CHAPTER III

HYPERRINGS HAVING THE INTERSECTION PROPERTY OF QUASI-HYPERIDEALS

The purpose of this chapter is to generalize Proposition 1.8 to Proposition 1.11 by characterizing when quasi-hyperideals in hyperrings have the intersection property and when hyperrings have the intersection property of quasi-hyperideals.

The first theorem of this chapter is to generalize Proposition 1.8. We first give a lemma which follows directly from Proposition 1.29 and Lemma 2.3(iv).

Lemma 3.1. If S is a subhyperring of a hyperring A, then $S + \langle AS \rangle$ and $S + \langle SA \rangle$ are respectively a left hyperideal and a right hyperideal of A containing S.

Theorem 3.2. If Q is a quasi-hyperideal of a hyperring A such that $Q \subseteq AQ > Or Q \subseteq$

$$Q = (Q + \langle AQ \rangle) \cap (Q + \langle QA \rangle).$$

In this case, Q has the intersection property.

Proof. Suppose that Q is a quasi-hyperideal of a hyperring A such that $Q \subseteq AQ > \text{or } Q \subseteq AQ > \text{.}$ Let $D = (Q + AQ >) \cap (Q + AQ >)$. The inclusion $Q \subseteq D$ is evident. Now assume that $Q \subseteq AQ > 0$. Then Q + AQ > 0 and $Q \subseteq AQ > 0$. Let $Q \in AQ > 0$. Let $Q \in AQ > 0$ and $Q \in AQ > 0$ and $Q \in AQ > 0$. Since $Q \in AQ > 0$ is reversible, $Q \in AQ > 0$. Since $Q \in AQ > 0$ is reversible, $Q \in AQ > 0$. Since $Q \in AQ > 0$ is reversible, $Q \in AQ > 0$. Since $Q \in AQ > 0$ is reversible, $Q \in AQ > 0$. Since $Q \in AQ > 0$ is reversible, $Q \in AQ > 0$ is reversible.

< AQ > and < QA >, whence $c \in < AQ > \cap < QA > \subseteq Q$ since Q is a quasi-hyperideal of A. Then $d \in k + c \subseteq Q$. Therefore $D \subseteq Q$. Hence D = Q, as required. If $Q \subseteq < QA >$, then we obtain D = Q similarly. We conclude that $Q = (Q + < AQ >) \cap (Q + < QA >)$. By Lemma 3.1, Q has the intersection property.

Proposition 1.8 becomes a corollary of Theorem 3.2.

Corollary 3.3. Let Q be a quasi-ideal of a ring A. If $Q \subseteq QA$ or $Q \subseteq AQ$, then

$$Q = (Q + AQ) \cap (Q + QA).$$

In this case, Q has the intersection property.

The following theorem gives some equivalent conditions for a quasi-hyperideal of a hyperring to have the intersection property.

Theorem 3.4. Let Q be a quasi-hyperideal of a hyperring A. Then the following statements are equivalent.

- (i) Q has the intersection property.
- (ii) $(Q + \langle AQ \rangle) \cap (Q + \langle QA \rangle) = Q$.
- (iii) $\langle AQ \rangle \cap (Q + \langle QA \rangle) \subseteq Q$.
- (iv) $\langle QA \rangle \cap (Q + \langle AQ \rangle) \subset Q$.

Proof. (i) \Rightarrow (ii). Since Q has the intersection property, there exist a left hyperideal L and a right hyperideal R of A such that $Q = L \cap R$. Then $Q \subseteq L$ and $Q \subseteq R$ and so $AQ > \subseteq AL > \subseteq L$ and $AQ = L \cap R$. Thus $AQ + AQ = L \cap R$ and $AQ + AQ = L \cap R$. Consequently, $AQ + AQ = L \cap R$ and $AQ + AQ = L \cap R$ and AQ +

- (ii) \Rightarrow (i). This follows from Lemma 3.1.
- (ii) \Rightarrow (iii). It is obvious since $\langle AQ \rangle \subseteq Q + \langle AQ \rangle$.

(iii) \Rightarrow (ii). Assume that $\langle AQ \rangle \cap (Q + \langle QA \rangle) \subseteq Q$. We have that $Q \subseteq (Q + \langle AQ \rangle) \cap (Q + \langle QA \rangle)$. To prove the reverse inclusion, let $x \in (Q + \langle AQ \rangle) \cap (Q + \langle QA \rangle)$. Then $x \in t + c$ and $x \in s + d$ for some $s, t \in Q$, $c \in \langle AQ \rangle$ and $d \in \langle QA \rangle$. Since (A, +) is reversible, $c \in x - t \subseteq s + d - t = (s - t) + d \subseteq Q + \langle QA \rangle$. Now, we have that $c \in \langle AQ \rangle \cap (Q + \langle QA \rangle)$, so $c \in Q$. This implies that $x \in t + c \subseteq Q$. Hence (ii) holds.

Similarly, we can prove that (ii)
$$\Leftrightarrow$$
(iv).

The following theorem strengthens the result in Theorem 3.4.

Theorem 3.5. Let X be a nonempty subset of a hyperring A. Then the following statements are equivalent.

- (i) $(X)_q$ has the intersection property.
- (ii) $(\mathbb{Z}X + \langle AX \rangle) \cap (\mathbb{Z}X + \langle XA \rangle) = (X)_q$.
- (iii) $\langle AX \rangle \cap (\mathbb{Z}X + \langle XA \rangle) \subseteq (X)_q$.
- (iv) $\langle XA \rangle \cap (\mathbb{Z}X + \langle AX \rangle) \subseteq (X)_q$

Proof. (i) \Rightarrow (ii). Since $(X)_q$ has the intersection property, there exist a left hyperideal L and a right hyperideal R of A such that $(X)_q = L \cap R$. Then $X \subseteq L$ and $X \subseteq R$. This implies that $\mathbb{Z}X \subseteq L$, $\mathbb{Z}X \subseteq R$, $< AX > \subseteq < AL > \subseteq L$ and $< XA > \subseteq < RA > \subseteq R$. Hence $\mathbb{Z}X + < AX > \subseteq L$ and $\mathbb{Z}X + < XA > \subseteq R$. Therefore $(\mathbb{Z}X + < AX >) \cap (\mathbb{Z}X + < XA >) \subseteq L \cap R = (X)_q$. By Theorem 2.9, $(X)_q = \mathbb{Z}X + (< AX >) \cap (XA >)$, so $(X)_q = \mathbb{Z}X + (< AX >) \cap (XA >) \subseteq (XA <)$. This proves that (ii) holds.

- $(ii) \Rightarrow (i)$. It is true because of Lemma 2.3(iv).
- $(ii) \Rightarrow (iii)$. This implication is clear.
- (iii) \Rightarrow (ii). Assume that $\langle AX \rangle \cap (\mathbb{Z}X + \langle XA \rangle) \subseteq (X)_q$. By Theorem 2.9, $(X)_q = \mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle)$. It then follows that $(X)_q \subseteq (\mathbb{Z}X + \langle XA \rangle)$

< AX >) \cap ($\mathbb{Z}X + < XA >$). To show that ($\mathbb{Z}X + < AX >$) \cap ($\mathbb{Z}X + < XA >$) \cap ($\mathbb{Z}X + < XA >$). Then $t \in t_1 + t_2$ and $t \in q_1 + q_2$ for some $t_1, q_1 \in \mathbb{Z}X, t_2 \in < AX >$ and $q_2 \in < XA >$. Since (A, +) is reversible, $t_2 \in -t_1 + t \subseteq -t_1 + (q_1 + q_2) = (-t_1 + q_1) + q_2 \subseteq \mathbb{Z}X + < XA >$. Hence $t_2 \in < AX > \cap$ ($\mathbb{Z}X + < XA >$). By the assumption, $t_2 \in (X)_q$. This implies $t \in t_1 + t_2 \subseteq \mathbb{Z}X + (X)_q = (X)_q$. Therefore (ii) holds.

We obtain (ii)
$$\Leftrightarrow$$
(iv) similarly.

Proposition 1.9 and Proposition 1.10 become special cases of Theorem 3.4 and Theorem 3.5, respectively.

Corollary 3.6. Let Q be a quasi-ideal of a ring A. Then the following statements are equivalent.

- (i) Q has the intersection property.
- (ii) $(Q + AQ) \cap (Q + QA) = Q$.
- (iii) $AQ \cap (Q + QA) \subseteq Q$.
- (iv) $QA \cap (Q + AQ) \subseteq Q$.

Corollary 3.7. Let X be a nonempty subset of a ring A. Then the following statements are equivalent.

- (i) $(X)_q$ has the intersection property.
- (ii) $(\mathbb{Z}X + AX) \cap (\mathbb{Z}X + XA) = (X)_q$.
- (iii) $AX \cap (\mathbb{Z}X + XA) \subseteq (X)_q$.
- (iv) $XA \cap (\mathbb{Z}X + AX) \subseteq (X)_q$.

The following theorem gives some equivalent conditions for a hyperring to have the intersection property of quasi-hyperideals. **Theorem 3.8.** Let A be a hyperring. Then the following statements are equivalent.

- (i) A has the intersection property of quasi-hyperideals.
- (ii) For any finite nonempty subset X of A,

$$< AX > \cap (\mathbb{Z}X + < XA >) \subseteq \mathbb{Z}X + (< AX > \cap < XA >) (= (X)_q).$$

(iii) For a finite subset $X = \{x_1, x_2, \dots, x_n\}$ of A and $a_1, a_2, \dots, a_n \in A$, if

$$y \in \left(\sum_{i=1}^{n} a_i x_i\right) \cap \left(\sum_{i=1}^{n} (k_i x_i + x_i a_i')\right)$$

for some $a_i' \in A, k_i \in \mathbb{Z}$, then $y \in (X)_q$.

Proof. (i) \Rightarrow (ii). Suppose that A has the intersection property of quasi-hyperideals and let X be a finite nonempty subset of A. Then $(X)_q$ has the intersection property. Therefore (ii) holds by Theorem 3.5.

(ii) \Rightarrow (i). Assume that (ii) is true. Let Q be any quasi-hyperideal of A. We need to show that $\langle AQ \rangle \cap (Q + \langle QA \rangle) \subseteq Q$. Let $y \in \langle AQ \rangle \cap (Q + \langle QA \rangle)$. Then $y \in \sum_{i=1}^{n} a_i q_i$ and $y \in q + \sum_{j=1}^{m} q'_j b_j$ for some $a_i, b_j \in A$ and $q, q_i, q'_j \in Q$. Consider $X = \{q, q_1, \dots, q_n, q'_1, \dots, q'_m\}$. Then $X \subseteq Q$ and $|X| < \infty$. By (ii), $\langle AX \rangle \cap (\mathbb{Z}X + \langle XA \rangle) \subseteq \mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle)$, so we have

$$y \in \langle AX \rangle \cap (\mathbb{Z}X + \langle XA \rangle) \subseteq \mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle)$$

$$\subseteq Q + (\langle AQ \rangle \cap \langle QA \rangle) \subseteq Q + Q \subseteq Q.$$

This shows that $\langle AQ \rangle \cap (Q + \langle QA \rangle) \subseteq Q$. Therefore Q has the intersection property by Theorem 3.4. Hence (i) is proved.

(ii) \Rightarrow (iii). Assume that (ii) holds. Let $X = \{x_1, x_2, \dots, x_n\} \subseteq A$ and $a_1, a_2, \dots, a_n \in A$, and let $y \in \left(\sum_{i=1}^n a_i x_i\right) \cap \left(\sum_{i=1}^n \left(k_i x_i + x_i a_i'\right)\right)$ for some $a_i' \in A$ and $k_i \in \mathbb{Z}$. Then $y \in \left(\sum_{i=1}^n a_i x_i\right) \cap \left(\sum_{i=1}^n k_i x_i + \sum_{i=1}^n x_i a_i'\right) \subseteq \langle AX \rangle \cap (\mathbb{Z}X + \langle XA \rangle)$. But $\langle AX \rangle \cap (\mathbb{Z}X + \langle XA \rangle) \subseteq (X)_q$ by (ii), so $y \in (X)_q$.

(iii) \Rightarrow (ii). Assume that (iii) is true. To prove (ii), let X be a finite nonempty subset of A, say $X = \{x_1, x_2, \dots, x_n\}$, and $y \in AX > \cap (\mathbb{Z}X + \langle XA \rangle)$. Then $y \in \sum_{i=1}^n a_i x_i$ and $y \in \sum_{i=1}^n k_i x_i + \sum_{i=1}^n x_i a_i'$ for some $a_i, a_i' \in A$ and $k_i \in \mathbb{Z}$. This implies that $y \in (\sum_{i=1}^n a_i x_i) \cap (\sum_{i=1}^n (k_i x_i + x_i a_i'))$. It then follows from (iii) that $y \in (X)_q$. Hence (ii) is proved.

A corollary of Theorem 3.8 is Proposition 1.11.

Corollary 3.9. The following statements for a ring A are equivalent.

- (i) A has the intersection property of quasi-ideals.
- (ii) For any finite nonempty subset X of A,

$$AX \cap (\mathbb{Z}X + XA) \subseteq \mathbb{Z}X + (AX \cap XA)(=(X)_q).$$

(iii) For any finite subset $X = \{x_1, x_2, \dots, x_n\}$ of A and $a_1, a_2, \dots, a_n \in A$, if

$$\sum_{i=1}^{n} (a_i x_i + k_i x_i + x_i a_i') = 0,$$

for some $a_i' \in A$ and $k_i \in \mathbb{Z}$, then $\sum_{i=1}^n a_i x_i \in (X)_q$.