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This dissertation is aimed at developing a new framework to control traffic signal light for the
road network with recently introduced bus rapid transit (BRT) system. By applying the automated
goal-directed learning and decision making called reinforcement learning (RL), the best possible
traffic signal actions can be sought upon changes of network states as modelled by the signalised cell
transmission model (CTM). There are three main original contributions in this dissertation.

Firstly, the model combining CTM to capture the system dynamics together with the imple-
mentation of RL approach called Q learning has been introduced for an isolated intersection. Despite
of such isolation constraint, a new external delay function has been proposed at the system boundary
condition to capture the effects on the neighbourhood of that isolated intersection system. With the
proper setting of red light delay as the RL reward function, reported results show that our proposed
framework using RL and CTM in the macroscopic level can efficiently find the proper control solution
that is close to the brute-forcely searched best periodic signal solution (BPSS).

Secondly, the performance comparison of optimal traffic signal controls based on the deriva-
tion of theoretical M/M/1 and D/D/1 models and based on the RL approach has been evaluated. In
particular, based on M/M/1 and D/D/1 queuing, the optimal split has been derived to minimise the
mean waiting time of an intersection with two conflicting flows. The results confirm the validity in
adopting the RL approach to control the traffic signal.

Finally, an extension to a network of cascading interactions with BRT system has been pro-
posed with simple uni-directional flows without turning movements. Motivated by the BRT system in
Bangkok, the conventional signalised CTM has been generalised to cope with the preplanned space-
usage priority of BRT over other non-priority vehicles by modelling explicitly the existence of BRT
physical lane separator as well as the location of BRT stations. The delay function of both car-
ried passengers on BRT and on other non-priority vehicles as well as waiting passengers at stations
has been introduced. Based on the investigated scenarios, the deployment of BRT system with one
lane deducted by the lane separator cannot reduce the total passenger delay in comparison with the
comparable road and traffic condition before the BRT installation. However, with BRT, the passen-
ger throughput can be greatly increased by up to 9-15% in the jamming conditions when at least
40% from the overall passengers choose the BRT for their journey. Moreover, our proposed method
outperforms the conventional preemptive and differential priority control methods because of the im-
proved awareness of signal switching cost. Based on all findings, the outstanding merit will entirely
contribute towards to support the development of sustainable transportation systems.
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CHAPTER I

INTRODUCTION

Nowadays, the opportunities for further extension of physical transportation capacity

within a well-established city are becoming very limited. With the continuing social, popula-

tion and economic growth in metropolitan areas, many transportation facilities are being used

to their full capabilities. Several strategies for traffic relief are implemented such as increas-

ing road network capacity, demand management, and traffic control and operation. Adding

new facilities are becoming difficult due to the high costs and limited spaces. Moreover, the

user demand for a transportation system outgrows the system’s capacity and the performance

of the system degrades unavoidably. In addition, demand management is intended to balance

requested traffic into the networks which have been implemented in countries. Effects of de-

mand management using innovative local policies to match the unique demand nature of

locality still remain much to be explored. To that respect, attempts to operate and control

the traffic by employing the existing capacity without adding new facilities are absolutely

challenging. Fortunately, the growing emphasis on information systems and communication

technologies can handle the traffic problem by using advanced traffic information and control

systems. The systematic application for advanced technologies to the surface transportation

system has become known as Intelligent Transportation Systems (ITS).

Area traffic control (ATC) is one of the major areas in which ITS can be applied.

At the local level, traffic signals are designed to manage vehicle conflicts at intersections by

allocating green time among the conflicting traffic streams which must share the intersection.

However, at the global level, traffic signals can be controlled from centralised servers to

enhance signal control strategies to increase the throughput efficiency of road network.

Generally, traffic signal controls can be classified into three main approaches, namely,

fixed-time control, actuated control and adaptive control [1]. Fixed-time traffic signals op-

erate fixed signal timing plan regardless of the traffic demands. Actuated control employs

vehicle detectors installed around an intersection to change the traffic signals of that inter-

section. Once vehicle detectors response for actuation, the actuated phase normally starts
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with a minimal preset green time, and green time phase is automatically extended. Actuated

controls can be terminated in three approaches which are gap-out, max-out and force-off [1].

Gap-out mode occurs when there is no more traffic in the corresponding approach. Max-out

mode occurs when the excessive demand influences a signal phase to reach its maximum

green time. Force-off mode is usually triggered when a specific approach needs to achieve

an extension green band. However, the sophistication and smart idea for traffic control sys-

tem is to optimise traffic networks online without being confined by a cyclic time interval or

fixed time control. Adaptive signal control differs from actuated control because it incorpo-

rates decision making processes in the design of signal timing procedures. The main idea of

adaptive signal control is to predict the traffic flow demands, evaluate the set of possible sig-

nal control strategies and choose the optimal feasible signal strategies with respect to current

objectives.

1.1 Literature Review

Since a basic traffic signal control has been already introduced, signal control strategies

with theoretical and analytical control algorithms have been proposed by researchers, e.g.

Webster’s model in 1958 [2], Pontryagin model in 1964 [3], discrete minimal delay model

in 2000 [4]. In light of conventional theoretical models, several literatures exist and present

the effective control strategies for road scenarios. For example, SCOOT (Split, Cycle and

Offsets Optimization Techniques) [5] is a method that relies on cyclic timing plan and signal

timing plan of SCOOT being changed periodically. There are three SCOOT parameters that

can be used to influence the traffic condition, i.e., split (a green time proportion for each

phase in each cycle time), cycle length (the total time for signal completion for one sequence

of the signal indications) and offset (phase difference of start of green between adjacent

intersections) [1].

To the aforementioned, traffic signal control becomes significantly challenging. There

have been many methods reported in the literatures for controlling traffic signal at an inter-

section. More specifically, traffic signal control can be categorised into two main techniques

being fixed-time or traffic-responsive [6]. Fixed-time control employs the historical data to

estimate the signal light structures in advance. Therefore, fixed-timed control effectiveness

can be worsen when the traffic is unpredictably congested. On the contrary, with the ad-

vance information systems and communication technologies, traffic-responsive control can
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be used to adjust its indicated green lights according to the current observable traffic flows.

The observed traffic flow can be measured directly from the sensors embedded in the road

network, which results in the adjustable traffic signal control in real-time. The existing im-

plementations for traffic signal controls are being shown as follows. Actuated control uses

the demand-driven logic to control the signal timing by the installed detectors on the inter-

section. The cycle length and green time of actuated control may vary from cycle to cycle

to response the approaching demands. All the signal phases are controlled by the detectors.

Each phase can be skipped automatically if there is no present demand.

The Sydney Coordinated Adaptive Traffic System (SCATS) [7] is developed in Aus-

tralia by the Road and Traffic Authority (RTA). The SCATS uses the information from vehi-

cle detectors. The detectors are located in each lane in advance before the stop-line to adjust

the signal lights. The calculation for the split is relatively proportioned to the approaching

demand which is measured in terms of degree of saturation (DoS). For the signal timings, it

can be automatically adjusted every cycle to aware the excessive traffic delay caused by the

huge amount of demands.

In the past few decades, the management of public transportation system becomes

a major concern. The application for public transportation system is generally known as

Advanced Public Transportation Systems (APTS) [8]. The main objective of APTS is to

improve the efficiency without a need for major infrastructure enhancements, e.g. Bus Rapid

Transit (BRT). The basic definition of BRT is a flexible, high performance rapid transit mode

that combines a variety of physical, operating and system elements into a permanently inte-

grated system with a quality image and unique identity [9]. Due to the BRT flexibility, it

encompasses a wide variety of applications, each tailored to a particular set of travel mar-

kets and physical environments. This flexibility is resulted from the fact that BRT vehicles,

e.g. buses or specialised BRT vehicles, can travel anywhere on the pavement and the fact

that a BRT basic service unit is a relatively small vehicle in comparison with rail and train

based rapid transit modes. BRT applications can combine various route segments to pro-

vide a single-seat, no-transfer service that maximises customer convenience. Unlike other

rapid transit modes where basic route alignment and station locations are constrained by the

available right of way, BRT can be tailored to the unique origin and destination patterns of

a given corridor’s travel needs. As the spatial nature of transit demand changes, BRT sys-

tems can therefore adapt to these dynamic conditions. The BRT service includes several ITS
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components including Automated Vehicle Location (AVL) technology, transit signal priority

systems, onboard voice and digital announcements of next stop information, and real time

bus arrival time information using digital countdown signs at bus stops.

AVL technology employs onboard equipment, e.g. Global Positioning System (GPS)

and General Packet Radio Service (GPRS), to track a bus location. The mechanism of AVL

relies on an onboard computer to calculate the location of each bus and sends data to a central

control center where each bus’s location is mapped on a computer screen using flag-shaped

icons. Green flags represent buses ahead of schedule and red flags represent buses behind

schedule. Transit management personnel monitors the bus progresses on each route and

advises operators of schedule deviations. Mobile Data Terminal (MDT) facilitates voice and

data communications between drivers and the transit control center and allows bus drivers

to select unique messages to communicate with passengers concerning route or schedule

adjustments. In addition, if a bus is behind its schedule, then the AVL system automatically

links to an integrated automated signal control system and requests green signal extensions,

or advanced green signals at intersections pre-authorised to provide conditional priority in

predefined areas. AVL is also installed on two supervisor cars, to allow the transit control

center to determine the location of supervisors relative to any buses that may need assistance

[10]. This technology can reduce communication costs but requires greater intelligence [11].

However, the challenge for APTS is to reduce the congestion delays when exclusive bus lane

is provided in urban areas with the limitation of spaces. Another method is to use signal

control strategies and employ the current traffic signal control system to give priority for the

transit vehicles such as green band extension and recall green band. This is generally known

as Transit Signal Priority (TSP) [11].

Transit signal priority can be characterised into two types, namely, active and pas-

sive TSP. Passive priority is based on predefined signal timing for each intersection which

is weighted and pre-optimised [11]. On the other hand, active priority employs dynamic

detection and responses to transit vehicles by altering signal settings in real time to reduce

the transit delays. Thus, the advantage of passive priority is a relatively low implementa-

tion cost. On the contrary, active priority needs extra hardware investment e.g. specialised

detectors for transit vehicles and advanced signal controllers. Transit signal priority tech-

niques and applications at the traffic signal in Europe have been developed and evaluated in

PRISICILLA project [12].
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Nowadays, transit signal priority system has been implemented in both developed and

developing countries. For the transit priority system in London, priority requirements are

determined at the AVL centre and transmitted to each bus through the normal polling cy-

cle. This request is then transmitted from each bus to the downstream traffic signals via a

roadside beacon, with the priority controlled by the traffic control system e.g. SCOOT [11].

SCOOT system gives priority to a bus by using predefined degree of saturation for each

intersection to avoid the excessive delay to other traffics. Note that SCOOT estimates the

degree of saturation from the measured ratio of average flow to maximum flows [13]. Bus

priority is considered only for buses which have been delayed from bus schedule by giving

corresponding extensions or recalls of green light. When a bus arrives at the end of green

phase, the current green is extended with respect to the bus schedule length to allow a bus

pass the stop line if the degree of saturation does not fall below the threshold limit. Like-

wise, when a bus arrives during a red phase, green light is recalled if the degree of saturation

does fall below a specific threshold for that intersection. In addition, the highest level of

communication between AVL center and ATC server is implemented in Genoa, Italy [12].

Transit signal priority system architectures according to the location of intelligence can be

characterised into four types as follows [11].

• Fully centralised - traffic control and priority function operates at a central server.

• Centralised ATC and decentralised priority - the benefits from bus priority might be ad-

versely affected by data transmission delays if the centralised priority is implemented.

• Decentralised ATC and centralised priority - wide area priority requirements take

precedence over local control.

• Fully decentralised architecture - traffic control and priority operate at a local level.

In AVL system, the sustainability and improvement of public transportation are key

components of area transport policy. In particular, traffic and junction delays affect the

speed and reliability of bus service. AVL system lessons in Europe can be summarised

as follows [11].

• Bus priority at a traffic signal is implemented with existing technologies and worth-

while benefits can be obtained.
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• AVL technologies are providing new opportunities for more sophisticated form of pri-

ority, particularly differential priority [14], where bus priority levels can be awarded

according to real-time need.

• GPS is becoming the preferred bus location technology; there is a diverse range of

overall system architectures for delivering AVL-base bus priority.

• In-house expertise is required if these increasingly complex systems are to be man-

aged, operated and maintained to the best effect.

The BRT system includes ITS components with AVL system together. Several re-

searches on BRT priority (transit signal priority) and control strategies have been reported

in the literatures. For example, manual strategies for traffic signal control conducted by

Wilbur [15], followed by the unconditional strategy [16], conditional strategy [17] and

adaptive conditional strategy [18]. Unconditional strategy grants the green extensions or re-

calls whenever a bus approaches at an intersection whereas the conditional strategy gives the

preemptive priority whenever a bus approaches an intersection together with two constraints,

i.e., the time limit for green extension and minimum elapsed time after the end of the priority

period. An adaptive priority modifies signal timing plans corresponding to a performance in-

dex defined as the weighted sum of vehicle delays, bus schedule delays or delays represented

by automobiles and bus passengers. In addition, the objective of transit signal priority has

been changed from decreasing bus delay to enhancing the reliability of bus priority services

by keeping buses on schedules [18]. Enhancement of travel time estimation becomes the

objective of transit signal priority in recent research [19]. However, one problem in transit

signal priority system is the signal delay variations of sequential buses. The bus signal con-

trol system is one of the sources to induce bus headway fluctuation and schedule deviation.

When each bus arrives at the intersection and delay for each bus is different, the different

signal status has been developed [20]. The optimal solution can be found by analyzing the

effectiveness of bus average delay and deviation of the headway. For the arrival time estima-

tion, the algorithm that uses a historical and real time vehicle local information for predicting

the arrival time for the next traffic light has been proposed [21]. A few literatures have been

investigated the transit signal priority various aspects e.g., arrival time estimation, green time

extension [22].

Moreover, several existing literatures also have investigated for transit signal priority
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at isolated intersections [23]. In [24], four architectures (preprocessor, mid-scope generator,

real-time generator and final mediation) have been proposed to improve the performance of

the transit priority system. However, this type of solution requires a centralised controller to

calculate the optimal flows for all intersections. This raises the cost of installation and the

communication mechanisms. For the centralised control, it requires an enormous amount of

computation and becomes the single point of failure [25]. To alleviate the problem caused

by a centralised control, an alternative method which is based on experiences gained from

interacting directly with the environment has been proposed.

In the existing literatures, researchers employ the machine learning to solve for traffic

signal control in a more scalable road network. For example, D. Teodorovic, V. Varadarajan,

J. Popovic, M. R. Chinnaswamy and S. Ramaraj [26] use adaptive neural network (ANN) to

predict the arrival of the traffic patterns. The work by Y. S. Hong, J. S. Kim, J. K. Son, and

C. K. Park [27] and M. C. Choy, D. Srinivasan, and R. L. Cheu [28] has investigated the

coordinated intersections for traffic signal control using neural network in a normal traffic.

The work by M. Ghanim, F. Dion and G. A. Lebdeh [29] has investigated an optimisation for

the transit signal priority with coordinated intersection at a microscopic level. For each ar-

rival pattern, dynamic programming (DP) is employed to seek for the optimal splits for each

direction which results in optimal performance. However, the limitation to this method is the

computational burden caused by the determination of the arrival traffic patterns manually.

To alleviate the problem caused by DP method, Cai [30] has proposed an adaptive dynamic

programming (ADP) to avoid the curse of dimensionality (enormous amount of computa-

tion) and curse of modelling (incomplete information of the state transition). The proposed

ADP overcomes both major classical problems in DP with an advanced information pre-

dicted from the future. B. G. Heydecker, C. Cai and C. K. Wong [31] has used ADP to seek

for the optimal splits with complicate vehicle movement and intersection layout. However,

all the reported literatures required advance traffic information patterns which may not be

accurate.

A flexible approach is to learn good traffic signal control from experiences gained grad-

ually by interacting directly with the environment. The approach, referred as reinforcement

learning (RL), is a class of machine learning related to the artificial intelligence [32]. RL is a

class of unsupervised learning that has potential to deal with traffic engineering problems is

first proposed in [33]. Due to the characteristic of reinforcement learning, this method has
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the capabilities of optimising at a local level of the network by the online learning process.

Moreover, it is adaptable and does not rely on offline processing of the enormous amount

of data. Reinforcement learning in traffic engineering problems has been reported in several

literatures. The work by Silva in [25] has proposed reinforcement learning to control traffic

lights signal at single intersection, the following work by using microscopic simulation for

more realistic scenario is considered [34]. In a work by C. Jacob and B. Abdulhai [35] have

addressed Q-learning which is a RL tool to deal with the highway traffic problems. For an

isolated intersection control, [36], [37], [38], [39] have considered Q-learning to control

with different objective functions, whereas [40] has investigated the green splits weighted

by employing RL in order to minimise the number of vehicles in the system. However, the

use of model proposed in [40] does not take into account a realistic situation like the change

of traffic scenario and the presence of vehicles in upstream junctions. Although the existing

approaches aim to find the best possible control for road traffic signal, those RL approaches

have considered the individual movement of the vehicles in the microscopic level. Therefore,

the computational burden becomes demanding. From the observations, an oversaturated traf-

fic condition has not yet been considered. In the specific area e.g., Bangkok traffic becomes

a major concern-particularly in terms of oversaturated conditions.

To that respect, this dissertation incorporates RL with the traffic flow behavior in the

system. A basis of a well-established traffic flow model, namely, cell transmission model

(CTM) is employed [41]. It should be noted that the origination of CTM has been first pro-

posed and represented for the vehicles movements in an expressway. The enlighten work in

[41] have inspired the following researchers in adopting CTM in various aspects for the un-

interrupted traffic flows. A work by A. Sadek and N. Basha [42] have proposed Q-learning,

which is one of the RL tools, for a traffic route guidance problem and uses a simple macro-

scopic model CTM to simulate the traffic flow dynamics of the system. The development of

CTM to a signalised version has been first proposed by H. K. Lo, E. Chang and Y. C. Chan

[43]. After the signalised version has been proposed, the inspiration leads to the other re-

searchers in the following works. Maher and Feldman [44] have investigated the application

of CTM to the optimisation of a signalised roundabout with TRANSYT technique. Work

by Lin and Wang [45] have tried to optimise the traffic signal light by using CTM. The

optimisation method is based on a mixed-interger linear programming for two intersections.

However, the previous two works [44], [45] have considered without the transit signal pri-
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ority and also neglect the enormous computation. Therefore, one of the most challenges in

traffic signal operation is to find the best strategic control for road traffic networks.

To respond to that challenging issue, this dissertation is aimed at developing a new

mathematical framework to control the traffic signal light for the road network with recently

deployed bus rapid transit system. The road network dynamics have been captured by the

state-of-the-art signalised CTM. The best possible traffic signal actions can be found by

applying the automated goal-directed learning and decision making called RL. As illustrated

in Figure 1.1, from the observed literatures, the traffic signal control with priority systems

based on signalised cell transmission model together with an unsupervised learning have not

yet been discovered. Therefore, the following chapters will provide the general knowledge,

the mathematical formulations and the insightful conclusions.

Figure 1.1 Dissertation overview

1.2 Scope of Dissertation

The scope of this work is in investigating the traffic signal control with cell trans-

mission model for bus rapid transit network using reinforcement learning with the distinct

behavior of interest.

1. Study the existing and current practice of traffic signal control with and without transit

signal priority systems.
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2. Develop a novel signalised CTM framework by using reinforcement learning to find

the proper traffic signal for an isolated intersection without priority systems.

3. Provide a comparative control methods between the signalised CTM based reinforce-

ment learning and the optimal control based queueing theory without priority systems.

4. Develop a novel signalised CTM framework together with the transit signal priority

systems (BRT) by using reinforcement learning to find the proper traffic signal for a

network scale.

5. Develop a computer program to evaluate the proposed method.

1.3 Organisation of the Dissertation

The remaining parts of this dissertation are organised as follows.

In Chapter II, the general background of the cell transmission model (CTM) is ex-

plained together with the signalised CTM version. The basic concept of RL has also been

introduced. The current implementation of the traffic signal control method with the signal

priority system will be introduced.

In Chapter III, the framework to control the traffic signal lights by using the Q-

learning when the summation of overall traffic demand from all directions exceeds the max-

imum flow capacity has been investigated. In this chapter, by merely using a single inter-

section network scenario and with herein newly introduced boundary conditions to capture

necessary vehicles backlog dynamics around the vicinity of the considered intersection, the

proposed Q-learning based CTM model can help reduce computational burdens a great deal

in comparison with the best periodic signal solution (BPSS). Particularly, with newly formu-

lated RL environment using CTM parameters, by using the total network delay as a reward

function, the results were not necessarily as good as initially expected. Rather, both simu-

lation and mathematical derivation results confirm that using the newly proposed red light

delay as the RL reward function gives better performance than using the total network delay

as the reward function.

In Chapter IV, the performance comparison for optimal traffic signal controls for an

isolated intersection is proposed. The optimal traffic signal controls have been analysed with

two well-known M/M/1 and D/D/1 queueing models, and RL approach. The RL framework
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has also integrated in conjunction with the use of the macroscopic CTM to update the vehicle

state dynamics upon the change of Q-learning actions. Two approaches, the steady-state

M/M/1 and D/D/1 and the Q-learning are compared in terms of the network throughput and

the average vehicle delay per completed trips. The obtained control strategies are adopted

and investigated in the microscopic traffic simulator AIMSUN.

In Chapter V, the in-depth investigations of the traffic signal control series from

Chapter III and Chapter IV have been further combined to a larger network scale and

by incorporating the exclusive bus rapid transit (BRT) in the systems. With the novel for-

mulation of CTM-BRT-based RL algorithm, this chapter shows the possibilities of adopting

the Q-learning to adjust the proper traffic signal light in a network scale scenario. The re-

ported results have been divided into two main scenarios which are the comparison between

non-BRT and BRT systems using Q-learning and the comparison between the distributed

Q-learning and the existing distributed control methods. The reported results show the appli-

cable range of Q-learning in controlling the traffic light on the BRT road network systems.

This dissertation concludes all the contributions in Chapter VI, together with the pos-

sible future research directions.



CHAPTER II

FUNDAMENTAL THEORY

This chapter provides the general knowledge being used throughout the dissertation.

Theoretically, the underlying ideas are the macroscopic signalised cell transmission model

(CTM), the self-automation learning system reinforcement learning (RL) and the current

implementation of the transit signal priority system (BRT).

Two types of road traffic networks are considered in this dissertation: an isolated in-

tersection in Chapter III, Chapter IV and a network with BRT systems in Chapter V.

The general knowledge of CTM is given in Section 2.1. For the novel formulation of the

CTM-BRT Q-learning, the mathematical framework has been clearly stated in each chapter.

The general idea of the reinforcement learning has been introduced in Section 2.2. In Sec-

tion 2.3, the existing implementation to control the road traffic network has been described.

And Section 2.4 concludes this chapter and leads the idea to Chapter III.

2.1 Cell Transmission Model

The use of traffic simulation nowadays can be mainly classified into either microscopic

or macroscopic models. Generally, the macroscopic traffic model is originally formulated as

the relationship among traffic flow characteristics, e.g., flow, density, average speed of the

vehicles [41]. On the contrary, the original idea for the microscopic traffic model is based on

the individual tracking of the vehicle movements. Practically, the driving behaviors in real

traffic situation are difficult to measure, observe and validate. By nature, the time calcula-

tion from the macroscopic model is less consumable than the microscopic model. For the

traffic signal control, the decision for changing signal at intersections becomes crucial. The

time calculation is considered as the first priority in choosing the traffic simulation model.

Therefore, in this dissertation, the macroscopic traffic model has been chosen.

The limitations of the macroscopic CTM underlying in this dissertation are no turning

movements, lane changing, ramping, lane merging and etc. The elementary of traffic param-

eters being considered in this dissertation are the average vehicle speed, the road length and
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the calibrated wave speed coefficient. The model validation of the traffic model is not in this

dissertation. Nonetheless, the real road traffic parameters can extend easily by including all

traffic behavior. The employing of the CTM in this dissertation has been intended to capture

the vehicle dynamics for finding the best proper traffic signal for the road traffic network

with BRT. As mentioned in the beginning of this chapter, the mathematical formulation of

the CTM can be found in each chapter individually.

2.2 Self-Automated Reinforcement Learning

Reinforcement learning (RL) is a class of machine learning. The classical learning

methods are generally known as the supervised and the unsupervised learning. For the su-

pervised learning, the set of all possible pairs, both the input and the expected output must

be trained off-line. In an extreme circumstance, the obtainable result from the training is

difficult e.g., the set of training pairs [46]. Therefore, the supervised learning has been in-

troduced to solve this situation. The RL can learn directly from the interaction between the

control agent (the decision maker) and the environment (the vicinity around the system). The

core idea of the RL can be briefly explained as follows.

At the beginning, the environment has been sensed by the control agent. The agent

therefore determines an action to be chosen from its own set of possible actions. The pro-

gression of the system dynamics is directly affected by the applied action from the agent.

The control agent observes for the reward from the change of state. The reward value is

used to tell the control agent how good or bad the previous decision is. The control agent

will decide on whether to remain or change the current action depending on the immediate

reward return [32]. For the traffic signal control being used in this dissertation, the agent

represents the traffic light and the environment represents the vehicles in the systems. The

reward corresponds to the vehicle delay. In the case of road network with BRT systems,

the reward function has integrated also the passenger delay in terms of the bus priority in

Chapter V.

2.3 Current Implementation of Transit Signal Priority Systems

The way to give the priority to the buses nowadays are manifolded. For convenience,

the traffic signal can be grouped into two categories which are an isolated control and a coor-
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dinated control. For an isolated control, the traffic signal has been individually controlled in

each intersection. In general, the isolated control is not taken into account of the effects of the

neighbourhood intersection [47]. However, in this dissertation, the newly introduced bound-

ary condition has been introduced to capture necessary vehicle backlog dynamics around the

vicinity of the considered intersection as to be shown in Chapter IV. The general methods

to control an isolated intersection can be either fixed-time or vehicle actuated.

The fixed-time technique employs the historical data to set the pre-planned traffic con-

trol. The historical data has been used to calculate the proper signal. This system has been

proven to work well in non-congested traffic scenarios [47]. For the vehicle actuated (VA) or

the microprocessor optimised vehicle actuation (MOVA), this method relies on the sensors

embedded in each intersection. At an intersection, the green light will be calculated based

on the traffic volumes approaching an intersection. This system gives the priority by either

extending or recalling the green signal for the buses.

For the coordinated control, the operation at each intersection has been sent the data

through the central controller to determine the signal indication for the whole system. By us-

ing this technique, if the approaching vehicles can be served under the current road capacity,

then the obtained control plan is useful. However, when the system becomes totally jammed,

the proper traffic signal solution is infeasible. And moreover, the transmission of data from

the local level to the central control becomes crucial. The implemented coordinated control

has been widely used in various methods as mentioned in Chapter I e.g., SCOOT [5] and

SCATS [7].

In this dissertation, the considered system has been inspired from the road network

with BRT system in Bangkok, Thailand. This is an example of the road traffic network

with BRT that always operates in the jammed scenarios in the rush hour period everyday.

Therefore, in the following chapters, the core idea is how to control the system in the jammed

scenarios.

2.4 Concluding Remarks

In this chapter, the core idea of three theories has been introduced. To the aforemen-

tioned, in Section 2.1, the CTM has been employed for updating the system dynamics. In

Section 2.2, the RL has also introduced for acting as a major role in finding the best proper

traffic signal control in two scenarios which are an isolated intersection and a network with
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BRT systems. In Section 2.3, the current implementation of the traffic signal control method

with the signal priority system will be introduced. In the next chapter, the newly formulated

mathematical framework for an isolated traffic signal control with signalised CTM together

with the RL technique has been introduced. The proposed reward function by using the red

light delay to minimise the overall system delay will also been introduced.



CHAPTER III

ISOLATED TRAFFIC SIGNAL CONTROL WITH

Q-LEARNING USING CELL TRANSMISSION MODEL

The inspiration idea behind this chapter originates from the bus rapid transit (BRT)

route of road traffic networks in Bangkok, Thailand. As illustrated in Figure 3.1 [48], the

U-shaped road network in Bangkok consists of two main road systems both isolated and

network. The red pinned-points represents the BRT stations. Five green balloons and a blue

line represents an example of the journey trip from station A to station E. Consider the green

balloon “E”, the intersection represents an isolated intersection. From the green balloon “A”-

“B”, the road link presents a network with BRT systems. From the existing literatures, the

past researchers have investigated the traffic signal control with the reinforcement learning

(RL) in the microscopic level only. In this dissertation, the mathematical formulation of the

macroscopic signalised cell transmission model CTM together with the RL is first proposed

in this chapter. For simplification, the formulation in this chapter will be firstly formulated

from an isolated intersection (the green balloon “E”). To take into account of the network

neighbourhood delay, this chapter employs the cascading CTM to capture the necessary

vehicle backlog dynamics around the vicinity of the considered intersection.

Section 3.1 describes the problem formulation of the cascading CTM together with

the Q-learning framework. In this chapter, the goal is for Q-learning to minimise the total

network delay. The detailed implementation of the Q-learning algorithm can be found in

Section 3.2. This chapter contributes two main ideas which are the newly proposed red light

delay as the Q-learning reward function and the mathematical analysis when the summation

of overall traffic demand from all directions exceeds the maximum flow capacity. Section 3.3

shows the validation of the proposed CTM-Based solution together with the applicability of

Q-learning to control an isolated intersection on the microscopic AIMSUN level. Section 3.4

concludes this chapter.
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Figure 3.1 BRT route in Bangkok, Thailand
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3.1 Problem Formulation

3.1.1 State Space

Suppose the vehicles in the system belong to a single class e.g. personal cars. As

Figure 3.2 CTM boundaries and signalised cells

shown in Figure 3.2, each road is partitioned into small cells i = 1, ..., I . The incoming

demand patterns to an intersection is classified into P directions. Let S be the state space of

the system. For each vehicle cell i in direction p at time slot t, define spi (t) as the number

of vehicles. Let s(t) = [spi (t), ∀(i, p)] ∈ S be the state vector which represents the total

number of vehicles in the system at time slot t. Note that in a real traffic scenario, the

number of vehicles can be estimated from sensors on the road. To avoid the computational

burden caused by the state space explosion, the quantisation technique is employed. The
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level of quantisations here can be represented by the number of deployed sensors in the road

network. For simplification, let us define the quantised level of the total number of vehicles

approaching the intersection from direction p at time slot t as

s̃p(t) =


κ∑
i=1

spi (t)

C
f

+ I(
κ∑
i=1

spi (t) = 0), (3.1)

where I(.) is the indicator function; C is the maximum number of vehicles allowable in each

cell i = 1, ..., κ; and f is the total number of quantisation levels. The Q-learning state can

then be redefined as

s̃(t) = [s̃p(t), ∀p] ∈ S̃. (3.2)

3.1.2 Cell Transmission Model

To incorporate the evolution of traffic dynamics in the system, a basic macroscopic

model CTM is employed. The CTM parameters can be defined as follows [41].

3.1.2.1 Sending Capability

Sending capability represents the ability to send the vehicles from cells to other cells,

i.e., moving vehicles from beginning to ending cells. The sending capability can be defined

as

Λp
i (t) = min {spi (t) , qpi (t)} . (3.3)

For cell i in direction p at time slot t, Λp
i (t) is the sending capability; spi (t) is the number of

vehicles; and qpi (t) is the maximum number of vehicles that can flow through cell i.

3.1.2.2 Receiving Capability

Receiving capability can be calculated by considering the remaining spaces in each

cell and the maximum rate of vehicles that can move through the cell. Thus, for cell i in

direction p at time slot t, its receiving capability can be defined as

Ψp
i (t) = min{qpi (t), δ

p
i [cpi (t)− s

p
i (t)]}, (3.4)

where δpi is the wave speed coefficient and cpi (t) is the maximum number of vehicles that can

be present. Note that the parameter qpi (t) is influenced by the signal phase being chosen in

cell i, direction p and time slot t in the action selection.



20

3.1.2.3 Cell Cascading

This is the representation of the connection between two adjacent cells from the be-

ginning cell i − 1 and the ending cell i. The number of vehicles that flow in this cascading

scenario can be calculated from the sending and receiving capability by

ypi (t) = min{Λp
i−1(t),Ψ

p
i (t)}, (3.5)

where ypi (t) is the number of vehicles that flow into cell i in direction p at time slot t.

3.1.2.4 Flow Conservation

Flow conservation is used to update the number of vehicles for the next time slot:

spi (t+ 1) = spi (t) + ypi (t)− y
p
i+1(t). (3.6)

3.1.3 Action Space

To influence the system dynamics, for each time slot, the control agent (traffic con-

troller) must select whether it would keep the current signal indication or change it. Such

decision is called action. At state vector s̃, an action must be selected from a state dependent

set A(s̃). Specifically, A(s̃) is the set of all possible actions which a traffic controller can

take at state s̃. Define action at as the phase of signal light to be chosen (e.g, phase 1 for the

green light from West to East and phase 2 for that from North to South) at time slot t. The

main goal is to optimise the traffic signal adjustment by minimising the total network delay

of road network. The decision on changing actions is allowed every T time slots and is here

represented by an indicator function at time slot t as follows:

Gp(t) =



1, vehicles in direction p get green light

in the chosen action at time slot t

0, vehicles in direction p get red light

in the chosen action at time slot t.

(3.7)

Note that the action spaceA(s̃) must be defined such that all conflicting flows are not allowed

to have green light at the same time.

The system dynamics are changed according to the traffic signal lights corresponding

to the action taken at ∈ A(s̃). Assume that in one time slot, vehicles can move on average to
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the adjacent cells only. Let qmax be the maximum number of vehicles that can flow through

each cell per time slot. For non-signalised cell i, the maximum number of vehicles that can

flow through cell i in direction p at time slot t is given by qpi (t) = qmax,∀(p, t). For signalised

cell i, the equation can be defined as follows

qpi (t) =

 qmax ;Gp(t) = 1 and t− τi(t) > L

0 ; otherwise,
(3.8)

where L is the total starting/stopping loss time upon each signal change and τi(t) is the latest

time instant where the traffic signal indication of cell i at time slot t has been changed.

3.1.4 Boundary Conditions

Figure 3.3 illustrates the boundary condition for CTM herein being used.

Figure 3.3 Boundary cells

3.1.4.1 Gate Cell

The boundary condition is here formulated by following [41]. At the boundary, input

vehicle flows can be modelled by a cell pair (“00” and cell “0”) as illustrated in Figure 3.3.

A source cell “00” with an infinite number of vehicles sp00(t) =∞ ready to enter an initially

empty gate cell “0” of infinite size, cp0(t) = ∞. The flow capacity qp0(t) of the gate cell “0”

is set to the desired link input flow. Thus, the boundary conditions can be obtained from

(3.3)–(3.6) as

Λp
0(t) = min{sp0(t), q

p
0(t)} (3.9)

yp0(t) = qp0(t) (3.10)

yp1(t) = min{Λp
0(t),Ψ

p
1(t)} (3.11)

sp0(t+ 1) = sp0(t) + yp0(t)− yp1(t). (3.12)
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3.1.4.2 Sink cell

Suppose that the output cell referred as the sink cell, for all exiting traffic has infinite

size cpI+1(t) = ∞ and qpI+1(t) = ∞. According to (3.4), the sink cell I + 1 thus has the

receiving capability of

Ψp
I+1(t) =∞. (3.13)

Note that in a more realistic case, qpI+1(t) can be set in accordance with the road network

neighbourhood, i.e., the cell buffer of an adjacent intersection.

3.1.5 Vehicle Delay

In Q-learning, to quantify the consequence of the action taken at time slot t, an im-

mediate reward in terms of vehicle delay is returned to the agent (traffic controller). Vehicle

delay is defined as the number of vehicles that cannot move away from the present cell within

each time slot. In this research, two types of vehicle delay are proposed, i.e., internal delay

and external delay. At time slot t for each direction p, let dp0(t) be the external vehicle delay

and dpi (t) be the internal vehicle delay in cell i. These delays can be expressed as

dp0(t) = sp0(t)− y
p
1(t), (3.14)

dpi (t) = spi (t)− y
p
i+1(t), i = 1, 2, . . . , I. (3.15)

The external delay can be interpreted as the delay experienced by the vehicles that wait to

enter the considered road network from its upstream neighbourhoods. The external delay

value forms the boundary condition to capture necessary vehicle backlog dynamics around

the vicinity of the considered intersection. The internal vehicle delay is the delay incurred

within each cell along the considered road network. Combining both types of delay therefore

reflects how well the action just taken by the agent (traffic controller) at state vector s̃ is, by

merely taking into account a single intersection. The next section provides the long term

performance criteria in terms of these delay functions which will be optimised for the best

possible traffic signal control by means of Q-learning.



23

3.1.6 Performance Criteria

To evaluate the optimal policy (set of actions) that minimises the total network delay,

the performance criteria Υ(t) at time slot t is defined as

Υ(t) = Υred(t) + Υgreen(t), (3.16)

Υred(t) =
P∑
p=1

I∑
i=0

(1−Gp(t))dpi (t), (3.17)

Υgreen(t) =
P∑
p=1

I∑
i=0

Gp(t)dpi (t), (3.18)

where Υred(t) is the “red light delay” and Υgreen(t) is the “green light delay”. The red

(green) light delay is the total vehicle delay from all the cells in the directions that see the

red (green) light.

3.2 Signal Optimisation by Q-learning Algorithm For Isolated Inter-

section

Without loss of generality, let us index the signalised cells by κ as an example of

CTM-based intersection model shown in Figure 3.2. Assume that no turning movement is

allowed at this intersection. The signalised cells κ are used to control the traffic flows from

West to East and North to South. To tackle the road traffic problem where the system always

changes, a well-known method that can learn directly from experiences is employed, namely,

the Q-learning method [32]. Q-learning uses the action-value function Q(̃s, a) to evaluate

the average future reward return expressed as a function of the current state s̃ and action a.

This section explains a step-by-step implementation of Q-learning algorithm proposed in the

CTM framework.

To apply Q-learning in a signalised CTM framework, a definite simulation length is

used for periodically observing traffic behaviors within a study time-interval. When the

current time slot of CTM reaches the simulation length, the system enters the next episode.

In practice, episodes can represent the repeatable and non-repeatable traffic phenomena. On

one hand, in a repeatable case, we can use Q-learning to tackle a recurrent congestion, e.g.

during rush hours, in which traffic behaviours statistically repeat themselves from one day to

another. In this case, at the beginning of each episode, our road system modelled by CTM can
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be reset to the same initial-value cell density settings. On the other hand, in a non-repeatable

case, Q-learning can be used to deal with a non-recurrent congestion scenario resulted from

unexpected incidences like accidents or road surface maintenance. In this case, our interest is

on how Q-learning would allow the signal controller to quickly learn and adapt its strategic

decisions upon those unexpected changes. Consequently, the CTM state in the first time

slot of next episode is defined in this case as the CTM state in the last time slot of previous

episode.

Whether Q-learning is applied in the repeatable or non-repeatable cases, within each

episode, the Q-learning-based traffic controller is designed to make a sequence of signal-

light decisions. Let the decision epoch tω refer to the time instant when decision ω is made,

where ω = 1, 2, . . . and tω = t1, t2, . . ., respectively.

For each episode, the optimisation procedure of Q-learning can be summarised as fol-

lows.

1) System Initialisation

The number of vehicles in state vector s(0) can be intialised by (3.6) and (3.12) at the be-

ginning of an episode to the latest observed state of the system in the previous episode in

the non-repeatable case or to a nominal operating point of the system at the considered time

period in the repeatable case. In practice, the number of vehicles s̃p(0) for all p can be

measured from road traffic by counting from the sensors embedded on the road. The action

value function Q(̃s, a) can be initialised to the latest updated value in the previous episode

for both the non-repeatable case and the repeatable case. It should be noted that, different

intialisations of Q(̃s, a) yield different results, mainly, in terms of the time convergence (the

time that the algorithm needs to learn to reach the solution). Let ω = 1.

2) Action Selection

At decision ω, with the current state observable at s̃, the agent (traffic controller) chooses an

action a ∈ A(s̃) to control the traffic signal by changing Gp(t) in (3.7). The action can be

chosen by the ε-greedy algorithm [32], where the greedy action is here defined as

a = arg min
a′

Q(̃s, a′).

According to this algorithm [32], Q-learning chooses the greedy action with probability

1 − ε. And, with probability ε, the other actions are randomly selected according to a uni-

form distribution. In practice, an ε is a small positive value representing the explorability of

learning algorithm.
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3) Update of System Dynamics

Calculate the CTM state from time slot t = tω to time slot t = tω+1 − 1. Here, the next

state vector (̃s′) is calculated from the CTM state at time slot t = tω+1 − 1. In this section,

three Q-functions have been compared, namely, the total network delay by considering the

accumulative vehicle delays in only the directions facing red light signal, receiving the green

light signal, or both. The observed rewardR(ω) can then be correspondingly calculated from

R(ω) =



tω+1−1∑
t=tω

Υ(t) in case of total network delay

tω+1−1∑
t=tω

Υred(t) in case of red light delay

tω+1−1∑
t=tω

Υgreen(t) in case of green light delay.

(3.19)

4) Update of Action Value Function

The algorithm can learn from its past experiences accumulated in Q-function and the reward

in (3.19) newly gained from the most recent action ω. By following [32], Q-function can be

updated as follows

Q(̃s, a)← Q(̃s, a) + α[R(ω) + γmina′Q(̃s′, a′)−Q(̃s, a)].

Here, Q(̃s′, a′) represents the action value function for the next observable state vector s̃′ and

next possible action a′ ∈ A(s̃′). Practically, α ∈ (0, 1] is the learning rate and γ ∈ [0, 1) is

the discount rate applied to the future expected rewards.

5) Update of State Variable and Timing Parameter

Update state s̃← s̃′. And update ω ← ω + 1.

6) Stopping Condition

Repeat steps 2)–5) until the end of episode.

3.3 Results and Discussions

This section is aimed at reporting the findings from our series of experiments. Firstly,

the convergence time and corresponding computational complexity of the proposed Q-learning

algorithm has been presented. Secondly, three reward functions in (3.19) have been com-

pared in terms of the achievable minimum total network delay values. Thirdly, with the best
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choice in the reward value accounting for the vehicle delay in red-light traffic direction, Q-

learning performance has been investigated in stationary/non-stationary stochastic loading

scenarios. Lastly, the applicability of macroscopic CTM-based solution of the proposed Q-

learning algorithm has been tested in microscopic mobility environments using AIMSUN.

All the experimental results share the following common parameter settings.

1. System Parameters: As illustrated in Figure 3.2, suppose that the length of each road

approaching the considered intersection is 800 metres and each road is discretised into

10 equal-length cells, i.e. I = 10. Each time slot has been set to 5 seconds. Each

cell has the capacity cpi (t) of 60 passenger car units (pcu) and the maximum flow rate

qpi (t) of 6.9 pcu/slot. The wave speed coefficient δpi is 0.8. Note that the values of CTM

parameters are based on the actual traffic data collection being calibrated for Payathai

road in Bangkok, Thailand [49].

2. Control Parameters: The length of each episode is 20 minutes or 240 time slots. An

action has been chosen every 3 time slots. Note that the longer the action selection

is, the more outdated the decision becomes. The number of quantisation levels f has

been set to 3. Practically, three levels are corresponding to the three sensors that are

often deployed on the real road configuration. The first sensor at the entry of the road is

used for preventing the spill-back of vehicles to upstream neighbourhoods. The second

sensor is deployed in the middle of the road for the queue length estimation. The third

sensor placed at the stop-line of the road is used for the wasted green prevention in an

actuated signal control.

3.3.1 Q-learning Validation

This chapter proposes the newly developed version of the signalised CTM with Q-

learning. The validation of the Q-learning in various traffic conditions are reported. The best

periodic signal solution (BPSS) and the Q-learning solution by using the proposed frame-

work have been compared. In each cycle time, the total network delay obtained from the

BPSS can be calculated by allocating all possible splits pairs to each direction. Define λ1

and λ2 as the average rate of arrival traffic from West to East and North to South, respectively.

Consider deterministic demand patterns with {λ1, λ2} = {8, 8}, {11, 5}, {13, 3}, {15, 1}
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pcu/slot. Note that the other traffic conditions can be achieved by other sets of demand pat-

terns as well, but we have analysed the example of four settings given above. From trial-and-

error, the Q-learning parameters are set to ε = 0.1, α = 0.01, γ = 0.005 within 100 episodes.

Theoretically, the learning rate (α) determines how fast the newly acquired information will

override the old information. The possible value of α is in the range of 0 < α ≤ 1. The

discount factor (γ) determines the importance of future rewards where 0 ≤ γ < 1. If γ = 0,

then the agent will be “opportunistic” by only considering current rewards. The parameter

ε is a small probability, where a larger ε is used for a more exploration-oriented design and

a smaller ε is used for a more exploitation-oriented design [32]. In practice, the paramet-

ric tuning for the algorithm is one of the major challenges because in different scenarios,

the parameters need to be readjusted. However, the advantage of the effects of Q-learning

parameters is the usable range of these parameters are wide. With the flexibility of the Q-

learning parameters, the obtained solution of Q-learning can be found without readjusting as

discussed in the following section of the performance in stationary/non-stationary stochastic

loadings.
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Figure 3.4 Total network delay from Q-learning vs BPSS

By using our proposed red light delay (3.17) as the reward function, Figure 3.4 and

Figure 3.5 illustrate the total network delay and the allocated green time to each direction,

respectively. Note that the red light delay used herein has been chosen from the following

subsection focusing on the effect of reward functions. Figure 3.4 shows that the total network
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Figure 3.5 Allocated green time to each direction in last episode of Q-learning

delay from Q-learning can be found close to the solution from BPSS in most scenarios.

Particularly, when {λ1, λ2} = {15, 1} pcu/slot, Q-learning solution yields unsatisfactory

result because of small traffic λ2. Technically speaking, Q-learning requires the knowledge

from its past experiences. But with a small traffic demand, the system cannot offer sufficient

experiences to the Q-learning in order to achieve the solution properly. Figure 3.5 shows the

number of time slots allocated to each direction. The result shows that the allocated green

time in each direction is proportional to the incoming traffic demand of that direction.

To evaluate the convergence of Q-learning, an example scenario with {λ1, λ2} =

{13, 3} pcu/slot has been elaborated. Let us define the convergence criterion in terms of

the average value of Q-function:

Qavg
episode =

T∑
t=1

Q (s̃(t), at)

T
. (3.20)

The algorithm converges when Qavg
episode is unchanged or slightly changed with fluctua-

tion of less than 5% in comparison with the previous episodes as illustrated in Figure 3.6.

The computational complexity has been measured in terms of the required amount of

memory and the computational time to achieve the final solution. Let the number of ele-

ments in the quantised state space be denoted by |S̃| and that in the action space be denoted

by |A|. Note that the action space |A| = P where P is the total number of all road network

directions. Let k be the total number of the green time pairs in the overall searching space of
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Figure 3.6 Average of Q-value for each episode

periodic signal solutions. To search for the BPSS within these k possibilities per each state,

the required amount of memory is O(aP ) where a is a constant. However, the amount of

memory required for Q-learning is O(|S̃|P ). The BPSS grows exponentially depending on

the number of the green time pairs to be searched whereas the growth of Q-learning depends

on the quantised state space and the number of actions. The memory requirement can be

saved with respect to the increasing of k. From all example of our experiments, the maxi-

mum memory required for the BPSS is 748 kbytes whereas the maximum memory required

for the Q-learning is 114 kbytes. Therefore, the amount of memory required in searching

for the solution of Q-learning is significantly less than that for BPSS method. For the com-

putational time, the measurement is in terms of time period from the beginning through the

end of simulation in order to obtain the best corresponding signal plans. Mathematically,

the computational time for the BPSS is O(aP ) whereas the computational time for the Q-

learning is O(|S̃|P ). For all the experiments, the computational time has been measured

by using MATLABrwith the processor Intel(R) Core(TM) i7-2630QM CPU@2.0GHz and

4GB RAM. Note that such calculation also includes the training period. The computational

time of BPSS and Q-learning have been illustrated in TABLE. 3.1. The result shows that the

computation of Q-learning for obtaining a control signal is significantly faster than BPSS.
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Table 3.1 Computational time of Q-learning and BPSS

Pattern Q-learning (sec) BPSS (sec)

Loading Pattern 1 15.62 1222.63

Loading Pattern 2 15.08 1222.34

Loading Pattern 3 15.42 1223.46

Loading Pattern 4 15.21 1224.39

3.3.2 Effect of Reward Functions

The procedure to find the traffic signal solution has been illustrated in the Q-learning

validation. In this subsection, three different reward functions have been investigated in

both symmetric and asymmetric loading patterns. To make the experiments more realistic,

the traffic demand is no longer deterministic. In this subsection, the traffic demand is a

Poisson process with a constant arrival rate for each direction. For symmetric loadings,

both directions have equal approaching demand from {1, 1}, {3, 3}, ..., {15, 15} pcu/slot,

respectively. For asymmetric loadings, λ1 has been set to 13 pcu/slot and λ2 is varied from

1, 2, ..., 15 pcu/slot. The results have been obtained with the manually fine-tuned Q-learning

parameters ε = 0.1, α = 0.01, γ = 0.005.
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Figure 3.7 Total network delay from three reward functions on symmetric loadings
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Figure 3.8 Total network delay from three reward functions on asymmetric loadings

As illustrated in Figure 3.7 and Figure 3.8, with 95% confidence interval of both sym-

metric and asymmetric loadings, the proposed red light delay as the reward function de-

creases the total network delay in comparison with the conventional case of total network

delay as the reward function and greatly decreases the total network delay in comparison

with the case of green light delay as the reward function. The previous statement is valid in

the loading region where the summation of overall traffic demand from all directions does

not exceed its maximum flow capacity (λ1 + λ2 ≤ 6.9 pcu/slot). On the contrary, when the

summation of overall traffic demand from all directions exceeds the maximum flow capacity

(λ1 + λ2 > 6.9 pcu/slot), the case of green light delay as the reward function yields slightly

low total network delay in comparison with the case using the other two reward functions.

Consider the system in the case where the summation of overall traffic demand from all di-

rections does not exceed its maximum flow capacity. In this case, any control strategy can

be used because usually there is no congestion of vehicles. In such scenario, the control

strategy is not complicated. However, the system in the case where the summation of overall

traffic demand from all directions exceeds the maximum flow capacity, the control strategy

has concerned because traffic congestion becomes a severe problem. Therefore, the follow-

ing discussion will focus on the case of the summation of overall traffic demand from all

directions exceeds the maximum flow capacity only.
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3.3.2.1 Mathematical Analysis When Overall Traffic Exceeds The Maximum Flow

Capacity

To discuss all the results under the condition when the summation of overall traffic

demand from all directions exceeds the maximum flow capacity, define the major flow (minor

flow) as the incoming traffic demands that exceed (does not exceed) the capacity. Two types

of the road traffic phenomena have been investigated. The experiments are concerned with a

major flow conflicted with a minor flow (Ma-Mi condition) and two major flows conflicted

with each other (Ma-Ma condition). For the Ma-Mi condition, consider an example demand

setting {λ1, λ2} = {13, 3} pcu/slot. Our experimental results in Figure 3.9, Figure 3.10 and

Figure 3.11 show the total network delay in each time slot, the delay of all cells in each

direction and the action chosen in each time slot, respectively. All the results in Figure 3.9,

Figure 3.10 and Figure 3.11 have been observed at the final episode at the convergence.
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Figure 3.9 Ma-Mi: total delay in each time slot

The following discussion for the Ma-Mi conditions explains why the case of red light

delay can achieve better performance than that of the other two reward functions. Recall that

the Υred (Υgreen) denotes the red (green) light delay, which is the total vehicle delay from all

the cells in the directions that see the red (green) light.

As illustrated in Figure 3.12(a) and Figure 3.12(b), the solid arrow represents the green

light direction and the dash-dot arrow represents the red light direction. With a simplified
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Figure 3.10 Ma-Mi: three types of reward functions and its delay in each component
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Figure 3.11 Ma-Mi: action chosen in each time slot
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Figure 3.12: Relationship between loadings and chosen actions

(a) when the chosen action gives green light to the major flow at all time slots

(b) when the chosen action gives green light to the minor flow at all time slots

derivation, our result can be explained by using mathematical analysis as follows. Consider

the derivation of accumulative delay of all cells in each direction as used in Figure. 3.9 to

Figure 3.11. From (3.14) – (3.15), the accumulative delay of all cells in direction p up to

time slot T can be obtained from

T∑
t=0

I∑
i=0

dpi (t) =
T∑
t=0

I∑
i=0

(
spi (t)− y

p
i+1(t)

)
. (3.21)

At the asymptote (all the cells in overloaded direction being fully occupied), define

Ῡred, (Ῡgreen) as the asymptotic increasing rate of expected value of the accumulative red

(green) light delay. Likewise, define Ῡ as the asymptotic increasing rate of expected value

of the accumulative total network delay. The term ypi+1(t) becomes zero when calculating

Υred(t) and becomes non-zero (6.9 pcu/slot) when calculating Υgreen(t)

Ῡred =

 λ2 − 0, G1(t) = 1

λ1 − 0, G2(t) = 1
(3.22)

Ῡgreen =

 max((λ1 − 6.9), 0), G1(t) = 1

max((λ2 − 6.9), 0), G2(t) = 1
(3.23)

Ῡ = Ῡred + Ῡgreen,

Ῡ =

 λ2 + max((λ1 − 6.9), 0), G1(t) = 1

λ1 + max((λ2 − 6.9), 0), G2(t) = 1
(3.24)
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Therefore, from (3.22) – (3.24), when λ1 = 13 and λ2 = 3 pcu/slot,

Ῡred =

 3− 0 = 3, G1(t) = 1

13− 0 = 13, G2(t) = 1,
(3.25)

Ῡgreen =

 13− 6.9 = 6.1, G1(t) = 1

max(3− 6.9, 0) = 0, G2(t) = 1,
(3.26)

Ῡ =

 3 + 6.1 = 9.1, G1(t) = 1

13 + 0 = 13, G2(t) = 1
(3.27)

From (3.25), if the reward function is Υred(t), then the minimum total network delay can

be achieved by allocating the green light signal to the major flow (λ1). Likewise, in (3.26),

if the reward function is Υgreen(t), then the minimum total network delay can be achieved

by allocating the green light signal to the minor flow (λ2). Using Υgreen(t) as the reward

function leads to the wasted green scenario (green light allocation to a particular direction

without remaining vehicles) as illustrated by the term max(3 − 6.9, 0). However, if Υ(t)

is chosen as the reward function, then the minimum total network delay can be achieved

by allocating the green light signal to the major flow (λ1). The total network delay is a bit

higher than the case of Υred(t). To explain why the total network delay from Υ(t) is higher

than Υred(t). There are two concerned effects in using Υred(t) or Υ(t) as the reward function.

One is the indistinguishable effect from Υ(t) where the agent only knows the overall network

delay (3.16). Regardless of whether proper or improper action has been chosen, the value

of reward in terms of total network delay is indifferent due to the summation of all vehicle

delays in the system. The indistinguishable effect results in an inaccuracy (an improper

action selection) and an inefficiency (an increasing of undesirable total network delay) of

the action selection from Q-learning. Another is the timing effect of switched actions. In

this case, the more often the action switches, the worse the total network delay is. From the

discussion in the Ma-Mi condition, the recommended reward function would be the red light

delay (Υred(t)), which gives the lowest total network delay in comparison with the other two

reward functions.

As an example of Ma-Ma condition, consider {λ1, λ2} = {13, 8} pcu/slot. The values
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of Ῡred, Ῡgreen and Ῡ become

Ῡred =

 8− 0 = 8, G1(t) = 1

13− 0 = 13, G2(t) = 1
(3.28)

Ῡgreen =

 13− 6.9 = 6.1, G1(t) = 1

8− 6.9 = 1.1, G2(t) = 1
(3.29)

Ῡ =

 8 + 6.1 = 14.1, G1(t) = 1

13 + 1.1 = 14.1, G2(t) = 1
(3.30)
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Figure 3.13 Ma-Ma: total delay in each time slot

For Ma-Ma condition, as illustrated in Figure 3.13 shows the total network delay in

each time slot. Figure 3.14 and Figure 3.15 show the delay of all cells in each direction and

the action chosen in each time slot, respectively. The minimum value of Ῡred is 8 pcu-slot

when the major flow receives the green light and the minimum value of Ῡgreen is 1.1 pcu-slot

when the minor flow receives the green light. The minimum value of Ῡ is 14.1 pcu-slot, no

matter which direction receives the green light. Consider Υred in this scenario where both

directions are totally over-saturated (two major flows conflicted each other). By using Ῡred

(3.28) as the reward function, no matter what actions have been chosen, the change of total

network delay becomes insignificant because the traffic is jammed. By using Ῡgreen (3.29)

as the reward function, the minimum total network delay can be achieved by allocating the

green light to a minor flow. By using Ῡ as the reward function, both total network delay

are indifferent no matter what decisions have been taken. In Ma-Ma conditions, the proper
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Figure 3.14 Ma-Ma: three types of reward functions and its delay in each component
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management of traffic signal control becomes a major concern. The next recommended

traffic signal would preferably remain the same as the current traffic signal to avoid the

occurrence of the system loss time. The any reward function can be used because the traffic

is jammed. The reduction of total network delay becomes insignificant.

The goal is for Q-learning to minimise the total network delay. Surprisingly, by using

the total network delay as a reward function, the results were not necessarily as good as

initially expected. Rather, both simulation and mathematical derivation results confirm that

using the newly proposed red light delay as the Q-learning reward function gives better

performance than using the total network delay as the reward function. Note that a good

reward function must be able to allow the algorithm to steer its instantaneous searching

directions towards the final goal of minimising the total network delay. But that reward

function itself needs not be the objective function i.e. the total network delay. Instead, from

our numerical experiments, one should rather opt for using the red-light delay as the reward

function so that the effect on future expected total network delay can be reflected within only

a few time slots after an action decision has been made. On the contrary, if the total network

delay is used as the reward function, then the algorithm eventually cannot find the proper

solution.

3.3.3 Q-Learning Performance in Stationary/Non-Stationary Stochastic Loadings

In the Q-learning validation section, four different traffic demand patterns have been

investigated. In fact, such simplification can be relaxed to more realistic case by consider-

ing on the random source probabilities. Let the traffic demand be a Poisson process with

a constant arrival rate for each direction. From the previous subsection, the red light delay

has been chosen as a reward function. The performance of Q-learning in adapting its so-

lution to reach the convergence will be examined. The experiments have been set into two

scenarios. Firstly, the stationary test, the change of traffic demand from a deterministic to a

Poisson has been illustrated in Figure 3.16. Secondly, the non-stationary test, in reality, road

network capacity changes upon time (early morning, rush hour, etc.) as illustrated in Fig-

ure 3.17. Starting from uncongested traffic condition, the 1st episode until the 100th episode,

the traffic demand pattern is {λ1, λ2} = {6, 6} pcu/slot. And then, the road network be-

comes congested (jammed) condition, the 101st − 140th episodes, traffic demand pattern is

therefore changed to {λ1, λ2} = {13, 3} pcu/slot. The congested condition returns to uncon-
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gested condition, the 141st − 180th episodes, the traffic demand pattern is {λ1, λ2} = {6, 6}

pcu/slot. Finally, the congested condition happened again, the episodes 181st the traffic de-

mand pattern is {λ1, λ2} = {11, 5} pcu/slot.
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Figure 3.16 Total network delay from Q-learning with Poisson arrival

The results show the adaptability of Q-learning in reaching the solution close to the ob-

tained solution from the BPSS method in both experiments. The abrupt change of the traffic

demand patterns from uncongested to congested conditions have been imposed. However,

the Q-learning still performs well in tracking closer to the BPSS solution. Therefore, with

significantly less demanding computational time than BPSS, the Q-learning algorithm can

be used in real-time learning-based scenarios.

3.3.4 Measure of Effectiveness Using Microscopic Traffic Simulator

To evaluate the performance between the Q-learning and the BPSS, the signal plans

from both algorithm from the macroscopic level is set as the control plans in the micro-

scopic traffic simulator AIMSUN. The traffic demand patterns have been divided into 4

loading patterns which are {λ1, λ2} = {8, 8}, {λ1, λ2} = {15, 1}, {λ1, λ2} = {13, 3}

and {λ1, λ2} = {11, 5} pcu as patterns 1,2,3 and 4, respectively. The simulation testing in

AIMSUN has been set to 2 hours. The system throughput can be calculated by

Throughput =
Vpass
Vtotal

× 100, (3.31)
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Figure 3.17 Total network delay obtained from Q-learning with varied load patterns

where Vpass is the number of vehicles that can pass the intersection and Vtotal is the total

number of vehicles in the road system.
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Figure 3.18 Throughput comparison between Q-learning and BPSS

As illustrated in Figure 3.18, the results obtained from the Q-learning outperform the

BPSS method at a microscopic level in patterns 2, 3 and 4 (asymmetric loadings) by 9.85%,

9.85% and 9.72%, respectively. The relative improvement from BPSS by using Q-learning

occurs from the change of green time allocation in each signal cycle. In particular, the Q-
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Figure 3.19 Average travel time comparison between Q-learning and BPSS

learning uses an aperiodic signal control whereas the BPSS uses a periodic signal control.

The advantage of the aperiodic control to the periodic control is in terms of the adaptability

that gives the solution properly.

Figure 3.19 illustrates the reduced average travel time per vehicle. The Q-learning

also achieves a better performance in comparison with the BPSS in terms of reducing the

average travel time per vehicle by 24.39%, 20.55% and 29.76%, respectively. With the

aperiodic signal control from Q-learning, the signal can be changed upon the change of traffic

conditions thereby reducing the waiting time and resulting in smoother flow of vehicles.

3.4 Summary

A new framework to control the traffic signal lights by applying one of the reinforce-

ment learning tools, namely, the Q-learning has been proposed to seek the best possible

solution to control the traffic signals where the network state has been modelled by the sig-

nalised cell transmission model. The road traffic condition is mainly focused on the situation

when the summation of overall traffic demand from all directions exceeds the maximum flow

capacity.

In addition, the existing works related to Q-learning have not considered the scalability

issues due to the limitation in terms state space explosion. However, we attempt to alleviate

the explosion by employing state space quantisation and control traffic signal in such network
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scenarios.

The proposed framework is used to find the best traffic signal strategy. Surprisingly,

using the newly proposed red light delay as the Q-learning reward function gives better per-

formance than using the total network delay as the reward function. The results have been

reported from the series of experiments which are the Q-learning validation, the effect of re-

ward functions, the Q-learning performance in stationary/non-stationary stochastic loadings

and the applicability of the CTM-based solution of the Q-learning algorithm in the micro-

scopic mobility environments using AIMSUN.

The simulation results show that our proposed framework can computationally effi-

ciently find the proper solution for road traffic systems by comparing with the best periodic

signal solution (BPSS). The effect of reward functions has also been investigated and the

adaptability of the Q-learning algorithm in adjusting its solution with Poisson arrival upon

the change of time has also been observed. The results from the macroscopic level show

that Q-learning yields the results similar to the BPSS method. However, in a microscopic

level, the control strategies obtained from the CTM-based Q-learning approach outperform

the BPSS in terms of the throughput and the average travel time.

With the newly proposed reward function applied to an isolated intersection, this chap-

ter has reported the results and its applicabilities. The BPSS is no longer inapplicable due to

its computational burden required. In the next chapter, our proposed CTM-based Q-learning

will be compared with the classical mathematical M/M/1 and D/D/1 queuing models.



CHAPTER IV

PERFORMANCE COMPARISON OF QUEUEING

THEORETICAL OPTIMALITY AND Q-LEARNING

This chapter addresses the performance comparison of optimal traffic signal controls

based on two frameworks: M/M/1 and D/D/1 queueing models, and Q-learning approach.

In Section 4.1, using the M/M/1 and D/D/1 models, the optimal split derivation has been ob-

tained to minimise the mean waiting time of an intersection. In Section 4.2, the Q-learning

framework has been proposed in conjunction with the use of the macroscopic cell transmis-

sion model (CTM) to update the vehicle state dynamics upon Q-learning actions. These

Q-learning actions adjust the split adaptively and appropriately. In Section 4.3, the exact

implementation for the Q-learning algorithm has been emphasised. The two approaches,

namely the steady-state analysis of M/M/1 and D/D/1 as well as the Q-learning, have been

compared in terms of the achievable network throughput and the average vehicle delay per

completed trip in various loading scenarios from undersaturated towards jamming condi-

tions. The main finding to this chapter is obtained from Section 4.4 in finding the best proper

traffic signal to control road systems in different traffic patterns. Section 4.5 concludes and

expresses the possibility of adapting the Q-learning in a network scale scenario with the bus

rapid transit in Chapter V.

4.1 Queueing Traffic Model

This section introduces a simplified queueing model with two buffers and a single

server, which can be mapped into two conflicting flows in an isolated intersection.

Figure 4.1 illustrates an isolated intersection which serves two flows from west to east

and north to south. Figure 4.1 can be converted into a basic queueing model with two buffers

and a single server as shown in Figure 4.2, where λp denotes the traffic arrival rate of the

system for direction p = 1, 2. Let wp be the ratio of green time allocated to direction p (or

its split) in a signal cycle. The objective here is to find the optimal split w∗p that minimises
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Figure 4.1 Model for two conflicting flows in isolated intersection

Figure 4.2 Queueing model with two incoming requests
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the mean waiting time of the considered intersection system.

4.1.1 Steady State Analysis by M/M/1

The steady-state derivation is based on an M/M/1 queueing model where the vehicle

arrivals in each direction are assumed to be an independent Poisson process and, during

their green time period, each vehicle is assumed to spend exponentially distributed travel

time through the intersection. As illustrated in Figure 4.1, an intersection has two individual

conflicting flows with mean arrival rates λ1 and λ2, respectively. Let µ be the saturation flow

rate, the flow rate at which vehicles can pass through a signalised intersection in a stable

moving queue [50]. Let ρp be the offered load in direction p so ρp = λp
wpµ

for p = 1, 2. To

guarantee the stability condition of the system, it is assumed that the intersection’s saturation

flow rate is greater than the total input flow rate from all approaching directions. Let L

denote the total loss time value per signal cycle being normalised by the cycle period. Thus,∑
∀p

wp + L = 1, (4.1)∑
∀p

wp < 1. (4.2)

In the queueing steady state, the mean waiting time Tp in the system for direction p can

then be obtained as follows [51]

Tp =
ρp

1− ρp

=
λp

wpµ− λp
. (4.3)

The total network delay T is given by

T =
∑
∀p

Tp. (4.4)

Thus,

wpµ > λp for system stability (4.5)∑
∀p

wpµ >
∑
∀p

λp (4.6)

∵
∑
∀p

wp < 1 (4.7)

∴
∑
∀p

λp < µ. (4.8)
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To minimise the total network delay, differentiating T in (4.4) with respect to w1 and

equating it to zero finally gives:

0 =
∂

∂w1

[
λ1

w1µ− λ1

]
+

∂

∂w2

[
λ2

w2µ− λ2

]
∂w2

∂w1

. (4.9)

Therefore, the equation becomes

λ1µ

(w1µ− λ1)2
=

λ2µ

(w2µ− λ2)2
, (4.10)

where

∂w1

∂w1

+
∂w2

∂w1

+
∂L

∂w1

=
∂1

∂w1

(4.11)

∂w2

∂w1

= −1. (4.12)

Replacing ∂w2

∂w1
= −1 in (4.9) gives.

0 =
−λ1µ

(w1µ− λ1)2
+

−λ2µ
(w2µ− λ2)2

(−1). (4.13)

As a result, the optimal split can then be written by

λ1µ

(w1µ− λ1)2
=

λ2µ

(w2µ− λ2)2
. (4.14)

(w1µ− λ1) = ς(w2µ− λ2) (4.15)

w1 − w2ς =
λ1 − λ2ς

µ
(4.16)

w1 + w2 = 1− L, (4.17)

where ς =
√
λ1/λ2. Subtracting (4.17) - (4.16) finally gives

w2(1 + ς) =

[
1− L− (λ1 − λ2ς)

µ

]
(4.18)

w2 =

[
1− L− (λ1−λ2ς)

µ

]
(1 + ς)

. (4.19)

Replacing w2 in (4.17) gives.

w1 +

[
1− L− (λ1−λ2ς)

µ

]
(1 + ς)

= 1− L (4.20)

w1(1 + ς) +

[
1− L− (λ1 − λ2ς)

µ

]
= (1− L)(1 + ς) (4.21)

w1(1 + ς)− (λ1 − λ2ς)
µ

= ς(1− L) (4.22)

w1 =

[
ς (1− L) +

(
λ1−λ2ς

µ

)]
(1 + ς)

(4.23)
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Therefore, the optimal split from M/M/1 model w∗1,mm1 and w∗2,mm1 can be expressed finally

as

w∗1,mm1 =

[
ς (1− L) +

(
λ1−λ2ς

µ

)]
(1 + ς)

,

w∗2,mm1 =

[
(1− L) +

(
λ2ς−λ1

µ

)]
(1 + ς)

. (4.24)

This result from equation (4.24) represents an optimal split weighted to each individual flow.

4.1.2 Steady State Analysis by D/D/1

The arrival process and queueing service time may not be Poisson and exponential.

Another model, D/D/1, has also been used, where the incoming stream of vehicles arrives at

a fixed deterministic rate and their service time through the intersection is assumed constant

for every vehicle. Similar to (4.1) - (4.2) of M/M/1 case, the splits wp,dd1 of D/D/1 systems

must be constrained by ∑
∀p

wp,dd1 + L = 1, (4.25)∑
∀p

wp,dd1 < 1. (4.26)

The mean waiting time Tp,dd1 in the D/D/1 system for direction p can be obtained as follows

[52]

Tp,dd1 =
λ1

wp,dd1µ
. (4.27)

Recall the stability condition as given in (4.5) – (4.8). Equate Tp,dd1 in (4.27) with respect to

w1,dd1 gives:

0 =
∂

∂w1,dd1

[
λ1

w1,dd1µ

]
+

∂

∂w2,dd1

[
λ2

w2,dd1µ

]
∂w2,dd1

∂w1,dd1

(4.28)

0 =
λ1µ

(w1,dd1µ)2
+

λ2µ

(w2,dd1µ)2
(−1). (4.29)

Therefore,

λ1
(w1,dd1µ)2

=
λ2

(w2,dd1µ)2
(4.30)

ς(w2,dd1) = w1,dd1, (4.31)

w1,dd1 + w2,dd1 = 1− L, (4.32)
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where ς =
√
λ1/λ2. Substituting (4.31) into (4.32) gives

ςw2,dd1 + w2,dd1 = 1− L, (4.33)

w2,dd1(1 + ς) = 1− L, (4.34)

The optimal split can then be written as

w∗2,dd1 =
1− L
(1 + ς)

(4.35)

To find w∗1,dd1, combine (4.35) and (4.32). The optimal split w∗1,dd1 can be obtained by

w1,dd1 +
1− L
(1 + ς)

= 1− L, (4.36)

= (1− L)− 1− L
(1 + ς)

, (4.37)

=
(1 + ς) (1− L)− (1− L)

1 + ς

w∗1,dd1 =
ς(1− L)

(1 + ς)

As a summary, the optimal split of D/D/1 model becomes

w∗1,dd1 =
ς(1− L)

(1 + ς)

w∗2,dd1 =
1− L
(1 + ς)

. (4.38)

4.2 Problem Formulation for Comparing Q-learning with Queueing

Models

In this chapter, the traffic signal control obtained from the CTM-based Q-learning al-

gorithm will be compared with the optimal derivation from M/M/1 and D/D/1 queueing

models. As illustrated in Figure 4.2, an intersection with two conflicting flows has been

introduced. Conventionally, two traffic signal control techniques, the Q-learning and the

queueing models cannot be compared directly because the difference of vehicle movements

in a road system. The vehicle movements in queueing models are not taken into account.

Therefore, the CTM being used throughout this chapter has been slightly modified. The ve-

hicle movements from cell to cell have been overlooked. Unlike the previous chapter, the

state space quantisation has not applied. For an intersection, a road link is not necessarily
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homogeneously divided into small sub-cells but instead considered as a CTM cell at an inter-

section only. The following subsections show how to formulate the CTM-based Q-learning

algorithm to compare with the optimal split derived from M/M/1 and D/D/1 queueing mod-

els.

4.2.1 State Space

Define S as the state space of the intersection system with two conflicting flows. Let

s ∈ S ⊂ Z2
+ be the state vector which represents the total number of vehicles waiting for the

green light at the intersection. Let sp(t) be the state variable which represents the number of

vehicles in direction p at time instance t where p = 1, 2. Therefore, the state space S of all

vehicle profiles in the system is given by

S := {s = [s1(t), s2(t)]} . (4.39)

4.2.2 Cell Transmission Model

CTM [41] is here employed to update the Q-learning state dynamics. CTM captures

the effect of control actions decided by Q-learning on the flow of vehicles in the system. The

updating state depends on the green time allocated to each of approaching directions. The

updating process of CTM can be summarised as follows.

4.2.2.1 Sending Capability at Intersection

Let yp(t) be the number of vehicles that can pass through the intersection in direction

p at time step t:

yp(t) = min {sp(t), qp(t)} , (4.40)

where qp(t) represents the maximum flow rate at which vehicles can flow from their inter-

section upstream to downstream road segments along each direction p at time step t.

4.2.2.2 Receiving Capability at Intersection

The receiving capability in CTM normally depends on the maximum flow rate qp(t)as

rp(t) = min {qp(t), εp(t)} , (4.41)

where εp(t) denotes the residual capacity in direction p at time step t.
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4.2.2.3 Flow Conservation at Intersection

The state dynamics of CTM can then be updated in according to the chosen action in

each time step as

sp(t+ 1) = sp(t) + xp(t)− yp(t), (4.42)

where xp(t) represents the newly incoming demands in direction p at time step t.

4.2.3 Action Space

In each interval, the agent must select whether it would remain in the current signal

indication or change it. The decision is referred to as an action. The action space, denoted

by A, is the set of all possible actions which the traffic signal controller of the considered

intersection can take. Action a ∈ A (s) refers to the action which the agent can take at state

s.

4.2.4 Vehicle Delay

Vehicle delay is defined as the number of vehicles that cannot pass through the inter-

section. The vehicle delay accumulated at time step t (passenger car unit slot: pcu-slot) can

be expressed as

dp(t) = sp(t)− yp(t). (4.43)

Note that if the allocated green time can serve all traffic in sp(t), i.e., sp(t) = yp(t), then there

is no delay happening. In each time step, dividing the total number of vehicles in (4.43), the

actual delay can be found.

4.2.5 Performance Criteria

The aim of Q-learning here is to find the optimal policy that minimises the total net-

work delay, which can be expressed in terms of the delay dp(t) at each time step t as:

Υ(t) =
∑
∀p

dp(t)

=
∑
∀p

(sp(t)− yp(t)) . (4.44)
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Note that qp(t) is affected by the action a, which specifies the direction that receives the

green light as follows

qp(t) =

µ , direction p gets green light

0 , direction p gets red light .
(4.45)

Equation (4.45) represents an action which allows the vehicles to pass through the intersec-

tion in direction p at time step t.

4.3 Signal Optimisation by Q-learning for Simplified Isolated Intersec-

tion

Table 4.1 depicts the standard Q-learning algorithm [32] which is applied to solve the

problem formulated as an MDP.

Table 4.1 Psuedo-code of Q-learning algorithm

1. Initialise Q(s, a) arbitrarily (here, set to zeros).

2. Repeat (for each episode):

3. Initialise s to the state of empty roads

4. Repeat (for each time step of episode):

5. Choose a from A(s) using policy derived from Q

(e.g., we adopt the ε-greedy)

6. Take action a, observe Υ, and the next CTM state s′

as the result of the taken action

7. Update the action value function:

Q(s, a)← Q(s, a) + α [Υ + γmina′Q(s′, a′)−Q(s, a)]

8. Update to the next CTM state: s← s′;

9. until the end of simulation period.

In Table 4.1, Q(s, a) represents the action value function representing the average

future reward expected to be incurred given that the action a has been taken at the state

s [32]. According to the epsilon greedy policy, the best apparent action will be selected

with high probability of 1− ε, and the other actions will be tried out randomly with a small

probability of ε. Therefore, the best apparent action or greedy action is exploited most of the
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time. And with probability ε, the concept of exploration is enabled to ensure that all of states

are adequately visited. The parameter α is a small positive fraction, namely, the step-size

parameter which influences the learning rate. Step-size parameter determines how much the

new state action value tends towards the newly obtained reward and value of the next state-

action pair. The parameter γ represents the discount rate which is used to determine the

present value of future reward.

4.4 Results and Discussions

In this section, the research finding from our results will be reported. The reported

results are obtained from the MATLABr and the AIMSUN. Firstly, the optimal split ob-

tained from the CTM-based Q-learning, the queueing model M/M/1 and the queueing model

D/D/1 have been calculated from MATLABr. Secondly, the obtained optimal split is set to

the allocation of the green signal in 1 cycle time to each direction where 1 cycle time is 120

seconds. The reported results from the AIMSUN are the network throughput, the link delay,

the average vehicle delay per completed trip and the mean queue length, respectively.

For the system environments, suppose the length of each road from the entry of the

road to the stop line is 800 metres. The maximum flow rate has been measured from AIM-

SUN under the condition that the vehicles are unaffected by the red signal. From the mea-

surement, the maximum flow rate is 2.61 pcu/s (passenger car unit per second). The results

from AIMSUN have been reported from 1 hour of the simulation time. For the Q-learning

environment, an action decision has been chosen every 60 seconds. Using the CTM-based

Q-learning approach, the algorithm will repeat the learning process as illustrated in Table 4.1

for 50 episodes to reach the desired accuracy.

Table 4.2 illustrates the nine different sets of traffic arrival where each arrival process

is Poisson. The results have been considered into two operation regions, which are the un-

dersaturated and jamming regions, respectively. Note that the simulation settings for all nine

cases are identical, except for the approaching demand to an intersection and the allocated

green time. In fact, the undersaturated traffic conditions occur when the vehicle arrival rate

is less than the maximum flow rate. However, if the vehicle arrival rate is greater than the

maximum flow rate, then the mathematical solution cannot be solved analytically. The vehi-

cle arrival rates have been varied to produce the offered load ratio varying from 0.2 to 1.8.

Note that the optimal derivations are based on the stability condition where the all vehicles



53

entering the systems can be totally served. However, if all the vehicles entering the systems

cannot be totally served, then the accumulative number of vehicles tends to be infinite over

time. The queueing models are therefore guaranteed that there is no accumulative queue

length when the stability condition is held. Sometimes, the stability is not held, the number

of vehicle entering the systems will create the queue to the buffered of the systems. More-

over, the increasing of queueing length at the boundary cell is strongly not recommended.

The boundary condition in this dissertation is also included the effects from neighbourhood

intersections. However, this dissertation attempts to find the applicable range of Q-learning.

Therefore, the jamming conditions have been investigated for the further reporting of the

applicable range of Q-learning.

Table 4.2: Proportion of loading patterns corresponding to maximum service rate at consid-

ered intersection
Load type λ1 pcu/s λ2 pcu/s Offered load ratio (µ)

1 0.435 0.087 0.2 µ

2 0.87 0.174 0.4 µ

3 1.305 0.261 0.6 µ

4 1.74 0.348 0.8 µ

5 2.175 0.435 1.0 µ

6 2.61 0.522 1.2 µ

7 3.045 0.609 1.4 µ

8 3.48 0.696 1.6 µ

9 3.915 0.783 1.8 µ

As illustrated in Figure 4.3, the results show the allocated green time to each direction

for each scenario. In D/D/1 queueing model, the optimal split from (4.38) is unaffected by

the service rate. Therefore, the optimal split from the D/D/1 depends on the proportion of

vehicle arrival rates only.

Figure 4.4 reveals that the improvement of the network throughput in the jamming

conditions can be greatly improved by up to 1.7-8.3% from the M/M/1 model and can be

significantly improved up to 3.2-14.8% from the D/D/1 model. The network throughput is

the ratio between completed trips and incompleted trips. The higher network throughput is,

the greater performance of the system achieves. Note that in the undersaturated conditions,
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Figure 4.4: Network throughput comparison of Q-learning, Queueing M/M/1 and Queueing

D/D/1 models
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Figure 4.7: Average vehicle delay per completed trip comparison of Q-learning, Queueing

M/M/1 and Queueing D/D/1 models

the network throughput by both the M/M/1 and the D/D/1 models outperform the proposed

CTM-based Q-learning algorithm. For the undersaturated conditions, the exploratory from

Q-learning algorithm chooses green light signals improperly, therefore, the network through-

put is not good as expected.

Figure 4.5 explains why Q-learning performs well and badly in different traffic condi-

tions. The link delay is generally known as the difference between the time spent to travel

along a particular road and the free flow travel time along the road. Figure 4.5 illustrates

the individual link delay for each direction and the average link delay from two directions.

In each cycle time, the Q-learning algorithm has allocated the green time more often to the

direction with a higher vehicle arrival rate. However, in both queueing models, the allo-

cated green time in each direction is directly proportional to the incoming traffic demand

of its direction. Therefore, by using Q-learning in the undersaturated conditions, the ob-

tained optimal split leads the system to the wasted green scenario. However, the link delay

of Q-learning performs well in the jamming conditions because Q-learning can reduce the

link delay from the higher vehicle arrival rates that dominate the overall link delay of the

systems. As illustrated in Figure 4.6, the results for the mean queue length can be explained

with the same discussions as the link delay. However, in oversaturated traffic conditions, the

network throughput is the most important than both link delay and mean queue length. For
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both queueing models, optimal splits derivation applied for the undersaturated conditions

perform well. However, for oversaturated conditions, Q-learning is recommended to be used

because of its adaptability to the change of traffic arrival patterns.

These three approaches share the common goal of minimising the total network delay.

Generally, the total network delay has been calculated from the difference of the time spent

to complete a network trip and the free flow travel time along the network path. For each

vehicle, the average vehicle delay per completed trip ÃD can be calculated by

ÃD =

∑
∀p

(ALDp ∗ CPTp)∑
p

CPTp
, (4.46)

where ALDp is the average link delay in direction p and CPTp is the number of completed

trips in direction p. In Figure 4.7, for the jamming condition, the reduction of the average

vehicle delay per completed trip can be greatly reduced by up to 7.0-63.4% from the M/M/1

model and can be significantly reduced up to 18.9-80.7% from the D/D/1 model. The reduc-

tion of the average vehicle delay can be explained by observing the chosen action from the

Q-learning methods. Q-learning tries not to switch its action too often to avoid the system

loss time. This is the main reason that is why Q-learning performs better in comparison with

the other two queueing models.

4.5 Summary

This chapter evaluates an optimality analysis based on queueing models and compares

with Q-learning to control the traffic signal at an isolated two-phase intersection. The Q-

learning approach can improve the intersection throughput by up to 1.7-8.3% and by up

to 3.2-14.8% in jamming conditions in comparison with the respective M/M/1 and D/D/1

approaches. Moreover, the average vehicle delay per completed trip can be reduced by up

to 7.0-63.4% and by up to 18.9-80.7% in comparison with the respective M/M/1 and D/D/1

approaches.

In Chapter III, the novel mathematical framework for an isolated traffic signal control

has been proposed together with the comparison of the best periodic signal solution (BPSS).

This chapter, the strategic comparison between the classical two queueuing models have

been proposed. The extension of the CTM-based Q-learning algorithm for a road network

scale with the bus rapid transit will be reported in Chapter V.



CHAPTER V

TRAFFIC SIGNAL CONTROL WITH Q-LEARNING

USING CELL TRANSMISSION MODEL FOR ROAD

NETWORK WITH TRANSIT SIGNAL PRIORITY

SYSTEM

In Chapter III and Chapter IV, the newly formulated signalised CTM-based Q-

learning framework has been centred on an isolated intersection. For convenience, let us

define the vehicle class of non-priority (priority) as vehicles (BRT). In this chapter, the ex-

tension to the network scale with bus rapid transit will be investigated. The detailed algo-

rithm and calibration have been carried out in the previous two chapters. The focus of this

chapter is then to shed some light on the implication and practical effectiveness of BRT road

networks achievable by the Q-learning algorithm. As illustrated in Figure 3.1, three red pin-

points in the middle between the pin-point “A” and the pin-point “B” will be chosen as a

system example for motivating the model extension in this chapter. This BRT route has been

operating in an oversaturated region during the rush hour periods every week day. The main

challenge to this particular problem is then how to control the oversaturated road network

with the BRT priority system.

In this chapter, Section 5.1 gives the mathematical model extension for the road net-

work with BRT system. Section 5.2 summarises on the implementation of Q-learning in the

BRT road network. Section 5.3 shows the results from the in-depth investigation of adopting

Q-learning to control the BRT road network. Section 5.4 concludes this chapter.

5.1 Problem Formulation

The following CTM-BRT-based Q-learning framework is here formulated as a dis-

tributed (localised) control. For the distributed control, the individual intersection controllers

are fully responsible for the change of traffic signal status at their own intersections. The
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operation has been taken locally at each intersection. In fact, for the jammed traffic condi-

tions, a centralised control system solution is infeasible due to the computational complexity,

the imperfect communication infrastructures, the system overhead and the scalability prob-

lem [53]. This dissertation is therefore convinced by the concept of the distributed control to

avoid such problems.

To alleviate the computation burdens caused by the curse of dimensionality, the vehi-

cle movements of whole network systems have been considered into two major directions

which are conflicting and non-conflicting with the BRT without turning movements. The

curse of dimensionality refers to the arisen enormous computations when analysing in the

multi-dimensional spaces. The details model of the traffics approaching at an intersection

can be found in the next subsection. Moreover, the possible actions have been designed

for three phases which assign the right-of-way through each intersection to flows conflict-

ing with BRT, non-conflicting with BRT and of only BRT itself. At all intersections, the

decision epochs of their control agents running the Q-learning algorithm are synchronised

distributively, i.e., all the actions can be taken at the same time slots. Therefore, the following

mathematical formulation can be first written for each intersection individually. However,

the mathematical formulation given here in this chapter novelly includes the BRT features

i.e., the BRT stations and the separated BRT lanes.

5.1.1 State Space

Suppose the vehicles in the system belong to two classes, i.e., priority (BRT) and non-

priority (other vehicles). As illustrated in Figure 3.1, an example of road network with the

BRT system has been chosen. The detailed intersections in the observed road segment are

illustrated again in Figure 5.1 [48]. The mapping from the real road network to a simplified

uni-direction CTM-BRT model has been depicted in Figure 5.2. The consideration on bi-

directions has been conveniently overlooked because of no turning movement basis and no

interruptions of the traffic from the opposite side of the road. By considering on uni-direction

only, the size of state space has been reduced. The reduction of state space can reduce time

calculation for the whole road networks systems. In Figure 5.2, the dark arrows represent

the directions of vehicle movements from the upstream cells toward the downstream cells

without turning movements.

Figure 5.2 illustrates the CTM-BRT model and their subnetworks. In this chapter, this
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Figure 5.1 Considered BRT route segment in Bangkok

model has divided the whole BRT network into three subnetworks. Each subnetwork has

its own control agent for taking the traffic signal actions locally. Figure 5.3 illustrates the

control agent’s viewpoint to an intersectionO where lane separators for the BRT are assumed

along the whole length of the road. Let us index here the non-priority cells i = 1, . . . , κ and

priority cells j = 1, . . . , κb. The incoming demand to an intersection is classified into P

directions. Let N be the state space of the system with priority and non-priority classes.

Define S and B as the state space of non-priority and priority vehicles, respectively. For

each non-priority vehicle cell i and priority vehicle cell j in direction p at time slot t, define

spi (t) as the number of non-priority vehicles and bpj(t) as the number of priority vehicles,

respectively. Let s ∈ S ⊂ ZP+ and b ∈ B ⊂ ZP+ be the state vectors which represent the total

number of vehicles in the system. The state definition can be defined as the observable state

from all the cells in the upstream road segments leading towards the considered intersection

from all possible directions. Therefore, the state spacesN , S and B of all vehicle profiles in

the system are given by

N = S × B, (5.1)

S = {s = [spi (t), ∀(i, p)]}, (5.2)

B = {b = [bpj(t), ∀(j, p)]}, (5.3)
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Figure 5.2 CTM-BRT model and their CTM subnetworks
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Figure 5.3 CTM cells as seen by control agent at an intersection O

where direction p = 1, 2, ..., P ; i = 1, 2, ..., κ and j = 1, 2, ..., κb. To avoid the compu-

tational burden caused by the state space explosion, in this dissertation, the quantisation

technique is employed. The level of quantisations can be represented by the number of de-

ployed sensors in the road network. Let s̃p(t) be defined as the quantised level for the total

number of vehicles approaching the intersection calculated from its upstream road segment

in direction p at time slot t:

s̃p(t) =


κ∑
i=1

spi (t)

C
f

+ I(
κ∑
i=1

spi (t) = 0), (5.4)

where I(.) is the indicator function; C is the maximum number of vehicles counted from

cell i to a signalised cell κ and f is the total number of quantisation levels. The RL state

space can be redefined as

s̃(t) = [s̃p(t), ∀p] ∈ S̃. (5.5)

It should be noted that the quantisation is considered only for non-priority case. For prior-

ity vehicles, their movement can be traced individually from the equipped GPS. So, in the

microscopic fashion, the quantisation is not needed for the class of priority vehicles.
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5.1.2 Cell Transmission Model with Lane-Separated Transit Signal Priority Vehicle

The signalised CTM formulation with a BRT road network using Q-learning is one of

the main contributions in this dissertation. The components of the model are presented as

follows.

5.1.2.1 Sending Capability

Sending capability represents the ability to send the vehicles from cells to other cells,

i.e., moving vehicles from the beginning to ending cells. The sending capability can be

defined as

Λp
i (t) = min{spi (t), q

p
i (t)} for non-priority cell i, (5.6)

Λp
j(t) = min{bpj(t), q

p
j (t)}, for priority cell j. (5.7)

Here, qpi (t) and qpj (t) are respectively the maximum number of non-priority and priority

vehicles that can flow through their corresponding cells.

5.1.2.2 Receiving Capability

Receiving capability can be calculated by considering the remaining spaces in each cell

and the maximum number of vehicles that can be present in the cell. Thus, for non-priority

cell i and priority cell j in direction p at time slot t, the receiving capability respectively can

be defined as

Ψp
i (t) = min{qpi (t), δ

p
i [cpi (t)− s

p
i (t)]}, (5.8)

Ψp
j(t) = qpj (t), (5.9)

where δpi is the wave speed coefficient and cpi (t) is the maximum number of vehicles that can

be present. It should be noted that (5.9) assumes no occurrence of the temporal blockage

along the cells of a priority vehicle due to the lane separators for the priority vehicle.

5.1.2.3 Cell Cascading

This is the representation of the connection between two adjacent cells, namely, the

beginning cell i − 1 and ending cell i. The number of vehicles that flow in this cascading
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scenario from the sending to receiving cells can be written as

ypi (t) = min{Λp
i−1(t),Ψ

p
i (t)}, (5.10)

ypj (t) = min{Λp
j−1(t),Ψ

p
j(t)}, (5.11)

where ypi (t) is the number of non-priority vehicles and ypj (t) is the number of priority vehicles

that flow into cell i and cell j in direction p at time slot t, respectively.

5.1.2.4 Flow Conservation

Flow conservation is used to update the number of vehicles for the next time slot:

spi (t+ 1) = spi (t) + ypi (t)− y
p
i+1(t), (5.12)

bpj(t+ 1) = bpj(t) + ypj (t)− y
p
j+1(t). (5.13)

5.1.3 Action Space

To influence the system dynamics, upon a decision epoch, the control agent at each

intersection must select whether it would keep the current signal indication or change it. The

decision is called action. At state vector s̃ and b, an action must be selected from a state-

dependent setA. Specifically,A is the set of all possible actions which the control agent can

take. Define action as the phase of signal light to be chosen at time slot t. The control agent

at each intersection must be perfectly synchronised. Otherwise, the status of the system will

be totally degraded. The degradations of the system can be caused by e.g., the wasted green

and temporal blockage of the conflicting vehicles. In the proposed model, the right-of-way

of a priority vehicle is allowed to coexist with the non-conflicting flows of of non-priority

vehicles. The main reason is to maximise the efficiency for traffic signal indication. The

decision on changing action is made at every T time slots. Define indicator functions at time

slot t as follows.

Gp(t) =



1, non-priority vehicles in direction p gets green light,

in the chosen phase at time slot t

0, non-priority vehicles in direction p gets red light,

in the chosen phase at time slot t

(5.14)
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Gp
brt(t) =



1, priority vehicles in direction p gets green light,

in the chosen phase at time slot t

0, priority vehicles in direction p gets red light

in the chosen phase at time slot t.

(5.15)

Note that the action space A must be defined such that all conflicting flows are not allowed

to set green light at the same time.

5.1.3.1 Signal Lights

The system dynamics can be investigated by changing the traffic signal lights according

to the action which is defined in the reinforcement learning framework. In one time slot,

vehicles can move to their adjacent cells only. At signalised cells of the same intersection,

non-priority vehicles and priority vehicles share a common intersection capacity. For a non-

signalised non-priority cell i, the maximum number of vehicles that can flow through cell i

in direction p at time slot t is given by qpi (t) = qmax, ∀p,∀t. For signalised non-priority cell

i, the equation can be defined as follows

qpi (t) =

 qmax ;Gp(t) = 1 and t− τi(t) > L,

0 ; otherwise,
(5.16)

where qmax is the maximum number of non-priority vehicles that can flow through each cell

per time slot and L is the loss time of the intersection. Here, τi(t) denotes the latest time

instant where the traffic signal indication of non-priority vehicle cell i at time slot t has been

changed. The vehicle then can move to another cell according to the equation above as long

as the latest signal indication is not changed. Otherwise, all the vehicles have to be stopped.

At a signalised priority cell j, the maximum number of priority vehicles that can flow

through the cell is defined as

qpj (t) =

 qmax,brt ;Gp
brt(t) = 1 and t− τj(t) > Lbrt,

0 ; otherwise,
(5.17)

where τj(t) is the latest time instant where the traffic signal indication of priority vehicle cell

j at time slot t has been changed and Lbrt is the loss time of priority vehicles.

At cell m representing the location of priority-vehicle station, define parameter qpj (t)
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as

qpj (t) =

 1 ; priority-vehicle signal is green at signalised cell j = m in direction p.

0 ; priority-vehicle signal is red at signalised cell j = m in direction p
(5.18)

Note that for all non-signalised cell j, qpj (t) = qmax,brt where qmax,brt is the maximum

number of priority vehicles that can flow through each cell per time slot. If the green light

has been assigned to the priority vehicle, then the traffic light of the non-priority vehicles will

be changed to green as long as the non-priority vehicles are not conflicted with the priority

vehicles. In addition, if a priority vehicle reaches its station, then the priority vehicle must be

held for a few time slots for picking up the passengers. This intended stop can be modelled

in by setting red signal in (5.18). The value of qpj (t) can also be changed to a value greater

than 1 to model the occurrence of multiple priority vehicles in the same CTM cell at the

same time slot from the bad management of traffic signal control.

5.1.4 Network Boundary Conditions

The boundary condition will be considered for the whole network, not each subnet-

work, as follows.

5.1.4.1 Network Gate Cell

The boundary condition is here formulated by following [41]. At the network bound-

ary, input vehicle flows can be modelled by a cell pair. A source cell “00” with an infinite

number of vehicles sp00(t) = ∞ discharges into an initially empty “gate” cell “0” of infinite

size, cp0(t) = ∞. The flow capacity qp0(t) of the network gate cell is set to the desired link

input flow.

Λp
0(t) = min{sp0(t), q

p
0(t)}. (5.19)

sp0(t+ 1) = sp0(t) + yp0(t)− yp1(t). (5.20)

yp0(t) = qp0(t). (5.21)

Assume the receiving capability of network gate cell is infinite. Hence, the sending capability

Λp
00(t) of source cell “00” is limited by qp0(t) and

yp1(t) = min{Λp
0(t),Ψ

p
1(t)}. (5.22)
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Let yp1(t) be the number of non-priority vehicles that flow into cell 1 in direction p at time slot

t. Thus, the desired input in each direction can be configured in parameter qp0(t). Likewise,

for the priority vehicle, the network boundary conditions can be calculated directly similar

to the equations (5.19) – (5.22).

5.1.4.2 Network Sink Cell

Suppose the output cell, “sink”, for all exiting traffic has infinite size cpI+1(t) = ∞,

cpJ+1(t) = ∞, qpI+1(t) = ∞ and qpJ+1(t) = ∞. Thus, by default in this dissertation, the

network sink cells I + 1 and J + 1 have the receiving capability from (5.8)

Ψp
I+1(t) =∞. (5.23)

Ψp
J+1(t) =∞. (5.24)

However, in practice, if the downstream of an intersection has been affected by network

downstream back-pressure congestion or by another traffic signal light, then the network

sink cell can be assigned finite value qpI+1(t) and qpJ+1(t).

5.1.5 Passenger Delay

In Chapters III and IV, we are interested more in the vehicle delay defined as the

number of vehicles that cannot move away from the present cell within each time slot. In

this chapter, the vehicle delay will be redefined as the passenger delay. In fact, a single

priority vehicle can carry more passengers than a single non-priority vehicle. Therefore,

the comparison in terms of passenger delay would be suited for the representative of the

total network delay. Two types of passenger delay are proposed, namely, the internal and

the external passenger delay. At time slot t for each direction p, let dp0(t) be the external

passenger delay (if the upstream road segment of non-signalised cell i = 1 is outside the

boundary of the considered road network) and dpi (t) be the internal passenger delay at other

non-signalised cell i. These delays can be expressed as

dp0(t) = sp0(t)− y
p
1(t), (5.25)

dpi (t) = spi (t)− y
p
i+1(t), i = 1, 2, . . . , κ. (5.26)

Similar to Chapter III and Chapter IV, the external delay can be considered as the passenger

delay neighbourhood outside the considered road network. The internal network delay is
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considered here on roads connecting to an intersection. Combining two delay types will

reflect the system behavior to be optimised for the best possible traffic signal control. For

priority vehicle, let npj(t) be the number of carried passengers on the BRT vehicle at cell j

in direction p at time slot t. If bpj(t) = 0, then npj(t) = 0. And, let np0(t) be the number

of passengers waiting to be carried by BRT at all the BRT stations on the considered road

segment in direction p at time slot t. Assume total number of passengers np0(t) is assigned

equally to each available BRT station m on the considered road segment. The passenger

delay from the BRT can be defined as follows

dp0,brt(t) = max{0, np0(t)− n
p
j(t)}, j = m, (5.27)

dpj(t) =
[
bpj(t)− y

p
j+1(t)

]
npj(t), j = 1, 2, . . . κb, (5.28)

where dp0,brt(t) is the passenger delay waiting to be carried at BRT stations.

5.1.6 Performance Criteria

To evaluate the optimal policy (set of actions) that minimises the total network delay.

If the upstream road segment of non-signalised cell i = 1 is outside the boundary of the

considered road network, then the passenger delay for non-priority vehicle Υred(t) at time

slot t is defined as follows.

Υred(t) =
P∑
p=1

κ∑
i=0

(1−Gp(t))dpi (t) (5.29)

Otherwise,

Υred(t) =
P∑
p=1

κ∑
i=1

(1−Gp(t))dpi (t). (5.30)

where Υred(t) is the “red light delay”. The red light delay is the total passenger delay from

all the cells in the directions that see the red light. The validation of the red light delay can

be found in Chapter III.

For the priority vehicle, the passenger delay at time slot t can be defined as follows.

Υbrt(t) =
P∑
p=1

κb∑
j=1

(1−Gp
brt(t))d

p
j(t) + dp0,brt(t). (5.31)

Therefore, the performance criteria Υ(t) at time slot t is defined as follows.

Υ(t) = Υred(t) + Υbrt(t). (5.32)
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5.2 Signal Optimisation By Q-learning Algorithm for Road Network

with Transit Signal Priority

For completeness, let us elaborate the core implementation of the Q-learning algo-

rithm. To apply Q-learning in a signalised CTM framework, a definite simulation length

is used for periodically observing traffic behaviors within a study time-interval. When the

current time slot of CTM reaches the simulation length, the system enters the next episode.

The Q-learning-based traffic controller is designed to make a sequence of signal-light deci-

sions. Let the decision epoch tω refer to the time instant when decision ω is made, where

ω = 1, 2, . . . and tω = t1, t2, . . ., respectively.

This section explains the brief implementation of the proposed Q-learning algorithm

together with the CTM-BRT framework. For each episode, the optimisation procedure of

Q-learning operated by the control agent at each intersection can be summarised as follows.

1) System Initialisation

The number of vehicles in state vector s(0) and b(0) can be initialised at the beginning of

an episode to a nominal operating point of the system at the considered time period. The

action value function Q(̃s,b, a) can be initialised to the latest updated value in the previous

episode. Let ω = 1.

2) Action Selection

At decision ω, with the current state observable at s̃,b, the agent (traffic controller) chooses

an action a ∈ A(̃s,b) to control the traffic signal. The action can be chosen by the ε-greedy

algorithm [32], where the greedy action is here defined as

a = arg min
a′

Q(̃s,b, a′).

According to this algorithm [32], Q-learning chooses the greedy action with probability

1 − ε. And, with probability ε, the other actions are randomly selected according to a uni-

form distribution. In practice, an ε is a small positive value representing the explorability of

learning algorithm.

3) Update of System Dynamics

Calculate the CTM state from time slot t = tω to time slot t = tω+1 − 1. Here, the next

state vector (̃s′,b′) is calculated from the CTM state at time slot t = tω+1 − 1. The observed
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reward R(ω) can then be correspondingly calculated from

R(ω) =

tω+1−1∑
t=tω

(Υred(t) + Υbrt(t)) (5.33)

4) Update of Action Value Function

The algorithm can learn from its past experiences accumulated in Q-function and the reward

in (5.33) newly gained from the most recent action ω. By following [32], Q-function can be

updated as follows

Q(̃s,b, a)← Q(̃s,b, a) + α[R(ω) + γmina′Q(̃s′,b′, a′)−Q(̃s,b, a)],

Here, Q(̃s′,b′, a′) represents the action value function for the next observable state vectors

s̃′,b′ and next possible action a′ ∈ A(s,b). Practically, α ∈ (0, 1] is the learning rate and

γ ∈ [0, 1) is the discount rate applied to the future expected rewards.

5) Update of State Variable

Update the state s ← s′, b ← b′ and np0(ω), np0(ω) ← np0(ω + 1), np0(ω + 1). And update

ω ← ω + 1.

6) Stopping Condition

Repeat steps 2)–5) until the end of episode.

The optimisation procedures of Q-learning above have been applied only for an inter-

section as presented in Chapters III. Therefore, in a road network with BRT in this chapter,

this process will be updated separately and simultaneously at all intersections at the same

decision epochs.

5.3 Results and Discussions

In this section, a series of experiments will be shown. For convenience, let us define

the vehicle class of non-priority (priority) as vehicles (BRT). Firstly, the performance com-

parisons between an example of four lanes road without BRT and an example of three lanes

with BRT systems will be reported. Secondly, the effects of penalty function to the number

of total carried passengers will be shown. Thirdly, the total number of passengers that BRT

can carry in rush hour periods will be reported. Finally, the comparison of the use of Q-

learning to control the road network with BRT among two control methods: the preemptive
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and the local extension recall differential priority will be shown. Finally, the formulation of

the BRT station will be taken into account.

Figure 5.4 BRT model

As illustrated in Figure 5.4, suppose vehicles (BRT) can move 160 (100) metres in one-

time slot on average where each time slot has been set to 10 seconds. Note that an example of

the model Figure 5.4, is inspired from the U-shaped road network in Bangkok as illustrated

in Figure 3.1. Each non-priority vehicle cell capacity is 120 passenger car unit (pcu). The

maximum flow rate has been measured from AIMSUN under the condition that the vehicles

are not affected by the red signal. The maximum flow rate qpi (t) of 2.61 pcu/slot (passenger

car unit per slot) and the maximum flow rate of BRT qpj (t) of 1 BRT per slot. The wave speed
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coefficient δpi is 0.8. The wave speed coefficient has been calibrated from for Payathai road in

Bangok, Thailand [49]. For the Q-learning algorithm, an action is chosen every 3 time slots.

The source cells are “1100”, “1200” and “2100”. Each intersection has three signal phases.

All the phases are phase 1 from north to south, phase 2 from west to east and BRT phase

from north to south (this phase allows phase 1 to go as its in the same direction). For the

shaded-cells in the middle of road segment from north to south with the cell numbered “1”,

“5”, “10”, “17” and “25”, these cells are the BRT stations. The desired passengers taking

BRT are assigned equally to each available BRT station m on the considered road segment.

BRT waits for three time slots on average at these cells for picking up the passengers. The

passenger delay being used throughout this chapter has been considered the delay at the BRT

stations and the delay on the BRT.

5.3.1 Road Network with vs without Transit Signal Priority

The comparison between before and after the deployment of the BRT system is first

reported here. Assume one BRT can carry 80 passengers on average and the normal service

time for the BRT system is every 5 minutes. Assume the total passengers demand desired to

pass the example road network has never been reduced. The simulation has been tested for

two hours (720 time slots).
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Figure 5.5 Loading vs overall passenger throughput
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Figure 5.6 Loading vs total number of passenger completing trips

Firstly, the critical point can be found by observing when the overall system throughput

(total network delay) has rapidly decreased (increased). Figure 5.5 illustrates the relation-

ship between the change of traffic arrival rates and the overall passenger throughput. The

passenger throughput is defined by the percentage between the total number of passengers

who completed their journey from all directions to the total number of passengers request to

pass a road network illustrated in Figure 5.4. The results have been observed in both total

passenger delay and overall throughput in different scenarios which are four lanes without

BRT, three lanes with BRT, reduced traffic demands for 3-lane with BRT, enlarged the BRT

size and increased the BRT service frequency. The throughput has shown that between 1-1.6

pcu/slot/lane, the overall throughput has dropped to 60%. Therefore, in the next scenario, the

traffic arrival rate will set to 1.6 pcu/slot/lane. Note that the maximum capacity for each in-

tersection is 2.61 pcu/slot/lane. The desired passenger arrival rates approaching intersections

from two directions are not exceeded the maximum capacity but the system performance has

been operated in an oversaturated traffic conditions due to the interruptions of traffic sig-

nals, the system loss time and the wave speed coefficient. From both figures, the reported

results show that the exclusive lane BRT with lane separator systems cannot reduce the over-

all passenger delay. However, if the BRT system must be deployed, then the advantage of

implementing the BRT to the road network must be clearly shown. Theses advantages will

be reported in the following subsection.
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5.3.2 Performance Comparison of Transit Signal Priority and non-Transit Signal Pri-

ority Systems

From the previous results, the traffic arrival is a Poisson process with a mean arrival

rate 1.61 pcu/slot/lane in each direction. As mentioned in the previous subsection, the system

has been operated under oversaturated conditions. In this section, the traffic arrival will be

divided into two types. First type is the class of passengers taking their own vehicles. Second

type is the class of passenger taking BRT. The summation of the total traffic arrival rate must

be equal to the case of overall traffic arrival rate of four lanes without BRT. For the case

of three lanes with BRT, a proportion of the passengers will be weighted to use the BRT

system. The observed system is operated in the rush hour periods from 06.00 am to 10.00

am. The traffic arrival rate from 06.00-07.00 am 0.8 pcu/slot/lane. From 07.00-09.00 am,

the mean arrival rate is 1.6 pcu/slot/lane. From 09.00-10.00 am, the mean arrival rate is 0.6

pcu/slot/lane.
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Figure 5.7 Proportion of passengers taking BRT vs internal and external passenger delay

Figure 5.7 illustrates the proportion of the passengers taking BRT versus the total inter-

nal delay and total network delay (including external delay). The result shows that increasing

of the BRT service frequency causes high total passenger delay. If the BRT service frequency

is too high, then the priority signal must be allocated too often e.g., the case of 1 minute of

BRT service frequency. The total passenger delay is high because of the system loss time.
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Figure 5.8 Proportion of passengers taking BRT vs passenger throughput

Figure 5.8 depicts the passenger throughput, the increasing of BRT service frequency

also gives the increasing overall passenger throughput. For the other throughput subgraphs,

the figure shows the throughput in each road segment. Consider the throughput approaching

an intersection from west to east. If all the passengers taking BRT, the throughput cannot

calculate because all the normal vehicles are waiting at BRT stations. The reported result

shows that, the passenger throughput can be greatly increased by up to 9-15% in the jamming

conditions when at least 40% from the overall passengers choose the BRT for their journey.

As illustrated in Figure 5.9, the result shows the percentage of passengers completing

trips that can complete their journey in four hours. If the number of passengers taking the

BRT increases, then the percentage of passengers completing trips decreases. The decreasing

of the percentage of the passenger completing trips becomes from the fact that BRT has

limited capacity.

Figure 5.10 shows the total number of passengers waiting at a BRT station. If the

BRT can serve passengers more often, then the number of passengers (total passenger delay)

becomes zero. The calculation of the total number of passengers at a BRT station can be

found in (5.27).

Figure 5.11 illustrates the average number of passengers completing trips in one time

slot. The more frequent the BRT service is, the more passengers completing trips are ob-

tained.

From the reported results, a trade-off between the minimum total network delay and
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Figure 5.9 Proportion of passengers taking BRT vs percentage passengers completing trips
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Figure 5.10: Proportion of passengers taking BRT vs total number of passengers waiting at

a BRT station
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Figure 5.11: Proportion of passengers taking BRT vs average number of passengers com-

pleting trips in one time slot

the overall passenger throughput has been found. The minimum overall passenger delay may

not be a good representative of the system performance when traffic is jammed. In jammed

conditions, the overall passenger delay may not be easily reduced. Therefore, the overall

passenger throughput is recommended for the performance metric. Practically, the possible

range of the passenger taking BRT is less than 40% of the total summation of the total traffic

arrival rate of four lanes without BRT.

5.3.3 Comparison of Existing Traffic Control Methods vs Q-learning

Nowadays, there are three well-known distributed traffic signal control methods de-

ployed around the world which are fixed-time, vehicle actuated (VA) and MOVA (Micropro-

cessor Optimised Vehicle Actuation) [47]. The fixed-time control uses the historical data to

determine the green time for each approaching intersection. The VA implemented in UK has

been reported that this system can give the priority to buses by either extending the current

green period or shortening the other green periods. For the MOVA, this is a modernised

VA version, the detected bus approaching to the intersection will be analysed individually

lane-by-lane. However, the control signal is employed the bus priority concept as mentioned

in the VA.

The BUS priority has been implemented in London with the BUS-SCOOT in iBUS
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version [47]. In this version, the differential priority has been introduced. The differential

priority gives the priority to the bus lateness only. The bus lateness refers to the outdated

schedule or the minimum headway required. However, the iBUS requires centralised traffic

signal control.

From the survey results of traffic signal control in London [54], the iBUS with the

distributed extension and recall signal control gives the best results in terms of reduction

delay. Therefore, in this subsection, the Q-learning control will be compared the results with

both MOVA and iBUS distributed traffic signal control strategies. For convenience, let us

rename the MOVA as the preemptive priority signal.

The comparison between the Q-learning with two existing approaches has reported.

The BRT service frequency is set to every 5 minutes. The traffic arrival rate approaching

from all directions is varied. The purpose of this setting is to evaluate to control methods

in different loading regions. As mentioned earlier, the road network in Bangkok always

operates in the jamming conditions.
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Figure 5.12 Loading vs total passenger delay

As illustrated in Figure 5.12 and Figure 5.13, the CTM-BRT based Q-learning obvi-

ously outperforms both two existing control methods in oversaturated regions (more than

50% of the maximum flow rate 2.61 pcu/slot). Note that in undersaturated regions, the Q-

learning performs bad because of its exploration ability. Figure 5.14 illustrates the action
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Figure 5.13 Loading vs overall passenger throughput
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Figure 5.15 Loading vs average number of passengers by one completed trip in 1 time slot

(green light) in each intersection. The action selections in each time slot has been shown.

From both existing methods, the control plans obtained from each intersection are similar to

periodic signal timing control methods. However, in reality, the periodic control cannot be

used due to the fluctuation of the systems. Moreover, the total passenger delay obtained from

Q-learning is the lowest when the traffic arrival rate increases because Q-learning changes

the action less often to reduce the loss time of the systems. The CTM-BRT based Q-learning

also outperforms the two existing schemes in terms of the average number of passengers

completing their journeys in one time slot as illustrated in Figure 5.15.

5.4 Summary

The original contributions in this chapter are the extension to a network of cascading

interactions with transit signal priority system has been proposed with simple uni-directional

flows without turning movements. Motivated by the BRT system in Bangkok, the conven-

tional signalised CTM has been generalised to cope with the preplanned space-usage priority

of BRT over other non-priority vehicles by modelling explicitly the existence of BRT physi-

cal lane separator as well as the location of BRT stations. The delay function of both carried

passengers on BRT and on other non-priority vehicles as well as waiting passengers at sta-

tions has been introduced. Based on the investigated scenarios, the deployment of BRT

system with one lane deducted by the lane separator cannot reduce the total passenger delay
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in comparison with the comparable road and traffic condition before the BRT instalment.

However, with BRT, the passenger throughput can be greatly increased by up to 9-15% in

the jamming conditions when at least 40% from the overall passengers choose the BRT for

their journey. Moreover, our proposed method outperforms the conventional preemptive and

differential priority control methods because of the improved awareness of signal switching

cost.

The in-depth investigation has been first reported from the Chapter III about the val-

idation, discussions, reward functions and etc. The proposed red light delay as the reward

function and the introduced the boundary conditions as the external delay to capture the

effect from nearby neighbourhood intersections. Chapter IV investigates the performance

comparison with the classical queueing model M/M/1 and D/D/1. This chapter also extends

the investigation to an example of road traffic with BRT systems. Two experiments have been

investigated. Firstly, the comparison between before and after the deployment of the BRT

systems has been evaluated. Secondly, the comparison between the current implementations

and the Q-learning has been reported.

Though an example of the comparison of the Q-learning with existing control me-

thods has been illustrated, there are too many possibilities yet to be discovered. However,

in this dissertation, the main contribution is to formulate a novel mathematical framework

based on the signalised cell transmission model using Q-learning for the road network with

BRT system. This dissertation has been confirmed the extension of such approach to a real

implementation.



CHAPTER VI

CONCLUSION

The aim of this dissertation is to develop a new mathematical framework to control the

traffic signal light for the road network traffic with the bus rapid transit system by applying

the automated self learning called reinforcement learning to seek the best possible traffic

signal. This dissertation has been investigated the road network in both road traffic condi-

tions which are undersaturated and oversaturated traffic conditions. The network states have

been modelled by the signalised cell transmission model (CTM). The in-depth investigation

started from Chapter III to Chapter V. The summaries of the contributions of each chapter

are shown in the following sections, together with suggestions for possible future works. The

main emphasis of this dissertation is to show our proposed framework in finding the most

proper traffic signal solution in oversaturated traffic conditions.

6.1 Contributions from Chapter III

The first model developed by using the cell transmission model (CTM) to capture the

system dynamics together with the implementation of Q-learning to seek the best possible

solution for an isolated intersection has been introduced. The other underlying conditions

are the newly presented the external delay function in the boundary conditions to capture the

effects from the road network neighbourhoods and the newly proposed red light delay as the

Q-learning reward function. Both simulation and mathematical derivation results confirm

that using the newly proposed red light delay as the Q-learning reward function gives better

performance than using the total network delay as reward function. In addition, the existing

works related to Q-learning have not considered scalability issues due to the limitation in

terms state space explosion. However, we attempt to alleviate the explosion by employing

state space quantisation and control traffic signal in such network scenarios.

The results have been reported from the series of experiments which are the Q-learning

validation, the effect of reward functions, the Q-learning performance in stationary/non-

stationary stochastic loadings and the applicability of the CTM-based Q-learning algorithm
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in the microscopic mobility environments using AIMSUN. The simulation results show that

our proposed framework can efficiently find the proper solution for road traffic systems by

comparing with the best periodic signal solution (BPSS). The effect of reward functions

has also been investigated and the adaptability of the Q-learning algorithm in adjusting its

solution with Poisson arrival upon the change of time has also been observed. The results

from the macroscopic level show that Q-learning can achieve the solution similar to the

BPSS method. However, in a microscopic level, the control strategies obtained from the

CTM-based Q-learning approach outperform the BPSS in terms of the throughput and the

average travel time because the Q-learning algorithm has allocated the green time more often

to the direction with a higher vehicle arrival rate.

6.2 Contributions from Chapter IV

With the newly proposed red light delay as the Q-learning reward function applied to

an isolated intersection, this chapter has reported the results and their applicabilities. The

BPSS is inapplicable due to its computational burden required. In this chapter, our proposed

CTM-based Q-learning will be compared with the classical mathematical M/M/1 and D/D/1

queuing models.

The obtained results show that the Q-learning approach can improve the intersection

throughput by up to 1.7-8.3% and by up to 3.2-14.8% in jamming conditions in comparison

with the respective M/M/1 and D/D/1 approaches. Moreover, the average vehicle delay per

completed trip can be reduced by up to 7.0-63.4% and by up to 18.9-80.7% in comparison

with the respective M/M/1 and D/D/1 approaches. Note that the optimal derivations are

based on the stability condition where the all vehicles entering the systems can be totally

served. However, if all the vehicles entering the systems cannot be totally served, then the

accumulative number of vehicles tends to be infinite over time. The queueing models are

therefore guaranteed that there is no accumulative queue length when the stability condition

is held. Sometimes, the stability is not held, the number of vehicle entering the systems will

create the queue to the buffered of the systems. Moreover, the increasing of queueing length

at the boundary cell is strongly not recommended.

The contribution in this chapter is to show the applicability of the Q-learning in con-

trolling an isolated intersection by comparing with two optimal split derivation from the

M/M/1 and D/D/1 models.
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6.3 Contributions from Chapter V

An extension to a network of cascading interactions with transit signal priority system

has been proposed with simple uni-directional flows without turning movements. Motivated

by the BRT system in Bangkok, the conventional signalised CTM has been generalised to

cope with the preplanned space-usage priority of BRT over other non-priority vehicles by

modelling explicitly the existence of BRT physical lane separator as well as the location

of BRT stations. The delay function of both carried passengers on BRT and on other non-

priority vehicles as well as waiting passengers at stations has been introduced. Based on

the investigated scenarios, the deployment of BRT system with one lane deducted by the

lane separator cannot reduce the total passenger delay in comparison with the comparable

road and traffic condition before the BRT installation. However, with BRT, the passenger

throughput can be greatly increased by up to 9-15% in the jamming conditions when at least

40% from the overall passengers choose the BRT for their journey. Moreover, our proposed

method outperforms the conventional preemptive and differential priority control methods

because of the improved awareness of signal switching cost.

From the reported results, by operating the BRT system in our road network exam-

ple, the overall passenger delay increases if none of the passengers decided to use the BRT

system. The reported result is plausible because BRT requires a dedicated lane and the pas-

senger throughput can be greatly increased by up to 9-15% in the jamming conditions when

at least 40% from the overall passengers choose the BRT for their journey. One of the find-

ings from the obtained results is that in jamming conditions, the overall passenger may not

necessarily be a good performance criterion. It has also been found that the system through-

put has rapidly increased because of the augmented total number of passengers completing

trips. Therefore, the system throughput, especially in terms of the total number of passengers

completing trips becomes a good performance criterion.

6.4 Possible Future Research on Oversaturated Traffic Conditions

From the study of application of RL with CTM to a BRT road network, there are nu-

merous scenarios not yet covered which are worth for the possible research in the future. At

the end of Chapter V, this dissertation shows the extension of the developed mathematical
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framework to an example of road traffic network with BRT. However, there are many findings

yet to be discovered within our proposed mathematical framework. In general, the effect of

model parameters, the effect of model accuracy, the effect of real traffic data and the possibil-

ity of using our proposed framework to real road traffic situations are worthwhile studying.

Moreover, if the control method from Q-learning can be applied, especially in Bangkok, then

the results become insightful. The research recommendations are mainly focused on the sit-

uation when the road traffic networks have been operating in the oversaturated conditions.

For the undersaturated traffic conditions, any control method can be applied.

6.4.1 Partially Observable Situation

By using our proposed CTM-BRT based Q-learning framework, the vehicles entering

road segments both priority and non-priority assume to be measurable. However, for unpre-

dictable situations, the vehicles entering road segments cannot be measured directly. The

road network in Bangkok nowadays, the traffic sign boards are installed. The traffic sign

boards report the relative road network density in its forward directions. Unfortunately, the

road network density has been reported by colors. Based on our proposed framework, the RL

state space may not know explicitly. In this situation, the partially observable reinforcement

learning (PORL) [55] can be applied. Conceptually, the PORL evaluates the RL state spaces

by investigating the feedback from the chosen actions and the immediate reward functions.

Despite the adopting of PORL to our proposed framework, the Q-learning with state space

quantisation can be directly applied to the Bangkok situation with traffic sign boards. As

long as the feedback system works perfectly, the PORL may not be used.

6.4.2 Road-Space Sharing

Nowadays, the U-shaped road network with BRT systems in Bangkok consists of two

road types which are road network with and without lane separators. The recommended

CTM-BRT Q-learning for the case of road network without lane separators has not taken

into account. However, from our proposed framework, the road network systems with lane

separators can be straightforwardly applied by reducing the average speed in each individual

lane e.g., the righteous lane considered as the high-occupancy vehicles (HOV). The mathe-

matical can further extend to the multi-class cell transmission model [49]. The multi-class

cell transmission model has been proven its ability in identifying two classes of vehicles e.g.,
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buses and cars.

6.4.3 Signal Light

With the limitation of calculations on single machine, three signal phases have been

considered. To relax our proposed assumptions, the signal phases can be further extended to

a realistic scenario. Increasing of signal phases will lead to high computational burdens and

state space explosions. The state space explosions have been alleviated by the quantisation

techniques. However, the cardinality of the action spaces increases non-linearly depending

on the total number of signal phases for all intersections. The computational burdens are

inevitable.

6.4.4 Mesoscopic Traffic Model

Our proposed framework has been encompassed on the macroscopic level only. The

road system parameters have been considered on the average value on each road segment.

The mesoscopic traffic models consider the vehicles movements in their observed road net-

works. However, the mesoscopic traffic models report the output similar to the viewpoint

from macroscopic models to alleviate the computational burdens. By using only the macro-

scopic model, the conservation of flows and equations on how traffic propagate through the

systems.

6.4.5 RL Reward Functions

In this dissertation, the Q-learning reward functions have been calculated from the

CTM model. Practically, the proper reward functions cannot be declared explicitly. The

CTM model efficiently uses to evaluate the progressions of the vehicles’ movements of

the systems. Therefore, if the Q-learning has been installed at an intersection, then the

Q-learning reward functions must be fine-tuned. However, with the adaptability of the Q-

learning mentioned in Chapter III, the algorithm can learn and adjust to the best proper

solutions as long as the system works functionally. The link throughput is not recommended

because the blinding situation of the algorithm will be occurred. The blinding situation hap-

pens from the unidentified reward functions. The feedback returns to the control agents do

not know explicitly how good of the previous selection is. In this situation, the feedback

from the reward functions is not working due to the unidentified reward functions problems.
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6.4.6 Effects of Model Parameters

The model parameters are one of the most important. For example, the wave speed

coefficient, this parameter can reduce the vehicle movements. The exact value of this pa-

rameter needs to be calibrated. For the capacity, in reality, the system capacity changes upon

time. Sometimes, the incidences happen on a road segment, the system capacity is therefore

reduced At least, the capacity in one lane has been reduced. Therefore, the adaptability of

Q-learning in solving this situations needs to be studied. The embedded sensors in the road

being used in this dissertation has been chosen based on the fact that the financial supports

are limited. The quantisation level has been chosen equally. If the level of quantisation is not

equal, then the results would become different.
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