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CHAPTER I
INTRODUCTION AND PRELIMINARIES

4
f

///

In this introductory chapter, we present a numbeér 6£elementary concepts, notations

and propositions on semlgroups and rmgs w‘ﬂlch will be used for this research.

Let N,Z and R denote t natur numbers (positive integers), the set of
integers and the set of real 4 For any set X, let |X| denote the cardinality
£ i ‘ l oj

of X. >

—_
"«"rv‘os midroky i\
RN

i§ & 'sim —m*..{gi'ofu of S
AA'A(V s Aj/

By a nonzero subsemigroup of asemlg:mup:ﬁwe mean a subsemigroup of S if

S has no zero and a su@éimgmup T with T # {0} if § h@} zero 0. A nonzero

element of a semigroup I.E/ Cﬂﬂﬂd&r&d mwy i\J

A subsemigroup @ of a semgroup S is called a quasi- :dedf of SIfSQNQSCQ.

For nonempty subsets X and Y of aring R, let XY denote. the set of all finite
sums of the form Y z;y; where Z; € X and y; € Y. We note here that for z € R,
Rz = {rz | 7€ R} and R </ {zn |'r € R}. ‘Also, for a nonempty subset) X’ of a ring
R = (R,+,-),%et ZX be the set of all finite sums of a form S kiz; where k; € Z and
z; € X. It then follows that ZX is a subgroup of (R,+) for éver:,r nonempty subset
X of R.
A subring @ of a ring R is called a quasi-ideal of R if RQ N QR C Q.

The notion of quasi-ideal for rings and semigroups was introduced by O. Steinfeld



in 1953 [16] and 1956 [17], respectively. Every left ideal and every right ideal of a
semigroup or a ring is clearly a quasi-ideal. The following example shows that the
converse is not generally true. Then quasi-ideals of both semigroups and rings are

generalizations of one-sided ideals.

Example 1.1. Let n be a positi 1 and M, (F') the set of all

PSrdoy ¥
kl) Ma(FY A
M,(F)QY(F) M
QU (F)Ma(F) = {A € MfF) | Aig =0 if i (2)

ere + and - are the

ancﬂm2), we clearfy have

Mo (F)QE(F) N Qﬁ)ﬁﬁﬁﬁﬂ)ﬂﬁ%ﬁﬁii #1) = Q)
in both (M, F) 1 thas QU0 (F)
is n:ither aﬁ?ﬂeﬁr@ ﬁlg ;jem mﬁlﬁm&ﬂe ring

(Mo(F),+,7) if n.> 1.

usual addition and multiplieation o

mimlt is known that the intersection of any set of quasi-ideals of a semigroup S is
er empty or a quasi-ideal of S ([19], page 10). Also, the intersection of any set

of quasi-ideals of a ring [semigroup with zero] A is a quasi-ideal of A ([19], page 10).



In particular, if H and K are a left ideal and a right ideal of a semigroup {ring| A,
then H N K is a quasi-ideal of A, and hence AX N XA is a quasi-ideal of A for
every nonempty subset X of A.

For a nonempty subset X of a semigroup [ring] A, let (X), denote the quasi-

ideal of A generated by X, that is, (X). jsythe intersection of all quasi-ideals of A

By a minimal quasi-ideal of;a,semigroup S (w1th or without zero) we mean a

sonzero quasiidenl TS Y4 b FHIAATH Y Ao quai-ident of

S. A minimal quasi-ideal of a ring is defined analogously. For convenienCe, a trivial
wmigronp () AT AL AR,

The followmg remark is obvious but it is one of our main ‘tools for this research.

Remark 1.4. A nonzero quasi-ideal Q of a semigroup [ring] A is minimal if and

only if (z), = Q for every nonzero element z of Q.



Remark 1.4 shows that every minimal quasi-ideal of a semigroup or a ring is principal,
that is, it is generated by one element.
In 1956, O. Steinfeld {17] showed that a minimal quasi-ideal of a semigroup S

without zero must be a subgroup of S and a quasi-ideal of S which is also a-subgroup

of S must be minimal. This result can be seen in [19], the book written by O. Steinfeld
in 1978. \\\ , ///

Theorem 1.5 ([19], page igroup S without zero is

oup with zero were proved
in [19] as follows:

minimal if and only if Q 4

Theorem 1.6 h tial o follane -

eorem 1.6 has a part1 fjnve as tollo it

| - {]

Theorem 1.7 ([19] JJ mm with zero is a
g i3 a mzm

subgroup with zero o quasz-zdeal of S.

PNIAINTUNRNNERY

Necessary €onditions for any minimal quasi-ideal of a ring were given by O. Ste-
infeld [17] in 1956. These can be seen in [19] as follows:

Theorem 1.8 ([19], page 35). A minimal quasi-ideal Q of a ring R is either a zero

subring or a division subring of R. v



A partial converse of Theorem 1.8 is obtained similarly as above.

Theorem 1.9 ([19], page 37). If a quasi-ideal Q of a ring R 1is a division subring of

R, then @ is a minimal quasi-ideal of R.

Example 1.10. Let Q(kl (F) be defined as in Example 1.1. Recall that Q(kl)( F)is
a quasi-ideal of both the semigroup (M,(F),-) and the ring (M,(F),+,-). Let A €
(H)(F ) be a nonzero matrix, that is, Ay # 0. Since F is a field, FAy = F = Ay F.

This implies that
Ma(F)A = {B € My(F) | B; = 0if j #1},
AM,(F) = {B € M,(F) | B;; = 0if i # k},

and hence
Mo(F)AN AML(F) = Qw(F) (1)
in both (M, (F),-) and (My(F),+,-). In the ring (Mn(F), +,),ZA C Q¥)(F), so
ZA + M,(F)ANAM,(F) = ZA + Q¥ (F) = Q¥ (F). (2)

Since A is an abitrary nonzero matrix in QS;H)(F ), it follows from (1), Theorem 1.2
and Remark 1.4 that Q%" (F) is a minimal quasi-ideal of the semigroup (M, (F),-).
Also, from (2), Theorem 1.3 and Remark 1.4, QS,H)(F) is a minimal quasi-ideal of the
ring (M,(F),+,-). Observe that if £k =, then

QURN(F) 2 (F,) in (Mn(F),-)

and

QURN(F) = (F,+,-) in (Ma(F), +,)



which imply that Qflkk) (F) is a subgroup with zero of (M,(F),-) and it is a division
subring of (M, (F),+,-). If k # I, then it is clear that Q¥ is a zero subsemigroup

of (M,(F),-) and it is a zero subring of (M,(F),+,").

Theorem 1.2 and Remark 1.4 are main tools for our works in Chapter II and
Chapter III. Theorem 1.3 and Remark 1.4 are useful to obtain interesting results
in Chapter IV. In this research, the explicit forms of minimal quasi-ideals (), are
provided in terms of . We know respectively from Theorem 1.5, Theorem 1.6 and
Theorem 1.8 that a minimal quasi-ideal of a semigroup without zero is a subgroup,
a minimal quasi-ideal of a semigroup S with zero is either a zero subsemigroup or a
subgroup with zero of S and a minimal quasi-ideal of a ring R is either a zero subring
or a division subring of R.

For a map a from a set into a set, let the domain and the range (image) of «
be denoted by dom a and ran e, respectively; and the rank of « is |ran | which is
denoted by rank c.

For aset X, let Px,Tx,Ix and G x denote respectively the partial transformation
semigroup on X, the full transformation semigroup on X, the one-to-one partial
transformation on X (the symmetric inverse semigroup on X) and the symmetric
group on X (the permutation group on X ). By a transformation of X we mean a
map from X into X while a transformation semigroup on X we mean a subsemigroup
of Px. Also, we let Mx and Ex denote the subsemigroups of Tx defined respectively
by

Mx = {a € Tx | o is one-to-one}, Ex = {@ € Tx | rana = X}.

For a € Tx, « is said to be one-to-one at z € X if (za)a~! = {z} and we call
a almost one-to-one if the set {z € X | o is not one-to-one at z} is finite. Let

AMx be the set of all almost one-to-one transformations of X. Then Mx C AMx C



Tx. It is easy to verify that for a,8 € Tx, A(aB) C A(a) U (A(B))a! where
A(y) = {z € X | v is not one-to-one at =} for every v € Tx. This implies that
AMy is a subsemigroup of Tx. It then follows that AMx is a subsemigroup of
Tx containing Mx. A transformation a € Tx is said to be almost onto if | X\
ran | < co. It is easily seen that X\ ran af C (X~ ran 8) U (X\ ran o) for
all a,8 € Tx. Then the set AEx of all almost onto transformations of X is a
subsemigroup of Tx containing Ex. Note that if X is finite, then Mx = Ex = Gx
and AMx = AEx =Tx. In fact, Mx[Ex]| = Gx or AMx[AEx] = Tx implies that
X must be finite. To see this, suppose that X is infinite. Let X; and X, be subsets
of X such that X = X, U X5, X; N X, = @ and |X;| = |X32| = |X|. Then there is a
bijection o : X — X,. Hence XN\ rana = X \ X; = X,. Thus a € Mx \ Gx and

a€Tx N\ AEx. If a € X5 is fixed and define 8: X — X by

za~l ifz e X,
zf =
a ifz e X2,
then (z8)B~! = af~! = XoU aa! for every z € X, which implies that 8 € Ex\Gx
and B € Tx \ AMx.

Next, let X be an infinite set,
BLy = {a € Tx | o is one-to-one and X \ ranc is infinite} and
OBLx = {a € Tx | a is onto and (za)a™! is infinite for all z € X}.
Let X, and X, be subsets of X such that X = X; U X,, X; N Xy = @ and
|X1] = |X| = | X3|. Then there is a bijection o : X — X;. Thus X\ rana = X,

- which is infinite, so & € BLx. We shall show that OBLx # @. Since | X x X| = | X|,

there is a bijection ¢ : X - X x X. Then

X = U ({z} x X)p~! which is a disjoint union, (1)
zeX



({z} x X)o7 is infinite for every z € X . (2)
Define g: X — X by
(({z} x X)p™1)B = {z} for every z € X. (3)

From (1), B is well-defined and onto. Moreover, if a € X, then by (1), a € ({b} x

X))~ for some b € X, and thus from (3), we have
(@B)B™ = ({8} x X)p™")B)B™" = b5~ = ({b} x X)p™!

which is infinite by (2). Consequently, € OBLx.

For a, 3 € Tx, ran a8 C ran § and

(zaf)(aB)™! = (zaB)f o D (za)a™" for every = € X.

Therefore we have that BLx and OBL x are subsemigroups of Tx . If X is countably
infinite, BLx is called the Baer-Levi semigroup on X ([3], page 14). The semigroup
OBLx may be considered as the “opposite semigroup” of BLy.

In 1975, R. P. Sullivan [20] generalized transformation semigroups which are called
generalized transformation semigroups in this paper as follows: If X and Y are any
two sets, let P(X,Y") denote the set of all mappings with domain in X and range in
Y, that is,

P(X,Y)={a:A—>Y|AC X}

~ Note that 0 € P(X,Y) where 0 is the empty transformation. A generalized trans-
formation semigroup of X into Y is a semigroup (S(X,Y),0) where S(X,Y) is
a nonempty subset of P(X,Y) and 6 € P(Y,X) with a8 € S(X,Y) for all
a,f € S(X,Y) and the operation on S(X,Y) is x defined by a * 8 = aff for



all 0,8 € S(X,Y). Note that in [20], this system was called a generalized par-
tial transformation semigroup. The notation T(X,Y) will denote the set {a €
P(X,Y) | dom a@ = X}. The definition of almost one-to-one maps and almost
onto maps in T(X,Y) are given analogously as above. Then P(X,X) = Px and
T(X,X) = Tx. The notations I(X,Y),G(X,Y),M(X,Y),E(X,Y),AM(X,Y) and
AE(X,Y) are defined analogously, and we then have I(X, X) = Ix, G(X, X) = Gx,
M(X,X) = Mx, E(X,X) = Ex, AM(X,X) = AMx and AFE(X,X) = AEx.
Moreover, for § € Gx,(Gx,0) is a group having =1 as its identity. We note that
AM(X,)Y)=T(X,Y) if |[X| < oo and AE(X,Y) =T(X,Y) if |Y| < o0.

Clearly, if M(X,Y) # @ # M(Y,X), then the semigroup (M(X,Y),0) where
6 € M(Y,X) is defined, and so is the semigroup (E(X,Y),0) where 6 € E(Y, X).

For amap a: P — @, a is said to one-to-one at z € P if (za)a™! = {z}, and
also let A(a) be the set {z € P | a is not one-to-one at z}. We can verify directly

thatif a: P - Q and B : Q — Z are maps, then

A(ep) € A(a) U (A(B))a™ (1)
and

Z~ ranaf C (Z~ ran B) U (Q\ ran a)f. (2)

From (1) and (2), we have respectively that if AM(X,Y) # @ # AM(Y, X), then the
semigroup (AM(X,Y),8) where § € AM(Y,X) is defined and so is the semigroup
(AE(X,Y),6) where § € AE(Y, X). "'

For a nonempty subset A of X and y € Y, let A, denote the element of P(X,Y)
with domain A and range {y}. A subset S(X,Y) of P(X,Y) is said to cover X and

Y if for every pair (z,y) € X x Y, there exists an element 4, € S(X,Y) for some
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nonempty subset A of X containing x. Our definitions of A, and the word “cover”
are motivated by the paper written by R. P. Sullivan [21].

Observe that if S(X,Y) is P(X,Y) or I(X,Y), then we always obtain the corre-
sponding semigroup (S(X,Y),0) where 6 € S(Y,X) and S(X,Y) covers X and Y.
Also, it is clear that if both X and Y are either empty or nonempty, then we obtain
the semigroup (7(X,Y),0) where 6 € T(Y,X) and T(X,Y) covers X and Y.

To generalize the semigroups BLy and OBLx, let X and Y be infinite sets,

BL(X,Y)={a e T(X,Y) | @ is one-to-one and Y \ ran« is infinite},

OBL(X,Y) = {a € T(X,Y) | o is onto and (za)a " is infinite for all z € X}.

Ifd e M(Y,X) and o, 8 € BL(X,Y), then a6 is one-to-one and Y\ ranaff O Y\
ran 3. Also, if 8 € E(Y,X) and «, 8 € OBL(X,Y), then aff is onto and for every
z € X, (zabB)(abf)™! = ((zabB)f~ 107 )a™? D (za)a!. Then we can define the
semigroup (BL(X,Y),0) where § € M(Y,X) if BL(X,Y) # @ and M(Y,X) # @
and the semigroup (OBL(X,Y),f) where 8§ € E(Y,X) if OBL(X,Y) # @ and
EY,X) # @.

The aim of Chapter I1 is to characterize minimal quasi-ideals of all the gemigroups
(S(X,Y),0) introduced above when they are defined.

Next, we shall define linear transformation semigroups corresponding to transfor-
mation semigroups defined previously. If « is a linear transformation bétween two
vector spaces over a field, we shall use the notation Im «, not ran «, to denote the
image (range) of a. Let V be a vector space over a field F'. Let Lp(V) be the

semigroup under composition of all linear transformations a: V= V',

Gr(V) = {a € Lr(V) | a is an isomorphism },

Mp(V) = {a € Lr(V) | a is one-to-one },
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Ep(V)={a€ Lp(V)| Ima=V},
AMp(V) ={a € Lp(V) | dimpKer « is finite } and
AEp(V)={a € Lp(V) | dimp(V/Ima) is finite }.
Then Gr(V) C Mp(V) C AMp(V) and Gr(V) C Er(V) C AEp(V). We have
that Mp(V), Er(V), AMp(V) and AEr(V) are subsemigroups of Lr(V'). Note that

AMp(V) and AEF(V) are subsemigroups of Lr (V') because for o, € Lg(V),
dimpKeraf < dimpKera + dimgpKer g, (1)
dimp(V/Imof) < dimp(V/Im @) + dimp(V/Im §). (2)

The proofs of these two inequlities can be seen in [14] We know that Gr(V) is a group
under composition. The semigroups AMr(V) and AEr(V) can be referred to respec-
tively as the semigroup of all “almost one-to-one linear transformations” of V' and the
semigroup of all “almost onto linear transformations” of V. Observe that if dimpV
is finite, then Mp(V) = Gp(V) = Ep(V) and AMp(V) = Lp(V) = AEF(V). More-
over, if dim pV is infinite, then Gp(V) # Mp(V) [Ep(V)] and AMp(V) [AEF(V)] #
Lg(V). Assume that dimpV is infinite and B is a basis of V. Let B; and B, be
subsets of B such that B = By U B,, By N By, = & and |B,| = |By| = |B|. Let ¢ be

a bijection from B onto B; and define &, 8 € Lp(V) by

vp~! ifve B,
va = vy for every v € B and v =

0 ifv € B,.

- Then Ker a = {0}, Ima = (B;) # V, dimp(V/Ima) = {v+(B)) | v € By}| =
|Bs| = |B|, Ker 8 = (B,), dimpKer § = |By| = |B| and Im 8 = (B) = V.
Therefore & € Mp(V) N\ Gp(V), o € Lp(V) N\ AEr(V), B € Er(V) N\ Gr(V) and
,3 S LF(V) ~ AMF(V)
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Let V' be an infinite dimensional vector spaces over a field F',
BLp(V) = {a € Lr(V) | a is one-to-one and dimg(V/Ima) is infinite} and

OBLp(V) = {a € Lr(V) | a is onto and dimpKer « is infinite}.
Let B be a basis of V. Then B is infinite. Let B; and B, be subsets of B such
that B = B, U By, By N By = & and |B;| = |By| = |B|. Thus there is a bijection
¢ : B — B,. Define o, € Lp(V) as above. Then we have that oo € BLr(V) and
B € OBLp(V). This shows that both BLp(V) and OBLp(V) are nonempty. Also
for any v,A € Lr(V), Imy\ C Im )\ and KeryA D Ker+. These imply that BLg(V)
and OBLp(V) are subsemigroups of Lg(V).

To generalize the above linear transformation semigroups analogously, let V' and

W be vector spaces over a field F',
Lp(V,W) = the set of all linear transformations a : V — W,
Mp(V,W) = {a € Lr(V,W) | o is one-to-one },
Ep(V\W)={a€ Lp(V,W) | Ima =W},
AMp(V,W) = {a € Lp(V,W) | dimpKera is finite } and
AEpr(V,W)={a € Lp(V,W) | dimp(W/Im ) is finite }.
If Sp(V,W) is Mp(V,W), Ep(V,W), AMp(V,W) or AER(V,W), Sp(V,\W) # @&
and 0 € Sp(W,V) # 9, let (Sp(V,W),0) be the semigroup Sp(V,W) under the
operation * defined by a * 8 = aff for all o, 8 € Sp(V,W). If a,8 € AMp(V,W)

and 0 € AMp(W,V), then adpf € AMp(V,W) because we have the fact as in (1),

page 10 that
dimpKeraff < dimpKera + dimgKerf + dimgpKer .
Also, 08B € AER(V,W) for all a, B8 € AEr(V,W) and 6 € AEr(W, V) since

dimp(W/Im aff) < dimp(W/Im o) 4+ dimp(V/Im 6) + dimp(W/Im B)
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which is similar to (2), page 10. Notice that AMp(V,W) = Lp(V,W) if dimpV is
finite and AEr(V,W) = Lp(V,W) if dim W is finite.

For infinite dimensional vector spaces V and W over a field F, let

BLp(V,W) ={a € Lp(V,W) | a is one-to-one and dimr(W/Ima) is infinite},

OBLr(V,W) = {a € Lp(V,W) | « is onto and dimpKer « is infinite}.

We define the semigroup (BLp(V,W),80) where 8 € Mp(W,V) if BLp(V,W) # &
and Mp(W,V) # @ and the semigroup (OBLg(V,W),0) where 8 € Ep(W,V) if
OBLp(V,W) # @ and Er(W,V) # @ similarly as above. Note that Im 068 C Im S
and Ker aff D Ker a for all a, 8 € Lp(V,W) and 6 € Lr(W, V).

Next, let V and W be vector spaces over a field F', k£ a cardinal number,

Le(V,W,k) = {a€ Lp(V,W) | rank @ < k} if k > 0,

Lp(V,W,k) ={a € Lp(V,W) | rank o < k}.

Then for § € Lp(W,V), let (Lp(V,W),0)[(Le(V,W,k),8),(Lr(V,W,k),0)] be the
semigroup Lg(V,W)[Lp(V,W, k), Lr(V, W, k)] under the operation * defined by a *
B = afdp for all a, B € Lp(V,W) [Lp(V,W, k), Lp(V, W, k)]. In fact, (Lp(V, W, k), 8)
[(Lr(V,W,k),0)] is an ideal of (Lr(V,W), ) since rank aff < min{ rank o, rank @,
rank 8 }.

In Chapter III, minimal quasi-ideals of all generalized linear transformation semi-
groups defined above are characterized.

For an infinite cardinal number k and 6 € Lp(W,V), (Lr(V,W),+,0){(Lr(V,
W, k), +,0), (Lp(V,W,k),+,0)] denote the ring Lr(V,W)[Lr(V, W, k), Lr(V, W, k)]
under the usual addition of linear transformations + and the multiplication » defined
by ax B = abf for all o, € Lp(V,W)[Lp(V,W,k),Lr(V,W,k)]. Notice that

rank (@ + £) can be greater than rank @ and rank 8 if rank o < oo and rank 8 < co.
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To distinguish between quasi-ideals in the semigroup (Lg(V, W, k),6) and the ring
(Lp(V, W, k), +,6) obtaining from Theorem 1.2 and Theorem 1.3, repectively, the fol-

lowing examples are given for better understanding. In the semigroup (Lg(V, W, k), 6),

(@)q = (Lr(V, W, k)0a N abLp(V,W, k) U{a}

for every a € Lp(V,W, k), and in the ring (Lp(V, W, k), +,6),

(@) = Za+ (Lp(V,W,k)0a N abLp(V,W, k))

for every o € Lp(V, W, k).

Let m,n € N and F afield. Let M, ,(F") denote the set of all mxn matrices over
F. For P € M, (F), let (M n(F), P) denote the semigroup M, ,(F) under the
operation * defined by AxB = APB forall A, B € My, .(F) and (M, n(F),+, P) de-
note the ring M,, »(F) under the usual addition of matrices + and the multiplication
* defined by A+ B = APB for all A, B € M, o(F). Next, let V and W be vector
spaces over F'. Assume that dimpV = m and dimpW = n,B = {v;,vs,...,vm}
an ordered basis of V and B' = {w;,w,,...,w,} an ordered basis of W. For

a € Lp(V,W), let [a]p,p denote the m x n matrices (r;;) where

NO =T1W +T12W2 + ...+ T{nWy

Vot = To1 W1 + TooWs + ... + TopWy

Ul = TmiW1 + TmoWs + ... + "Wy -

-~ Then
(Lr(V,W),0) = (Mpu(F), [0]p,5) and

(LF(V, W)v +, 0) = (Mm,n(F)’ +a [Q]B',B)
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by a— [a]ls s ([4], page 329-330). Moreover, for every o € Lp(V, W),

rank o = rank [a]g B

([4], page 337 and 339).

Let SU,(F) be the set of all strictly upper triangular n x n matrices over a field
F. Then SU,(F) is a semigroup under usual multiplication and also a ring under
usual addition and multiplication. If P is an upper triangular n X n matrix over
F, then AP,PA € SU,(F) for all A € SU,(F). For an upper triangular n x n
matrix P over F, let (SU,(F), P) be the semigroup SU,(F) under the operation
* defined by Ax B = APB for all A;B € SU,(F) and (SU,(F),+, P) the ring
SU,(F) under the usual addition of matrices and the multiplication * defined by
Ax B = APB for all A, B € SU,(F). We can see that (SU,(F), I,) = (SUL(F),")
and (SUL(F),+, I,) = (SU,(F), +,-), where I, is the identity n x n matrix over F
and - is the usual multiplication of matrices. Y. Kemprasit and P. Juntarakajorn [8]

gave some interesting results on minimal quasi-ideals of the ring SU,(F') as follows:

Theorem 1.11 ([8]). If char F = 0, then the ring SU,(F) has no minimal quasi-

ideals.

Theorem 1.12 ([8]). Let char F > 0 and A € SU,(F)-.
(?) If rank A =1, then (A), is a minimal quasi-ideal of the semigroup SU,(F).
(i1) If n < 3 and (A)q is a minimal quasi-ideal of the semigroup SU,(F), then

rank A = 1 and this need not be true if the condition n < 3 is not given.

The following known result in [8] will be referred.
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Theorem 1.13 ([8]). For A € SU,(F), if rank A= 1, then SU,(F)ANASU,L(F) =
{0}.

We study generalized matrix semigroups mentioned above in the last section of
Chapter III. Their minimal quasi-ideals are determined.

Generalized rings of linear transformations defined above are studied in the first
section of Chapter IV. We characterize all of their minimal quasi-ideals. Also, minimal
quasi-ideals of generalized matrix rings provided above are determined in the second
section of this chapter. Theorem 1.11 and Thorem 1.12 will become our spacial cases
of our main results of this section.

A subsemigroup B of a semigroup S is called a bi-ideal of S if BSB C B. Also,
a subring B of a ring R is called a bi-ideal of R if BRB C B. Minimal bi-ideals
for semigroups and rings are defined similarly as minimal quasi-ideals. The notion of
bi-ideals for semigroup was introduced by R. A. Good and D. R. Hughes [2] in 1952.
The notion of bi-ideals for rings was introduced much later. It was actually introduced
in 1972 by S. Lajos and F. Szész {11}. Semigroups whose bi-ideals and quasi-ideals
coincide have long been studied. They are sometimes called BQ-semigroups. There
were characterizations of many transformation semigroups and linear transformation
semigroups whose bi-ideals and quasi-ideals coincide given by C. Namnak and Y.
Kemprasit. One can see in [6], [7], [9], [10], [13], [14] and [15]. Observe that in
any BQ-semigroup S, the minimal bi-ideals and the minimal quasi-ideals of S are
identical.

In the last section, we show that in any ring (Lr(V, W, k), +,8) [(Zr(V, W, k), +, 0)]‘
defined previously, the bi-ideals and quasi-ideals are identical. Then its minimal quasi-
ideals and minimal bi-ideals coincide. Moreover, we determine minimal bi-ideals

in any ring (SU,(F),+,6) and give an example of minimal bi-ideals of SU,(F) =
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(SU.(F),+, I,) which are not quasi-ideals for all n > 4. This implies that if n > 4,
then the bi-ideals and the quasi-ideals of the rings SU,(F') do not coincide.
The bi-ideal of R generated by X is denoted by (X),, that is, the intersection of

all bi-ideals of R containing X . The following known results will be referred.

Theorem 1.14 ([11]). For a nonempty set X of R,

(X)s=ZX +ZX*+ XRX.

Theorem 1.15 ([19], page 12). If @, and Q. are quasi-ideals of a ring [semigroup]
A, then Q,Q: is a bi-ideal of A.

Since every left ideal and every right ideal of a ring [semigroup] A is a quasi-ideal of

A, the following result is a consequence of Theorem 1.15.

Corollary 1.16. If H and K are one-sided ideals of a ring [semigroup] A, then
HK is a bi-ideal of A.



CHAPTER II
MINIMAL QUASI-IDEALS OF GENERALIZED

TRANSFORMATION SEMIGROUPS

The purpose of this chapter is to characterize minimal quasi-ideals of various gen-
eralized transformation semigroups and generalized matrix semigroups mentioned in
Chapter I.
Let us recall the notations which are used throughout this chapter. Let X and Y
be sets and
Px = the partial transformation semigroup on X,
Tx = the full transformation semigroup on X,
Ix = the one-to-one partial transformation semigroup on X
(the symmetric inverse semigroup on X),
Gx = the symmetric group on X
(the permutation group on X),
My = the semigroup of one-to-one transformations of X,
Ex = the semigroup of onto transformations of X,
AMx = the semigroup of almost one-to-one transformations of X,
AEx = the semigroup of almost onto transformations of X,
BLx = {a € Tx | a is one-to-one and X \ ran« is infinite}

where X is infinite,
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OBLx = {a € Tx | @ is onto and (za)a™! is infinite for all z € X}
where X is infinite,
PX,Y)={a:A-Y|ACX},
T(X,Y)={a€ P(X,Y)| doma = X},
I(X,Y)={a € P(X,Y) | a is one-to-one},
M(X,Y)={a € T(X,Y) | a is one-to-one},
EX)Y)={aeT(X,Y)| rana =Y},
AM(X,Y) ={a € T(X,Y) | o is almost one-to-one},
AE(X,Y)={a e T(X,Y) | a is almost onto},
BL(X,Y)={a € T(X,Y) | @ is one-to-one and Y \ ranc is infinite}
where X and Y are infinite,
OBL(X,Y)={a € T(X,Y) | a is onto and (za)a™" is infinite for all z € X}
where X and Y are infinite.

It is clearly seen that for the case that only X or only Y is empty, (S(X,Y),0)
where § € S(Y, X) is not defined (as a semigroup) if S(X,Y) =T(X,Y),M(X,Y),
E(X,Y),AM(X,Y) or AE(X,Y). If X =Y = @&, then it is a trivial semigroup.
Thus when these five semigroups are considered, we may assume that both X and

Y are nonempty.

2.1 The Semigroups (P(X,Y),0),(T(X,Y),0) and (I(X,Y),0)

In the section, for the notation (S(X,Y),6), unless otherwise metioned, we mean that
@ #£8(X,Y)C P(X,Y),0 € P(Y,X) and aff € S(X,Y) for all a,8 € S(X,Y).
We first give three lemmas which are used in this section. These also give us some

general properties of generalized transformation semigroups.
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Lemma 2.1.1. In a semigroup (S(X,Y),0), if a € S(X,Y) is such that ran o N

dom@ =@ or doma N ranf = &, then (a), = {0,a}.

Proof. Let @ € S(X,Y) and assume that rana N dom § = & or doma Nranf = 2.
Then af = 0 in Px or o =0 in Py. But (o), = (S(X,Y)0anN abS(X,Y)) U {a}
by Theorem 1.2, so we have (o), = {0} U {a} = {0,a} in (S(X,Y),0). 0O

Lemma 2.1.2. In a semigroup (S(X,Y),0), if a € S(X,Y) is such that ranko =1,

then in (S(X,Y),0), (o) ={0,e} if 0 S(X,Y) and (o), = {a} if 0 ¢ S(X,Y).

Proof. Assume that o € S(X,Y) and rank @ = 1. Let B be a nonzero element
of (a)q. From Theorem 1.2, § = a or f = 40a = abX for some v, € S(X,Y).
Assume that the second case holds. Then ran f = ran (ya) C ran a. From the
fact that 8 # 0, rank @ = 1 and ran 8 C ran @, we have ran § = ran a. Since
0 # B = ab], it follows that ran o N dom 6\ # &. But rank @ = 1, so ran a C
dom 6X. Consequently, ran @ = rana 1 dom 6, and hence dom a = (ran a)a™! =
(rana N dom §\)a~! = dom (af)) = dom B. Now we have dom o = dom 3, rana =
ran § and rank o = 1. This implies that 8 = a.

Therefore the lemma is proved. O

Lemma 2.1.3. Let (S(X,Y),0) be a semigroup such that S(X,Y) covers X and
Y. If a € S(X,Y) is such that ran o N dom 0 # &, dom o N ran 6 # & and (o),

is a minimal quasi-ideal of (S(X,Y),0), then ranka = 1.

- Proof. Let all the assumptions of the lemma be given. We shall show that rank o = 1
by the help of Lemma 2.1.2. Since ran &« N dom § # & and dom o N ran § # &,
there are elements £ € doma N ranf and y € rana N dom . Then 3’6 = r and

z'a = y for some y' € dom # and z' € dom a. This implies that z' € dom «f and
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y' € dom fa. Since S(X,Y) covers X and Y, there exists a subset A of X such
that 2’af € A and Ay € S(X,Y). Consequently, ran (afA,) = {y'}. Since y' €
dom fa, it follows that ran (afA,0c) = {y'6a} = {za}, so rank (afAyf0) = 1.
Thus afAy0a # 0 and abfA,ba € S(X,Y)0aNafS(X,Y) C (a), in (S(X,Y),0)
by Theorem 1.2. But (a), is a minimal quasi-ideal of (S(X,Y),8), so (afA,0a), =
(a)q. Because rank (cf#A,00) = 1, by Lemma 2.1.2, we have o = afA, 6o, and

hence ranka =1. O

Now, we characterize minimal quasi-ideals of the semigroup (S(X,Y), 6) where
S(X,Y) is P(X,Y), T(X,Y) or I(X,Y) and 6 € S(Y, X). Recall that all P(X,Y),
T(X,Y) and I(X,Y) cover X and Y.

Theorem 2.1.4. Let S(X,Y) be P(X,Y) or I(X,Y) and 8 € S(Y,X). Then for
a € S(X,Y) N\ {0}, (a); is a minimal quasi-ideal of (S(X,Y),0) if and only if one
of the following statements holds.
(1) rana N domb = 2.
(18) doma Nranf=o.
(133) ranka =1.

If this is the case, (a); = {0,a}. If afo =0, then (o), is a zero subsemigroup

of (S(X,Y),0), and if aba # 0, then (a), is a subgroup with zero of (S(X,Y),6).

Proof. To show sufficiency, first assume that (i) or (ii) holds. Then by Lemma 2.1.1,
(@) = {0,a} in (S(X,Y),6), so (&), is a minimal quasi-ideal of (S(X,Y),0). If
. rank @ = 1, by Lemma 2.1.2, (a), = {0,a} in (S(X,Y),6), so it is a minimal
quasi-ideal of (S(X,Y),0). Clearly, if afa = 0, then (a), is a zero subsemigroup of
(S(X,Y),0), and (), is a subgroup with zero of (S(X,Y),8) if afa #0.
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To show necessity, assume that (a), is a minimal quasi-ideal of (S(X,Y’),6) and
suppose that (i) and (ii) are false. Then rana N dom § # @ and doma Nranf # &.
But S(X,Y) covers X and Y, so by Lemma 2.1.3, we deduce that rank o = 1. Hence
(iii) holds.

Therefore the theorem is proved. O

Remark 2.1.5. In Theorem 2.1.4, if (i) or (ii) holds, then afa = 0, so (a), is a zero
subsemigroup of (S(X,Y),8). One might expect that if (iii) holds, then (a), must
be a subgroup with zero of (S(X,Y),8). In fact, for this case, there are X,Y,6 and
a such that (a), is a zero subsemigroup of (S(X,Y),#), and also there are X,Y,0
and a such that (a), is a subgroup with zero of (S(X,Y),6).

If rank @ = 1 and (i) or (ii) holds (for an example, § = 0), then afa =0, so (a),
is a zero subsemigroup of (S(X,Y),6).

X =Y, |X|=]Y]=1and a =06 # 0 in I(X,Y)(= I(Y, X)), then (o), =
{0,a} and aba = «a since |I(X,Y)| = 2, and hence (a), is a subgroup with zero in
(I(X,Y),6).

It is natural to ask that in Theorem 2.1.4 if (1) and (ii) do not hold and \(iii) holds,
is (o), always a subgroup with zero of (S(X,Y),0)? The answer is “no”. It can be
shown by the following example. Let X =Y = {a,b}. Define # and « by 6 = 1,
the identity map on X, dom o = {a} and ran @ = {b}. Then rank @ = 1. Since
dom 6 = ran @ = X, (i) and (ii) do not hold. Because ran af = {b}, ran ad N
dom a = @, so afa = 0. We therefore deduce from Theorem 2.1.4 that (a), is a

- zero subsemigroup of (I(X,Y),0) and of (P(X,Y),0).

Theorem 2.1.6. Assume that X # & and Y # & and let 6 € T(Y,X). Then for

a€T(X,Y), (a), is a minimal quasi-ideal of (T(X,Y),0) if and only if ranka = 1.
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If this is the case, (a), = {a}.

Proof. Since dom § =Y D ran f # & and dom 8 = X D ran 0 # & for every
B € T(X,Y), we have from Lemma 2.1.3 that if (), is a minimal quasi-ideal of
(T'(X,Y),0), then rank o = 1.

For the converse, assume that rank @ = 1. Then (a), = {a} by Lemma 2.1.2, so

(@), is a minimal quasi-ideal of (T'(X,Y),0). O

2.2 The Semigroups (M(X,Y),0), (E(X,Y),0), (AM(X,Y),6)

and (AE(X,Y),0)

In this section, we characterize minimal quasi-ideals of the following semigroups:
(M(X,Y),0) with 6 € M(Y, X), (E(X,Y),0) with 8 € E(Y,X), (AM(X,Y),0)
with 6 € AM(Y,X) and (AE(X,Y),6) with 6§ € AE(Y,X) when these sets are

nonempty. For each characterization, some lemmas are required.

Lemma 2.2.1. The following statements hold.

(7)) M(X,Y)#@ and M(Y,X) # @ if and only if | X|=|Y].

(i) E(X,Y)# @ and E(Y,X) # @ if and only if | X| = |Y].

(#43) If @ is a bijection of X onto'Y and 6§ € M(Y,X), then (M(X,Y),0) =
(Mx, ) by a v ap™.

(i) If ¢ is a bijection of X onto Y and 0 € E(Y, X), then (E(X,Y),0) =

(Ex,90) by o ap™.

Proof. (i) Assume that M(X,Y) # & and M(Y,X) # @. Let @ € M(X,Y) and
- BeM(Y,X). Since : X - Y and 8:Y — X are one-to-one, we have

| X| =|Xal < Y] =1YB| < |X],

and so |X|=1Y].
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Conversely, if | X| = |Y|, then there is a bijection A from X onto Y, and therefore
A€ M(X,Y) and A7 e M(Y, X).
(ii) Assume that « € E(X,Y) and S € E(Y,X). Since ¢: X - Y and f:Y —

X are onto, it follows that

1X| 2 1Xo| = Y] > Y] = |X],

and thus | X| = [|Y].

For the converse, if |X| = |Y|, then X in the proof of (i) is an element of E(X,Y)
and A7! is an element of E(Y,X).

(iii) Define p: M(X,Y) —+ Mx by

ap=ap *foralla e M(X,Y).

Since ¢! : Y — X is a bijection, we deduce that © is one-to-one. If & € My, then
ap € M(X,Y) and (ap)p = (ap)p~* = a. We have that ¥ is a homomorphism

from (M(X,Y),0) into (Mx, ¢f) since for a,f € M(X,Y),

(a8B)p = (aB)p™" = (o™ )pb(Be™") = (c)pd(5P).

(iv) can be proved similarly to the proof given for (iii). a

Lemma 2.2.2. Assume that X # @ and Y # @. The following statements hold.

(?) AM(X,Y)# @ and AM(Y,X) # @ if and only if either both X and Y are
finite or both X and Y are infinite and | X| = |Y|.

() AE(X,Y) # @ and AE(Y, X) # @ if and only if either both X and Y are finite
or both X and Y are infinite and | X| = |Y].

(it1) If ¢ is a bijection of X onto Y and § € AM(Y, X), then (AM(X,Y),6) =
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(AMx,p8) by a > ap™t.
(iv) If ¢ is a bijection of X onto Y and 6 € AE(Y, X), then (AE(X,Y),0) =

(AEx, p8) by a > ap™!.

Proof. First, let a € AM(X,Y) and B8 € AM(Y, X). Then

Ale) ={z € X ||[(za)a'| > 1}, A(B) ={y € Y | [(yB)B~'| > 1},

both A(a) and A(B) are finite, a|x a(a) : X NA(a) — Y is one-to-one and By as) :
Y N\ A(B) = X is one-to-one. Thus [X \ A(a)] < |Y]| and [Y N A(B)| < |X|. F X
is finite, then Y is finite since A() is finite and |Y" \ A(B)| < |X|. Similarly, if Y
is finite, then X is finite. Hence X is finite if and only if Y is finite. Consequently,

X is infinite if and only if Y is infinite. Also, if X and Y are infinite, then

1 X| = |X \ A(a)] since |A(a)| < oo
<Y
=Y N A(B)] since |A(B)| < o0
< |X|

which implies that | X| = |Y|.

Next, let v € AE(X,Y) and A € AE(Y,X). Then |Y\ ranv| < co and |[X\
ran A| < oo. If X is finite, then ran v is a finite subset of Y, so Y is finite since |Y'\
ran 7| < oo. Similarly, X is finite if Y is finite. Consequently, X is infinite if and
only if Y is infinite. Moreover, if both X and Y are infinite, then

| X] =] ran AU (X \ ran))|
= | ranA| + |X \ ran)|
<Y+ |X N\ ran )|

=|Y| since [ X\ ran A| < oo
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= | ranyU (Y \ ranv)|

= | ranvy| 4+ |Y \ ranv|

< | X[+ 1Y \ ranv|

= |X]| since |Y'\ ranvy| < oo,
and thus | X| = [|Y].

If both X and Y are finite, then AM(X,Y) = T(X,Y) = AE(X,Y) and
AM(Y,X)=T(Y,X) = AE(Y,X). If | X| = |Y|, then there is a bijection a from X
onto Y,s0 a € AM(X,Y)NAE(X,Y) and ! € AM(Y,X)N AE(Y, X).

Hence (i) and (ii) of the lemma are completely proved.

(iif) and (iv). The proof can be given similarly to that given for (iii) of Lemma

2.2.1. O

Lemma 2.2.3. The following statements hold.

(2) For 6§ € Mx, (Mx,6) has a minimal quasi-ideal if and only if | X| < co. If
| X| < oo, then (Mx,0) = (Gx,0), so Mx is itself a unique minimal quasi-ideal
of (Mx,0). |

(i) For 6 € Ex, (Ex,60) has a minimal quasi-ideal if and only if | X| < co. If
| X| < o0, then (Ex,0) = (Gx,0), so Ex is itself a unique minimal quasi-ideal

Of (Ex,a).

Proof. If | X|'< oo, then Mx = Gx = Ex, so My [Ex] is itself a unique minimal
quasi-ideal of (Mx,6) [(Ex,6)] where § € Mx [Ex] since (GX,O) is a group.
Next, assume that X is infinite. Let a € X. Then |X \ {a}| = |X|. Then there

is a bijection B: X — X \ {a}. Let v: X — X be defined by

ry=zf ! forallz € X \ {a} and ay = a.
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Then ay = a = bf~! = by for some b € X \ {a}, so ran § # X and 7 is not
one-to-one. Moreover, 8 € Mx and v € Ex.

To show that (Mx,d) has no minimal quasi-ideal where 8 € Mx, let o € Mx
be arbitrary. Then afffa € (a), in (Mx,0), so (aff0c); C (a),. Suppose that
(abfba), = (). By Theorem 1.2, a = affB0a or a = Mabffa for some A € Mx.
Hence fa = 0affB0a or o = OM\0abffa. Since Ba is one-to-one, 1x = Babf or
1x = 0A0afp which implies that ran § = X, a contradiction. Hence (a086c), C (o),
in (Mx,0).

Finally, to show that (Ex,0) has no minimal quasi-ideal where # € Ex, let
a € Ex be arbitrary. Then (afyfa), C (a), in (Ex,0). If (afyba); = (o), in
(Ex,8), then by Theorem 1.2, & = afyfc or a = afyfaby for some y € Ex. Thus
of = afyfal or af = afy8alful. Since ran afl = X, 1x = v8af or 1x = vabub.
This implies that v is one-to-one, a contradiction.

Hence the proof of the lemma is complete. O

Lemma 2.2.4. Let X be infinite.
(?) For any 6 € AMx, (AMx, ) has no minimal quasi-ideal.

(i1) For any 6 € AEx, (AEx,0) has no minimal quasi-ideal.

Proof. (i) Let a € AMx be arbitrary. Then [A(af)| < co. Let a,b € X \ A(af)
be distinct. Then aaf # bof which implies that ao # ba. Let ¢ € X \ {aad, bab}.
Since [X \ {aab, bab}| = | X \{c}|, there is a bijection ¢ : X\ {aaf,babf} — X \{c}.
Define f: X — X by

zp ifz € X \ {aah,bab},
zf =

c if z =aaf or z = bab.
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Then A(B) = {aab,bab}, so f € AMx. Since aa # ba, aafffa = cfa = babffba
and aaffB0aby = cfaby = bafB60aby for all v € AMy, it follows that o # aff0a
and o # afffaby for all v € AMx. Thus a ¢ (aff6a), by Theorem 1.2. Hence
(aB860), G ().

(ii) Let @ € AEx. Then af € AEx, so ran af is infinite since X\ ran of is
finite. Let a,b € X be such that aafl # bafl. Then aa # ba. Since X is infinite,
| X \ {aab,bab}| = |X|, so there is a bijection ¢ : X \ {aaf, babd} onto X. Define
f:X — X by

zp  ifz € X \ {aal, bab},
zf =

aal if £ = aalf or z = bab.

Then 8 € Ex C AEx and aaff = baéﬂ, so aafffa = babfBfa and aabffbfaby =
babfB0aby for all v € AEx, By Theorem 1.2, a ¢ (a656c),. But (affba), C (a),,
s0 (a8890), € (@),

Hence the proof is complete. O

We show that the semigroup (S(X,Y),6) where S(X,Y) is any of M(X,Y),
E(X,Y), AM(X,Y) or AE(X,Y) and 6 € S(Y,X) has no minimal quasi-ideal

except for the case that X and Y are finite.

Theorem 2.2.5. The semigroup (M(X,Y),0), where 8 € M(Y, X), has a minimal
quasi-ideal if and only if | X| = Y| < o0.

If | X| =|Y| < oo, then (M(X,Y),6) is a group, so M(X,Y) is itself a unique
minimal quasi-ideal of (M(X,Y),0).

Proof. By Lemma 2.2.1(i), |X| = |Y]|, and from Lemma 2.2.1(iii), (M(X,Y),6) &
(Mx,@0) where ¢ : X — Y is a bijection. By Lemma 2.2.3(i), (Mx,¢f) has a

minimal quasi-ideal if and only if |X| < co. If |X| < 0o, then (Mx, p8) = (Gx, ©0)
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which is a group, so Mx is a unique quasi-ideal of (Mx,¢f). Hence the theorem is

proved. (|

Theorem 2.2.6. The semigroup (E(X,Y),6), where 8 € E(Y,X), has a minimal
quasi-ideal if and only if | X| = Y| < oco.

If | X| = |Y]| < oo, then (E(X,Y),0) is a group, so E(X,Y) is itself a unique
minimal quasi-ideal of (E(X,Y),6). '

Proof. 1t follows from Lemma 2.2.1(ii) and (iv) that |X| = |Y| and (E(X,Y),6)
=~ (Ex,¢0) where ¢ : X — Y is a bijection. By Lemma 2.2.3(ii), (Ex,¢f) has a
minimal quasi-ideal if and only if |X| < oco. If |X| < oo, then (Ex, ¢8) = (Gx, ¢9)
which is a group, so Ex is a unique quasi-ideal of (Ex, ¢f). Therefore the theorem

is proved, as required. O

Theorem 2.2.7. For § € AM(Y,X), the semigroup (AM(X,Y),0) has a minimal
quasi-ideal if and only if X and Y are finite.
If X and Y are finite and nonempty, then for a € AM(X,Y), (a), is'a minimal

quasi-ideal of (AM(X,Y),6) if and only if ranka = 1. If this is the case, (), = {a}.

Proof. First assume that X and Y are finite and nonempty. Then AM(X,Y) =
T(X,Y) and AM(Y,X) = T(Y,X). By Theorem 2.1.6, for every o € AM(X,Y),
(@), is a minimal quasi-ideal of (AM(X,Y"),0) if and only if rank & =1, and for this
case, (o), = {a}.

To prove the converse, assume that X or Y is not finite. By Lemma 2.2.2(i), X
and Y are infinite and | X| = |Y|. Let ¢ : X = Y be a bijection. By Lemma 2.2.2(iii),
(AM(X,Y),6) = (AMx, p6). We have from Lemma 2.2.4(i) that (AMx, ¢f) has no

minimal quasi-ideal. Hence (AM(X,Y),6) has no minimal quasi-ideal. O
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Theorem 2.2.8. For § € AE(Y,X), the semigroup (AE(X,Y),0) has a minimal
quasi-ideal if and only if X and Y are finite.
If X and Y are finite and nonempty, then for a € AE(X,Y), (a)q is a minimal

quasi-ideal of (AE(X,Y),0) if and only if ranka = 1. If this is the case, (), = {a}.

Proof. If X and Y are finite and nonempty, then AE(X,Y) =T(X,Y) and AE(Y, X) =
T(Y,X), so by Theorem 2.1.6, for « € AE(X,Y), (a), is a minimal quasi-ideal of
(AE(X,Y),0) if and only if rank @ = 1 and for this case, (o), = {a}.

Conversely, assume that X or Y is not finite. By Lemma 2.2.2(ii), X and Y
are infinite and |X| = |Y|. Let ¢ : X = Y be a bijection. Then (AE(X,Y),6) =
(AMx, ) by Lemma 2.2.2(iv). From Lemma 2.2.4(ii), (AEx, ¢6) has no minimal

quasi-ideal. We therefore deduce that (AE(X,Y),0) has no minimal quasi-ideal. O

2.3 The Semigroups (BL(X,Y),0) and (OBL(X,Y),0)

Let X and Y be infinite sets throughout this section and recall the following sets.
BLx = {a € Tx | & is one-to-one and X \ rana is infinite},
OBLx = {a € Tx | a is onto and (za)a™" is inﬁhite forall z € X},
BL(X,Y)={a € T(X,Y) | a is one-to-one and ¥ \ ran « is infinite},
OBL(X,Y) = {aw€ T(X,Y) | aisonto and (za)a™" is infinite for all z € X}.
We have shown that if BL(X,Y) # @ and M(Y,X) # @, then (BL(X,Y),0)

where § € M(Y,X) is indeed a semigroup and so is (OBL(X,Y),6) where 6 €
E(Y, X). We shall obtain these semigroups if and only if |X| = |Y].

Lemma 2.3.1. The following statements hold.
(?) BL(X,Y) # @ and M(Y,X) # @ if and only if | X|=|Y].
(#) OBL(X,Y) # @ and E(Y,X) # @ if and only if | X| = |Y]|.
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Proof. Since BL(X,Y) C M(X,Y) and OBL(X,Y) C E(X,Y), it follows from
Lemma 2.2.1 that either BL(X,Y) # @ and M(Y, X) # @ or OBL(X,Y) # @ and
E(Y,X) # @ implies that | X| = |Y].

Assume that | X| = |Y|. By Lemma 2.2.1, M(Y, X) # @ and E(Y, X) # @. Since
Y is infinite, there are subsets Y; and Y, of Y such that Y =Y UY,, YINnY, =2
and |Y;| = |Y2| = |Y|. Then |X| = |Yj| = |Y2|. Let a: X — Y] be a bijection. Then
« is one-to-one and Y\ rana = ¥ \Y; = Y; which is infinite. Hence @ € BL(X,Y).
Next, we shall show that OBL(X,Y) # @. Since X is infinite, |X x X| = [ X| = |Y].

Then there is a bijection ¢ : X — X x X. Consequently,

X = U ({z} x X)e~" which is a disjoint union, (1)
zeX
({zr} x X)p~! is an infinite subset of X for every r € X. (2)

Let ¢ be a bijection of X onto Y and define 8: X —» Y by
(({z} x X)p1)B = xtp forevery z € X. (3)

From (1), B is well-defined. Sincerant =Y, ran f =Y by (3). Moreover, from (1),

for each z € X,z € ({a} x X)p=! for some a € X, so from (3),
@B)B~! = (({a} x X)¢™)B)B™" = ({a} x X)p™!
which implies by (2) that (z8)8~! is infinite. Hence 8 € OBL(X,Y).

Therefore the lemma is proved. O

Lemma 2.3.2. If 0:Y — X is a bijection, then (BL(X,Y),0) & BLx through the

map o af.
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Proof. Let o € BL(X,Y). Then a is one-to-one and Y~ ran ¢ is infinite. Since

f:Y — X is a bijection, af : X — X is one-to-one and

XN ranaf =Y\ (rana)d = (Y \ rana)f.

Hence | X\ ran af| = |Y'\ ran a| since € is one-to-one. This shows that a — af
is a map from BL(X,Y) into BLx. This map is one-to-one since 6 is one-to-one.
If o € BLx, then we can show similarly as above that af~' € BL(X,Y). Also,
(@718 = a for every o € BLx. We therefore deduce that the map a — af is a
bijection of BL(X,Y) onto BLx . This map is a homomorphism from (BL(X,Y), 6)
onto BLx since for o, 8 € BL(X,Y), (af5)8 = (a8)(50). O

Lemma 2.3.3. If 0 : Y — X is a bijection, then (OBL(X,Y),0) = OBLx through

the map a— af.

Proof. If « € OBL(X,Y), then ran af = X sincerana =Y and ran# = X, and for
z € X,(zaf)(af)! = (zab)0'a~! = (za)o~! which is infinite. Hence a — of is
a map from OBL(X,Y) into OBLx. This map is one-to-one since 6 is oene-to-one.
If @ € OBLy, then we have similarly that af~! € OBL(X,Y). Also, (a071)8 = «
for every a € OBLyx. If a,8 € BL(X,;Y),(a08)8 = (a8)(30). Hence o — of is an
isomorphism of (OBL(X,Y),6) onto OBLx. O

Lemma 2.3.4. The semigroup BLyx has no minimal quasi-ideal.

Proof. Let a € BLx. Then « is one-to-one and X\ ran ¢ is infinite. Since o? €
(@)q, (@?)q C (a),. We claim that (a?), C (a),- Suppose on the contrary that
(@?)y = (a),. By Theorem 1.2, a = o? or a = Ba? for some 8 € BLx. But a is

one-to-one, so we have 1x = a or 1x = fa which implies that ran « = X. This
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is contrary to the fact that X\ ran ¢« is infinite. Hence we have the claim. Since

a € BLyx is arbitrary, we deduce that BLx has no minimal quasi-ideal. O

Lemma 2.3.5. The semigroup OBLx has no minimal quasi-ideal.

Proof. Let a € OBLx be arbitrary. Then ran o = X and |(za)a™!| > 1 for every
z € X and (a?); C (@),. Suppose that (a?), = (a),. By Theorem 1.2, a = ao?
or o = &?f for some B € OBLyx. Since « is onto, 1x = o or 1x = af. Thus
« is one-to-one. This is contrary to that |(za)a~!| > 1 for every £ € X. Hence

(@®)q & (a),. We therefore have that OBLx has no minimal quasi-ideal. O

The next two theorems show that the semigroup (BL(X,Y),6) where § € M(Y, X)

and the semigroup (OBL(X,Y),6) where @ € E(Y, X) have no minimal quasi-ideal.

Theorem 2.3.6. For 8 € M(Y,X), the semigroup (BL(X,Y),6) has no minimal

quasi-ideal.

Proof. Let 6 € M(Y,X). Then @ : Y — X is one-to-one.

Case 1: @ isonto. Then 6§ : Y — X is a bijection. By Lemma 2.3.2, (BL(X,Y),0) &
BLx. But BLx has no minimal quasi-ideal by Lemma 2.3.4;, so (BL(X,Y),6) has

no minimal quasi-ideal.

Case 2: 6 is not onto. Let a € BL(X,Y) be arbitrary. Then afa € (a), in

(BL(X,Y),0), and so (afa)q C (a)q. Suppose that (afa); = (a)q. By Theorem

1.2, a = afa or a = Blaba for some B € BL(X,Y). Since a is one-to-one,

1x = af or 1x = B6af which implies that 8 is onto, a contradiction. This shows

that (afa), ¢ (a),. We then deduce that (BL(X,Y),8) has no minimal quasi-ideal.

Hence the theorem is proved, as desired. O
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Theorem 2.3.7. For § € E(Y, X), the semigroup (OBL(X,Y),8) has no minimal

quasi-ideal.

Proof. Let § € E(Y,X). Then §:Y — X is onto.

Case 1: 6 is one-to-one. Then 6 : ¥ — X is a bijection. By Lemma 2.3.3,
(OBL(X,Y),6) =2 OBLx. But from Lemma 2.3.5, OBLx has no minimal quasi-
ideal, so (OBL(X,Y),6) has no minimal quasi-ideal.

Case 2: 6 is not one-to-one. Let oo € OBL(X,Y) be arbitrary. Then rana =Y

! is infinite for every ¢ € X . Since afa € (a),, (afa), C (). Suppose

and (za)a~
that (afa), = (). Then by Theorem 1.2, a = afa or a = (afa)ff for some
f € OBL(X,Y). Since a is onto, ly = fa or ly = #aff which implies that 6 is
one-to-one, a contradiction. Thus (afo), C (a)q)' and hence (a), is not a minimal

quasi-ideal of (OBL(X,Y),0). Therefore (OBL(X,Y),0) has no minimal quasi-

ideal.

Hence the theorem is proved, as required. O



CHAPTER II1
MINIMAL QUASI-IDEALS OF GENERALIZED LINEAR

TRANSFORMATION SEMIGROUPS

The purpose of this chapter is to characterize a linear transformation a so that (a),
is a minimal quasi-ideal of our target generalized linear transformation semigroups.
Let us recall the notations which are used throughout this chapter. Let V and

W be vector spaces over a field F', m,n € N,
Lp(V) = the set of all linear transformations from V into V,
Gr(V) = {a € Lp(V) | @ is an isomorphism },
Mp(V) = {a € Lp(V) | a is one-to-one },
Epr(V)={a € Lp(V)| Ima =V},
AMp(V) = {a € Lr(V) | dimpKer « is finite },
AErp(V)={a € Lp(V) | dimp(V/Ima) is finite },
BLp(V) = {a € Lp(V) | o is one-to-one and dimg(V/Ima) is infinite }
where dimgV is infinite ,
OBLp(V) = {a € Lp(V) | a is onto and dimgKer ¢ is infinite }
where dimgV is infinite,
Lp(V,W) = the set of all linear transformations from V' into W,
Lr(V,W,k) = {a € Lp(V,W) | ranka < k}

where k is a cardinal number greater than 0,
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(Im @)y = Im A € Im a = Fu. Consequently, ufy = cu for some ¢ € F. By
Lemma 3.1.1(ii), afu = ca. Hence A = ca € Fa. This proves that (a), = Fa, as

required. O

Lemma 3.1.4. Let o € Lp(V,W,k) and 6 € Lp(W,V) be such that Ina ¢ Ker6
and Im0 ¢ Kera. If ranka =1, then (a), is a minimal quasi-ideal of the semigroup

(Lr(V, W, k),0).

Proof. By Lemma 3.1.3, (a)q = Fa. Let € (a), ~ {0}. Then § = aa for some
a € F\ {0}. Consequently, Im 8 = Im e and Ker 8 = Ker a. By applying Lemma
3.1.3 to B, we get (8), = F. But F = Faa = Fa, so (8), = (a),. Hence (a), is

a minimal quasi-ideal of (Lp(V, W, k), 6). O

Lemma 3.1.5. Let a € Lp(V,W, k) and 0 € Lp(W,V) be such that Ima € Ker6
and Im0 ¢ Kera. If (&), is a minimal quasi-ideal of the semigroup (Lr(V, W, k),9),

then ranka = 1.

Proof. Let u € Im a~ Ker 8 and ' € Im 0\ Ker @. Then 0 # uf € .V,v'a # 0
and 20 = u' for some z € W \ {0}. Let B be a basis of V containing uf and let

B € Lp(V,W) be defined by

z ifv=ub,

vl =

0 ifve B\ {uf}.

Then we have § € Lp(V,W, k) and
0 # va = 20 = ubfba € (Im a)8B0a = Im (affba).

Therefore aff0a # 0, so rank (aff6a) = 1 since rank (aff6c) < rank 8 = 1. Also,
abfba € Lp(V,W,k)0a N abLp(V,W,k) C (a), by Theorem 1.2. Since (a), is a
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minimal quasi-ideal of (Lg(V, W, k),8), we have (efB0c), = (). By Lemma 3.1.2,
rank o = rank (af86a) = 1. O

Lemma 3.1.6. If o € Lp(V,W,k) \ {0} and 6 € Lp(W,V) are such that Ima -
Ker® or Im@ C Kera, then (o), = {0, @} in the semigroup (Lrp(V,W,k),6). Hence

(a)q is a minimal quasi-ideal of (Lp(V, W, k),0).

Proof. We have that f =0 if Ima C Ker 8 and 8o = 0 if Im 8 C Ker «.. Therefore,
by Theorem 1.2, we have (o), = {0,a} and hence (&), is a minimal quasi-ideal of

(Lr(V,W,k),6). a
From Lemma 3.1.6, we directly obtain the following result.

Corollary 3.1.7. Every nonzero principal quasi-ideal of the semigroup (Lg(V, W, k), 0)

s minimal.

We note here that if S is a zero semigroup with zero 0, then for every z € S\ {0},
(z)q = {0,z} by Theorem 1.2, so it is minimal. We can see that (Lr(V,W,k),0) is a
zero semigroup. Hence Corollary 3.1.7 can be considered from this fact instead of a

consequence of Lemma 3.1.6.

One of our main results of this section is the following .

Theorem 3.1.8. For a € Lp(V,W,k) \ {0} and 6 € Lr(W,V), (a), is a minimal

quasi-ideal of the semigroup (Lp(V,W,k),0) if and only if one of the following three

© conditions holds:

(1) ranka=1,Ima ¢ Ker® and Im8 ¢ Kera.
(it) Ima C Ker@.

(#11) Im 6 C Kera.
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If (i) holds, then (@), = Fa and if (i) or (iit) holds, then (a)q = {0,0}.

Proof. Assume that (o), is a minimal quasi-ideal of (Lg(V,W, k),8). To prove that
one of (i), (ii) or (iii) holds, suppose that both (ii) and (iii) are fault. Then Im o ¢
Ker 8 and Im § ¢ Ker a. By Lemma 3.1.5, we have that rank a = 1. Hence (i) holds.
The converse is obtained directly from Lemma 3.1.4 and Lemma 3.1.6.
The remaining conclusion of the theorem follows directly from Lemma 3.1 3 and

Lemma 3.1.6. d

The proof can be given similarly to that of Theorem 3.1.8 for the semigroup

(Lr(V,W, k),6) where 8 € Lp(W, V) to obtain the following.

Theorem 3.1.9. For a € Lp(V,W, k)~ {0} and 6 € Lp(W,V), (@), is a minimal
quasi-ideal of the semigroup (Lp(V, W, k),0) if and only if one of the following three
conditions holds:

(¢) ranka =1, Ima ¢ Ker@ and Im8 ¢ Kera.

(#) Ima C Kerd.

(741) Im 0 C Kera.

If (?) is true, then (@), = Fa, and (o), = {0, a} 4f (i7) or (iii) holds.

If k is a cardinal number greater than dimpW, then Lp(V,W, k) = Lp(V,W).

Hence from Theorem 3.1.8 we have

Corollary 3.1.10. For a € Lg(V,W) \ {0} and 8 € Lp(W,V), (&), is a minimal
quasi-ideal of the semigroup (Lp(V,W),0) if and only if one of the following condi-
tions holds:

(@) ranka=1, Ima ¢ Ker8 and Im0 ¢ Kera.
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(1) Ima C Ker#.
(7i7) Im 6 C Kera.

If (i) holds, then (0), = Fo and if (i) or (i1i) holds, then (o), = {0,0}.

The following corollary gives interesting characterizations of the standard linear

transformation semigroup Lp(V) (under composition).

Corollary 3.1.11. For a € Lp(V) \ {0}, the following statements are equivalent.
(¢) (@) is a minimal quasi-ideal of Lp(V).
(1) ranka =1.

(113) (a)q = Fo.

Proof. From Corollary 3.1.10 and Lemma 3.1.3, we have (i)« (ii) and (ii)= (iii)
follows from Lemma 3.1.3. To prove (iii)= (i), assume that (o), = Fa. Let § €

(a)q \ {0}. Then B = ac for some a € F' \ {0}. Consequently, we have

(B)q = Le(V)BN BLE(V) from Theorem 1.2
= Lr(V)aanNaaLp(V)
= (aLr(V))aNa(aLr(V))
= Lp(V)aA aLp(V) since @ # 0
= (0)q-

This proves that (8), = (a), for every nonzero 8 € (a),. Hence (), is a minimal

quasi-ideal of Lg(V). O

Finally, we show by Theorem 3.1.8 the existence of a minimal quasi-ideal of every

semigroup (Lp(V,W,k),8).
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Corollary 3.1.12. A minimal quasi-ideal always ezists in every semigroup (Lgp(V, W,

k),8) where § € Lp(W,V).

Proof. If Lp(V,W,k) = {0}, then Lp(V,W,k) is itself the minimal quasi-ideal of
(Lp(V,W,k),6) (see Chapter I, page 3). Assume that (Lp(V,W,k) # {0}. Then
V #{0} W # {0} and k > 1. If § = 0, then by Corollary 3.1.7, for every nonzero
a € Lp(V,W,k), (a), is a minimal quasi-ideal of (Lg(V, W, k), 0).

Next, assume that 6 # 0. Then Ker § # W and Im 0 # {0}. Let v € Im 6 \ {0}
and w € W~ Ker#@. Let B be a basis of V' containing v and define a € Lp(V, W, k)
by

¥ Tvs v,
va =

0 ifve B~ {u}
Then ranka = 1,w € Im a~ Ker § and v € Im 6~ Ker a. It therefore follows from

Theorem 3.1.8 that (@), is a minimal quasi-ideal of (Lr(V, W, k),6). O

Remark 3.1.13. The aim of this remark is to clarify the nature of the product oh
a minimal quasi-ideal of the semigroup (Lg(V,W,k),6). Let o € Lg(V,W, k) ~ {0}
be such that (a), is a minimal quasi-ideal of the semigroup (Lg(V,W,k),0). From
Theorem 1.6, (a), must be either a zero subsemigroup or a subgroup with zero of
(LF(V,W,k),6). If Ima C Ker § or Im 6 C Ker a, then afa = 0, by Lemma 3.1.6,
(@) = {0, a} which is a minimal quasi-ideal of (Lr(V,W,k),6). For this case, (a),
is a zero subsemigroup of (Lg(V,W,k),0).

Ifranka=1,Ima ¢ Kerd and Im6 ¢ Ker @, by Lemma 3.1.3, (@), = Fa and
it is a minimal quasi-ideal of (Lp(V,W,k),8) by Lemma 3.1.4. For this case, (a),
can be either a zero subsemigroup or a subgroup with zero of (Lp(V,W,k),0). If

afa = 0, then (a), is clearly a zero subsemigroup of (Lr(V, W, k),0). Next, assume
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that afa # 0. Then (a), \ {0} is a subgroup of (Lr(V, W, k),8) which is equivalent
to that (F \ {0})«a is a subgroup of (Lr(V,W,k),8). Since afa # 0, fa # 0. Since
rank a = 1, there is an element ©v € W such that Im o = Fu. Then ufa = cu for
some ¢ € F'. Thus we deduce from Lemma 3.1.1(ii) that afa = ca. Since afa # 0,
¢ # 0. Hence for all a,b € F \ {0},
(ac)0(ba) = ababa = abea € (F N {0})a,
(aa)f(c'a) = ac™*aba = ac”'ca = aq,
(aa)8(a (¢ )P a = aa (¢! aba = (c!)’ca = c"la
This shows that (F \ {0})« is indeed a subgroup of (Lr(V,W,k),6) where ¢ la is
its identity and for a € F \ {0}, a~!(c™!)%« is the inverse of aa. The following
examples show that each of the cases afa = 0 and afla # 0 can occur. Let V be
a vector space over F of dimension 4. Let {uj,us,us,uq} be a basis of V. Define
0,0q,09 € Lp(V) by
U160 = uy, ugf = ug, uzf = uz, usf =0,
U Q) = Uz = Uy, Uy = ugany = 0,
U0y = UgQlg = U3, U3Qly = Uqap = 0.
Then Ker 8 = (uy); Im 6 = (u;, up,us), Ker oy = (uy = uz, ug,uq), Im oy = (),

Ker ap = (u; — ug, us, us) and Im oy = (ug). Then rank oy =1 = rank ap, Imay ¢

Ker 0, Im 60 Ker oy, Im a; € Ker 6 and Im 6 ¢ Ker a,. Moreover,

wafa; = uy and {uy, ug, us, ug pagbos = {us, 0}0as ="{us, 0}a, = {0},
so afay # 0 and axfay = 0.

A nonzero ideal M of a semigroup S with zero 0 is called a 0-minimal ideal of

S if M contains no ideals of S other than {0} or itself. Since every ideal of S is
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a quasi-ideal, it follows that if a minimal quasi-ideal @ of S is an ideal, then Q is
a 0-minimal ideal of S. The last thorem of this section characterizes when every

minimal quasi-ideal of a nonzero semigroup (Lr(V, W, k),0) is a 0-minimal ideal.

Theorem 3.1.14. In a nonzero semigroup (Lp(V,W.k),0) where § € Lp(W,V),
every minimal quasi-ideal is a 0-minimal ideal if and only if § = 0 or dimpV =

dimpW =1.

Proof. Let 0 # a € Lr(V,W,k) be such that (a), is a minimal quasi-ideal of
(Lr(V,W,k),6). First, assume that § = 0. We have by Lemma 3.1.6 that (a), =
{0,a}. Since 8 = 0, (Lp(V,W,k),0) is a zero semigroup. But |(a),| = 2, so we
have that (o), is a 0-minimal ideal of (Lr(V,W,k),0). Next, assume that 8 # 0 and
dimpV = dimppW = 1. Then ao: V -+ W and 0 : W — V are isomorphisms. By
Lemma 3.1.3, (o), = Fa. Let u € V ~x {0}. Then 0 # ua € W. Since dimgV =
dimgW = 1, it follows that V = Fu and W = F(ua). If 8 € Lp(V,W, k), then
uBba,uabp € W = F(ua), so uffa = a(ua) = u(aa) and uaff = b(ua) = u(ba)
for some a,b € F. This implies that fa = aa € Fa and aff = ba € Fa since
V = Fu. Hence (a), is an ideal of (Lr(V,W,k),6). But since every ideaLi of a semi-
group is a quasi-ideal, we deduce that (a), is a 0-minimal ideal of (Lr(V,W,k),0).

For the converse, first assume that 6 # 0 and dimpV > 1. Then Ker § # W. Let
w € WX Ker 0. Thus 0 # wl € V. Let B be a basis of V containing wf and let
u € B\ {w8}. Define a € Lp(V,W, k) by

w ifv=wlorv=u,
va =

0 ifve B\ {w,u}.

Then ranka =1, w € Ima~ Kerf and w8 € Im 6\ Ker a, so by Lemma 3.1.3 and

Lemma 3.1.4, we have respectively that (a); = Fa and (o), is a minimal quasi-ideal
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of (Lp(V,W,k),8). Define § € Lp(V,W, k) by

w if v=u,
vf =
0 ifve B~ {u}.
Then uBfa = wha = w # 0, (wh)BAa = 0 and (wh)(ca) = cw # 0 for all ¢ €
F ~ {0}. Consequently, ffa ¢ Fa = (a),. Therefore (@), is not an ideal of
(Lr(V,W,k),0).

Finally, assume that ¢ # 0 and dimpW > 1. Let w € W~ Ker 6. Since
dimpW > 1, there exists an element w' € W such that w and w’ are linearly
independent over F'. Let B be a basis of V' containing wf. Define a € Lp(V, W, k)
by

w ifv=wb,
va =

0 ifv e B~ {wh}.
Then ranka =1, w € Ima~ Kerf and w8 € Im 0\ Ker a. Thus (a); = Fa and
(a)q is a minimal quasi-ideal of (Lp(V, W, k),6) by Lemma 3.1.3 and Lemma 3.1.4,

respectively. Define 8 € Lg(V,W, k) by

w  if v = w8,

vB =
0. ifve B~ {wd}.

Then (wh)aff = wlf = w' # cw = (wh)(ca) forevery c € F since w and w' are lin-
early independent. Hence a0 ¢ Fa and thus (), is not an ideal of (Lp(V, W, k), 9).

Hence the theorem is completely proved. O
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3.2 The Semigroups (Mp(V,W),0), (Er(V,W),8),

(AMF(Va W), 0) and (AEF(Va W), 0)

In this section, we give characterizations determining minimal quasi-ideals of the semi-
groups (Mp(V,W),0) where 8 € Mp(W,V), (Er(V,W),8) where § € Ep(W,V),
(AMp(V,W),0) where 6 € AMp(W,V) and (AER(V,W),8) where § € AER(W,V).

The following three lemmas are needed.

Lemma 3.2.1. The following statements hold.

(1) Mp(V,W) # @ and Mp(W,V) # @ if and only if dimpV = dimpW .

() Erp(V,W) # @ and Ep(W,V) # @ if and only if dimpV = dimgW .

(132) If ¢ is an isomorphism of V onto W and 6 € Mp(W,V), then (Mp(V,W),6) &
(Mp(V),¢0) by a— ap™.

(2v) If ¢ is an isomorphism of V onto W and 8 € Ep(W,V), then (Ep(V,W),0) =

(Br(V), 90) by o ap™.

Proof. (i) Let o € Mp(V,W) and B € Mpr(W,V). Since a and B are both one-to-
one linear transformations, we have V & Im « and W = Im 8 as vector spaces over

F. Also, Im « is a subspace of W and Im 3 is a subspace of V. These imply that

dimpV = dimplma € dimgpW = dimplm 8 < dimgV,

hence dim gV = dimgW.
Conversely, let dimpV = dimpW. Then V =2 W as vector spaces over F'. Let A
be an isomorphism of V onto W. Then X € Mp(V,W) and A~ € Mp(W,V).
(ii) Let a € Ep(V,W) and B € Ep(W,V). Then V/Kera = W and W/Ker g =
V. Hence

dimpV 2 dimp(V/Kera) = dimpW > dimp(W/Ker §) = dimgV,
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and thus dimgV = dimgW.

Conversely, let dimpV = dimpW . Then V = W as vector spaces over F'. Let A
be an isomorphism of V onto W. Then A € Ep(V,W) and A~! € Ep(W,V).

(iii) can be proved similarly to the proof of Lemma 2.2.1(iii).

(iv) can be proved similarly to the proof of Lemma 2.2.1(iv). O

Lemma 3.2.2. The following statements are ture.
(1) AMp(V,W) # @ and AMp(W,V) # @ if and only if either both dimpV and
dimpW are finite or both dimpV and dimpW are infinite and dimpV = dimgW .
(1) AER(V,W) # @ and AERr(W,V) # @ if and only if either both dimpV and
dimpW are finite or both dimrpV and dimpW are infinite and dimpV = dimpW .
(112) If p is an isomorphism of V onto W and 6 € AMp(W,V), then (AMgp(V,W),0)
= (AMp(V), ) through a— ap™.
(iv) If ¢ is an isomorphism of V onto W and 6 € AER(W,V), then (AEp(V,W),0)
> (AER(V), @) through o ap™?.
Proof. (i) Let o € AMp(V,W) and 8 € AMp(W,V). Then dimpKer ¢ < o0
and dimgpKer 8 < oo. First, assume that dimgV < co. Then dimgIm 8 < oo.
But dim W = dimpKer 8 4+ dimgIm 8, so dimrW < oco. Similarly, dimzW < oo
implies that dim pV < co. This proves that dim V' < oo if and only if dim W < o0.
Hence dim gV is infinite if and only if dim W is infinite. Moreover, if dimV and
dim W are infinite, then
dimgV = dimpKera + dimplm o
= dimpglm o since dimgpKera < oo
< dimpW

= dimgKer 8 + dimgIm g
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= dimplm g since dimgKer f < oo
< dimgpV
which implies that dim gV = dim W .

Conversely, assume that either dimpV < oo and dimgW < oo or dimgV =
dim W which is infinite. If dimrV < o0 and dimpW < oo, then AMp(V,W) =
Lp(V,W) # @ and AMp(W,V) = Le(W,V) # @. Let dimpV = dimpW. Then
V =2 W as vector spaces over F'. Let A be an isomorphism from V onto W. Thus
A€ Mp(V,W) C AMp(V,W) and A~ € Mp(W,V) C AMp(W,V).

(ii) Let & € AER(V,W) and f € AEp(W,V). Then dimr(W/Im a) < co and
dim (V/Im §) < co. Since

dimpW = dimp(W/Ima) + dimglm o
< dimp(W/Ima) + dimplmo + dimpKer o

= dimp(W/Ima) + dimgV (1)
and similarly

dimpV < dimp(V/ImB) + dimgW, ) (2)
it follows that dim gV < oo if and only if dim W <'co. Hence dimgV is infinite if
and only if dim W is infinite. If dimrV and dim W are infinite, then

dimgW £ dimp(W/Ima) + dimpV  from (1)

= dimpV since dim p(W/Im a) < oo

€ dimp(V/ImB) + dimgW from (2)

= dimpW since dim p(V/Im §) < oo

which implies that dimgV = dimgW.

(iii) and (iv) can be proved similarly to the proof of Lemma 2.2.1(iii). O
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Lemma 3.2.3. The following statements hold.

(?) For 8 € Mp(V), the semigroup (Mp(V),8) has a minimal quasi-ideal if and only
if dimpV < 0.

(¢3) For 8 € Ep(V), the semigroup (Er(V),8) has a minimal quasi-ideal if and only

’Lf dimpV < 00.

Proof. M dimpV < oo, then Mp(V) = Gp(V) = Er(V), so Mp(V) [Er(V)] is itself
a minimal quasi-ideal of (Mp(V),8) [(Er(V),0)] where 6 € Mp(V) [Er(V)] since
(Gx,¥0) is a group.

Next, to show that if dimzV is infinite, then neither (Mg(V),6) with 8 € Mp(V)
nor (Ep(V),8) with § € Ep(V) has a minimal qausi-ideal. Assume that dimpV is
infinite. Let B be a basis of V' and u € B. Then |B| = |B \ {u}| since B is infinite.

Then there is a bijection 9 : B — B\ {u}. Define 3,y € Lr(V) by

vB =wvy for all v € B,
vy =vyp~' for all v € B \ {u},

uy = 0.

It then follows that 8 € Mp(V),y € Ep(V), ImfB = (B ~ {u}) # V and Kervy = (u).

Let 6 € Mp(V) and o € Mp(V) be arbitrary. Then aff6a € (o), by Theorem
1.2, s0 (afB0a), C (o), in (Mp(V),0). Suppose that (aff6a), = (). By Theorem
1.2, a = afffa or a = Mabpfa for some A € Mp(V). Then 6a = 6abdffa or
Ba = 6\0afBfa. Since Ba is one-to-one, 1y = #abf or 1y = 8)\0aff which implies
Im 8 =V, a contradiction. This shows that (a686a), C (a)q‘.

Next, let 8, € Er(V). Then (afv8a), C (o), in (Er(V),6) by Theorem 1.2.
Suppose that (afv0a), = (@),. From Theorem 1.2, o = afyfa or a = afyfabd
for some A € Ep(V). Then af = afvy8af or af = afyfabd)d. Since Imab =V,
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ly = 7v0al or 1y = y0afA8 which implies that v is one-to-one, a contradiction.
Hence (afv0a), C (a),.

Therefore the proof is complete. O

Lemma 3.2.4. Assume that V 1is of infinite dimentional.
(t) For 8 € AMr(V), (AME(V),8) has no minimal quasi-ideal.

(i1) For 8 € AEr(V), (AEr(V),8) has no minimal quasi-ideal.

Proof. (i) Let & € AMp(V). Then dim Ker o is finite. Let u € V\\ Ker af. Then
ual # 0, so ua # 0. Let B be a basis of V' containing uaf. Define 8 € Lr(V) by

v if v € B\ {uab},
B =

0 ifv=uab.
Then Ker f = (uab), so B € AMp(V). Thus (afffa), C (). Since ua # 0,
ualfffa = 00a = 0 and uabfffalfy = 00afy = 0 for all v € AMp(V), we have
a ¢ (affba), by Theorem 1.2. Consequently, (a888a), C (a),-

(ii) Let o € AEF(V). Then dimp(V/Im af) < co. But dimgV is'infinite, we
have dim pIm af is infinite. Let u € V be such that uaf # 0. Then ua # 0. Let
B be a basis of V' containing uaf and define 8 asin (i). Then dimg(V/Im g) =
[{uaf+ Im B}| =1, so B € AEr(V). We obtain similarly to the proof in (i) that
(abBba), C (a), in (AER(V),0). 0O

. Theorem 3.2.5. The semigroup (Mr(V,W),8), where 0 € Mg(W,V), has a mini-
mal quasi-ideal if and only if dimpV = dimpW < 00.
If dimpV = dimpW < oo, then (Mp(V,W),80) is a group, so Mg(V,W) is itself

a unique minimal quasi-ideal of (Mp(V,W),0).
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Proof. By Lemma 3.2.1(i), dim V' = dim W, and from Lemma 3.2.1(iii), (Mp(V, W),
6) = (Mp(V),90) where ¢ : V — W is an isomorphism. From Lemma 3.2.3(i),
(Mr(V),90) has a minimal qausi-ideal if and only if dimrV < oo. Therefore we
conclude that (Mp(V,W),6) has a minimal quasi-ideal if and only if dimgV =
dim W < .

If dimpV = dimpW < oo, then Mp(V) = Gr(V), so (Mp(V),yb) is a group,

and thus the remaining conclusion follows. O

Theorem 3.2.6. The semigroup (Ep(V,W),0), where 8 € Er(W,V), has a minimal
quasi-ideal if and only if dimpV =dimpW < 0.
If dimpV = dimpW < o0, then (Er(V,W),8) is a group, so Ex(V,W) is itself

a unique minimal quasi-ideal of (Ep(V,W),80).

Proof. 1t follows from Lemma 3.2.1(ii) and (iv) that dimrV = dimpW and (Er(V, W),
8) =2 (Ep(V),p0) where ¢ : V — W is an isomorphism. We have from Lemma
© 3.2.3(ii), (Er(V), p0) has a minimal qausi-ideal if and only if dimV < co. It there-
fore follows that (Er(V,W),6) has a minimal quasi-ideal if and only if dimgV =
dim W < co.

If dimpV = dimgW < 00, then Fr(V) = Gr(V), so (Er(V), ) is a group,

and hence the remaining conclusion is obtained. O

Theorem 3.2.7. For § € AMp(W,V), the semigroup (AMp(V,W),0) has a mini-
mal quasi-ideal if and only if dimpV and dimpW are finite.

If dimpV and dimpW are finite, then for a € AMr(V, W)\ {0}, (o), is a mini-
mal quasi-ideal of (AMp(V,W),8) if and only if one of the following three conditions
holds:

() ranka=1, Ima ¢ Ker6 and Im6 ¢ Kera.
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(%) Ima C Ker0.
(Zi1) Im 6@ C Kera.

Moreover, (@), = Fa if (i) holds and (o) = {0, a} if (i) or (iii) holds.

Proof. First assume that dim zV and dim W are finite. Then AMp(V,W) = Lp(V,W)
and AMp(W,V) = Lp(W,V). By Corollary 3.1.10, for every a € AMp(V,W)~\ {0},
()¢ is a minimal quasi-ideal of (AMp(V,W),0) if and only if one of the following
three conditions holds:

(i) ranka =1, Ima € Ker # and Im ¢ € Ker a.

(ii) Im a € Ker 6.

(iii) Im 4 C Ker a.

Moreover, (a), = Fa if (i) holds and (&), = {0, a} if (ii) or (iii) holds.

To prove the converse, assume that dimgV or dim W is not finite. By Lemma
3.2.2(i), both dimpV and dimpW are infinite and dimpV = dimpW. Then V &
W as vector spaces over F', so there exists an isomorphism ¢ from V onto W.
By Lemma 3.2.2(iii), (AMp(V,W),0) = (AMg(V),¢0). From Lemma 3.2.4(i),
(AMEp(V), p8) has no minimal quasi-ideal, and hence neither does (AMp(V, W), 6).

a

Theorem 3.2.8. For 6§ € AEg(W,V), the semigroup (AEr(V,W),0) has a minimal
quasi-ideal if and only if dimpV and dimpW are finite.

If dimpV and dimpW are finite, then for o € AER(V, W)~ {0}, (@), is a minimal
quasi-ideal of (AERp(V,W), 8) if and only if one of the followiné three conditions holds:
- (@) ranka=1,Ima g Kerf and Im0 ¢ Kera.

(i) Ima C Kerf.
(#73) Im 6 C Kera.

Moreover, (&) = Fa if (i) holds and (a), = {0, a} if (1) or (iii) holds.



93

Proof. If dim gV and dim pW are finite, then AER(V,W) = Lp(V,W) and AEr(W,V) =
Lr(W,V), so by Corollary 3.1.10, for & € AEr(V, W)\ {0}, (@), is a minimal quasi-
ideal of (AER(V,W),8) if and only if one of the following three conditions holds:

(i) ranka=1,Ima ¢ Ker§ and Im§ € Ker c.

(if) Im « C Ker 4.

(iii) Im 6 C Ker «.

Moreover, (o), = Fo if (i) holds and (o), = {0, @} if (ii) or (iii) holds.

Conversely, assume that dim gV or dim W is not finite. By Lemma 3.2.2(ii), both
dimgV and dimpgW are infinite and dim gV = dimgW . Then there is an isomor-
phism ¢ from V onto W. By Lemma 3.2.2(iv), (AEr(V,W),0) = (AEr(V), ¢8).
But from Lemma 3.2.4(ii), (AEr(V), ¢f) has no minimal quasi-ideal, it follows that

(AEp(V,W),0) has no minimal quasi-ideal. O

3.3 The Semigroups (BLy(V,W),0) and (OBLgr(V,W),8)

Throughout this section, V' and W are assumed to be infinite dimensional. We
have indicated in Chapter I that if BLg(V,W) # @ and Mp(W,V) # @, then
(BLe(V,W),0) with 6§ ¢ Me(W,V) is a semigroup and we obtain similarly for
(OBLp(V,W),0) where 8§ € Ep(W,V). The aim of this section is to show that
both of these semigroups have no minimal quasi-ideal.

First, the following fact is provided.

Lemma 3.3.1. The following statements hold.
(1) BLp(V,W) # @ and Mp(W,V) # & if and only if dimpV = dimpW .
(i) OBLp(V,W) # @ and Er(W,V) # @ if and only if dimpV = dimgW .

Proof. Since BLp(V,W) C Mp(V,W) and OBLr(V,W) C Ep(V,W), by Lemma
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3.2.1(i) and Lemma 3.2.1(ii), we have that
BLp(V,W) # @ and Mp(W,V) # @ = dimpV = dimpW

and

OBLp(V,W) # @ and Ep(W,V) # @ = dimpV = dimpW.

Conversely, suppose that dimpV = dimpgW . Then V & W as vector spaces over
F. Then there is an isomorphism o from W onto V. Hence a € Mp(W,V) and
a € Ep(W,V). Let B and C be bases of V' and W, respectively. Then |B| = |C]|.

Since B and C are infinite, there are B,, B, C B and C,,C; C C such that
B =B, UB,,BiN By =2,|B| = |By| = |B|,
C=CLUCy,CiNCy =2,|Ci| = |Ca| = [C].
Thus |B| = |Ci| = |C| = |By|, so there are bijections ¢, : B — C) and ¢, : B; — C.
Define 8,7 € Lp(V,W) by

vf = v, for all v € B,

vy if v € By,
vy =
0 if v € B2.

Then Ker 8 = {0}, Im 8 = (C}); Imy=(C) =W and Ker v = (B;). Thus
dimp(W/Im B) = - dimp(W/(C1))
= |{’U+<Cl) |’U€C\Cl}|

=[CNCi| =G =]|C] -

, and

dimpKery = |B,| = |B|.

Hence 8 € BLr(V,W) and v € OBLg(V,W).

Therefore the lemma is proved. O
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Lemma 3.3.2. The following statements hold.
(?) BLg(V) has no minimal quasi-ideal.

(z¢) OBLF(V) has no minimal quasi-ideal.

Proof. (i) Let a € BLr(V) be arbitrary. Then (a?), C (@), in BLp(V). If (a?), =
(a)q in BLp(V), then from Theorem 1.2, a = o? or a = Bo? for some 8 € BLp(V).
But « is one-to-one, so 1y = a or 1y = fa. Hence Ina =V and so |[V/Ima| =1,
a contradiction. Hence (a?), C (@),.

(ii) Let & € OBLp(V). Then (0?), C (&), in OBLg(V). If (¢?), = (), then
by Theorem 1.2, o = o? or @ = a?f3 for some 8 € OBLr(V). Since Ima =V, it
follows that 1y = a or 1y = af which implies that « is one-to-one, a contradiction.
Thus (02), € (@)

Hence the lemma is proved, as required. O

Lemma 3.3.3. The following statements hold.

() If0:W =V is an isomorphism, then (BLp(V,W),0) = BLr(V) through the
map a +— ab.

(z2) If 0: W = V is an isomorphism, then (OBLg(V,W),0) 2 OBLr(V) through

the map a— af.

Proof. (i) Since 6 : W — V is one-to-one, then af + 'V — V is one-to-one for all

o € BLp(V,W). If a € Lr(V,W), then

dimp(V/Imaf) = dimp(W6/(Im a)0)

= dimp(W/Ima) since @ : W — V is an isomorphism.

Consequently, af € BLr(V) for all & € BLr(V,W). Since 6 is one-to-one, o — af

is a one-to-one map from BLp(V,W) into BLr(V). If « € BLr(V), then we have



96

similarly that af~' € BLp(V,W). Also, (af!)0 = a for every a € BLp(V). Also,
for a, 8 € BLr(V,W),(a88)6 = (ab)(80). Hence (i) is proved.

(i) Since Ima = W and Im 6 =V, it follows that Imaf = V. For a € Lp(V,W),
Ker af = Ker « since Ker § = {0}. Hence af € OBLp(V) for all « € OBLg(V,W).
We can show similarly as above that the map a > «af is an isomorphism from

(OBLy(V,W),6) onto OBLp(V). O

Theorem 3.3.4. For 6 € Mp(W,V), the semigroup (BLr(V,W),0) has no minimal

quasi-ideal.

~ Proof. Let 6 € Mp(W,V). Then 6 : W — V is one-to-one.

Case 1: 6 is an isomorphism. By Lemma 3.3.3(i), (BLr(V,W),0) = BLp(V).

Hence from Lemma 3.3.2(i), so (BLr(V,W),6) has no minimal quasi-ideal.

Case 2: 6 is not an isomorphism. Then Im # # V since 6 is one-to-one. Let
a € BLp(V,W) be arbitrary. Then (afa), C (a) in (BLr(V,W),0). Suppose
that (afa); = (@),. Then from Theorem 1.2, @ = afa or a = [fobfa for some
B € BLrp(V,W). Since « is one-to-one, 1y = af or 1y = [0af. Hence Im 0=V,
a contradiction. Therefore (afa), C (a),. This shows that (BLgs(V,W),6) has no

minimal quasi-ideal.

Hence the theorem is proved. O

Theorem 3.3.5. For § € Er(W,V), the semigroup (OBLr(V,W),0) has no mini-

mal quasi-ideal.

Proof. Let 0 € Ep(W,V). Then § : W = V withIm§=V.
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Case 1: 6 is an isomorphism. By Lemma 3.3.3(ii), (OBLp(V,W),8) = OBLgp(V).
Hence by Lemma 3.3.2(ii), (OBLr(V, W), 6) has no minimal quasi-ideal.

Case 2: 0 is not isomorphism. Then 0 is not one-to-one. Let o € OBLp(V,W).
Then (afa), C (a)q. Suppose that (afa), = (@)q. Then by Theorem 1.2, a = afa
or a = aflalbf for some B € OBLp(V,W). SinceIma =V , 1y = fa or 1y = 8abf
which implies that 6 is one-to-one, a contradiction. Thus (afa), C (a),.

Therefore the theorem is proved.

3.4 'The Semigroups (M,,,(F), P) and (SU,(F), P)

Let V and W be vector spaces over F, dimzV = m, dimpW = n, B a basis of V

and B' a basis of W. We have mentioned in Chapter I that

(LF(V) W)) 0) = (Mm,n(F)) [O]B’,B)

by a— [o]p,p and for every o € Lp(V, W),
rank o = rank|a)p p.

Therefore from these facts and Corollary ’3.1.10, we directly obtain the following
result.

Theorem 3.4.1. For A € My, ,(F)~ {0}, (A)q s @ minimal quasi-ideal of the semi- B

group (My o(F), P) if and only if one of the following three conditions holds:
(1) rank A=1,PA+#0 and AP #0.
(i6) PA=0.

(i) AP = 0.

Moreover, if (i) is ture, then (A)g = FA, and if (i) or (ii) holds, then (A);=
{0, A}.
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The following corollary follows from Theorem 3.4.1. It gives an interesting char-
acterization of the standard matrix semigroup M,(F') of all n x n matrices under

usual multiplication.

Corollary 3.4.2. For A € M,(F) \ {0}, the following statements are equivalent.
(2) (A)q s a minimal quasi-ideal of My (F').

(i) rank A = 1.

(i45) (A), = FA.

Next, we shall determine minimal quasi-ideals of the semigroup (SU,(F),P)
where P is an upper triangular n x n matrix over F'.

We prove the following fact which will be referred often later.

Lemma 3.4.3. For A € SU,(F) ~ {0}, A ¢ APSU,(F).

Proof. Let A € SU,(F)~ {0} and let

l=min{j € {1,2,--- ,n} | A;; # 0 for some 7 € {1,2,--- ,n}}.

Then Ay # 0 for some k € {1,2,...,n}. But for B.€ SU,(F),

(APB)y = Zn:Akj(PB)ﬂ

=1

=Y Ai;(PB)j by the property of {
j=| .

=0 since PB € SU,(F),

so we have A # APB for every B € SU,(F). O
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Theorem 3.4.4. Let A € SU,(F) \ {0}. Then the following statements are equiva-
lent.

(2) (A)q is a minimal quasi-ideal of the semigroup (SU,(F'), P).

(it) SU(F)PAN APSU,(F) = {0}.

(i) (4), = {0,A}.

Proof. (i) = (i1) By Theorem 1.2, (A), = (SUL(F)PAN APSU,(F)) U {A}. Then
SUL(F)PAN APSU,(F) C (A),. But SU,(F)PAN APSU,(F) is a quasi-ideal of
(SU.(F), P), so by (i) SU(E)PANAPSU,(F) = {0} or SU(F)PANAPSU,(F) =
(A)g. But A ¢ APSU,(F) by Lemma 3.4.3, so SU,(F)PAN APSU,(F) # (A),.
Hence (ii) holds.
(#) = (447). From Theorem 1.2 and (ii), (A4), = {0, 4}.
(i17) = (7). Since |(A),] =2, (A), does not properly contain any nonzero quasi-
ideal of (SU,(F),P). Consequently, (A), is a minimal quasi-ideal of (SU,(F), P).
a

Theorem 3.4.5. For A € SU,(F), if rank A = 1, then (A)q is a minimal quasi-ideal

of the semigroup (SU,(F),P). If this is the case, (A), = {0, A}.

Proof. Let A € SU,(F) and assume that rank A = 1. By Theorem 1.13, SU,(F)AN
ASUL(F) = {0}. But SU,(F)P C SU,(F) and PSU,(F) C SU,(F), so we have
SUL(F)PAN APSU,(F) = {0}. By Theorem 3.4.4, (A), is a minimal quasi-ideal of
(SUR(F), P) and (A4), = {0, A}. O

- Remark 3.4.6. It is natural to ask whether the converse of Thorem 3.4.5 is true.
The following example shows that it is not generally true. If P = 0, then by Thorem
3.4.4, (A), is a minimal quasi-ideal of (SU,L(F), P) for every A € SU,(F) ~ {0}.

However even though P # 0, the converse of Thorem 3.4.5 need not true. To see
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this, let P € SU,(F') be such this P;; = 0 for all (s, 5) # (1,n). Clearly, SU,(F)PAN
APSU,(F) = {0}. By Theorem 3.4.4, (A), is a minimal quasi-ideal of (SU,(F), P)
for every A € SU,(F) \ {0}.



CHAPTER IV
MINIMAL QUASI-IDEALS OF GENERALIZED RINGS

OF LINEAR TRANSFORMATIONS

The purpose of this chapter is to characterize minimal quasi-ideals in generalized
rings of linear transformations and generalized matrix rings (Lr(V, W, k), +,6) and
(Lr(V,W, k), +,6) (see Section 3.1) (M, »(F),+, P) and (SU,(F), +, P) (see Section
3.4). Moreover, some remarks on minimal bi-ideals of these rings comparing with their
minimal quasi-ideals are povided

Let us recall the notations mentioned above first. Throughout, let V and W be

vector spaces over a field F', k an infinite cardinal number, m and n positive integers,
Le(V,W,k) ={a € Lp(V,W) | rankea < k},
Lp(V,W,k) = {a € Lp(V,W) | ranka < k},
M o(F) = the set of all m x n matrices over F,
SU,(F) = the set of all strictly upper m % n matrices over F,

+ is the usual addition of linear transformations or'matrices and the multiplication

is a sandwich multiplication mentioned previously.

4.1 The Rings (Lp(V,W,k),+,0) and (Lr(V,W, k), +,6)

In this section, all minimal quasi-ideals of the rings (Lz(V, W, k), +,8) and (Lgp(V, W,
k),+,0) where 8 € Lp(W,V) are completely characterized. We also give necessary

and sufficient conditions for them to have a minimal quasi-ideal.
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To obtain the main result in this section, the following series of lemmas is needed.

Lemma 4.1.1. For § € Lr(W,V) and a, € Lp(V,W,k), if B € (a)q in the ring
(Lr(V,W,k),+,0), then Im3 C Ima.

Proof. From Theorem 1.3, 8 = ta + y0a for some t € Z and v € Lg(V,W, k). This

implies that Im 8 = Im (t1y + v8)a C Im « where 1y is the identity mapon V. O

Lemma 4.1.2. Let § € Lp(W,V) and a € Lp(V,W, k) be such that Ina ¢ Ker 6
and Im0 ¢ Kera. If rank a= 1, then (a), = Fa in the ring (Lr(V,W, k), +,0).

Proof. Let u € Ima~ Kerf and u' € ImO~ Kera. Then 0 Auf € V,0 Av'a e W
and z0 = v’ for some z € W\ {0}. Then Ima = Fu sinceranka = 1. Thus v'a = au
for some a € F \. {0}. Let B and B’ be respectively a basis of V' containing uf and

a basis of W containing u. Define g € Lg(V,W) and v € Lg(W,W) by

u if v=ub, a!
vl = wy =

0 ifve B~ {uf}, 0 ifwe B'\ {u}:

z ifw=u,

Then ay € Lp(V,W), rank 8 =1 and rank ay < 1, s0 f,ay € Lp(V,W, k). From

the definitions of 8 and v, we have

1

wyfa=a"'200 = o Wa =alau = u = ubp.

Since Im @ = Fu, by Lemma 3.1.1(i), ayfa = o = aff Hence for every b €
- Fyba = (bavy)fa = af(bB) € Lr(V,W,k)0a N a@Lp(V,W, k). It therefore follows
from Theorem 1.3 that Fa C (a)g. To show the converse inclusion, let A € (a),. By
Lemma 4.1.1, Im A C Im a. We have from Theorem 1.3 that A = ta + afu for some

t€Z and pu € Lp(V,W,k). Hence Im (afu) = Im (A — ta) C Im « since Im A C
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Ima. But u € Ima = Fu and Im (afp) = (Im )fp C Im o, so ufu = cu for some

c € F. Thus from Lemma 3.1.1(ii), afy = ca. It now follows that

A=ta+ca=(tlp+c)a € Fa

where 1p is the identity of F'. This proves that (o), = Fa, as required. O

Lemma 4.1.3. Let § € Lp(W,V) and o € Lp(V,W, k) be such that Ima ¢ Ker 6
and Im 0 ¢ Ker a. If rank oo = 1, then (@), is a minimal quasi-ideal of the ring

(Le(V, W, k), +,6).

Proof. We have from Lemma 4.1.2 that (a), = Fa. Let 8 € (a),~{0}. Then B = acx
for some a € F ~ {0}. It therefore follows that Ker 8 = Ker o and Im # = Im «.
Thus rank 8 = 1. By applying Lerﬁma 4.1.2 to B, we get (8), = F 3. Butsince F§ =
Faa = Fa, we have (8)q = (a),. This shows that (8), = (a), for every nonzero

element B € (a),. Hence (a), is a minimal quasi-ideal of (Lg(V,W,k),+,6). O

Lemma 4.1.4. Let 6 € Lp(W,V) and a € Lp(V,W, k) be such that Ina € Ker6
and Im 0 ¢ Ker a. If (@), is a minimal quasi-ideal of the ring (Lp(V, W, k), +,6),

then rank o = 1.

Proof. Let u € Ima~ Kerf and ' € Imf\ Kera. Then 0 #ub € V,0#AvaeW
and z0 = v’ for some 2 € W \{0}. Let B be a basis of V' containing 48 and define
B € Lr(V,W) by

z if v =ub,
vB =
0 ifve B~ {uf}.

We then have 8 € Lp(V,W, k) and

0 # v'a = 20 = ubB0c € (Im )00 = Im (affba),
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so afffa # 0 and rank (afpB0c) < rank § = 1. Thus rank (aff6c) = 1, and hence
abfba € Lp(V,W,k)0a N afdLp(V,W,k). Thus afffa € (a), by Theorem 1.3. But
since (a), is a minimal quasi-ideal of (Lp(V,W,k),+,0) and afffa # 0, it follows

that (aff0a), = (a),. From Lemma 4.1.1, rank a = rank (aff0a) = 1. O

Lemma 4.1.5. If § € Lp(W,V) and a € Lp(V,W, k) are such that Ima C Ker 8

or Im0 C Ker a, then (a), = Za in the ring (Lp(V, W, k), +,6).

Proof. We have that af = 0 if Ina C Kerf and fa =0 if Im 8 C Ker «. It then

follows from Theorem 1.3 that (a), = Za in (Lp(V,W, k), +,6). O

Lemma 4.1.6. Let char F = 0, 8 € Lp(W,V) and Lp(V,W,k) # {0}. If a €
Lr(V,W,k) is such that Ina C Ker® or Im60 C Ker a, then the quasi-ideal (a),

of the ring (Lp(V, W, k), +,6) is not minimal.

Proof. Clearly, Im (2a) C Im . Since char F' = 0, we have Ker (2a) = Ker a. It
then follows from Lemma 4.1.5 that (2a), = Z(2a) = (2Z)a C Za = (a),. If a =0,
then (o), = {0} which is not minimal. For the case that o # 0, we have ua # 0
for some u € V. Since char F'= 0, we deduce that ua # 2t(ua) = u(2ta) for all
t € Z. Thus a ¢ Z(2a), so (2a), C (a)q in (Lp(V,W,k),+,8). Hence (a), is not a
minimal quasi-ideal of (Lg(V, W k), +,6). O

Lemma 4.1.7. If char F # 0, 8 € Lg(W,V) and a € Lp(V,W,k) \ {0} are
such that Im a C Ker 0 or Im 8 C Ker a, then the quasi-ideal (o) of the ring

(Lr(V,W, k), +,8) is minimal.
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Proof. Let char F be a prime p. Then

Za = {0,0,2a,...,(p — 1)a}.

Since a # 0, Za is a subgroup of (Lp(V,W,k),+) of order p. Thus Za does not
properly contain any nonzero subgroup of (Lg(V,W, k), +). Consequently, Za does
not properly contain any nonzero quasi-ideal of (Lr(V, W, k), +,6). But (@) = Za

by Lemma 4.1.5, so (a), is a minimal quasi-ideal of (Lg(V,W, k), +,8). o

The following two theorems completely characterize all minimal quasi-ideals of

the ring (Lp(V, W, k), +,8).

Theorerm 4.1.8. Let char F =0, 6 € LW,V and Lg(V,W,k) # KQ\ Then {or

a € Lp(V,W,k), (), is a minimal quasi-ideal of the ring (Lp(V,W, k), +,0) if and
only if ranka =1, Imna ¢ Ker6 and Im@ ¢ Kera.
If this is the case, (a), = Fa.

Proof. First, assume that (a), is a minimal quasi-ideal of (Lr(V,W,k),+,6). By
Lemma 4.1.6, Ima € Ker§ and Im § ¢ Ker a. Hence by Lemma 4.1.4, rank o = 1,
and also (a), = Fa by Lemma 4.1.2.

The converse holds by Lemma 4.1.3. O

Theorem 4.1.9. Let char F=p >0, § € Lp(W,V) and Lp(V,W, k) # {0}. Then
for a € Lp(V,W, k), (), is a minimal quasi-ideal of (LF(V,‘VV, k), +,0) if and only
if one of the following conditions holds:

(i) ranka =1, Imo ¢ Kerf and Im9 ¢ Kera.

(1) Ima C Kerd.

(¢7) Im 0 C Ker o.



66

If (i) holds, then (a); = Fa, and (@), = {0,¢,...,(p — 1)a} if (i) or (i)
holds.

Proof. Assume that (a), is a minimal quasi-ideal of (Lg(V,W,k),+,6). To prove
that (i), (ii) or (iii) holds, suppose that both (ii) and (iii) are fault. Then Im a ¢
Ker § and Im 8 ¢ Ker o.. We therefore deduce from Lemma 4.1.4 that rank o = 1.
Hence (i) holds. For this case, (@), = Fo by Lemma 4.1.2. If (ii) or (iii) holds, then
(a)q = Za by Lemma 4.1.5.

The converse is obtained directly from Lemma 4.1.3 and Lemma 4.1.7. O

If k£ is an infinite cardinal number greater than dimgW, then Lp(V,W,k) =

Lp(V,W). Hence from Theorem 4.1.8, we have

Corollary 4.1.10. Let char F = 0, § € Lp(W,V) and Lp(V,W) # {0}. Then
for a € Lp(V,W),(a), is a minimal quasi-ideal of (Lp(V,W),+,0) if and only if
ranka=1, Ima ¢ Kerf and Imf € Kerc.

If this is the case, (@), = Fa.

Also by Theorem 4.1.9, we get

Corollary 4.1.11. Let char F=p >0, § € Lr(W,V) and Lp(V,W) # {0}. Then
for a € Lp(V, W), (a) is a minimal quasi-ideal of the ring (Lp(V,W),+,0) if and
only if one of the following conditions holds:
(@) ranka=1, Ima € Ker0 and Im6 ¢ Kera.
" (#1) Ima C Kerd.
(?) Im 0 C Kera.

If (i) holds, then (a), = Fa, and if (i3) or (i) holds, then (o) = {0,¢,..., (p—
1a}.
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The well-known ring Lr(V') of all linear transformations o : V' — V' under usual
addition and composition has 1y, the identity map on V| as its identity. Hence from

Theorem 1.3, in the ring Lr(V),

(a)q = LF(V)a N aLp(V)

for every a € Lr(V). The following corollary gives interesting characterizations of

all minimal quasi-ideals of the ring Lr(V).

Corollary 4.1.12. For a € Lr(V) ~. {0}, the following statements are equivalent.
(1) (@)q is a minimal quasi-ideal of Lp(V).
(%) ranka =1.

(#3) (a) = Fo.

Proof. The implication (i)=>(ii) holds by Corollary 4.1.10 and Corollary 4.1.11. The
implication (ii)=>(iii) follows from Lemma 4.1.2. To prove (iii)=>(i), assume that
(a)g = Fa and let f € (@), \ {0}. Then B = ac for some a € F \ {0}. Hence
(B)g= Lr(V)BNBLE(V) from Theorem 1.3

= Lr(V)aaNaaLp(V)

=(aLp(V))an a(aLr(V))

= Lp(V)anaLg(V) since a # 0

= (a),.

This shows that (8)y = (a), for all 8 € (a)q \ {0}. Therefore (a), is a minimal

quasi-ideal of Lr(V). O

Finally, we show that every nonzero ring (Lg(V, W, k), +,6) has a minimal quasi-

ideal except only the case that char F' =0 and ¢ = 0.
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Theorem 4.1.13. For 6 € Lp(W,V), a nonzero ring (Lp(V,W, k), +,80) has a min-

imal quasi-ideal if and only if char F # 0 or 0 # 0.

Proof. First, assume that char F' # 0 or § # 0.
Case 1: 6§ #0. Then Ker # W and Im6 # {0}. Let u € Im 8~ {0} and w € W~
Ker 6. Let B be a basis of V containing u and define oo € Lp(V, W, k) by

w ifv=u,
v =

0 ifve B\ {u}
Then rank a = 1,w € Im a~ Ker 8 and v € Im #~. Ker . From Theorem 4.1.8 and

Theorem 4.1.9, (a), is a minimal quasi-ideal of (Lg(V, W, k), +,6).

Case 2: char F'# 0 and § = 0. By Lemma 4.1.7, every nonzero principal quasi-ideal

of (Lp(V,W,k),+,6) is minimal.

Conversely, assume that charF = 0 and 6 = 0. It follows from Lemma 4.1.6
that for every a € Lp(V,W, k), (@), is not a minimal quasi-ideal of (Lp(V,W,k),6).

Hence (Lr(V,W,k),+,6) does not have a minimal quasi-ideal. O

Remark 4.1.14. Assume that o € Lp(V, W, k) is such that (a), is a minimal quasi-
ideal of the ring (Lx(V, W, k), +,6). From Theorem 1.8, (a), must be either a zero
subring or a division subring of (Lr(V, W, k),+,68). By Theorem 4.1.8 and Theorem
4.1.9, we have (z) ranka=1,Ima ¢ Kerf and Im 8 ¢ Kera, (#4) Im a C Kerf or
 (47) Im 6 C Kera. If Ima C Ker § or Im 6 C Ker a, then afa = 0. We therefore
have from Lemma 4.1.5 that for this case, (a), is a zero subring of (Lr(V, W, k), +,8).

Next, assume that rank & = 1, Ina ¢ Ker § and Im § ¢ Ker a. Then by

Lemma 4.1.2, ()¢ = Fa. For this case, (a), can be either a zero subring or a
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division subring of (Lg(V,W,k),+,8). If afa = 0, then (o), is clearly a zero sub-
ring of (Lrp(V,W,k),+,0). Next, assume that afa # 0. Then (o), is a division
subring of (Lp(V,W,k),+,8) and hence Fa \ {0} = (F \ {0})a is a subgroup of
(Lr(V,W,k),6). Let 0 # u € Im . Then Im a = Fu. Thus ufa = cu for some
¢ € F. We then deduce from Lemma 3.1.1(ii) that afa = ca. But afo # 0, so

¢ # 0. Hence for all a,b € F \ {0},

(a0)0(ba) = ababa = abca € (F \ {0})c,
(aa)f(c'a) = ac'aba = ac ™ ca = ac,

(aa)f(a Y (c ) a = aa (¢ ) 2aba = (¢ )%eca = cla.

This shows that (F ~\ {0})a is indeed a subgroup of (Lr(V,W,k),8) where c"!a is
its identity and for @ € F \ {0}, a7}(c!)?« is the inverse of aa. The following
examples show that in this case, each of the subcases afa = 0 and afa # 0 can
occur. Let V be a vector space over F' of dimension 4. Let {u;,us,us,us} be a basis
of V. Define 6,0;,a; € Lp(V) by

w18 = uy, uzl = ug, uzl = uz, usf =0,

U0 = UzQ = U, U0y = Ugon = 0,

U102 = Uglip = U3, U3y = U403 = 0.

Then Ker 8 = (ug), Im 0 = (u;,us, us), Ker oy = (u; — us, uz,uq), Im oy = (),
Ker az = (u; — u2,u3, us) and Im oy = (u3). Then rank ¢y =1 = rank a3, Im oy ¢

Ker6,Im 6 ¢ Kera;, Ima, € Kerf and Im 0 ¢ Ker ;. Moreover,

uioq0a; = uy and {uy, us, u3, us}agbas = {us,0}00g = {us,0}ae = {0},

so ajfa; # 0 and axfa, = 0.
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We can see easily from the given proofs that Lamma 4.1.1-Lemma 4.1.7 are still
true if we replace (Lg(V,W,k),+,8) by (Lr(V,W,k),+,0). Hence the following

three theorems are also obtained.

Theorem 4.1.15. Let char F =0, § € Lp(W,V) and Lr(V,W, k) # {0}. Then for
a € Lp(V,W, k), (a), is a minimal quasi-ideal of the ring (Lp(V, W, k), +,60) if and
only if ranka =1, Ima € Kerf and Im6 ¢ Kera.

If this is the case, (a)q = For.

Theorem 4.1.16. Let char F=p > 0, € Lp(W,V) and Lp(V, W, k) # {0}. Then
for o € Lp(V,W, k), (a)y is a minimal quasi-ideal of the ring (Lp(V,W, k), +,0) if
and only if one of the following conditions holds:
(¢2) ranka =1, Ima g Kerf and Im6 ¢ Ker .
(17) Ima C Kerf.
(143) Im6 C Kera.

Moreover, (), = Fo if (1) holds, and (@), = {0,a,...,(p — 1)a} if (it) or (ii)
holds.

Theorem 4.1.17. For § € Lp(W, V), a nonzero ring (Lrp(V, W, k), +,0) has a min-

tmal quasi-ideal if and only if char FF # 0 or 8 # 0.

Also, a remark for the ring (Ir(V, W, k), +,6) can be given similarly to Remark

4.1.14 which is given for the ring (Lp(V, W, k), +, 6)

4.2 The Rings (Mpua(F),+,P) and (SU,(F),+, P)

The aim of this section is to determine minimal quasi-ideals of the rings (M, o(F), +, P)

where P € M,,,m(F ) and (SU,(F),+, P) where P is an upper triangular nxn matrix
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over F'. If V and W be vector spaces over F', dimgV =m and dimpW =n,
(Le(V, W), +,0) = (M n(F), +, 0]5,5)
by a— [a]p p and for every a € Lp(V,W),

ranka = rank[o]p 5,

so from Corollary 4.1.10 and Corollary 4.1.11, we directly obtain the following results.

Theorem 4.2.1. If char F = 0, then for P € M, ,(F) and A € My, o(F),(A), s
a minimal quasi-ideal of the ring (Mmo(F),+, P) if and only if rank A=1,PA#0
and AP #0.

If this is the case, (A), = FA.

Theorem 4.2.2. If char F = p > 0, then for P € My n(F) and A € Mpo(F)
{0}, (A)q is a minimal quasi-ideal of the ring (M, n(F), +, P) if and only if one of
the following three conditions holds:
(2) rank A=1,PA+# 0 and AP #0.
(i) PA=0.
(ii) AP = 0.

Moreover, (A), = FA if (i) holds, and (A), = {0, A,...,(p=1)A} if (it) or (i)
holds.

The following corollary gives interesting characterizations of minimal quasi-deals
of the well-known ring M, (F) of all n x n matrices under usual addition and multi-

plication.
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Corollary 4.2.3. For A € M,(F) \ {0}, the following statements are equivalent.
(¢2) (A)q is a minimal quasi-ideal of the ring Myp(F).

(ii) rank A =1.

(i17) (A)g = FA.

Next, minimal quasi-ideals of the ring (SU,(F'),+, P) are determined. From
Theorem 1.3, for a nonempty subset X of a ring R, (X), = ZX + RXNXR D
RXNXR. But RX N XR is a quasi-ideal of R, so we have the following lemma

which will be used.

Lemma 4.2.4. For an element = of a ring R, if (z), is a minimal quasi-ideal of R

and £ ¢ RxNzR, then Rz NzR = {0} and (z), = Zz.

Theorem 4.2.5. If char F = 0 and n > 1, then for every an upper triangular n X n

matriz P over F, the ring (SU,L(F'),+, P) has no minimal quasi-ideal.

Proof. Since n > 1, SU,(F) # {0}. Suppose that A € SU,(F) and (A), is a minimal
quasi-ideal of (SU,(F), +, P). By Lemma 3.4.3 and Lemma 4.2.4, (A); =ZA. But
0 # 2A € (A)g, so (24), = (A),. Hence by Lemma 3.4.3 and Lemma 4.2.4, (24), =
Z(2A) because char F' # 2. Since A'# 0, Ax # 0 for some k,l € {1,2,--- ,n}, thus

Ap = 2mAy, for some m € Z < {0}. Hence 2m — 1 =0, a contradiction. O

Theorem 4.2.6. Assume that char F =p > 0 and A € Si]n(F) \ {0}. Then the
following statements are equivalent.

(7) (A)q is a minimal quasi-ideal of the ring (SU,(F),+, P).

(it) SU(F)PAN APSU,(F) = {0}.

(117) (A)q ={0,4,24,...,(p—1)A}.
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Proof. The implication (i) = (i) is obtained from Lemma 3.4.3 and Lemma 4.2.4.
(i1) = (¢47). From Theorem 1.3 and (ii), (A), = ZA. Since char F = p, (iii)
holds.
(113) = (3). Since [(A)s] = p, (A); does not properly contain any nonzero sub-
group of (SU,(F),+). Consequently, (A), is a minimal quasi-ideal of (SU,(F), +, P).
[l

Theorem 4.2.7. Assume that char F =p > 0. For A € SUL(F), if rank A =1,
then (A), is a minimal quasi-ideal of the ring (SUL(F'),+, P). If this is the case,

(A)q = {0, A 24, ,(p- I)A}

Proof. Let A € SU,(F) and assume that rank A = 1. By Theorem 1.13, SU,(F)AN
ASU,(F) = {0}. But SUL(F)P C SU,(F) and PSU,(F) C SU,(F), so we have
SU.(F)PAN APSU,(F) = {0}. By Theorem 4.2.6, (A), is a minimal quasi-ideal of
(SUu(F),+,P) and (A), ={0,4,24,---,(p—1)A}. O

Remark 4.2.8. (1) Let A € SU,(F)~ {0} be such that A;; = 0 for all (¢, j) # (1,n).
Then SU,(F)PAN APSU,(F) = {0}. Hence if char F > 0, then by Thébrem 4.2.6,
(A)q is a minimal quasi-ideal of (SUn(F),+, P). Hence if char F > 0 and n > 1,
then a minimal quasi-ideal of (SU,(F), +, P) always exists for every an upper n X n
matrix P over F.

(2) Let P € SU,(F') besuch that P;; = 0 for all (¢, j) # (1,n). Then SU,(F)PAN
APSU,(F) = {0}. By Theorem 4.2.6, if char F' > 0, then (A), is a minimal quasi-
- ideal of (SU,(F),+, P) for every A € SU,(F) \ {0}. This shows that the converse

of Theorem 4.2.7 is not generally true.
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4.3 Some Remarks on Minimal Bi-ideals of the Rings
(Lr(V,W, k), +,6), (Lp(V,W, k), +,0), (Mna(F),+, P)

and (SU,(F),+, P)

The first purpose is to show that bi-ideals and quasi-ideals of the rings (L (V, W, k), +,
8), (Lx(V,W, k), +,0) and (M, .(F), +, P) coincide. These imply that their minimal
bi-ideals and minimal quasi-ideals are identical. The second purpose is to determine
minimal bi-ideals of the ring (SUn(F),+, P). An example of a minimal bi-ideal of
some ring SU,(F) (= (SUn(F),+,I,)) which is not a quasi-ideal is given.

The first theorem shows that the sets of bi-ideals and quasi-ideals of the ring
(Lr(V,W,k),+,0) coincide. In fact, the technique of the proof of Proposition 1.9
in [5] given by K. M. Kapp is helpful for this work. Howover, our proof is more

complicated.

Theorem 4.3.1. In the ring (Lp(V,W,k),+,8) where § € Lg(W,V), every bi-
ideal is a quasi-ideal. That 1is, the sets of bi-ideals and quasi-ideals of the ring

(Lr(V,W,k),+,6) coincide.
Proof. Let B be a bi-ideal of (Lg(V,W,k),+,6). Then

BOLx(V,W,k)8B C B.

To show that Lg(V,W,k)0B N BOLr(V,W, k) C B, let a bean element of Lp(V,W
,k)0B N BOLp(V,W,k). Then

a € Lp(V,W,k)8B, (1)

a =P1fv + Br2br2 + ... + Binbrn )
for some By1,...,01n € Band vy,...,7 € Lp(V,W, k).
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Since each $1;0 € Lr(V) and (Lp(V), +,-) is a regular ring, there exists A;; € Lp(V)
such that f1;0 = B1;01:5::6- By (2), we have

a = 11011811071 + Bi126M12612072 + . .. + Bin0A1nB1n07n, (3)
,3110/\11,311071 = ﬂue/\u(a = ,3120'72 ... ﬂlng’)’n) (4)
= Bubra — fr110A11 812072 — ... — B110A1181n07n.

It then follows from (3) and (4) that
a = fubina + (8126 12612 — B110M1512)6072 + - - . + (BinOA1nBin — B110A1151n)07n-

But from (1) and (2), f110\1a € BOA, Lp(V,W,k)8B C BOLr(V,W, k)6B and for
1€ {2, 3,..., n}, ,31,'0/\1,',31,' — ,3110/\11,31,' = BH/\hB = BG/\HB C BHLF(V, I/V, k), SO

a =P + by +...+ fonf7n )
for some B, € BOLr(V,W, k)0B and fa,. .., B € BOLr(V,W, k).

Since for i € {2,...,n}, B0 € Lr(V), we have that for each i € {2,...,n}, (0 =
Bai0M2i[2;0 for some Ay; € Lp(V). Thus from (5),

a = P1 + Pa20r202:072 4 . . -+ FenbA2 020 0Fn, (6)

P20 228220772 = PaaBraa(0 — Br— [2307s — oo — Ponb¥n) @
= [a0Ao20 — BaaBA22f1 — ﬂ229/\22ﬂ239’)’3 e ,3220/\22,32110711-

We then deduce from (6) and (7) that

a = + Paabro2ax — BoabAs251 + (23022323 — Pa20A22523)073

+...+ (,ane/\2n,32n - ,3220/\22,3211)0711'
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But we have from (1) and (5) that
B1 € BOLp(V,W,k)0B, B20Mg2cc € BOLp(V, W, k)0Ao2 Lr(V, W, k)0B
C BOL(V, W, k)6B,
Ba2bAefy € BOLR(V, W, k)02 BOLE(V, W, k)6B

C BOLr(V, W, k)0B

and for 7 € {3,...,n},
Ba2iOA2:i B2 —vﬂzzax\zzvﬂzzj € BOLr(V, W, k)02 BOLF(V, W, k)
+ BOLp(V, W, k)0A2o BOLp(V, W, k)
C BOLp(V, W, k),

so we have |

a =0+ faabys+ ...+ B30,

for some B, € BLp(V,W, k)6B and fss, ..., fsn € BOLp(V,W, k).

Continuing in this fashion, we obtain the n — 1% step that

« =ﬂn—l + ﬂnn07n

(8)
for some B, € BLr(V,W,k)8B and B,, € BOLp(V,W, k).
Let Apn € Lp(V) be such that $nn,0 = BpnfAnnfBanf. Then from (8),
o= ﬂn—l + ﬂnno/\nnﬂnn07na (9)
BrnbAanBrnb¥n = BrnbAnn (a - ,Bn-—l)
(10)

= ﬂnno/\nna - ﬂnno/\nnﬂn—l-

Thus we obtain from (9) and (10) that

o= ﬂn—l + ﬂnno/\nna - ﬂnno’\nnﬂn—l-
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But by (1) and (8), we have that

Bn_1 € BOLp(V,W,k)8B, BunbAnna € BOLg(V, W, k)0, Lr(V, W, k)6B
C BOLp(V,W,k)8B and

BanOAnnBa-1 € BOL(V, W, k)0AnBOLr(V, W.k)0B C BOLr(V, W, k)8B,

so we have that a € BOLp(V, W, k)0B which implies that « € B.
This proves that Lp(V, W, k)8B N BALp(V,W,k) C B, so B is a quasi-ideal of

the ring (Lr(V,W, k), +,6). Hence the theorem is completely proved. O

If k> dimpW, then Lg(V,W) = Lp(V,W, k). Therefore the following corollary

is directly obtained.

Corollary 4.3.2. For § € Lp(W,V), every bi-ideal of the ring (Lp(V,W),+,0) isa
quasi-ideal. That is, the sets of bi-ideals and quasi-ideals of the ring (Lp(V, W), +,8)

coincide.

Because of the relationship between the rings (M, »(F'), +, P) and (Lp(V, W), +,6)

mentioned in Section 4.2, we have

Corollary 4.3.3. For P € M, n(F), every bi-ideal of the ring (Myo(F),+,P) is a
quasi-ideal. Hence the bi-ideals and the quasi-ideals of the ring (Mmn(F),+, P) are

identical.

Lemma 4.3.4. Let X be a nonempty subset of a ring R. Then ZX?+ XRX is a
bi-ideal of R contained in (X),.
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Proof. 1t is clearly seen that ZX2+XRX = (ZX+ XR)(ZX+RX). Since ZX+XR
and ZX + RX are a right ideal and a left ideal of R, respectively, from Corollary

1.16, ZX? + XRX is a bi-ideal of R. By Theorem 1.14,

(X)y =ZX +ZX*+ XRX,

so ZX? 4+ XRX C (X),. m

The following lemma is directly obtained from Theorem 1.14 and Lemma 4.3.4.

Lemma 4.3.5. For z € R, if (z)y is a minimal bi-ideal of R and z ¢ Z2? + xRz,

then Zz? + zRz = {0} and (z)p = Zz.

Theorem 4.3.6. If char F = 0 and n > 1, then the ring (SU.(F),+, P) has no

minimal bi-ideal.

Proof. Suppose that 4 € SU,(F) is such that (A), is a minimal bi-ideal of (SU,(F),
+,P). Since ZAPA + APSU,(F)PA C APSU,(F), by Lemma 3.4.3 and Lemma
4.3.5, (A)y = ZA. Hence (2A), = (A), since 0 # 2A € (A),. Also, by Lemma 3.4.3

and Lemma 4.3.5; (24), = Z(2A4). Then we have a contraction, as before. O

Theorem 4.3.7. Assume that char F . =p > 0 and A € SU,(F) ~\ {0}. Then the
following statements are equivalent.

 (3) (A)s is a minimal bi-ideal of the ring (SUL(F), +, P).

(i1) APA=0 and APSU,(F)PA = {0}.

(112) (A)p ={0,A4,24,---,(p—1)A}.
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Proof. (i) = (it). Since ZAPA + APSU,(F)PA C APSU,(F), by Lemma 3.4.3
and Lemma 4.3.5, ZAPA + APSU,(F)PA = {0}. But APA and APSU,(F)PA
are an element and a subset of ZAPA + APSU,(F)PA, respectively, so (ii) holds.
(12) = (i43). From Theorem 1.14 and (ii), (A), = ZA. Since char F = p, (iii)
holds.
(#31) = (7). Since |(A)s| = p, (A)p does not properly contain any nonzero sub-

group of (SU,(F),+). Hence (A), is a minimal bi-ideal of (SU,(F), +, P). O

Theorem 4.3.8. Assume that char ' = p > 0. For A € SU,(F), ifrank A =1,
then (A)y is a minimal bi-ideal of the ring (SU,(F),+, P). If this is the case, (A), =
{0,4,24,---,(p—1)A}.

Proof. By Theorem 1.13, SU,(F)ANASU,(F) = {0}. But APA and APSU,(F)PA
are an element and a subset of SU,(F)A N ASU,(F), respectively, so APA =
0 and APSU,(F)PA = {0}. By Theorem 4.3.7, (A); is a minimal bi-ideal of
(SUn(F),+,P) and (A)y = {0,4,24,--- ,(p—1)A}. 0O

Remark 4.3.9. (1) Let char F > 0 and let A be as in Remark 4.2.8\-(1). Then
A satisfies (ii) of Theorem 4.3.7. By Theorem 4.3.7, (A), is a minimal bi-ideal of
(SUn(F),+, P). Hence if char F >0 and n > 1, then (SU,(F), +, P) always has a
minimal bi-ideal for every upper triangular n x n-matrix P over F.
~ (2) Let P be as in Remark 4.2.8(2), Then (ii) of Theorem 4.3.7 is true for every
A € SU,(F). By Theorem 4.3.7, if char F > 0, then (A), is a minimal bi-ideal of
(SUL(F),+, P) for every A € SU,(F) \ {0}. Because of this fact, the converse of
Theorem 4.3.8 is not generally true.
(3) Since every quasi-ideal of a ring R is a bi-ideal, it follows that if a minimal

bi-ideal B of R is also a quasi-ideal, then B is a minimal quasi-ideal of R. However,



80

there exists a minimal bi-ideal of some SU,(F)(= (SU,(F'),+, I,)) which is not a

quasi-ideal. To see this, let

A= S SU4(Z5)

Then A? =0 and ASU(Zs)A = {0}. By Theorem 4.3.7, (A), = {0, 4,24,34,4A}

which is a minimal bi-ideal of SU4(Zs5). Let

0 001 0000 0100

0000 000060 0000
B = §C F and D =

0000 0= 0-"0=#1 0000

000 OJ O—0—Ga 0 00O

We have that B = AC = DA € ASUy(Zs) N SU4(Zs)A but B ¢ (A)p. Then (A), is
not a quasi-ideal of SUs(Zs).
From the above proof, we can see that if n > 4, then SU,(F) has\. a minimal

bi-ideal which is not a quasi-ideal.
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