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CHAPTER I 
INTRODUCTION 

 
1.1 General 

 There are many deterioration mechanisms affecting reinforced concrete (RC) 
structures. Fire accidents on building are the one that cause severe damages to 
structures and frequently occur all over the world. Those critical actions can diminish the 
concrete strength, reduce bond strength between concrete and steel reinforcement, 
and create damages at concrete surface. Thus, those reinforced concrete structures 
after fire cannot be effectively used as it was. Nowadays, new technologies and 
materials for strengthening purpose have been invented to repair or improve the 
performance of structures. Consequently, the structural strengthened using Fiber 
Reinforced Polymer (FRP) is one of the popular solutions because of its high strength-to-
weight ratio, high corrosion resistance, and high energy absorption. Due to the 
mentioned properties, they lead to site handling, durable performance, reducing labor 
cost and less interruption of existing service. FRP can be attached with RC beams and 
RC columns in various configurations in order to increase stiffness and strength of 
members. However, from previous researches, the way to use FRP efficiently depends 
on bond behavior which is important to a whole behavior of member. Accordingly, the 
assumption in this research is that the effects of fire may change bond behavior 
between FRP and concrete after fire.  

 This research focuses on the effects of fire on interfacial bond behavior in order to 
model the interfacial stress-slip relationship of FRP to concrete after fire exposure 
condition, which is controlled by standard temperature-time curve of ASTM E119 [17]. 
To accomplish this, the strain distribution on FRP attached to damaged concrete surface 
will be obtained from the modified pull-out test and three parameters will be varied; 
concrete covering, exposed time to fire and bond length. Concrete specimens with 
dimension of 10x10x50 cm and varied covering between 1 to 3 cm will be burnt with 
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different time exposures (0, 45 and 90 minutes) and bonded with Carbon Fiber 
Reinforced Plastic (CFRP) by epoxy material before the pull-out test. The interfacial 

stress-slip relationship (-S model) of reinforced concrete after fire exposures and CFRP 
which includes the effects of concrete covering, exposed time to fire and bond length 
can be derived from the results of pull-out test by modifying the existing models for RC 
members without fire exposure. Finally, the proposed model will be conducted to show 
the effect of fire on bonding behavior of reinforced concrete after fired and CFRP plate. 
 
1.2 Research Objectives 

1. To study the effects of fire exposure time, concrete covering and bond length on 
interfacial bond behavior between reinforced concrete after fire exposures and 
Carbon Fiber Reinforced Plastic (CFRP). 

2. To model the interfacial bond stress-slip model (-S model) of reinforced 
concrete after fire exposures attached to Carbon Fiber Reinforced Plastic 
(CFRP). 

 
1.3 Scopes of Research 

1. The installation and testing of fire exposure is operated under ASTM E119 
standard [17]. 

2. The strengthening design of Carbon Fiber Reinforced Plastic (CFRP) is operated 
under ACI-440.2R-02 specification [2]. 

3. The installation of CFRP on concrete surface is operated under the standard of 
the department of public works and town & country planning (DPT 1508-51 
standard). 

4. In this study, only the plate-end debonding failures are considered. 
5.  The interfacial bond behavior between reinforced concrete after fire exposures 

and Carbon Fiber Reinforced Plastic (CFRP) are considered under the effects of 
fire exposure time, concrete covering and bond length. 

6. The load test is operated under room temperature. 
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Table 1 Typical mechanical properties of Glass Fiber Reinforced Plastic (GFRP), Carbon 
Fiber Reinforced Plastic (CFRP) and Aramid Fiber Reinforced Plastic (AFRP) with fiber 
volumes of 40 to 60 % [2] 

Unidirectional 
advanced composite 

materials 

Density 
(kg/m3) 

Longitudinal tensile 
modulus 
(GPa) 

Tensile Strength 
(MPa) 

Glass fiber/polyester 
GFRP laminate 

1200-2100 20-40 520-1400 

Carbon/epoxy 
CFRP laminate 

1500-1600 100-140 1020-2080 

Aramid/epoxy 
AFRP laminate 

1200-1500 48-68 700-1720 

 
2.2 Bond Strength Models 
 From several bond strength models proposed by former researches can be 
classified into three categories and developed for both steel plates and FRP plates as 
empirical models, fracture mechanics models and design proposals.  
 

2.2.1 Empirical Models are derived based on the regression of test directly as 
shown in Tables 2. 
Table 2 Review of the empirical models  

Researcher Model Equation Remark 

1. Hiroyuki and 
Wu [3] tested the 
specimens by 
double shear on 
RC member 
which 
strengthened with 

τ 5.88 .            , MPa 2.1  U = average bond 
shear stress at failure  
 L = bond length 
(cm) 
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Researcher Model Equation Remark 

Carbon Fiber 
Sheet (CFS). 

2. Tanaka [4] τ 6.13 ln                , MPa 2.2  L = bond length 
(mm.) 

3. Maeda et al. [5] 
developed the 
stronger model by 
considered the 
effect of effective 
bond length 

τ 110.2 10    , MPa 
L . .             ,mm 

2.3a 
2.3b 

 Ep = elastic modulus 
of the bond plate 
(MPa)  
 tp = thickness of the 
bond plate (mm) 
 For 2.3b, noted that 
Eptp is in GPa-mm. And 
this model certainly 
valid if L < Le 

  

From equations 2.1 and 2.2, the ultimate bond strength of the joint PU is referred by U 

multiplied by width of plate bp and length L of bond area. However in equation 2.3, the 

determination of the ultimate bond strength of the joint PU is presented by U multiplied 
by width of plate bp and effective bond length Le 

 
 2.2.2 Fracture-mechanics-based Models are directly represented in bond 
strength, Pu as shown in Tables 3. 
Table 3 Review of the fracture-mechanics-based models  

Researcher Model Equation 

1. Holzenkämpfer 
[6] 
 investigated the 
relationship to find 
out the bonding 
strength between 
steel and 
concrete by using 

P

	
0.78b 2G , if L L

0.78b 2G
L
L

2
L
L

				 , if	L L
 

L 	 	                            ,    mm 

G 	 	               ,    N 
mm/mm2 

2.4a 
 
 
 

2.4b 
2.4c 
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Researcher Model Equation 

nonlinear fracture 
mechanics 
(NLFM) 

k 	 1.125
2 /
1 /400

 

Remark       Eptp is in MPa-mm, PU is in N, fctm is an average surface tensile strength of 
the concrete from the pull-off (MPa) and cf is a constant defined in a linear regression 
analysis from the double shear test or similar tests. Moreover the parameter kp is a 
geometrical factor related to the width of bonded plate bp and concrete member bc (mm) 

2. Täljsten [7] 
also developed 
the model by 
NLFM  

P 		 	
2
1 ∝  

 

∝ 	 	   

2.5a 
 
 

2.5b 

Remark  
 Ec is the elastic modulus of concrete member 
 tc is the thickness of concrete member 
 In this model, the determination of Gf is not clearify. 

3. Yuan and Wu 
[8] 
1) Studied bond 
FRP and concrete 
by using linear 
elastic fracture 
mechanics 
(LEFM) 
 
 
 
 

 

P 	
2
1 ∝  

 

∝ 	   

 
 
2.6a 
 
2.6b 
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Researcher Model Equation 

2) Yuan et al. [9] 
also used 
nonlinear fracture 
mechanics 
(NLFM) and 
obtained fives 
shear stress-slip 
relationship 
(Figure 2). The 
closest to reality 
one is as shown in 
Figure 2d which is 
derived to be the 
model. 

 

P 	   

Which a is solved by 

 tanh λ L a 	 	tan  

	λ 	 1  

λ 	 1  

Furthermore, the Le  also given as follow 

L 	 	
1
2

ln
tan	
tan	

 

	
1
sin 0.97  

 
2.7a 
 
2.7b 
 

2.7c 
 

2.7d 
 
2.7e 
 
2.7f 

4. Neubauer and 
Rostásy [10] 
 tested the sets of 
CFRP to concrete 
joints by double 
shear tests  

From the shear-slip model Figure2d and the fracture 
energy can represent the Gf as 

G 		 	   

 

Instead of Cf with 0.204 mm. and modified the formula 
2.4a into  
P

	
0.64k b 																									, if	L L

0.64k b
L
L

2
L
L

			 , if	L L
 

L 	 	
2

 

 

 
 

2.8 
 
 
 
 

2.9a 
 
 

2.9b 
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Researcher Model Equation 

Remark  
 Consequently, Equation 2.9a and 2.9b can use for both steel and FRP plates. 

Units of all parameter in equation 2.9 can be used the same as equation 2.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Shear-slip models for FRP bonded to concretes 

 
 2.2.3 Design Proposals Models are as shown in Table 4. 
Table 4 Review of the design proposals models 

Researcher Models Equation Remark 

1. Van Gemert 
[11] suggested 
the design model 
which assumed 
from a triangle 
shear stress 

P 0.5         , MPa  2.10  From this design 
proposal, implies that 
no matter how much 
load P increases, plate 
can be carried out via 
adequately long 
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distribution (stress 
is linearly 
diminishing from 
the loaded end to 
free end) 

bonded joint. So this 
equation is misleading 
to the concept of FRP 
that is even though the 
bond lengths are 
extended, the strength 
can’t increase.  

2.Chaallal at al. 
[12] assumed that 
the average 

stress (u) is a 
half of the 
maximum shear 
stress 

( ),wh
ich not more than 
the Mohr-
Coulomb strength 
equation from 
Varastehpour and 
Hamelin [1] 

τ 	             , MPa  

τ 	
2.7

1 tan 33°
 

 

k 	 	
4

 

	   

 
 

2.11a 
 
 

2.11b 
 

2.11c 
 
 
 

 Ea = Modulus of 
elasticity of the 
adhesive 
 ba = Width of the 
adhesive 
 ta = Thickness of the 
adhesive 
 Ip = Second moment 
of area of the FRP 
plate 
 Disadvantage is that 
the model does not 
consider the concrete 
strength and effective 
bond length.  

3. Khalifa et al. 
[13] proposed 
model by adding 
the effect of 
concrete strength 
into Maeda et al. 
[5] 

τ . ′
42

2
3

,MPa 

 

 

2.12 
 Ep tp is in MPa-mm.  
 Effective bond length, 
Le, can calculate from 
equation 2.3b. 
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2.3 Derivation of Bond-Slip Models 
 From previous study, bond-slip models are developed from various methods. 
However, three derivations that were considered as a primary model in this study are 
described as following. 

2.3.1 Derivation from combining fracture-mechanics-based models with 
experimental data 
 Chen and Teng [24] accumulated the test results from their experiments, 27 of 
FRP and 23 of steel as strengthening materials, to predict by models reported by other 
researchers and observed that the predicted values did not fit well with the test results 
as shown in Table 5. Consequently, they proposed a new model to represent the 
relationship of bond strength. 
 From Table 5 it has shown that the first four models show the abundantly 
underestimated bond strength because the effective length is not considered while the 
fifth and sixth models give more reasonable results. However, Khalifa’s model [13] still 
have drawback greater than Neubauer and Rostásy’s model [10] since the greater 
coefficient of variation and the underestimated bond strength. Another drawback of 
Neubauer and Rostásy’s model [10] is using of the average surface tensile strength of 
the concrete from the pull-off ( ), which obtained from particular test, instead of the 
readily parameter as concrete strength ( ).   
 
Table 5 Bond strength ratio between test results to predicted results [24] 

Source of model FRP plates Steel plates All plates 

Ave Std CoV 
% 

Ave Std CoV 
% 

Ave Std CoV 
% 

Hiroyuki and Wu [3] 2.87 0.95 33 3.85 1.18 31 3.24 1.09 34 

Tanaka [4] 2.92 1.65 56 5.51 5.30 96 4.02 3.96 99 

Van Gemert [11] 2.19 1.12 51 1.64 0.57 35 1.91 0.96 50 
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Source of model FRP plates Steel plates All plates 

Ave Std CoV 
% 

Ave Std CoV 
% 

Ave Std CoV 
% 

Chaallal et al. [12] 1.81 0.89 49 1.68 0.70 42 1.71 0.79 46 

Khalifa et al. [13] 1.07 0.24 23 0.76 0.26 34 0.93 0.29 31 

Neubauer and Rostásy[10] 0.82 0.15 18 0.65 0.09 13 0.74 0.15 20 

Chen and Teng [24] 1.05 0.18 17 0.94 0.11 12 1.00 0.16 16 

Remark Ave = Average, Std = Standard deviation, CoV = Coefficient of variation 
  
 Accordingly, Chen and Teng proposed the modified model from Yuan et al. 
model [9] under the following assumption; 

 Use the triangular shear-slip model in Figure 2b as the representation model 

instead model in Figure 2d because the typical slip values at peak shear stress (1) is 

0.02 mm smaller than f , where f is 0.2 mm. 

 The stress distribution is non-uniform across the section of concrete member 
because the effect of bp and bc. If the bp is smaller than bc, it causes greater shear 
stress at interfacial at failure and leads to non-uniformity in stress distribution across the 
width of concrete member. 

Therefore, the model is proposed as follows; 

 

   P 0.427	   , N   (2.13a) 
  

   β
1																																								if	L L
sin πL/ 2L 														if	L L

  (2.13b) 

 

   β 	
⁄

⁄
     (2.13c) 
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   L 	 	      , mm   (2.13d) 

  
  which  fc’  = the compressive strength of cylinder concrete at 28 days. (MPa) 
      is in MPa 
    L , b  are in mm 
         

 Rewrite the equation 2.13a to be the term of the stress in the boned plate at 
failure by substituting equation 2.13d and σ ⁄  ; 
 

   σ 0.427	 0.4   (2.14) 

 
  where,   = the compressive strength of cube specimen which is  
1.25   
 From equation 2.14, when the bonded plate attained the high stress is desired, a 
high modulus of elasticity and a small thickness of the bond plate should be necessary. 
The ratio of the stress in the plate at failure to the tensile strength of plate is presented 
by 
  

   
. 	 . 	   (2.15) 

 

 From equation 2.15, when comparing two types of FRP that have close ultimate 
strain, the thin plate with a low elastic modulus should be manipulated for making the 
better tensile strength of the bond plate while the required strength is also 
accomplished. 

2.3.2 Derivation from Simple Equation corresponding to Experimental Data 
 Dong-Suk Yang et al. [14], presented the interfacial bond behavior between 
CFRP plates and concrete from shear test (Figure3) which performed two parameters; 



 

 

compressiv
25 cm). Ma
measure st
model could

1. 
was estima
bond length

2. 
specimens 

B

B

B

B

ve strength (
any strain ga
trains during
d be defined

The effe
ated by the 
h as 200 mm

Fi

All spec
 were selec

Bond Length 
10 cm 

Bond Length 
15 cm 

Bond Length 
20 cm 

Bond Length 
25 cm 

(21 MPa and
ages were a
g load test.
d and concl
ective bond
linear regre

m was suitab

Figure 3

igure 4 Loca

cimens wer
cted to draw

d 28 MPa) a
attached on 
. The effect
luded as the

d length cor
ession analy
ble.  

3 Loading o

ation of Stra

re failed wit
w bond str

Cable 

FRP 
Plate 

FRP 
Sheet 
(wrap) 

and different
 the CFRP a
tive bond le
e following; 
responding 
ysis. It had 

of Specimen

ain Gauses 

th the debo
ress-slip mo

t bonding le
as shown in 
ength and i

 with the co
 been show

 [14]  

(mm) [14] 

onding failu
odel becaus

LVDT 

100 

ength (10,15
 Figure 4 in 
interfacial b

ompressive 
wn that the 

ure. Four fro
se the teste

13 

 

5, 20 and 
 order to 

bond-silp 

strength 
effective 

om eight 
ed bond 



 

 

length was 
stress at the
loading stag

From

 

 
 

 
Ass

 

The
And

Fig

 more than 
e load end p
ge (Figs. 6 a
m Figure5, f

0	 

	

ume the stra

n,  
d slip is give

	

(a) D21

(b) D21

gure 6 Strai

Figur

 the effectiv
point was ob
and 7).  
formation of 

 

	 

ain equation
	

   
n by 

	

1-20 specimen

-25 specimen

n distributio

re5 Free bod

ve bond len
bserved and

 bond stress

n by the sec
	

	

n  

n  

on of effectiv

Acfc 
Afff 

Afff 

dy diagram 

ngth. Accor
d the strain i

s originated 

cond-order e
	

	2

	

 

 

ve bond leng

 between CF
[14] 

dingly, the 
ncreased u

 from equilib

equation; 
 

   

               

(c) D28-20 s

(d) D28-25 s

gth 20 and 2

dx 

dx 

hf 

FRP and co

concentrate
niformly at t

brium equat

       

                  

specimen 

specimen 

25 cm [14] 

b 

oncrete joint

14 

 

ed bond 
the initial 

tion is   

  (2.16a) 

(2.16b) 

Ac(fc+dfc) 
Af(ff+dff) 

Af(ff+dff) 

 



 

 

   

 

Figu

F

re 7 Bond s

Figure 8 Bo

stress distrib

nd stress an

bution of spe

nd slip relat

ecimens [14

ions [14] 

4] 

15 

 



 

 

Con
about 3.0-3

3. 
2.04 MPa a
relative slip
1.45-1.72 m

2.3.
 Jian

shear stres
and slip at 
difficulty of 
were varied

types (inclu
 Usin
  

  

 
 
 Whe
  

nsequently, 
.3 MPa  

It could
and the ma
p given from
mm. Finally, t

Fig

3 Derivation
nguo Dai et 

s –slip mod
 the loaded
 arranging 

d in this stud

uding primer
ng the stiffne

	

ere,  
     

maximum b

d be observ
agnitude of 
m difference
the value of 

gure 9 The 

n of Bond-S
 al. [15], pr

del (-S mo
 end instea
many strain

dy; three typ

r) and deriva
ess (G/t) rep

   
    

bond stress 

ved that the
slip betwee

e between 
 Gf could be

prediction o

lip Model fro
roposed an 

del) based 
ad of using 
n gages on
pes of FRP 

ation of -S 
presented e

	 , 	

= Shea
= Thick

was estima

e average b
en CFRP an
the concret

e found as 1

of bond-slip 

om Simple M
 alternative 

 on the rela
strain distri

n short effec
(carbon, gla

 model is sh
lastic modu

	 ,

r modulus o
kness of adh

ted from the

bond stress 
nd concrete
te and CFR
.35-1.71 N/

model [14] 

Method [15]
way to pro

tionship bet
bution. This
ctive length
ass and ara

hown as follo
lus and bon

	

f adhesive l
hesive layer 

e equation 2

 was equal 
e that defin
RP plate wa
/mm as show

] 
oduce the in

tween pullo
s method ea
hs. Two par
amid), four a

ows; 
nd layer 

 (2.1

layer 
 

16 

 

2.16a as 

 to 1.86-
ed as a 

as about 
wn in  

nterfacial 

out loads 
ased the 
rameters 
adhesive 

17a) 



17 
 

 
 

   ,   = Elastic modulus of primer and adhesive 
   ,     = Thickness of primer and adhesive 
   ,     = Poisson of primer and adhesive 
  
Methodology of analysis on test result 
 The shear-slip relationship could be drawn based on a single-lap pullout test 
(Figs. 10 and 11) by 

   	 1
∆      (2.17b) 

and  	 ∆ 	2∑ 	    (2.17c) 
 

  
Figure 10 Single-lap pullout test  [15]   Figure 11 Detail of loaded 

specimen [15] 

Figure 12 Strain distribution of specimen [15] Figure 13 Stess-slip curve at 
different   locations from loaded end 
[15] 
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From Figure13 there was a big scatter of shear stress-slip at different locations 
so it is not convincing to select one as representation of all. The analytical method was 

improved by using experimental result from former researches to define interfacial -S 
model. 

 
Strain-slip at loaded end relationship from the simple pullout test; 
 	 1       (2.17d) 
 

From; 	 	 	 		 	 		       
 

  	 	      

  
  

So; 	 	 	 1      (2.17e) 
 

 The interfacial fracture energy defined as 

  	 	 	 	 	 

  			 		        (2.17f) 

 
 From theoretical approach, maximum interfacial pullout identified as 

	 	 	 lim
→

1 	 	 	 
	 	 2 	 		 2∆ 2  (2.17g) 

 While ∆ = 3.7 mm account for diminishing bond width’s effect (Sato et al. [15]) 
 Substituting equation 2.17f into equation 2.17e; 

 								 	2      (2.17h) 

 Let, 						 	 2 2  

 So, 	 	 	 0.693     (2.17i) 
  	 	0.5       (2.17j) 
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Noted that,   = Elastic modulus of FRP 
   = Thickness of FRP 

A,B = The regressing parameters used for the relation between the 
strain of   FRP sheet and slip at loaded end of bond area 

  = Maximum bond stress 
   = Slip corresponding to the maximum bond stress 

  = The interfacial fracture energy 
 

 Therefore, the equation 2.17h can represent -S model which depends on two 
parameters as B and . Finally, these two parameters considered the effects of all 
interfacial materials such as properties of concrete, adhesives and FRP stiffness.  The 
expression of B and  are given as; 
 

	 	0.446
.

. .     (2.17k) 

		 	6.846 .
.

    (2.17l) 
 

 According to above analysis, the following conclusions could be drawn. 

1. Parameter B from equation 2.17l was defined as index of ductility of -S 
relationship which mainly affected from adhesive. When B was decreased, it reduced 
interfacial stiffness and influenced to greater ductility as shown in Figure14.  

2. Parameter  from equation 2.17k was affected from shear stiffness of 
FRP and concrete strength. 

3. When shear stiffness of adhesive was decreased, the ductility and 
interfacial fracture energy could be improved while maximum shear stress was 
deficiently. Although maximum shear stress was decreased, the interfacial load transfer 
capacity was enhanced. 

4. The effect of FRP stiffness was insignificant. 
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           (a)            (b) 
Figure 14 Shear stress-slip relationship (a) with different adhesive (b) with different FRP 

stiffness of specimen [15] 

 
2.4 Fire Load Concept 
 Ingberg [16], described the method for creating the standard of fire curve called 
“Fire Load Concept” and concluded the main assumptions as follows; 

1. Fire resistance of structure is relied on fire severity which can be 
observed from the area under temperature and fire exposure time curve.    

2. Fire severity is depended on the intensity of fire. 
 The assumption above does not take into account of open section area of 
structures, types and weights of fuel. 
 
2.5 Basic Theory of Fire Severity [17] 
 There are many factors influence to fire severity. The important ones are fuel and 
open section area in the structure but both factors are not commonly used in analysis of 
fire severity because of their variability. On the other hand, damage to structure is mainly 
dependent on the heat absorbed by the structural elements. So the severity of fire is 
usually defined as the period of exposure to the standard test fire. 
 Fire severity is thermal energy that is released to demolish the fire resistance of 
materials and represented by the area under the exposure time to temperature of 
standard fire test. In reality, the real fires are different from the standard fire curve so the 
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equivalent time of a complete burnout can be defined instead of designing of fire 
severity. The equivalent time of a complete burnout is the time of exposure to standard 
fire that results in an equivalent impact on a structure. 
 
2.6 Standard Temperature-Time Curve [17] 
 Standard Temperature-time curve is the curve used in fire resistance tests. One 
of the most widely fire resistance specification test is ASTM E119 [17] (Figure 15) which 
is referenced in this study. 

Figure 15 Standard Temperature-Time Cuve of ASTM E 119-98 [17] 
 
2.7 Effect of Fire on Concrete 
 Arioz [18] studied the effect of elevated temperatures on the physical and 
mechanical properties of varying mixed concrete. Test procedure was varied the 
elevated temperature from 200 to 1200 °C and determined the compressive strength 
after exposure. Test result showed that the compressive strength of concrete decreased 
beyond to higher time exposures. From visual observation of the sample subjected to 
fired exposure, there were not any surface cracks at 400 °C but the color of surface 
specimens changed because free water in concrete started to drive out. Afterward the 

Time (minutes) 

Temperature (o C) 

100 200 300

500

1000

0



 

 

surface cra
1000°C. Fin
to 1200°C a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 C

 Ellin
reinforced 
covering an
and the co
resisting sh
Furthermore
RC membe
 Han
tensile beh
steel, shear

cks became
nally the spe
as shown in 

Characterist

ngwood and
concrete s

nd type of fir
ncrete cove
hear streng
e, using diff
r. 

nsanti [20] s
avior of rein
r and flexura

e visible an
ecimens we
 Figure16. 

ic of Surfac

d Lin [19] e
tructure un
re curve. Fro
ering barely
th is not a 
ferent fire c

studied the 
nforcing ste
al behavior 

d increased
ere complete

e Concrete 

examined th
nder fire ex
om the resu

y affected to
 control pa

curve also in

effect of tim
eel, bond st
of RC beam

d extremely 
ely lost their

 Crack unde

he flexural s
xposure inc
ult, all of spe
o deflection 
arameter wh
nfluence to 

me exposur
trength betw

m and appro

when the te
r bond at te

er Different F

strength and
cluding the 
ecimens faile
 of beam. T
hen the tem
temperature

e to the com
ween concr
opriate meth

emperature 
emperature 

Fire Exposu

d shear str
effect of c

ed by flexur
This means 
mperature r
re distributio

mpressive s
rete and rei
hod for perfo

22 

 

 rising to 
reached 

ures [18] 
ength in 
concrete 
al failure 
 that the 
rises up. 
on in the 

strength, 
inforcing 
ormance 



23 
 

 
 

evaluation by non-destructive test. From the experiment, the following conclusions can 
be drawn. 

1. The value of compressive strength in concrete specimens decreased 
with a higher exposure time and related to the velocity from ultrasonic pulse velocity 
test. 

2. A concrete covering played an important role on reinforcing steel 
behavior after fire exposures because it was a protection against fire. Moreover, it was 
shown that the proper covering to protect the reduction in tensile strength of reinforcing 
steel is 25 mm for exposure time lower than 90 minutes. And, the elastic modulus did not 
changed significantly. 

3. The bond strength between reinforcing steel and concrete after fire had 
a reverse relation with time exposure and influenced in the round bar more than deform 
bar. 

4. The tendency of shear strength reduced 10 percents per 30 minutes (the 
exposure not longer than 60 minutes) by compared with ACI 318 shear strength 
specification. However, the shear strength by ACI 318 still has the value of safety factor 
as 1.23 at 60 minutes exposure. 

5. The specimens under fire exposure less than 60 minutes had no effect 
on the yield and ultimate moment of beams. On the contrary, it had an effect when the 
fire exposure reached to 90 minutes by the yield and ultimate moment declined as 16 
and 15 percents, respectively. 
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CHAPTER III 
Research Methodology 

 
 In this chapter, research methodology which consists of several processes is 
described as following; 
 
3.1 Literature review  
 The variety of reinforced concrete members strengthened with FRP was 
reviewed for instant several kind of bonding tests and a number of interfacial bond –slip 
models. Moreover, the effect of fire on concrete also was considered. 
 
3.2 Preparing test specimens 

1. Designing concrete mix proportion which had the cylindrical 
compressive strength (fc’) equal to 240 ksc and 350 ksc  for ensuring the failure on the 
240-ksc beam. 

2. Mixing concrete operated under ASTM C192/C 192M-07 “Standard 
Practice for Making and Curing Concrete Test Specimens in The Laboratory” [21]. 

3. The slump test was taken follow ASTM C143/C143M-08 “Standard Test 
Method for Slump of Hydraulic Cement Concrete” [21]. 

4.  Concrete were molded into cylindrical and rectangular size of 10x10x50 
cm3 and specimens were cured for 28 days as shown in Figs. 18-21 while at top face of 
specimens that varied covering would be the fire exposure surface. Accordingly, 25 sets 
of rectangular specimen having detail as shown in Table 10 were reinforced with DB12 
steel at 4 corners and RB6 as stirrup to prevent tension and flexural damages as shown 
in Figure 17.  
 
 
 

Figure 17 Dimension of Specimens 
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Table 6 Detail of all specimens varying with different parameters 

Name of 
Specimens 

Covering 
(cm) 

Exposure Time 
(min) 

Bond Length 
(cm) 

Quantity 

1C0-15 1 0 15 1 

1C0-20 1 0 20 1 

1C0-30 1 0 30 1 

2C0-15 2 0 15 1 

2C0-20 2 0 20 1 

2C0-30 2 0 30 1 

3C0-15 3 0 15 1 

3C0-20 3 0 20 1 

3C0-30 3 0 30 1 

1C45-15 1 45 15 1 

1C45-20 1 45 20 1 

1C45-30* 1 45 30 - 

2C45-15 2 45 15 1 

2C45-20 2 45 20 1 

2C45-30 2 45 30 1 

3C45-15 3 45 15 1 

3C45-20 3 45 20 1 

3C45-30* 3 45 30 - 

1C90-15 1 90 15 1 

1C90-20 1 90 20 1 

1C90-30 1 90 30 1 

2C90-15 2 90 15 1 

2C90-20 2 90 20 1 

2C90-30 2 90 30 1 

3C90-15 3 90 15 1 

3C90-20 3 90 20 1 

3C90-30 3 90 30 1 

Total specimens 25 

Note: CCT-BL represents the number of all specimens while C = concrete covering (1, 2 or 3 cm), T = 
exposure time (0, 45 or 90 minutes) and BL = bond length (15, 20 or 30 cm) 
* = lack of specimen for attached CFRP because the excessive damage occured on the specimen surface. 
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3.4 Empirical model implementation 
1. Studied the bond behavior between reinforced concrete and CFRP 

through shear stress-slip relationship from others researcher. 
2. Compared the collected experimental data with other researchers such 

as strain distribution, relationship between strain and slip of concrete and CFRP and 
shear stress-slip relationship.  

3.  Conducted the properly shear stress-slip model and modified that 
existing relationship correspond to the experimental results, for instance, the interfacial 
fracture energy or some constant parameter were adjusted for considering the effect of 
important parameters. Consequently, the bonding relationship between concrete and 
CFRP in non-fired series could be proposed.  

4. Derived the shear stress-slip model of specimens under fired in the same 
way as described in non-fired specimens. 

5. Verifying the applicability of the proposed model with the experimental 
data from previous study. 
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CHAPTER IV 
Experimental Results and Discussions 

 
 According to chapter 3, the experimental results are performed and discussed 
as following;  
4.1 Damaged concrete from fire and pull-off test 
 In this study, all specimens were exposed to 0, 45 and 90 minutes and fired 
specimens were conducted under standard temperature-time curve of ASTM E119 as 
shown in Figure 30-31 and the appearance of damaged concrete with different 
exposure times were compared and presented in tables 10-11 as following; 
 
 
 
 
 
 
 
 

Figure30 Relationship between Temperature and Time at Exposure Time 45 min 

 
 
 
 
 
 
 
 

Figure31 Relationship between Temperature and Time at Exposure Time 90 min 
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done to find out the surface tensile strength of concrete corresponding to the ASTM 
C1538/C 1538M-04 Standard test method for tensile strength of concrete surfaces and 
the bond strength or tensile strength of concrete repair and overlay materials. The 
results of surface tensile strengths are shown in table 12. 
 
Table 11 Result of pull-off test 

Specimens 
Surface tensile strength (Pull-off test) 

(N/mm2) 

1C0-15 
1.47 1C0-20 

1C0-30 
2C0-15 

1.97 2C0-20 
2C0-30 
3C0-15 

2.23 3C0-20 
3C0-30 
1C45-15 

0.1 
1C45-20 
2C45-15 

0.16 2C45-20 
2C45-30 
3C45-15 

0.18 
3C45-20 
1C90-15 

0.11 1C90-20 
1C90-30 
2C90-15 

0.16 2C90-20 
2C90-30 
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Specimens 
Surface tensile strength (Pull-off test) 

(N/mm2) 

3C90-15 
0.10 3C90-20 

3C90-30 
 

According to tables 10 and 11, the appearance of damaged concrete changed 
from grey concrete to pink color and concrete material becomes softer. More dispersed 
spalling could be observed on concrete surface for any higher exposure time and 
concrete covering, especially in specimens with 90 minutes of exposure time and 3-cm 
covering where a burst of concrete appeared in some areas on the surface and resulted 
in the exposure of the reinforced steel to the environment. The severe damages may be 
caused by free water in concrete void that tried to evaporate out from the concrete when 
the pressure in the concrete covering increased due to the increased in the 
temperature. Furthermore, from the pull-off test results in table 12, it shows that the 
temperature from fire has greater effect on the surface tensile strength than the concrete 
covering. Therefore, the increase in the temperature will result in greater damage to the 
concrete’s surface and also has a greater effect on the concrete’s tensile strength rather 
than the concrete covering.  

 
4.2 Modified pull-out test (Originated from Kobayashi et al. [23]) 
 
 4.2.1. Failure mode of experiment 
 A number of bond tests in FRP-concrete have been continuously carried out and 
developed in the past, but no presenting on standard bond test. However, four generally 
well-known methods to examine the bond test are single shear test, double shear test, 
beam test and modified beam test or modified pull-out test [14]. In this study, the 
experiment was carried out through the modified pull-out test and the failure mode of all 
specimens was found out to be the debonding at concrete substrate. But in fact, there 
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were some specimens that failed by debonding at adhesive on unexpected side (on the 
350 ksc of compressive strength’s side) as shown in table 13 and Fig 32. 
Table 12 Results from modified pull-out test                                                                               
Specimens Interfacial bond strength 

(Modified beam test) 
(kN) 

Gf 

(Experimental) 
(N/mm) 

Failure mode* 

1C0-15 24.75 0.1658 DC 
1C0-20 23.94 0.4749 DC 
1C0-30 28.89 0.5539 DA,O 
2C0-15 28.98 0.4663 DC 
2C0-20 28.92 0.5125 DC 
2C0-30 30.49 0.6536 DC 
3C0-15 26.69 0.2215 DC 
3C0-20 27.44 0.4273 DC 
3C0-30 27.91 0.5279 DA,O 
1C45-15 13.28 0.0290 DC 
1C45-20 12.86 0.0492 DC 
2C45-15 8.44 0.0134 DC 
2C45-20 16.59 0.0937 DC 
2C45-30 19.50 0.2291 DC 
3C45-15 7.04 0.0052 DC 
3C45-20 15.32 0.0595 DC 
1C90-15 13.33 0.0309 DC 
1C90-20 12.50 0.0462 DC 
1C90-30 15.38 0.1394 DC 
2C90-15 8.35 0.0265 DC 
2C90-20 10.68 0.0482 DC 
2C90-30 16.12 0.1850 DC 
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Specimens Interfacial bond strength 
(Modified beam test) 

(kN) 

Gf 

(Experimental) 
(N/mm) 

Failure mode* 

3C90-15 8.01 0.0093 DC 
3C90-20 11.25 0.0474 DC 
3C90-30 20.00 0.1622 DC 

Note : * DC = Debonding at concrete substrate, DA = Debonding at adhesive, O = 
specimen fail on unexpected side 
 
 
 
 
 
  
 
 
 

 
 
 
 
 
 
 
 

 
Figure32 Debonding at adhesive on unexpected side (350 ksc) of 1C0-30 and 3C0-30 
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 4.2.2. Relationship between interfacial bond strength to all parameters 
 After conducted all specimens by modified pull-out test, various data were 
gathered from the test. One of that was an interfacial bond strength which was the value 
refer to bond strength between CFRP and concrete under different exposure times as 
shown in table 13. The effects of each parameter to this bond strength are described as 
following. 

1) Relationship between interfacial bond strength and bond length 

(Pmax-BL)  

According to previous researches, many researchers tried to study and 

develop bonding behavior of FRP to concrete. The bond length of FRP is one of 

the factors that influence the bonding behavior because the tensile force or 

interfacial bond strength will be transferred between concrete section and FRP 

for strengthening its structure. The bond length of FRP’s concept differ from the 

idea of reinforced steel in RC structure where the idea of reinforced steel in RC 

structure shows that the tensile strength of the concrete will continuously 

increase according to the increase of the bond length. However, there is an 

existing active bonding zone called effective bond length, Le, between interface 

of FRP and concrete for manipulating ultimate tensile strength. Consequently, 

the increase of the tensile strength of the FRP’s concept will reach an ultimate 

tensile strength at the effective bond length and thus will not increase further 

according to the increase in the bond length as verified from previously 

experimental studies and fracture mechanic analyses. Although, the longer bond 

length cannot progress more ultimate tensile strength but instead, it can 

improves the ductility of mechanism [1].  

In this study, the effective bond length of CFRP was designed based on 

normal concrete. Three bond lengths were chosen, which are 15, 20 and 30 cm. 
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4.3 Empirical model implementation 
 The empirical model implementation in this study consists of 2 parts as shown in 
Figure40 which was modified from the bond-slip model as expressed in chapter 2. 
Firstly, the important parameter, Gf, could be formulated from experimental data by 
including the effect of all parameters in this study. Later on, the parameter Gf was 
applied to develop shear stress- slip model for representing the bonding behavior 
between reinforced concrete after exposed fire and CFRP plate. 
  

 
 

Figure40 The empirical model implementation 
 

4.3.1 Intergration of all parameters into the interfacial fracture energy, Gf 

According to the experimental data of Gf which computed from the area 
underneath the shear stress-slip curve, the model of Gf could be defined. However the 
effect of concrete covering has insignicant effect on the interfacial fracture energy as 
described in 4.2.4, therefore, it was not considered in this model. 
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model of Gf will be appiled for developing the shear stress-slip model as described in 
the next topic. 

	0.0157	 . .   (4.3) 
 

Where, fG  = Interfacial fracture energy, N/mm 
BL  = Bond length of CFRP plate, mm. 
T  = Exposure time, min. 

 The comparisons between experimental value and predicted value of Gf can be 
shown in the table 14 and Figure 42 
 

Table 13 Results of the predicted Gf and the experimental Gf 

Specimens 
Gf 

(Experimental) 
(N/mm) 

Gf 

(Predicted) 
(N/mm) 

1C0-15 0.1658 0.1172 
1C0-20 0.4749 0.2290 
1C0-30 0.5539 0.8745 
2C0-15 0.4663 0.1172 
2C0-20 0.5125 0.2290 
2C0-30 0.6536 0.8745 
3C0-15 0.2215 0.1172 
3C0-20 0.4273 0.2290 
3C0-30 0.5279 0.8745 
1C45-15 0.0290 0.0435 
1C45-20 0.0492 0.0851 
2C45-15 0.0134 0.0435 
2C45-20 0.0937 0.0851 
2C45-30 0.2291 0.3249 
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4.3.2 Relationship between shear stress-slip model of normal concrete 

specimens (exposure time equal to 0 min.) 

According to the literature review in chapter 2, various bond-slip models were 

reveiwed and compared with experimental data that obtained from this study. The 

proper model had been seleted for improving the shear stress-slip relationship, which 

was Jianguo Dai et al.’s model [15]. This model was derived from simple method, single-

lap pullout test. The Jianguo Dai et al.’s model was developed from strain-slip 

relationship at loaded end which is an exponential function as shown in equation 4.4. 

From the strain-slip relationship, the constant A and B are obtained as shown in 

Figure43 and table  15.  
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(c) 
Figure43 Experimental and regression strain-slip relationship of 0 min. exposure time 

 
  From the equilibrium equation of Figure44,  
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Figure46. Moreover, the shape of unbonded CFRP plate (between two concretes 
specimens) was bend as could be observed during testing because of load application 
in this experimental method. According from recent effects, the parameters  are 
suggested and applied in the shear stress-slip model for adjusting the effect of diversity 
of bond testing which equal to 1.95. 

Therefore, the model of shear stress-slip relationship can be obtained from the 
modified pull-out test, which was expressed in equation 4.9 : 

 
	2    (4.9) 

 
According from above equation, the parameters can be described as following: 

  =  Shear stress or bond stress, MPa 
 fG  = Interfacial fracture energy, N/mm, (see equation 4.3) 

 = Index of ductility of -s relationship which including the effect 
of FRP stiffness (kN/mm) and shear stiffness of adhesive (GPa/mm) as 
presented from Jianguo Dai et al.’s model. 

 

		 	6.846 .
.

 

 

 From calculation, the parameter B in this research equal to 12.52 . 

 = The adjusting parameter for considering the variation of bond 
testing which equal as 1.95. 
From the comparisons between experimental and analytical of shear stress-slip 

relationship (see Figure48), the presented model can be shown the good agreement 
correspond to test results except the 30 cm of bond length specimens. The failure mode 
of those specimens was inaccurate which fail on 350 ksc compressive strength of 
concrete at ultimate tensile strength as reported in table 13. Therefore, in predicted 
relationship of 30 cm in bond length specimens shows obviously difference with the 
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4.3.3 Relationship between shear stress-slip model of damaged concrete 

specimens (exposure time equal to 45 and 90 min.) 

The formulation of shear stress-slip model in 45 min and 90min of exposure 
times can be conducted in the same as previous model which originated from the 
relationship of strain-slip at loaded end. However, from observation, the strain-slip 
relationship of both exposure times is difference from the non-fired concrete. Because 
the bonding between concrete and CFRP of the damaged specimens are destroyed 
from fire and leads to early debonding at the same bond length when comparing with 
the non-fired concrete series. Consequently, the slips of damaged concrete are shorter 
and provide the linear relationship between strain and slip instead of exponential 
function as shown in Figure 49.  

The strain-slip relationship of damaged concrete series can be obtained from 
the modified pull-out test are expressed in equation 4.10. 

 
 	    (4.10) 
 
Where,  A is a regression constant between strain –slip curve. 

 

From; 	 	 	 		 	 		    
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Table 14 Summary of regreassion parameters from strain and slip relationship 

Specimens A B R2 Remarks 

1C0-15 0.0041 6.5082 0.979 

	 1  

 
* Exponential regression 1C0-20 0.0015 16.3563 0.9968 

1C0-30 0.003 5.3306 0.9991 

2C0-15 0.0034 8.3322 0.9579 

2C0-20 0.0025 10.1432 0.9982 

2C0-30 0.0027 6.9109 0.9901 

3C0-15 0.0029 8.0124 0.9929 

3C0-20 0.0034 5.7850 0.9850 

3C0-30 0.0024 8.6282 0.9975 

1C45-15 0.0228 - 0.9442 

	  

 
* Linear regression 1C45-20 0.0128 - 0.9961 

2C45-15 0.0115 - 0.9700 

2C45-20 0.0087 - 0.9970 

2C45-30 0.0078 - 0.9598 

3C45-15 0.0131 - 0.8204 

3C45-20 0.0163 - 0.9966 

1C90-15 0.0172 - 0.9951 

1C90-20 0.0118 - 0.9963 

1C90-30 0.0082 - 0.9985 

2C90-15 0.0146 - 0.9974 

2C90-20 0.0127 - 0.9962 

2C90-30 0.0075 - 0.9743 

3C90-15 0.0167 - 0.9848 

3C90-20 0.0127 - 0.9995 

3C90-30 0.0080 - 0.9883 
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the effect of different various conditions between Jianguo Dai et al’s model and this 
research, it does not necessarily involve in bond-slip relationship of damaged series. 
 
 According to Figure 48, 51 and 52, the predicted models of shear stress-slip 
relationship which have been modified according to simple method as developed by 
Jianguo Dai et al. [15] can be properly corresponded to experimental results. In 
addition, the proposed model from this study can be appiled to numerical study for 
analyzing the effect of fire to damaged structure in further study.
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CHAPTER V 
CONCLUSIONS 

 
5.1 Research summary  

In this research, the modified pull-out test was performed to investigate 

bonding behavior of damaged concrete from fire with various parameters such as fired 

exposure time, bond length of CFRP plate and concrete covering. The research 

summary can be concluded corresponding to the objectives: 

1. Damage from fire can create a large spalling on the concrete 

surface which has a direct effect on the bond between concrete and FRP. 

Consequently, the higher temperature can directly diminish the bond behavior 

between concrete and FRP as shown from various parameters such as surface 

tensile strength, interfacial bond strength, Pmax and interfacial fracture energy, Gf 

which decreased according with increased in temperature.  

2. The effect of fire can change the effective bond length. Because 

in the damaged concrete series, the increased bond length of CFRP can 

significantly increase the interfacial bond strength, Pmax while the value of Pmax of 

C0-20 and C0-30 series (normal concrete) are closer. Moreover, the effect of 

bond length has direct variation to the interfacial fracture energy, Gf, although 

the bond length will exceed the effective length because it can conduct more 

ductility instead of maximum tensile force. 

3. The effect of concrete covering has been vanished with increasing of 
exposure time and it does not show the significantly effect on interfacial bond 
strength, Pmax and interfacial fracture energy, Gf. Therefore, concrete covering 
has the least influent to bonding behavior between reinforced concrete after fire 
and CFRP plate. 
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4. The proposed shear stress-slip model are modified from Jianguo Dai 

et al.’s model [15] and show a good agreement between predicted and 
experimental results as shown in the discussion part. The proposed model 
includes the effect of all parameters as follows: 

 
The model of interfacial fracture energy including the effect of various 

parameters : 
 

 	0.0157	 . .  (5.1) 
Where, fG  = Interfacial fracture energy, N/mm 

BL  = Bond length of CFRP plate, mm. 
T  = Exposure time, min. 

 
In nonfired concrete series, the shear stress-slip relationship can be 

proposed as: 
 
 	2  (5.2) 

Where,   = Shear stress or bond stress, MPa 
  fG  = Interfacial fracture energy, N/mm, (see equation 5.1) 

 = Index of ductility of -s relationship which including the 
effect of FRP stiffness and shear stiffness of adhesive as presented from 
Jianguo Dai et al.’s model. In this research, the parameter B equals to 
12.52. 

 = The adjusting parameter for considering diversity of bond 
testing which equal as 1.95. 
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On the other hand, in damaged concrete series which were fired at 
difference exposure times (45 and 90 min.), the shear stress-slip model can be 
proposed as: 

 
	 0.000256 . 	   (5.3) 

 
Where,  = Shear stress or bond stress, MPa 

   = Stiffness of FRP, N/mm 
    = Interfacial fracture energy, N/mm (see eq. (5.1)) 
   
 
5.2 Suggestions for further study 
 
 1. In the bond test procedure, failure mode is one of the factors that affects the 
accuracy of bonding behavior. Therefore, the FRP designing and installation are very 
important as it has a great influence on the occurred failure mode. In this study, some 
specimens did not fail with debonding at concrete substrate which referred to imprecise 
empirical model. 
 2.  For greater accuracy of shear stress-slip model, the number of fired 
specimens should be increased with increasing bond length simultaneously due to 
studying effect of fire to effective bond length and improving accuracy of empirical 
model. 

3. The proposed shear stress-slip model is formulated from experimental data, 
thus, for further improvement on its accuracy, application on numerical study is needed. 
In addition, this proposed model can be applied to finite element analysis for analyzing 
bonding behavior and failure characteristic of damaged structure under low fire severity. 

4. Refer to Thailand regulation, every structures should be resisted the damage 
from fire at least 3 hours. But according to the research summary, the effect of fire can 
extremely destroy the bonding behavior of concrete and CFRP even though in lower 
level of fire such as 45 min. Therefore, repairing of concrete surface before attach FRP 
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should be considered which refer to concern about the influence of repairing material to 
FRP in further study.
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