINRE is illustrated by compared
microsimulation with#®ie: 510 (=) WO in Figure 5-9.

Furthermore, the absolute 3
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Figure 5-8 Absolute Percentage Errors of On-line Microsimulation and Three
Conventional Methods by Departure time.
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Time Estimation Methods

horning-peak period), on-line
microsimulation for trave, I ‘e well performed. It is more
accurate than conventiona met 1 weighted average but less accurate
than C3 which has MAPE ,.:‘;, e MAPE of average and weighted
average during moryga : NV gff® than 30%. From 10:00 to
16:00 (off-peak ; 5-“ and weighted average
deviate by apprCe#s : estimation by on-line
microsimulation is lejf{jthan 288 WSS Angibio is less than 15%. From
16:00 to 21:00 (evenn.g eak period), on-line microsintalation model shows the best
performance for estimat ﬁ.ravel time witdess MAPE value than the conventional

mevecs. @ YRIVENIWEINT

From this part, 1‘! was found that my:rommulatlounodel prowde&jnore accurate and
reliabl ﬁn]n w ﬂm m(%jm . The average
and wetgh e& w ae 0 capture link
speed which carries to the estimation error on travel time estimation. During
congestion periods which is the challenge of estimation model, microsimulation
model was still shown the best method to estimate travel time even the San Antonio
method is more accurate but it is unreliable as obviously shown huge error in the

evening while traffic is uncongested. The traffic speed on detector was drop in the
evening but it was affected to the link speed during evening period.

Referring to Figure 5;
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5.3 IMPROVEMENT OF MICROSIMULATION BY FEEDBACK
ESTIMATION USING UNSCENTED KALMAN FILTER

In this part, Unscented Kalman Filter was employed to improve the accuracy of traffic
state and travel time estimate over the method of only straightforward
microsimulation modeling being previous used. Prior estimated traffic states included
traffic speed and traffic density on the seven links on Bangkok Expressway site.
Real-time traffic speed and traffic § & ¥ }gasured on seven detector stations on site
study were collected as mea #hased on feedback estimation using
Unscented Kalman Filter : és on seven links were posterior
estimated as shown in Fi® ancy FiCm——" \oreover, the comparisons of
traffic speed and traffic th= )bss simulated are shown in Figure
5-12 and Figure 5-13. ~ :

ﬂﬂﬂ?ﬂﬂﬂ?ﬂﬂl’lﬂ‘i
qmmnmummmaa
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From Figure 5-10 and Figure 5-11, the seven expressway’s links were divided based
on detector stations which are described as shown in Table 5-4. The figures present
link speed and link density respectively which compare prior estimated value using
microsimulation model and posterior estimated value using microsimulation model
with UKF improvement. It is shown that posterior estimated traffic states on
expressway segments are fluctuated along discrete time based on prior estimated
traffic states using microsimulation model only.

Table 5-4 Definition of Divided Link on Bangkok Expressway
Link No. End
Detector No.3
Detector No.4
Detector No.5
Detector No0.6
Detector No.7
etector No.9

\ :\ Detector No.10

From Figure 5-12 and a: Sisveen observed and estimated
traffic speed and traf#C f' g\ sy UARIY™ The data came from actual
traffic detector station ¢ K ’ "Ny and virtual traffic detector
station on microsimulef

~NoO o~ N -

1[5
In order to evaluate the pro oed = ila’ W tne data analysis of the previous
section, the observed trave® tn d Starting from detector station no.2
and then finishing at detector stz ’_,,,.. A oted that the route travel time (from
station no.2 to stati 0 therthan individual link travel

time comparison. gEge = 22HOn between observed and
posterior estimated & ¢ W Jigure 5-14.
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Travel Time (second)
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From Figure 5-14, Figui#s con % 1™Hn between observed and prior
estimated of travel time il == gerCinulation model. Figure 5-14(b)
shows the comparison betwetees : £ posterior estimated of travel time
information using microsimui—iss/s =/ improvement. The diagonal plot
between observed [ & " g giiormation is illustrated in
Figure 5-15 which § ‘;— :

1200 ‘ T ‘
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(a) Microsimulation (b) Microsimulation+UKF

Figure 5-15 Diagonal Plot of Observed and Estimated Travel Time using
Microsimulation+UKF
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From Figure 5-15, the diagonal plot between observed and estimated travel time is
illustrated in order to understand over and under estimation of estimation models.
Figure 5-15(a) shows a diagonal plot of microsimulation model only and Figure
5-15(b) show the diagonal plot of microsimulation with UKF improvement. It is
shown that Figure 5-15(a) and Figure 5-15(b) are quite similar which it is both over
and under estimation of travel time during the first time period (06:00 — 10:00). For
the second period (10:00 — 16:00) and third period (16:00 — 21:00), most of travel
times are under estimated.

For further evaluation analysis, a_p ge error was calculated and illustrated by
discrete time as shown in Fig

‘0 understand the magnitude of error.
Furthermore, an absolute pe; . //ﬁed in Figure 5-17.

%Error

6:00 — 2 : 21:00
y:"‘ . ;

“‘I -=— Microsimulation —— Microsim&=#ion+UKF
Percenﬁ@ Error of Trd&€l Time Information Estimated by
1

A AR TN AAE
RININIUNRINYAE
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From Figure 5-17 shows
by microsimulation and

N\, errors of travel time estimated
oy \-“mprovement are quite similar.
However, posterior estimi ] s===—— @ion is more accurate than prior
estimated. In order to summa‘ ®of estimated travel time information,
the mean absolute percentage #2824 2 4 32d as shown in Figure 5-18 by three
periods. Two mod iy v 2 of &\ APE were listed in Table
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Table 5-5 MAPESs Values by Time period from Microsimulation and
Microsimulation+UKF (%)

Period
Model 06:00 — 10:00 10:00 — 16:00 16:00 — 21:00
Microsimulation only 28.66 17.78 16.13
Microsimulation+UKF 28.53 17.54 15.67

Table 5-6 MSE Values by Time period from Microsimulation and
Microsimulation+UKF

Period

Model £0:00 - 16:00 16:00 — 21:00

Microsimulation only

' 405713.28 5478.63
Microsimulation+UKF —0) 7() 5356.91

From Table 5-5, microsimy 20 (ravel time information during
period of 06:00 — 10 N ™00 with MAPE of 28.66%,
17.78%, and 16.13% ; S Sscosimulation with UKF can
improve the accuracy*Si \ ...ation with microsimulation
model only. The val: _ , A0, and 15.67% for the three
period of time respecfive g e (4 LI usihg UKF can improve travel
time information which ‘mags jon model with 0.13%, 0.25%,

\ ‘ LL L.JAAE& “L“A A

% Difference

Am ki s

Departure Time

Figure 5-20 Difference of Estimated Travel Time between Microsimulation and
Microsimulation+UKF

From Figure 5-20, it shows the difference of estimated travel time between
microsimulation and microsimulation with UKF improvement. It is shown that
difference of 23% occurs between 07:00 and 08:00. Other differences are in the range
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of 10%. It can imply that Unscented Kalman Filter was large improved prior
estimated travel time by microsimulation model during congested periods which the
difference between observed and estimated speed on detector station are large. In
contrast, a small improvement during uncongested periods because of the difference
between observed and estimated speed on detector station are small.

However, Unscented Kalman Filter can help a bit improvement of the accuracy on
travel time provided by microsimulation model. The Unscented Kalman Filter could
help a big improvement if the measurement equation is changed to be a travel time
instead of point flow and speed. Th ~gprobe vehicle data is required in this case
in order to receive the observe \ F ¢ time which it is interest to improve
the proposed method in the =% 4 # vehicle is available in practice.

‘ slied relied on estimated travel
time provided by «#Cr 24 md NS Msimulation  with  accuracy
improvement by Unse . efined four scenarios were
repeated as follows.

. Scenarifl: VAT Wiy the route travel time which
20, 1Cro il tion.
. Scenario 2: 2 === otj W using the route travel time which
limGlation with UKF improvement.
time prediction of estimated travel
| Bon @ each segment
o Scers= = ction of estimated travel
A ,.ith UKF improvement by

H | i
v i¥

Due to four scenarios, tWaesimple statistic @ethods including simple moving average
and exponent ﬁiﬂ ﬁﬂﬂ@lﬂ&dﬂﬂﬁredict travel time by
considered theltj i t stirated itr ime results were shown by

~ AEIAMASA UM INNAE

Due to the study of applying simple moving average of N time steps for predicting
travel time, it was found that four scenarios are not show significant difference in the
accuracy when compare with observed travel time. The time series data patterns of
estimated travel time on Bangkok expressway site was fluctuated along the evaluation
period especially during congestion period which time series data pattern is rapidly
changed. From 06:00 until 09:00, the estimated travel time on test section was
showed positive slope or the travel time was increased due to traffic congestion.
From 09:00 until 10:00, the estimated travel time on test section was show negative
slope or the travel time was decreased according to the recovery of traffic condition
after congestion period. After 10:00 until 21:00, estimated travel time was showed

° Scenario 3;
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neither positive nor negative slope which can implied that estimated travel time in this
period are constant mean with varying noise by discrete time.

Based on the changing of time series pattern of estimated travel time as earlier
mention, the N value was highly concerned in order to capture the changing of time
series pattern of estimated travel time. The N values of 2 until 6 were conducted to
determine the proper N value and understand the effect of N value and responsive
change of time series pattern of estimated travel time.

Observed travel time was used to Cx gith four scenarios to show the magnitude
of accuracy which mean sau ean absolute percentage error were

calculated and summarize iz ™S %-vhich are 06:30 until 10:00, 10:00
until 16:00, and 16:00 unt -7.

auvaean Absolute Percentage

rat® © solute Percentage Error

06:30-10:00 | 10:00-16:00 | 16:00-21:00
MA(2)| 59386.47 Z 18.04 16.09
MA(3)| 59628.54 18.56 16.06
MA(4)| 59823.98 19.09 16.01
MA(5)| 60211.33 - 19.53 15.97
MA(6)| 60801.68 W22 20.03 15.93

- 1tion+UKF

Mean Squan ‘5, " Mean Absolute Percentage Error

06:30-10:0% 1AM (A £0-00,~10:00-16:00 | 16:00-21:00
MA(2) | 58821 38— :_. 17.79 15.59
MA(3)| 59042.66 v 3 18.30 15.56
MA(4)| 59359.74 Fi§ 82058 . 18.84 15.52
MA(5)| 59801.10  8792.36 5241.07 29.95™ 19.28 15.49
MA(6)| 60483.10 0382 6 5220.6Gy0 29.70 19.76 15.44

2 $Cin Q- I QRGN @ CAfenoS

nde ¢ Elrre - o sbiu@ Percentage Error

06:30q!0:00 10:00-16:00 : : 10:00-16:00 | 16:00-21:00
M . ! : il : 16.09
MAH | 59824.12 8221.43 5413.19 30.17 19.09 16.01
MA(5)| 60211.54 8804.39 5400.16 30.12 19.53 15.97
MA(6)| 60801.90 9444.54 5387.67 30.22 20.03 15.93

Scenario 4: Microsimulation+UKF (by segment)

Mean Square Error Mean Absolute Percentage Error

06:30-10:00 | 10:00-16:00 | 16:00-21:00 | 06:30-10:00 | 10:00-16:00 | 16:00-21:00
MA(2)| 58820.30 7061.90 5304.90 30.52 17.79 15.59
MA(3)| 59041.51 7622.94 5274.85 30.44 18.30 15.56
MA(4)| 59358.75 8204.70 5259.39 30.12 18.84 15.52
MA(5)| 59800.23 8792.36 5240.79 29.95 19.28 15.48
MA(6)| 60482.28 9382.66 5220.38 29.70 19.76 15.44
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From Table 5-7, it shows that mean square error and mean absolute percentage error
of four scenarios are not significant different. From 06:30 until 10:00, mean square
error is increased when the N value is increased which the N value of two is shown
the smallest value of mean square error in every scenarios. From 10:00 until 16:00,
mean square error is also increased when the N value is increased which the N value
of two is also shown the smallest value of mean square error in every scenarios. The
last period from 16:00 until 21:00 is shown that the mean square error is decreased
when the N value is increased which the N value of six is shown the smallest mean
square error based on this analvs: #gerved and predicted travel time of four
scenarios was illustrated as sho:

AUEINENINYINS
RN ITUUMING AT
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Figure 5-21 Observed and Predicted Travel Time by Scenario 1 and Scenario 2

using Simple Moving Average
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Figure 5-22 Observed and Predicted Travel Time of Scenario 3 and Scenario 4

using Simple Moving Average

the magnitude of prediction error in

Due to the predicted travel time of four scenarios

23 and Figure 5-24 to present the

second were calculated and illustrated in Figure 5-

variation of prediction error by discrete time series.
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Figure 5-23 The Travel Time Prediction Error of Scenario 1 and 2
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Figure 5-24 The Travel Time Prediction Error of Scenario 3 and 4

From Figure 5-23 and Figure 5-24, it shows the variation of prediction error for four
scenarios which during the first congested period from 06:00 until 09:00, it is shown
that prediction errors are fluctuated from over estimated of 200 second and under
estimated of 300 seconds. From 09:00 until 11:00, the traffic congestion is relieved
which estimated travel time is decrease across time. The prediction error is over
estimated about 400 seconds. After 11:00 until 21:00, the prediction error is under
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estimated which fluctuated from 0 to 100 seconds. However, prediction error of
scenario 2 and 4 about 08:00 are different compared with scenario 1 and 3 which it
can implied that individual prediction by each segment provide different prediction
value. It can capture individual pattern of estimated travel time in each segment and
then reflected the total route travel time differ from the prediction which relied on
total of estimated travel time.

From the finding of applied simple moving average for predicting travel time, it can
concluded that scenario 4 or the sum of the travel time prediction of estimated travel
time using microsimulation with_L{. & § p-jgrovement by each segment shows more
accuracy than other scenarios st 4> of two is proper for the congested
traffic period but N value 258 : uncongested traffic period. The
benefit of uSiNg ScenariCwmmmm refloct == travel time if there are some

Due to the finding o«#dr F L L NS eMe for predicting travel time
using time series data g - AN by microsimulation model,
the patterns of estim:##€d 4 e (=R 3 N, eMier described. The optimal

a values were analyzec g (M ' 0% mean square error relied on
"he mean square error was

calculated by compared ' ## . ,' Uind %5 W8own in Table 5-8.
Table 5-8 Mean SquaL c . ' Tiavel Time of Four Scenarios
Period Scenario 1 ; 9 . Scenario 3 Scenario 4
06:10-10:00 5649 JGI il a 26344.08 56482.49

10:00-16:00 5 '+‘\: 17 4523.74
16:00-21:00 'Vg 27 1594.91

I ™
|

From Table 5-8, it siows the mean square error of {‘edicted travel time of four
scenarios performed in #hessame direction @bkt the first period 06:10 until 10:00 has
highest value rﬁﬂ%ﬂﬂﬂﬁe“ ﬁ’s}‘fﬂrﬁvalue of mean square
error at the lastip 6%00F Unti 21.:00* ekd thel medh square error of four
scenarios, it car"imply that scenarig 2 provides smallest value o‘)nean square error
compa ik i 1 y . rp 3 has smallest
value Mﬁﬁﬁﬂmmmﬁﬂm ﬁﬁ 0 until 16:00.
Scenaridi4 has smallest value of mean square error compared with others scenarios
during 16:00 until 16:00.

In order to illustrate observed and predicted travel time, it was plotted and illustrated
as shown in Figure 5-25 and it was calculated to understand the magnitude of
prediction error across discrete time as shown in Figure 5-26.
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Figure 5-26 The Travel Time Prediction Error of Four Scenarios

From Figure 5-25 and Figure 5-26, it shows that a huge error occur between 09:00
and 10:00 which over estimation of 400 second on every scenarios. The travel time
prediction using microsimulation model improved by Unscented Kalman Filter
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(scenario 4) show less error than others scenario especially after 12:00 which is
uncongested period.

In this part, it was found that moving average with two time step or MA(2) provided
by microsimulation with Unscented Kalman Filter improvement by segment is shown
the lowest mean square error in all periods. The time series of travel time was
fluctuated and changed quickly by time discrete.

In the case of travel time prediction using exponential moving average, the
microsimulation with Unscented Kg & § jilter improvement (scenario 2) show the
smallest value of mean squ $)6:10 until 10:00. The travel time

prediction using the micros; )}ment shows the smallest value of
mean square error duringes ;™ icrosimulation with Unscented
Kalman Filter improveri “=Smallest value of mean square

ws the performance over the

error. Moreover, the @
moving average.

I
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CHAPTER 6

CONCLUSION AND RECOMMENDATION

Due to the drawback of using travel time calculation by speed base and flow base for
approximating traffic state and travel time information on expressway section using
traffic data measured by traffic detection system. The accuracy of estimation is
depending on the number of equintg 3 tnrs on road section. The more detectors

. However, the accuracy improvement
)ut it requires much more budget.

In order to overcome the M— thig stt_.-ﬂoposed an alternative method to
estimate traffic state alm tin insmm for short-term prediction on
expressway section. y 3 | 00T software was proposed to be
a real-time Microsimi g ) S Osate and travel time estimator

instead of practical calc: 0 , wasscopic traffic flow model.

In order to develop mir — iCste and travel time estimation,
four objectives were #€fi S “hdc®lop a combinatorial model
parameter calibration : iiMlation model using genetic
algorithm. Second, to#e: * o 4 Lirne traffic state and travel time
imati i i { ' Unscented Kalman Filter to
improve the accuracy of rz S8 tj| ) information estimated by on-line
microsimulation model. -te’'n prediction for OD travel time
information.

In order to accompyga s 2 2signed according to four
objectives which th& 7% A J

8 l'l
Developm ‘I of microsimulation model & real-time traffic state and
travel time esurm:uon

' ﬂ?ﬂﬂ“&%ﬁﬂ? PTG e v

short term travel twne predlctlon

F.rsmammmmwmm T L

travel tfme estimation consist of two sub module inside which were the
microsimulation modeling and model parameters calibration. In this study,
microsimulation modeling did not strict to any software package of microscopic
traffic simulation. Any software can employ to use as an on-line microsimulation
model if it has the capability to operate as on-line estimator. For the model
parameters calibration, genetic algorithm was introduced in this study to calibrate
model parameters which the further development for on-line calibration is considered.

Second module, the development of real-time traffic state and travel time estimation
using microsimulation model has two sub modules. The first sub module was the
using microsimulation only to estimate traffic state and travel time. Three
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conventional methods conducted in practices which are the methods using for
approximating link speed based on traffic speed measured from upstream and
downstream detectors. Three conventional methods were average, weighted average,
and San Antonio which it was compared with the estimated travel time provided by
microsimulation model. The comparison of conventional methods and
microsimulation model were presented to understand the performance in order to
estimate travel time on both uncongested and congested traffic condition on
expressway corridor. In order to enhance the accuracy of traffic state and travel time
information which prior estimated using microsimulation model, the accuracy

improvement using feedback estima# i Unscented Kalman Filter was developed
in order to give posterior estin \ F #and travel time information. Traffic
state and travel time inforns '//-mated using virtual and observed
traffic speed and traffic —e.d from traffic detectors both

simulation model and ™™ : estimated travel time using
microsimulation  only™=&® e T Unscented  Kalman  Filter
Improvement Were COQigs® AN uch the Unscented Kalman
Filter can improve the a7 g . .

The final module, the 4 Lo adiction was introduce simple
methods which the n Al ™ lement and proper with the
“\microsimulation model and
ioviment. Two simple methods
average. Four scenarios were
designed for experimental =0 G rritine the suitable approach and
method to use for predicti®y : The predefined four scenarios
were designed as follows.

e Scenariggad T, £ route travel time which
\7 RY |
e Scenario 2 ;l il the route travel time which
. estimated by micosimulatiddwith UKF improvement.
o Scenario 3 ¢ oS Sum of the tra time predlctlon of estimated travel time

: &;&]M 4 ’Eﬁﬁﬂﬁﬂ ﬁ.ﬂ?ﬁﬁﬁ?iﬁémmd waveltime

using microsimulation with UKF |mprovement by each

o ) sl Anengs, ..

accomplish the objectives of this study were as follows

e Combinatorial model parameter calibration using genetic algorithm.

e Comparison of link speed estimation based on point detection system on
expressway

e Real-time traffic state and travel time estimation using microsimulation.

e Improvement of microsimulation by feedback estimation using Unscented
Kalman Filter

e Study short-term travel time prediction.
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The conclusion and recommendation of five experiments were discussed as follows.

e Combinatorial Model Parameters Calibration using Genetic Algorithm
for Microscopic Traffic Simulation Model

Two key model parameters including mean target headway and mean driver reaction
time were optimized to yield the optimal parameter calibration. The calibration used
genetic algorithm instead of conventional model parameters calibration procedure.
Matsubara line on Hanshin expressway in Japan was selected as the site study and this
section was modeled on PARAN J ynulation suite. The calibration process

using genetic algorithm opts " //'/IICS microsimulation suite could
sely © /4- g with the observed traffic data

although only 20 generss ENEIC A 0CESS Were conducted in this

study. The MAPE c7 thonal generations of genetic

algorithm process.

However, this study 4t ¢ e el f several model parameters
that PARAMICS microgf fe N rBiust to yield the best fit with
local conditions. The Nipyr= N D& ccrued when calibrating all
these parameters. Ther ; W%t simulated traffic model can
provided goodness of # 200" parameters as shown in this
study.

For the future study, addi .onk"'--'a :
find the optimal combination o ‘;,.—
the actual traffic. The f "9 J,u

be developed withig

brs*should be considered in order to
ars to get simulation model closest to
gaeticalgorithm optimizer would
Z=4lue representative, others
selection method, ¢ V A ) he investigation on these
optimization procedury (U9 r,utc Ton performance. Moreover,
different fitness funcis might be tested to get severddsets of combinatorial model
parameters. The validagigq with differeng sets of observed traffic data should be
processed wrm ﬂ'ﬁl m w f11 oreover, automated
parameters op ﬁ ﬂeﬂd ﬁv ﬂ a\a”li\/l eadjust the simulation

model when ct S|stency checklng module could check the excess error between

observ ly close to the
real ne ;11 on-line model
parametey's callbra |on usmg g netic a gorl hm iSc aI enge In the future study in order

to callbrate on demand or predefined criteria on consistency checking module which
application programming interface (API) is required.

e Evaluation of Link Speed Estimation based on Point Detection System on
Expressway

Traffic speed on expressway especially link speed is an important traffic parameter
that traffic operators are required. Traffic detectors such as loop detector, ultrasonic,
infrared, and video image processing are conducted on expressway operation system
in many countries. There are several limitations of this equipment such as detector
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station spacing, detector placement, and aggregation time interval. Traffic analyzers
should realize these limitations when analyze traffic parameters using traffic data
measured by these traffic detection system. Especially, simple methods that are
normally used to estimate link speed using upstream and downstream speeds
measured on both side of the links.

The findings in this study illustrate that the weakness of using the three simple
methods to estimate link speed on expressway are mainly large error under congested
condition but it is quite well performed under uncongested condition. Most of
estimated link speeds during contg jeriod are overestimated. The effect of

detector spacing and placemeig F & 4 serious factors that impact with the
jods According to the case study,

reliability of estimated link 5 _
the length of the 4™ lin: ronn to _...-ﬂthe spot speed measured from

upstream and downstrea st lon’ “«%ntmg link speed. However,
average, weighted aveir®g< A ve their own limitation based
on the calculation becz g _ S alink speed less than the value
of traffic speed measur” Y/ /i : detector while simulated link
speed is smaller. 'a#Tie g CoRc L\ NRITSs can not capture a good

estimated link speed Wl"' - - N e travel time estimation.

For the future study, th 4 ;'ﬁ' : \1%on method could improve the
reliability of estimatec®ir = % %hd downstream detector data
ST ys. Improved methods should
be uncomplicated to inip! £ de %tor density improvement is the
suitable solution but it is a 24 . 1 Iifrastructure. The benefit of using
these kinds of traffic data and .HJ hat expressway operators have to be
traded-off. Another_solutig@i===" ity of estimated link speed is the
application of integs4 4=<Jitomatic vehicle location
(AVL) and automaty X Jehicle equipped GPS unit
and toll tag readers iredase *c miveral techniques to integrate
these ITS data with t ‘existing geteCor L Improve tid reliability of estimated link
speed.

: Mmﬂummﬁmm El’}mmmm

Travel arameters that

are reﬁ % ﬁr CQ’ Frgae such as loop
ultrason c, infrare V|deo |ma

detectorg proCessing” are. employed on
expressways in many countries. There are several limitations of these kinds of
equipment such as detector station spacing, detector placement, and aggregation time
interval. Traffic analyzers should realize these limitations when analyzing traffic
parameters using traffic data measured from these traffic detection arrangements. The
travel time estimation can be inaccurate when it is estimated on a segment with low
density of point detectors, or long segment length, using conventional methods that
are normally used for estimating segment speed using upstream and downstream
speeds measured at both ends of the segment.
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On-line microsimulation is found to be a good method for estimating travel time. The
findings in this study illustrate that the on-line microsimulation model is quite well
performed. Nonetheless, a closer look at the estimation shows that this method gives
under and over estimation during morning-peak period and under estimation in both
off-peak and evening-peak period. MAPE values are calculated for three periods
which are 28.66%, 17.65%, and 16.13% respectively. These values can be compared
with those from three conventional methods; average, weighted average, and San
Antonio. MAPE values on three time periods imply that San Antonio is the most
accurate method during both evening-peak and off-peak-period with a MAPE value
lower than 20%. Microsimulation i Y +he best performance for estimating travel
time during evening-peak perigy , nio has a huge over estimation in this
period while on-line mlcro<' ' je, and weighted average are more
accurate.

Moreover, it could be / \QI time using microsimulation

Ireert Ligdve

is the most reliable ri g ional methods in this study.
MAPE value of travel t* A ion is comparatively low in the
first period and then 5 e 1 Qo1 he values of MAPE by San
Antonio vary by time #%14 = \ table. The algorithm of San
Antonio is highly sen#®iv g5 NS &F W 1™em value of measured traffic

speeds between upstrear A C SU8on. Travel time estimation by
San Antonio is easily == ta % " Wcl] decreases especially at the
location where detector (g i >C UNying area. Spot speeds at ends
of the segment are not a yo Enee Warnd thus resulting in less accurate

travel time. However, dete# kit < 2 1ei™ is another suitable solution but it
is a huge cost to invest on infraZ===— 7 henefit of using these kinds of traffic
data and investment cost thager == s Bave to be traded-off.

For the future study\Z X J e microsimulation should
be further improvead 1 SUemt estimation using filtering
techniques and by me . I reflnemem o1 model parameid's for specific periods. The
improved methods shoulg uncompllcate‘i}o implement in practice. Furthermore,
the study to i integrated intelligent
traffic detectﬁﬁg% mﬁﬂﬂ?lﬁﬁ”d automatic vehicle

|dent|f|cat|on (AVI). Traffic data athering by these detectors could be combined

O N AL

. Feedback Estimation using Uncented Kalman Filter to Enhance Traffic
Information provided by Microsimulation Model

From the numerical result, it was shown that feedback estimation using Unscented
Kalman Filter can improve the accuracy of travel time information which prior
estimated by microsimulation. MAPE are 28.53 %, 17.54%, and 15.67% by three
period of time respectively. It could be said that feedback estimation using UKF can
improve travel time information which prior estimated by microsimulation model
with 0.13%, 0.25%, and 0.46% at three period of time respectively on Bangkok
Expressway site study which have low density of traffic detector stations.
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For the direction of future study, the accuracy of travel time information could be
improved if mobile traffic data such as GPS probe data or cellular probe data are
available in real-time basis. It could be used as measurement variables in order to
improve prior estimated travel time estimation provided by microsimulation model. It
maybe increases the accuracy of travel time information on expressway section.
However, this mobile traffic data is unavailable in practice on Bangkok Expressway
in Thailand.

e Travel Time Prediction

In this study, travel time / / time series of travel time which

provided by difference sCommm—"re °na i difference prediction methods.
Two prediction methods V' : fera onential moving average which
are the simple and ezﬁ/ NS e series data that provided by
microsimulation modsg . LS srage with two time step or
MA(2) provided by mi-

segment is shown th
travel time was fluctuat 4

smI%alman Filter improvement by
aieriods. The time series of
Isliscrete.

In the case of trave' ‘e M gential moving average, the
;ovement (scenario 2) show the
: _ 158ntil 10:00. The travel time
prediction using the micro: = / s. Wnent shows the smallest value of
mean square error during "he®microsimulation with Unscented
Kalman Filter improvement by—=— the smallest value of mean square
error. Moreover, the expauet === hows. the performance over the
moving average. " - -

- 2

For the future study, .I e i -. | measured in order to under
stand the seasonal or =tern of travel time which it co 5] ‘conduct to develop accurate
travel time prediction mp |n both shortUm and long-term basis. The long-term
travel time p nagement system that
traffic operatﬁwq %ﬁ]bﬂrﬁ ﬁaﬁw@nﬁt plan to operate the

expected trafficlkate which will oceyr in the near future.

= QRN UR IR e
it was cgvel ased tr teristiC on" expre y corridor. If the

application of large network is required, the advance origin and destination flow
estimation and also traffic assignment should be considered which is more
complicated and challenge for the future study.
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