CHAPTER II

PARTIALLY ORDERED DISTRIBUTIVE RATIO SEMINEAR~RINGS
In this chapter, some fundamental theorems of partially
ordered distributive ratio seminear-rings are given and we also

classify all complete ordered distributive ratio seminear-rings.

Definition 2.1. A partial order < on a distributive ratio seminear-

ring D is said to be compatible if it satisfies the following
property: For any x, y, 2z € D, X £y implies x+ 2z £y + z,

Z +X £z + Y, X2 £yz and zx £ zy.

Definition 2.2. A system (D,+,*,<) is called a partially ordered

distributive ratio seminear-ring if (D,+,¢) is a distributive ratio

seminear-ring and < is a compatible partial order on D. If the
compatible partial order on D is a total order then (D,+,*,<) is

called an ordered distributive ratio seminear-ring.

Example 2.3. (1) Every distributive ratio seminear-ring is a
partially ordered distributive ratio seminear-ring with respect to
the trivial partial ‘r.order, that is, x <y if and only if x = y.

(2) Every ratio subseminear-ring of a partially ordered
distributive ratio seminear-ring is a partially ordered distributive
ratio seminear-ring.

(3) If (D,+,*,<) is a partially ordered distributive ratio

seminear-ring then (D,+, .’%pp) is a partially ordered distributive




ratio seminear-ring.
(4) (@%,+,°,9 and (R*,+,%,9 are ordered distributive

ratio seminear-rings.
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(5) Let (G,*,< be a partially ordered group. Define the

operation + on G by

5.1) x +y X for all x, y e G or

5.2)" x +HiY

y for all x, y € G.

Then (G,+,°*,<) is a partially ordered distributive ratio seminear-

ring.
(6) Let (G,*,<) be a lattice ordered group. Define the

operation + on G by

()]
.
-
b
+
<
]

sup {x,y} for all x, ye G or

()}
)
b3
+
<
]

inf {x,y} for all x, y € G.

Then (G,+,*,<) is a partially ordered distributive ratio seminear-

ring.

Proposition 2.4. Q+ has only three compatible partial orders, the

usual order, the dual of the usual order and the trivial partial

order.

*
Proof : Let < be a compatible partial order on Q+.

*

*
Case 1: 1 < 2. Then 2 =1+4+1< 2+ 1 = 3. It follows by
*
induction that n < n +1 for all ne 27 . This implies that
* = + : +
n<n+1 for alln, 1 e Z . Since for eachm, ne Z y m <n
implies n=m+1 for some 1l ¢ Z+, we get that for each m,
*
m <n if and only if m < n.

Let x, y € Q+. Then x =

=18

and y =

nlH

for some m,n,r,s €

*
Then we have that ms < nr if and only if ms < nr which implies

ne

that

V4

)
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*
if and only if g <FS-. Therefore for each x, y ¢ Q+, X £y

3|3
A
Rln

*
if and only if x <y. Hence £ is the usual order on Q+.

*
Case 2: 2 < 1. The proof of this case is similar to the proof of :

*
Case 1 and shows that < is the dual of the usual order.

*
Case 3: 1 is incomparable to 2. We shall show that € is the trivial
partial order.
*
First, we claim that for anym, ne 2', m < nif and only if

i :
m = n. Suppose not. Then there exist m, n ¢ z" such that m < n.

Subcase 3.1: m <n. Then there exist g, r € zg such that

o
]

mqg +r and 0 <r <m.

Subcase 3.1 .17 ti=0Y Then m <* mg, so 1 <* d. Since

1 is incomparable to 2 and q € Z+, so 2 < q, we have that 0 <q - 2.
e * *

Therefore 1 + (g-2) < g + (g-2), so g - 1 < 2(g-1). Hence 1 <2y

a contradiction.

Subcase 3.1.2: r > 0. Then m <* mg + r, so we get

o ' * * q+1 r
that m+(m-r) < {mg+r)+(m-r). Thus 2m-r < m(qg+1) ,hence 1 < e .
g+1 ¥ ) * n + i

Let x = 3 m Then 1. < x. Also,*1i<x for all'ne Z ' Since

qg > 1 and ﬁ >0, x > 1. Then there exists an n € Z' such that

©

*
g o Therefore 1 + (xn—2) € X% (xn—2), so we have that

* *
% -1 € 2(% -1)." Honce 1 £ 2, a contradiction.

Subcase 3.2: n <m. The proof of this subcase is similar

to the proof of Subcase 3.1 and shows that this subcase cannot occur.
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Hence we have the claim.

m
Let x, y € Q+. Then x = = and y = for some m,n,r,s € Z+.

(/N s}

*
By the claim, we have that ms < nr if and only if ms = nr which

: s m *
implies that = < =

if and only if . Therefore for each x,y e Q+,

nly
= =
nlH

5 * *
X €& y if and only if x = y. Hence £ is the trivial partial order

Remark 2.5. Let D be a partially ordered distributive ratio seminear-
ring. Then the following statements clearly hold:
(1) For any x, y, z € D, x <y implies xz <yz and zx < zy.
(2) For any u, v, X, ye D, u <v and x <y imply ux <vy
and u + X £V + VY.

(3) For any x, y € D, x <y implies y-1 <%

Let D be a partially ordered distributive ratio seminear-ring

and A'a subset of D. The positive cone of A, denoted by PA’ is

{xe A ] x > 1}. The following statements hold:

(1) (PD,°) is a semigroup with identity.

(2) (PD,+) is a semigroup if and only if 1 <1+ 1

D B el

D D
(M) XB.* Ve P for all'xwE B
D B D k
(5) PH = PDn H where H is a subset of D.
Proposition 2.6. Let D be a partially ordered distributive ratio

seminear-ring. Then the ratio subseminear-ring H is convex in D if

and only if P is a convex subset of P_.

H D
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Proof : It is clear that if H is convex in D then PH is

-

convex in PD.

Conversely, assume that PH is a convex subset of PD. To show

that H is convex in D, let x, y € H and z € D be such that x <z < Y.

Then 1 < zx~ | < yx—1, so zx"! ¢ P and yx_1 € P,. By assumption,

A =t -1 :
ZX 3 € PH' Thus zx . € Hy so z = (zx )X € H. Hence H is convex

1niD.

#

Definition 2.7. Let D be a partially ordered distributive ratio

seminear-ring. D is called upper additive if for any x, VieD, 1. € X

and 1 <y imply 1 <x + y, lower additive if for any x, y e D, x <1

and y <1 imply x + y <1, left [right] increasing if x < x + y
[x <y + x] for all x, y € D. Left and right decreasing are defined

dually.

In Example 2.3, (5) and (6) are both upper and lower additive,

(R+,+,',<) is upper additive but not lower additive, (R+’+"’s%pp) is

lower additive but not upper additive, 6.1) is both left and right
increasing, ©6.2) is both left and right decreasing, 5.1) is left
increasing but not right increasing and 5.2) is right increasing but

not left increasing.

Proposition 2.8. Let D be a partially ordered distributive ratio

seminear-ring. -‘Then the following statements hold:
(1) D is upper [lower] additive if and only if 1 <1 + 1

[141 <£1] (hence D is both upper and lower additive if and only if
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1T +1=1).

(2) D is left [right] increasing if and only if 1 + DC PD
[D+1 C PD] (hence D is both left and right increasing if and only

if (14D) U+ C Pp).

(3) D is left [right] decreasing if and only if 1 + D C P];1
[D+1 C Pl;1] (hence D is both left and right decreasing if and only

if (1+D)yU((D+1) € P;).

(4) D is directed if and only if PD generates (D,-).
(5) D is a lattice if and only if it is directed and PD is

a lattice.
(6) D is complete if and only if every subset of PD has an
infimum.

(7) D is totally ordered if and only if D = Pl P; -

Proof: (1) It is clear that if D is upper additive then
1 €1 + 1. Conversely, assume that 1 <1 + 1. Let x, y € D be such
that x > 1 and y >1. Then x+y >1 +1 > 1. Hence D is upper
additive. |

(2) It is clear that if D is left increasing then 1 + D QPD.
Conversely, assume that 1 + D ;PD. Let x, y € D. Then 1 + yx-1 € PD’
so 1 + yx_1 2;1. Hence X + y > x. Therefore D is left increasing.

(3) The proof is similar to the proof of (2).
coxTinly ovdersd

(4) Since (D, *) i;s*a.".grvoup,_'it follows from Proposition 1.17(1)

that D is directed if and only if PD generates (D,*).

(5) It is clear that if D is a lattice then it is directed

and Py is a lattice.
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Conversely, assume that D is directed and PD is a lattice.
Let x € D. Since D is directed, U(x,1) is nonempty. Let y € U(x,1).

Then x <y and 1 <y, so yx—1, y € P.. Since P_ is a lattice, . -

D D

sup {yx_1 ,y} exists. By Proposition 1.17(3), sup {yx"1 v} =
yssup {x-1 »1}, so y_1 *sup {yx"1 »y} = sup {x'-1 21} = %} esup {1,x}.
Hence we have that xy“1 eSUp {yx—1 »¥} = sup {1,x}. Therefore sup {x,1}
exists for all x € D. By Proposition 1.17(2), D is a lattice.

(6) It is clear that if D is complete then every subset of
PD has an infimum. For the converse, assume that every subset of PD
has an infimum. To show that D is complete, let A be a subset of D
which has a lower bound, say x. Then x <a for all ae A, so 1 < ax_1

for all a € D. Hence Z-‘;x—1 [ PD. By assumption, inf (Ax-1) exists,

say y. Then we have y sax—1 for all a € A, so yx <a for all a £ A.

Thus yx is a lower bound of A. Let z be a lower bound of A. Then

z < a for all a e A, so zx—‘I < ax_1 for all a € A. It follows that

zx") €Y, so z £yx. Hence yx = inf (A). Therefore D is complete.
(7) If D is totally ordered then for each x € D, 1 < X or

X <1 which implies that D = PDU P; . Conversely, assume that

D = PDUP};1 . Let x, y € D. Then yx"1 € PDUP;, so we get that

158 yx_1 or yx—1 £1. Hence x <y or y <x. Therefore D is totally

ordered.

Definition 2.9. A subset A of a distributive ratio seminear-ring D

is called an O-set of D if it satisfies the following conditions:

(1) ana-t - 1.

(ii) ag a.
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(i31) bt A for ali weh

(iv) (x+1)_1(x+a), (14x) " (atx) € B for-all xe D, ak il
Note that for any distributive ratio seminear-ring D, {1} is
an O-set of D and for any partially ordered distributive ratio

T4 o . ” .
seminear-ring D, the positive cone of D is an O-set of D.

Theorem 2.10. Every distributive ratio seminear-ring has a maximal

O-set.

Proof: Let D be a distributive ratio seminear-ring and let
A ={acpo I A is an O-set of D}. Note that.(] is nonempty since {1}
belongs to A and A is a partially ordered set with respect to set

inclusion. Let {Aa}ael be a chain in A and J = U A,. Clearly,
. ael

J is an upper bound of the chain {Aa}uel'

1

We shall show that J is an O-set of D. Let x€ J N J_
Then x € Aa for some @ € T and x = y'-1 for some y € J. We have that

y € Bg for some B € I. Since {Am}(er is a chain in A , A, < Ag or

AB S A . Without loss of generality, assume that Am < A

k. Then

8-

X € AB’ SO X € ABD A?. But AB is an O-set of D, so x = 1. Hence

TOrat =}

'f.
To show that J2C__IJ, let x, y€ J. Then x € A, and y € Aﬁ

for some o, B € I. Without loss of generality, assume that Aag AB'

Then x € AB' Since Aé G AB’ Xy € AB' Hence xy € J. Therefore

JZQJ.
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To show that xJx ' € J for all x € D, let x €D and y € J.

Then y € Aa for some @ € I. Since anx-1Q A xyx_1 € Aa' Hence

xyx_1 € J. Therefore xJx | &g,

a

Let x eDand y € J. Then y € Aa. for some a € I. Since Aa

is an O-set of D, (x+1)—1 (x+y), (1+x)-1(y+x) € A,. Hence
(x+1) 7 (x+y) , (ak)y L (y+x) € J.
Therefore J is an O-set of D, that is,J € LL. By Zorn's

Lemma, /A contains a maximal element.

Let D be a distributive ratio seminear-ring and A an O-set
of D. Define a relation £ on D by x <y if and only if x_1y € A for
all x, y € D. Using the same proof as in Theorem 1.19, we get that
<is a partial order on D and for any x, y, z € D, x £y implies that
xz £yz and zx < zy.

To prove that for any x, y, z € D, x <y implies x + z £y + z
and z + X <z +y, it suffices to prove that for any x, y € D, x <y
implies x + 1 <y +1 and 1 + x €1 +y. Let x, y € D be such that
X < V.- Then x—1y € A. Since A is an O-set of D, (x+1)-1(y+1) =
(x(1+x_1))-1(y+1) = (1+x—1)_1(x—1y+x_1) €A. Hence x'$ 1 &€v &1
Similarly, 1 + x <1 + y.

Therefore <is a compatible partial order on D. Note that the
relation S* on D which is defined by x S* y if and only if yx_1 € A

*
for all x, y € D is also a compatible partial order on D and < = <

since A has the property that xAx-1 © A for all x € D. The proof
that <is the unique compatible partial order on D having A as its

positive cone is the same as the proof given in the note, page 9.

Hence we have the following theorem.
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Theorem 2.11. A subset A of a distributive ratio seminear-ring D is

an O-set of D if and only if there exists a unique compatible partial

order <on D such that A is the positive cone induced by <.

Note that for a distributive ratio seminear-ring D, the set
of all O-sets of D and the set of all compatible partial orders on D
are partially ordered set with respect to set inclusion. Then we
have two corollaries, the first one is obtained from Theorem 2.11 by

using the same proof given in Corollary 1.20.

Corollary 2.12. Let D be a distributive ratio seminear-ring,,CZ the

set of all O-sets of D and A the set of all compatible partial orders

on D. Then -A and /& are order isomorphic.

Corollary 2.13. Every distributive ratio seminear-ring has a maximal

compatible partial order.

Definition 2.14. Let D and D’ be partially ordered distributive

ratio seminear-rings. A map £f: D - D’ is called an order homomorphi sm

of Dinto D" if f is isotone and a homomorphism. An order homomorphi sm

f: D - D’ is called an order monomorphism if f is injective and

f(PD) = Pf(D)’ an order epimorphism if f is onto and f(PD) = PD' ‘and

an order isomorphism if f is a bijection and f_1 is isotone. D and

D’ are said to be an order isomprphic if there exists an order

isomorphism of D onto D’ and we denote this by D = D’

Proposition 2.15. Let (D,<) and (D’,<") be partially ordered

distributive ratio seminear-rings. Then the following statements
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hold :
(VN3 I:D>D ia's homomorphism then f is isotone if and

only if f(PD) C PD’ .

(2) 1f £f: D~ D’ is an order homomorphism then ker f is a

convex C-set of D.

Proof: (1) Assume that f: D= D’ is a homomorphism. It is

clear that if f is isotone then f(PD) & PD,. Conversely, assume that
f(PD) (;PD,. Let x, y € D be such that x <y. Then yx—1 € Py, S0

that f(y)f(x)-1 = f(yx-1) € Po.. Hence f(x) < f(y). Therefore f is

isotone.

(2) Assume that £: D~ D’ is an order homomorphism. By
Proposition 1.3—?:',;;'ker fis a C-set of D. Let x, ye ker f and z € D
be such that x <z <y. Then 1’ = f(x) < £(z) ¢ f(y) =17, so
f(z) = 1°. Hence z € ker f. Therefore ker f is convex.

#

Theorem 2.16. Let (D,<) be a partially ordered distributive ratio

seminear-ring and C a convex C-set of D. Then there exists a

compatible partial order on 9C such that the projection map & is an

order epimorphism.

*
Proof: Define a relation < on D/C as follows: For o,

|
|
* \

B e Dgr» @ < B if and only if there exist a € @ and b € B such that
*
a <b. Clearly, < is reflexive. Let o, B € D¢ be such that o <* B

*
and B < o. Then there exist a, d € @ and b, ¢ € B such that a <b

=

and ¢ <d. Then d-1a \<d-1b $c_1b. By definition of @ and B, we

- = -1
have 4 1a, c 1b € C. But C is convex, sod b e C. Then

L e
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*
o = [d] = [b] = B. Hence £ is anti-symmetric. Let a, B, v € % be

*
such that o <f B and B € Y. Then there exist a€ a, b, c € B and

d e ¥ such that a <b and ¢ <d. Hence a <b = clc”'b) sd(c_1b).

This implies that o = [al . ds" bl = [dllc ' 1b) = 78‘18 = y. Thus

* *
& is transitive. Therefore < is a partial order on D/C
*
Next, we shall show that < is compatible. Let a, B, Y € D/C

*
be such that @« €< B. Then there exist a € o and b € B such that a <b.
Choose c € Y. Thus a + ¢ b +c and ac <bc. Then we have that

[al+lc] = [a+c] S* [b+c] = [bl+lc] and [allc] = [ac] é* [bec] = [bllcl.

* * *
Hence @ + Y < B + v and ay < By. Similarly, Yy +a £ ¥ + B and

* *
Yo £ yB. Therefore £ is compatible.
*
We have that n: D - D/C is an epimorphism. By definition of <,

% is isotone. Then n(PD) C PD/ by Proposition 2.15(1). To show that
14

: *
PD e n(PD), let o € P. . Then [1] € o, so that there exist a € [1]
“€

and b € o such that a 1

’AO\U

P~ Thus ba-1 € PD. Now, X(ba ) = [ba-1] =
[b][a]-1 = [b]l[1] = [b] = ¢ which implies that o € x(PD). Then

P_. C n(P.). Therefore n(P_ ) =P . Hence x is an order epimorphism.
D D D 96 #

Definition 2.17. Let D be a distributive ratio seminear-ring and C

a C-set of D. A compatible partial order on C is a partial order <

on C such that

(i) for any %X, y, 2z € C, X £y implies xz <yz and zx < 2y,

*

* *
e -
(ii) for any x € D, xch - PC where PC

= fxeC/x 31} ang
*

= - *%
(iii)  (x+1) 1(x+y), (1+4x) 1(y+x) € PC for all x € D, y € PC
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Remark 2.18. (1) If D is a partially ordered distributive ratio
seminear-ring and C is a C-set of D then the restriction of the
partial order on D to C gives a compatible partial order on C

(2) Let D be a distributive ratio seminear-ring and C a ratio

-

subseminear—fing of D which is also a C-set and let < be a partial

order on C. If < is a compatible partial order on C as a C-set then
€ 1s a partial order compatible with the ratio subseminear-ring

structure of C.

Proof: (1) Obviousf

(2) Assume that ¢ is a compatible partial order on C
as a C-set. Let x,y,z € C be such that x ¢ y. By assumption, xz £ yz
* R =1 *

: -1 s £
and zx £ zy. Since yx 54 PC, PO (2B WNT ) - (zx' + yx . )ie PC

X ; . -1 -1 -1 S
which implies that zx '+1 £ 2x "+ yx .. Hence z+XxX < z+y. Similarly,
X+2 £y +z. Therefore < is a partial order compatible with the ratio

seminear-ring structure of C. "

Theorem 2.19. Let D be a distributive ratio seminear-ring and C a

prime C-set of D. Assume that C has a compatible partial order <? and

9& has a compatible partial order & Then there exists a compatible

y *
partial order on D such that < is the restriction of the partial

order on D and the projection map = is an order epimorphism.

%
Proof: Let A = PC (Y @ ). We shall show that A is
aeP_ \ {c}
%

1 1

8B O-set of D. Let a ¢ AMA~ . Thema M n i Clathiahar oot
C
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Suppose that a £ U ] . Then a € o for some o € PD\ {c}. Thus
@ePp N {c} <

%

[al =« > Bt .8 If & € PZ then a_1 € C, so a = (a'1)-1 e C which

implies that a« = [a]l =[1],a contradiction. Hence Al &) o

asPD ~ {c}
=
Then a~! e B for some B € PD N {c}. Thus [a—1] =B > [1]. It follows
g
- *
that [1] > [a_1] LA [al, a contradiction. Therefore a ¢ PC, so we

1 *

have the claim. Then a € C, so 34 €-€. But a & A, so A € PC'

* c s = e
This implies that a € PC(-\(PC) 1, hence a = 1. Therefore AMA Ag {1}.
*
)

*
To show that AZC_A, leta, b M. If a,bsPC then abe:PC

* *
so we are done. Assume that a ¢ PC or b & PC‘

Case 1: a, be o . Then a € « and b e B for some w,
aeP N {c}
7€

Be P N {c}l. Also, [ab] = [allb] =aB > [1]. Hence [ab]l e P. ™~ {c},
% D¢

so ab g L) o
aePy \ {c}
€

Case 2: aePZandbeu @ . Then a € C and b € o for some
aEP, N {c}
e

a e P. N {c}. Thus [abl = [allb]l = [1][b] = [b] = a € P. N\ {C}, and
% D
hence ab & (U o

seb A
2

Therefore A2 AL
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To show that xAx‘1CA for all x € D, let x e D and a € A.

* B *
If a € PC then xax € PC, so we are done. Assume that a e U a 5

aePD\ {c}
@
Then a € o for some o € Pg’ N {c}. Thus [xax-1] « [RILALIxT " -
(&
Ixlalx]™! > [x1[x]™" = (1], so [xax"'] e P, N\ {c}. Hence
e
xax_1 € o , SO xax-1 € A. Therefore xAx—1 o
asPD N el
<
* o
Let x € Dand a € A. If a ¢ PC then (x+1) 1(x+a),
= *
(1+x) 1(a+x) € PC’ so we are done. Assume that a & U o . Then
aePD N\ {c}

<

a e o for some a € B3 {c}. Thus [a] = @ > [1], so we get that
€

[x]+[a]l 3 [x]+[1]. Hence [(x+1).1 (x+a)]l = ([x]+[1])—1([x]+[a]) > [1].
Since a # C and C is a prime C-set of D, so (x+1)-1(x+a) 4: C which
implies that [(x+1) "(x+a)] > [1]. Hence (x+1) "1 (x+a) € W] o

acP_ \ {c}
%

3

so we get that (x+1 3=l (x+a) € A. Similarly, (1+x)_1(a+x) € A

Therefore A is an O-set of D. By Theorem 2.11, there exists

a compatible partial order <' on D such that A = PD‘ We shall show

’ - 3 -
that < cxc = € - Let x, y € C. Assume that x s’y. Then yx ’ € PD,

A i e = * *
SO yX 1 € A. Since yx 3 e C, yx L € PC which implies that x € y.

1 *

* - =
Assume that x £ y. Then yx € PC’ so yx : € A. Hence x S’ y.

*

Therefore < T

SECXE, .

We shall show that n(P_ ) = P_ . Let x eP.. If x ¢ P* then
D D/C D (&

xix) = [xX] = [1) e PD/' Assume that x & UJ o . Then x ¢ o for

C aeP_ \ {c}
%
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some a € Pgé'\ {c}. Thus n(x) = [x] = a € P, - Hence n(P)) C:PQ/'

Let o € PD . If a=[1] then (1) = [1] = a & I(PD). Assume that

e

@ > [1]. Choose a € a. Then a g (U @ , so we have that a ¢ Py-
aeP N\ {c}
T
It follows that n(a) = [a] = o ¢ n(PD). Thus P,  n(P.). Hence
96 = D
n(PD) = Pp Therefore m is an order epimorphism. "
c

From now on, for a partially ordered distributive ratio

seminear-ring (D,g) and a convex C-set C of D, the partial order on 96

will mean the partial order <? which is defined by g« 4? B if and only

if there exist a € @ and b € B such that a <b.

Theorem 2.20. A C-set C of a partially ordered distributive ratio

seminear-ring D is the kernel of an order homomorphism if and only if

it is convex.

Proof: By Proposition 2.15(2) , the kernel of an order

homomorphism is convex. Conversely, if C is convex then the projection

map n¢ D - 96 is an order homomorphism by Theorem 2.16 and we have

that C is the kernel of =.

Theorem 2.21 (First Isomorphism Theorem). Let (D,g) and (D, <"

be partially ordered distributive ratio seminear-rings and f: D - D’

an order epimorphism. Then B/ker g D’. Furthermore, there exists

an order isomorphism between the set of all ratio subseminear-rings

ko scaii
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D containing ker f and the set of all ratio subseminear-rings of
and there exists an order isomorphism between the set of all C-sets

of D containing ker f and the set of all C-sets of D’.

Proof: By Proposition 2.15(2), ker f is a convex C-set of D,

* . 4
so D/ker £ has a compatible partial order < . Define ¢: D/ker £ D
as follows: Let a € D/ker £ Choose x € a. Define ¢(a) = f(x).

Then ¢ is well-defined, bijective and a homomorphism.

To show that ¢ is isotone, let a, B € D/ker £ be such that

a { B. Then there exist a € ¢« and b € B such that a < b. Since f

~

is an order epimorphism, f is isotone. Thus ¢(a) = f(a) < f(b) =

¢(B). Hence ¢ is isotone.

To show that P_. C ¢(P ), let y € P_». Since
" D/ker f H
f(PD) = Py., ¥y = £(x) for some x ¢ P,. Then [x] e Py » SO we
/ker f
get that ¢([x]) = £(x) =y € ¢(P ). Hence P_, C ¢(P )
D/ker £ T D/ker £

Thus ¢-1(PD’) CPp . By Proposition 2.15(1), ¢-1 is isotone.

D/ker if

Therefore ¢ is an order isomorphism.
LetL = {HCD | H is a ratio subseminear-ring of D containing
7/
ker £} and £ = {L C D'I L is a ratio subseminear-ring of D’}. Since

/7
f is a homomorphism, £(H) ¢ D" for all H e © . Define <I>1 e
by @ (H) = £(H) for all He® . Since 1° e L for all L ¢ O,
£ (L) ¢ D for all L e @°. Define 0, : D ~ & pyo () =£tw

5 . _ -3
for all L e & . since f is onto, @, <I’Z(L) = 01(f (L)) =

.

f(f-1(L)) =L =1I_,L) for all L e © . Hence <I>1- <I>2 = I,D'

Y
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We shall show that £ (£(H)) = H for all H el . Let HedlD .
It is clear that H Cf_1(f(H)). Let x € f-1(f(H)). Then f(x) € f(H),
so £(x) = £(h) for some h € H. It follows that xh™' € ker £. But
ker £f C H, so x € H. Hence £ (£m)) C H. Therefore £ (£(H)) = H.

Then we have that <I>2° 01 (H) = f—1 (£(H)) = H = E@(H) for all

H e . Hence <D2° <I>1 =

k 53 : -1
Lo Therefore 01 is bijective and 01 = ¢2.

For each H1, H2 e, if H1Q H2 then <I>1(H1) = f(H1) gf(n?_) = 01(H2)

and for each L,» L, eo@/, if L,& L, then 4’1_1 (L1) =90 (L) =

2 2 S

) -1

f-1(L1) (;f_1 (L2) =®_ (L,) =@, (L,). This implies that ¢1 and 01

2

are isotone. Hence <I>1 is an order isomorphism.

Let 5 = {cCcp | C is a C-set of D containing ker f} and
7/
8w {c" C D’[ C’” is a C-set of D’}. Since f is onto, by
Proposition 1.33(3), for any C-set C of D, f(C) is a C-set of D’.

. 4 4
Define n1 : 8 “’Z by n1(c) =) Oy C € 5 - 8ince:-l: e C
s o g -1 P % 4
for all ¢” € £, by Proposition 1.33(2), £ (c’) ¢ & for all ¢’ ¢ &.
17 < - 7
Define n2 : & L& by nz(c') = f 1(C') forl all C’ ¢ A . Using the
same proof as above, we get that n, is an order isomorphism.

Hence the theorem is proved.

Remark 2.22. Let D be a partially ordered distributive ratio
seminear-ring, H a ratio subseminear-ring of D and C a convex C-set
of D. Then H MC is a convex C-set of H and HC is a ratio

subseminear-ring of D.
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Proof: It is clear that HMC is convex in H. Since H is
a ratio subseminear-ring of D and C is a multipligative normal
subgroup of D, ﬁ MC is a multiplicative normal subgroup of H. Let
x e Hand y € HMC. Then (x+1)_1(x+y) € H. Since C is a C-set of
D, (x+1)_1(x+y) € C. Thus (x+1)_1(x+y) e HMNC. similarly,
(1+x)-1(y+x) € HNC. Hence HM C is a C-set of H.

To show that HC is a ratio subseminear-ring of D, let x,

y eHQ. Then x = h1c1 and y = h2c2 for some h1, h2 € H, c1, c2 <t @
e | = (hie.) (ho P e & (.o iih e 1o
171 252 N TR208 1:-2 27152 2 ]

. : < HOR -1 53
Since c is a C-set, (h2 h1+1) (h2 h1+'c2c1 ) € C.. Hence we have that

/1 el
= h2(h2 h1+ €=C. 4 e, =

X +y=h e+ h.c 5% 1

1% 237
[h (h_1h +1)][(h—1h +1)—1(h_1h + C c—1)c 1 € HC Therefore HC is a
255599 i 254 T | 1 S

ratio subseminear-ring of D.

Theorem 2.23 (Second Isomorphism Theorem). Let (D,g) be a partially

ordered distributive ratio seminear-ring, H a ratio subseminear-ring

of D and C a convex C-set of D such that PHC = PH’ Then %/hrwc ==Hq/t,

Proof: Define f : H =~ HC . by f(x) [x] for all x € H.

Then f is onto and a homomorphism. It follows from the definitigp

*
of the partial order < on Hg/b that for each x € H, x > 1 implies

£(x) = [x] "> [1], hence Ep)Cr

BC%
To show that P = E(P), 1et s g P . By Theorem 2.16,
HC, H HC,,

the projection map n : HC - Hg/t is an order epimorphism, so
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n(PHC) = PH%' Then o = n(x) = [x.] for some x € Puce Since
PHC =P, X€ P, which implies that f(x) = [x] = a € f(PH). Thus
pH% gf(PH).

Therefore f(PH) = PHC/C' Then f is an order epimorphism.

By Theorem 2.21, Hfer £ = HG4- But for each x € H, f(x) = [x] = [1]

if and only if x € C, so we have that ker £f = HN C.

Hence the theorem is proved.

#

Remark 2.24 Let (D,€) be a partially ordered distributive ratio
seminear-ring, K a ratio subseminear-ring of D and H a subset of D
such that H and K are convex C-sets of D and HC K. Then K/H is‘a

- D
convex C ;et o /H'

Proof: To show that K/HlS convex in D/H’ let o, B € 15’1-!

* * *
and ¥ € D/Hbe such that & § ¥ € B where  is a partial order

on D/H Then there exist a € o, b, c € vy and d € B such that a <b

and ¢ € d. Then a(b-1c) < b(b—1c) =c <d. By definition of ¥y,
b e ¢ H. Since HC K and a € K, ab_1c € K. But K is convex, so
c € K. Hence ¥ = [c] € I§/H Therefore K/f_lis convex in D/H'

Since K is a multiplicative normal subgroup of D, K/ﬁis a
multiplicative normal subgroup of D/H Let x e Dand y € K. Since
K is a C-set of D, (x+1)—1(x+y) € K. Hence

(Cx1+01 D 7 (IxI+IyD) = LoD ™ Gey)] € Ky o Similarly,

([1]+[x])—1([y]+[x]) € K/H Therefore L is a C-set of D/I-I
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Theorem 2.25 (Third Isomorphism Theorem). Let (D, be a partially

ordered distributive ratio seminear-ring, K a ratio subseminear-ring

of D and H a subset of D such that H and K are convex C-sets of D and

HC K. Then (D/H)/(K/H) 7 A

Proof: Define f: D/H -'l%(by f(xH) = xK for all x € D.

Then f is well-defined, onto and a homomorphism. To show that f is

* %*
isotone, let a, B € D/Hbe such that ¢« ¢ B where  is a partial
order on D/H Then there exist a € & and b € B such that a <b. It
* %
follows from the definition of the partial order € on D/K that

f(a) = f(aH) = aK <** bK = f(bH) = £(B). Hence f is isotone. By

Proposition 2.15(1), f(PD )Y EP

Y s )

* %
Next, to show that P C f(P_,),leta€e P_ . Then K ¢ ¢,

Dk Y Dk
so there exist a € K and b € & such that a < b. This implies that

* * - g
aH € bH, so H L a 1bH. Thus a 1}:>H € PD . Since a € K, we get

7H
-1 -1 -1 :
that f(a bH) = a bK =a KbK =DbK =a € f(P_ ). Hence
%
H
P (G £(P. ).
2% 4
Thus f(PD ) = PD . Therefore f is an order epimorphism.
7H 7K

By Theorem 2.21, (D/H%er 2 = Djf- But for each x € D, f(xH) = xK = K
if and only if x € K, so we have that ker f = K/H

Hence the theorem is proved.

#

Theorem 2.26. Let (D, and (D’,<") be partially ordered

distributive ratio seminear-rings and f: D = D’ an order epimorphism.
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If ¢’ is a convex C-set of D’ then D
()

~ D/C,.

Proof: Assume that C” is a convex C-set of D’. By
Proposition 1.9 and 1.33(2), f-j(C') is a convex C-set of D. Define

gs: D~ Q}b, by g(x) = [f(x)] for all x € D. Since f is an order

homomorphism of D onto D°, g is an order homomorphism of D onto

Q/&" Then g(PD) Q;PP;&' by Proposition 2.15(1).

To show that P ., g(PD), let € P, . By Theorem 2.16,

Q/C Ip%,

the projection mapn: D” = Q;&, is an order epimorphism, so

‘n(PD,) = Pe;b" Then o = n(y) [yl for some y e P,-. Since f is

an order epimorphism, so f(PD) P .. Then y = f(x) for some x € P_.

D D

]

Thus g(x) = [£(x)] b

[yl =a € g(PD). Hence P ;6’§; g(PD).

Thus g(PD)

P - . Therefore g is an order epimorphism.
D/C,

By Theorem 2.21, D¢ & = D;E’- But for each x € D, g(x) = [f(x)] =

(1] if and only if f(x) € CI, so we have that ker g = f_1(6).

Hence the theorem is proved. "

be a family of partially ordered

Definition 2.27. Let {(Da’ 4&)}ael

distributive ratio seminear-rings. The direct product of the family

{(Da’ éa)}uel’ denoted by agI Da’ is the set of all elements (xu)ueI

in the Cartesian product of the family {(Du’ §&)} together with

acel
U ‘(‘. oy

operations + and * and the partial order < on 5 Da7éré defined by
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) . (ym)m_:I = (xaym)asl and

if and only if x & y for all a e I.
aa o

Note that ( II. Da,+;'r9’is a partially ordered distributive
ol

ratio seminear-ring and PII o I PD . So we see that given some
e a ael a

examples of partially ordered distributive ratio seminear-rings we

can construct new examples of partially ordered distributive ratio

seminear-rings using the direct product.

be a family of partially

Proposition 2.28. Let {(Du’ ﬁx)}ael

ordered distributive ratio seminear-rings. Then the following

statements hold:

(1) Il Du is upper [lower] additive if and only if Du is
acel

upper [lower] additive for all a e I.

(2) I Du is left [right] increasing if and only if Da is
ael

left [right] increasing for all a € I.

(3) I Da is left [right] decreasing if and only if Da is
ael

left [right] decreasing for all a & I.

(4) I Da is directed if and only if Da is directed for
acel

(5) O D is a lattice if and only if Da is a lattice for
acel

all a e I.
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(6) I Da is complete if and only if Da is complete for
ae I

all a e I.

(7) I D is totally ordered if and only if either I = {a}
ae T :

and Da is totally ordered or there exists an a.o € I such that Da is

o
totally ordered and IDal =1 for allae I\ {ao} -
Proof: (1) It follows from the fact that

(1a)aeI < (1a)asI + “a)aeI if and only if 1cl <4 1oz+ 1u for all

a € I and Proposition 2.8(1).

(2) Assume that “a)a To show that

I
+ I Dagn Py .

a ae I ae I a

that 1 + D CP for all a € I, leta € I and x € D . Let
o o D o o (]

o o o
-— \ .
X, =1, for allae I {ao}. Then (x ) € T D,- By assumption,
aeI
(1, + xu)cer = (1u)a€I+ (xu)asI eI Py » so 1 + X, € Py . 'Hence
el o o o (1

o

1u+DcL gPD .
o (o] G.O

Conversely, assume that 1a.+ Du [exeg PD for all a € I. Let
[}

(x ) €e I D. Then 1 ¥ x e.P for all @ € I, so that
o ael o o [ D
ae Il ()
(1a)aeI + (Xa)ael = (1a+ xm)m:I e 1 PD . Hence
acI )
(101)0(31 T B Dag i PD “
ae I ae I o

This proves that “a)asI + Dag it P if and only if
aeI el o

kD C P for all o« € I. By Proposition 2.8(2), 0 D is left
a o Da AT o

increasing if and only if Doz is left increasing for all o e 1I.
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(3) The proof is similar to the proof of (2) by using

Proposition 2.8(3).

(4) Assume that I Da is directed. To show that Da is
aeT

directed for all a € I, let @ € I and x € Dot het x =Y for
o ao ao (V] o

all a € I‘~{ao}. By assumption, U((xa)uel’ (1a)asI) is nonempty.

Let (ya)aeI € U((xa)aeI’ (1a)aeI)' Then (xa)aeI < (ya)aeI and
(1a)aeI < (ya)uel’ so X, & Yo and 1a <a Yo Hence
o o o o 070

. e U(xa A 1u ). Therefore U(xa 2 13 ) is nonempty for all X, € Da %

o o o] o o o o

By Proposition 1.16, Da is directed.
o

Conversely, assume that Da is directed for all a« € I. Let

(xu)aeI € agl Du' Then U(xa, 1a) is a nonempty subset of Du for all

@ e I, For each a € I, let = U(xa, 1a)' Thus for any a e I,

< (y)) and

acl o ael

Xy sa Y. and 1m \<a Y it follows that (Xa)

(1) ) Hence

(115 ) i < (ya) aluc i’

a oe T (ya)ae

€ U((x )
o ae

eI’ I 12

U((xa) (1.:) ) is nonempty for all (xa)ue e I D,- By

aeI’ a’ael I
oae I

Proposition 1.16, 1 Da is directed.
ae I

(5) Assume that 1II Da is a lattice. To show that Da is a
acI

lattice for all a € I, leta € I and x € D . Let X ‘==1" for all
o ao ao o o

o € I‘\{ao}. By assumption and Proposition 1.17(2),

sup {(xa)as_, (1) .} exists, say (¥, )5

- e ¥ Then x S y and

) o o )
o o0

<

1. S SC ¥V 1is an u T :
% & ppe boung of X, and 1a Let za € q! be
oo . o o} o o o o
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an upper bound of x and 1. . Let z = 1 for all a € I~N{a }.
o oy a o o

Then (xa)a < (za)a and (1) < (z)) which implies that

el o 1 a ael o el

(y ) < (z))

o RS o e Thus Y sza » hence Yy =mup {xa » 1cl g

o o o (o] (o]

Therefore sup {xa ity } exists for all X, € D, . By Proposition
o o o o

1.17(2), Du is a lattice.
X :

Conversely, assume that Da is a lattice for all @ € I. Let

(xa)ueI € aiII D,- For each a e I, let Y, = sup {xa, 1a}° Then for

any a € I, Xy $ Yq and 1a S, Yo’ SO we get that (xa)aeI < (ya)aeI

and (10.)01.81 < (ya)a

cp- Thus (ya)ueI is an upper bound of (xa)asI

and (1a)az-:I' Let (Za)aeI be an upper bound of (xu)aeI and “u)aeI'
Then for each a € I, xa <u za and 1m ‘a za, so we get that yu <o¢ za

for all o« € I. Thus (yu)a:-:I % (Za)ael' Hence

(y ) = sup {(xa)u

alanT “a)a k1M Proposition 1.17(2), I D

™ I
. i acl

is a lattice.

(6) Assume that every subset of I PD has an infimum. To
ac I a

show that for each o ¢ I, everil subset of P has an infimum, let

D
o

oa'e I and let A be a subset of P . Let A = {1} for all o
o) o D o a

o o
o

o€ I\{ao}. Then I Aag I PD . By assumption, inf (I A )
ac L ael o acl
exists, say (xa)aeI' Thus (xa)ael < (aa)a for all (aa.)u.sI € w_:HI A

el

which implies that x $  a for all a €e A . Lety be a lower
o o o a o o
o o o o o o
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bound of Aa - Lety = 1a for all a e I \{uo}. Then (ya)ael is a
o
lower bound of I Aa’ so (ya)aeI < (xu)asI' Hence . <& X, » SO
acl o o) o)

we get that x = inf (A ).
o o
o) "o

Conversely, assume that for each a € I, every subset of PD
o

has an infimum. Let A be a subset of I PD . Then A = .I A
ael o ael

where Aaq; PD for all o« € I. For each a € I, let X, = inf(Aa).
o

Let (aa)a € A. Then for each a € I, Xy 6& a,» so (xa)ae

eI < ia )

I o' ael”

Hence (x ) < (a) for all (a ) € A, so that (x ) is a
o o o o

acl ael el o ael

lower bound of A. Let (ya)asI be a lower bound of A. Then we have
that y is a lower bound of A for all a € I. Hence y < x_ for all
o a a oo

ae I, so (ya)asI & (xa) Therefore (xu)us = inf (A). Also,

ael’ I

every subset of 1II PD has an infimum.
ael o

This proves that every subset of I PD has an infimum if
ael a

and only if for each o € I, every subset of PD has an infimum. By
o

Proposition 2.8(6), I Da is complete if and only if Du’is complete
ael

for all “g.e T.

(7) Assume that I Da:is totally ordered. Suppose that
ael

|I| > 1. Claim that for each a € I, if lDal > 1 then the partial
order on Du is a total order. Let o & I be such that lDa l >la
o

= € a 3
Let s € D“b and X 1a for all o ) 08 | 0} Then
o
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< <
(1a)a€I < (xa)aeI or (xa)asI < (1a)aeI’ so 1“@ \,o X - or

-1
X s& 1 . This implies that Da G PD U PD . Hence

(o} o a a
o (@) ° o

D =P L)PB1 . By Proposition 2.8(7), Da is totally ordered.

o] a [+ ] (o}

Hence we have the claim.

If |D | =1 for all a e I then D = {1} for all a € I.
a o o
Assume that there exists an qE I such that IDa | > 1. By the claim,

o
Da is totally ordered. This implies that PD + {1a k.
(1

(@) o
o

Next, we shall show that IDaI =1 for all a € I \{ao}.
Suppose not. Then there exists a B € I \{ao} such that IDBI >0

By the claim, Dg is totally ordered which implies that P £ {13}.
B

Let xa € PD \ {1u } and yB € PD \ {13}' Let xa = 1a for all

o a o B
o
o € I\\{ao} and Yo Wiy for all a € I\ {B}. Thus (xa)aeI < (ya)ueI
or (ya)aeI < (xa)asl’ so we have that X8V on vg < 1B, a
o o
contradiction. Hence IDaI =1 for all a € I \{uo}.

The converse is obvious. "
Next, we shall characterize those distributive seminear-rings
which can be the positive cones of a partially ordered distributive

ratio seminear-ring

Theorem 2.29. Let P be a distributive seminear-ring with multipli-

cative identity 1. Then there exists a partially ordered distributive
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ratio seminear-ring having P as its positive cone if and only if P
satisfies the following properties:

(i) Pis multiplicatively cancellative.

(ii) Pa = aP for all a g P.

(iii) For any a, be P, ab =1 impliesa =b = 1.

(iv)  a + cb e P(a+b) and cb + a € P(b+a) for all a,b,c € P.
Moreover, if P satisfies properties (i) - (iv) then there exist a
partially ordered distributive ratio seminear-ring D and a
monomorphism i: P = D such that

(1) 1i(P) is the positive cone of D and

(2) if D’ is a partially ordered distributive ratio
seminear-ring and j: P » D’ is a monomorphism such that j(P) is the
positive cone of D’ then there exists a unique order monomorphism
f: D~ D’ such that fei /= j, thatis, D is the smallest partially
ordered distributive ratio seminear-ring having P as its positive
cone up to isomorphism.

Furthermore, D is directed and upper additive.

Proof : Since the positive cone of a partially ordered

distributive ratio seminear-ring D has properties (i) - (iv), so if
P is isomorphic to the positive cone of D then P also has properties

i) - (Gv).

Conversely, assume that P satisfies pfaperties (i) = (Aw)
By properties (i) and (ii) of P, we get that for any a, x € P there

exists a unique xaE P such that xa = ax_ . Using the same proof as

in Theorem 1.21 we get that
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(1) (xy)a and

]
x
L<

(2) (xa)b -

for all a,b,x,ye P. From a(x+y)a= (x+y)a = xa + ya = axa+ ay_ =
a(xa+ ya) for all a,x,y € P, we have that
(3) (x+y)a st M0 5

for all a,x,y & P.
Define a ralation “ on P x P as follows: For a,b,c,d € P,
(a,b) v (c,d) if and only if adb = cb. Using the same proof as in

P.x P

Theorem 1.21 we get that v is an equivalence relation. Let D = N

Define operations + and ° on D by

[ (ac

]

[(a,b)]*[(c,d)] db)] and

b)

[(a,b)]+[(c,d)] [(ad + cb_, bd)]

]

q’
for all a,b,c,d € P. Using the same proof as in Theorem 1.21 we get
that * is well-defined and (D,*) is a group with [(1,1)] as the
identity and [(b,a)] as the inverse of [(a,b)] for all a,beiP:

Now, we shall show that + is well-defined. Let V,W,X,y € P
be such that (v,w) € [(a,b)] and (x,y) € [(c,d)]. Then (a,b) v (v,w)

and (c,d) v (x,y), so aw, = vb and CYg = X3 ceicecieseccsesva (*).

From

(ad+cbd.)(wy)bd ad(wy)bd + cba(wy)bd

= ad((wy)b)d-f-c(b(wy)b)d (by (1) and (2))
= a(wy)bd-i-c((wy)b)d

= awbybd + c((wa)b)d (by (1))

= vbybd + cyd(wyb)d (by (*) and (1))
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(by (*))

= vybd + xd(wyb)d

vybd + xwybd

bd,

(vy + xwy)

we have that (ad+cbd, bd)%(vy+xwy, wy). It follows that
[(a,b)]+[(c,d)] = [(ad+cbd, bd)] = [(vy+xwy, wy)l = [(v,w)]1+[(x,y)].

Hence + is well - defined.

To show that + is associative, let a,b,c,d,x,y € P. Then

(cbd)y + x(dbd)y = c(bdy)4-x(dy(bd)y) (by (1))
= c(y(bd)y)+(xdy)bdy (by (2))
£ (cy)bdy+ (xdy)bdy (by (2))
= (cy+xdy)bdy ....... (xx),

Hence

([(a,b)]+[(c,d))+[(x,y)] [(ad+cbd, bd)1+((x,y)]

— [((ad+cbd)y+ x('bd)y, (bd)y)]

= [((ad)y+-(cbd)y+-x(dbd)y, b(dy))]

= [(a(dy)+(cy+xdy)bdy,b(dy))] (by (**))
= [(a,b)]+[(cy+xdy, dy)]

= [(a,b)1+([(c,d)]+[(x,y)]).
Therefore + is associative. 2
To show that « is distributive over + in D, let a,b,c,d,

X,y € P. Then
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(ad)xbd = a(d(xb)d) = a(xbd) = (axb)d,

(de)’ﬁ)d=0(bd(xb)d) =C(bxb)d=C(Xb)d = cxdbd,

((yb)(dyd))ybd ((ybd)yd)ybd

(1) 3

(ybd)y ) (by (1))

baYa ybd

ybd(yd)ybd

r'—
|

= Yd(ybd) and

(II) bdyd = (by)d = (yby)d = (yyby)d = (yb)yd.

Hence

((ad+cb.)

3 )((yb)(yd))y

*ba (bd)

((ad)xbd+-(cbd)xbd)((yb)(dyd))ybd

((axb)d + (cxd)bd)yd(ybd) (by I)

]

((axb)dyd~+ (cxd)bdyd)y(bd)

((axb)(yd)+-(cxd)(yb)yd)y(bd) (by II).
It follows that

((ad+cbd)xbd,y(bd))h((axb)(yd)+(cxd)(yb)yd,(yb)(yd)) ....... (I11).

Therefore

([(a,b)]+[(c,da)]) [ (x,y)]

[(ad+cbd, bd)1[(x,y)]

[((ad+cbd)xbd, y(bd))]

[((axb)(yd)+(cxd)(yb)yd,(yb)(yd))]

(by (II1I1))

[(axb, yb)1+[(cx,, yd)]

]

[(a,b)]1[(x,y)1+[(c,d)]1[(x,y)].
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From
((by) (dy))(bd)y = (by(dy))bdy

= (bdy ydy)bdy

= (bdy)bdy(ydy)bdy

= bdy(ydy)bdy

= ydy(bdy) ............... (IV)
and dyydy = (dd)yydy = ddyydy = (dy)dy = dy e AR (v),
we have that
x(ad+cbd)y((by)(cly))(b.d)y

= x((ad)y+ (cbd)y)ydy(bdy) (by (3) and (IV))

(x(aydy) + x(cy(bd)y) )ydy(bd)y

( (xay)dyydy+ (xcy)bdyydy) (bd)y

((xay)dy+ (xcy)(by)dy)(bd)y (by (V) and (1)).

It follows that
(x(ad+cbd)y, (bd) y)( (xay)dy + (xcy) (by)dy, {by) (y)) =i iiias o (VI).
Hence

[(x,y)]1([(a,b)]+[(c,d)]) [(x,y)][(ad+cb_, bd)]

[(x(ad+cbd7"y, (bd)y)]

[ ((xay)dy+ (xcy) (by)dy, (by) (dy))]

(by (VI))

[ (xay, by)1+I[ (xcy, dy)]

[(x,y)][(a,b)]+[(x,y)][(c,d)].
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Therefore (D,+, *) is a distributive ratio seminear-ring.

Define i: P = D by i(a) = [(a,1)] for all a € P. Using the
same proof as in Theorem 1.21 we get that i is injective and
i(ab) = i(a)i(b) for all a,b € P. For any a,b € P, i(a)+i(b) =
[(a,1)]+[(b,1)] = [(a+b,1)] = i(a+b). Thus i is a homomorphism.
Therefore i is a monomorphism.

Now, we shall show that i(P) is an O-set of D. Using the
same proof as in Theorem 1.21, we get that i(P)ﬁi(P)-1 = {[(1,1)1},
i(P)2 C i(P) and cti(P)cat"1 & i(P) for all a € D. Let a,b,c € P.

By property (iv) of P, a + cb € P(a+b) and cb + a € P(b+a). Then
a + cb = x(a+b) and cb + a = y(b+a) for some X,y € P. Also, we

have that b(a+cb)a+b = b(x(a+b))a+b = bxa+b(a+b)a+b = bxa+b(a+b)

and b(cb+a)b+a b(y(b+a))b+a = byb+a(b+a)b+a = byb+a(b+a). Since

bP = Pb, bxa vb for some u,v € P. It follows

ki ub and byb+a

that b(a+cb)a+b = ub(a+b) and b(cb+a)b+a = vb(b+a).

Hence -
(b(a+cb) RWrofaFpnUnaln§qnivenoily o oo (VII)
a+b
and (b(cb+a) yoBbHa) ) Nrilw, ) i T s e (VIII).
b+a
Thus

([(a,b)]+[(1,1)])—1([(a,b)]+i(C)) [(a+b,b)]-1([(a,b)]+[(c,1)])

]

[(b,a+b)][(a+cb,b)]

[(b(a+cb)a+b, b(a+b))]

=[(u,1)] (by (VII))

=1i(u)
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and

(L01,1914LCa,b) 1)~ (i bl (a,b)1) = [(bra,)] ([ (c,1) 140 (a,b)1)
= [(b,b+a)l [ (cb+a,b)]

= [(b(cb+a)b+a, b(b+a))]

=[(v,1)] (by (VIII))

=i(v).

Hence (a+[(1,1)])—1(a+8), ([(1,1)]+a)-1(B+a) € i(P) for all o € D,
B e i(P).

Therefore i(P) is an O-set of D. By Theorem 2.11, there
exists a unique compatible partial order on D such that i(P) is the

positive cone of D. Since [(1,1)]+[(1,1)] = [(1+1,1)] = i(141) ¢ P>

by Proposition 2.8(1), D is upper additive. Since for any a,b ¢ P,

umml=[mnnuum1=[mnnumnr‘=umum”,iw)=%

generates (D,*). By Proposition 2.8(4), D is directed.

We shall now show that D is the smallest partially ordered
distributive ratio seminear-ring having P as its positive cone up to
isomorphism. Assume that D’ is a partially ordered distributive
ratio seminear-ring and j: P - D’ is a monomorphism such that

j(P) = Py. Define £: D = D’ by £([(a,b)1) = j(a)j(b)”" for all

a,b € P. Using the same prove as in Remark 1.22 we get that f is

well-defined, injective, f(PD) = pfiD) and f(aB) = f(a)f(B) for all

a,B € D. Let a,b,c,d € P. Since dbd = bd, so j(d)j(bd) = j(b)j(d).

Hence 1M I ChM T R TR i ) R el (*xs)
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Thus

f(l(a,b)]1+[(c,d)])

f([(ad+cb_, bd)]

d’
= j(adicby)j(ba) !

1 1

= (3(a)3(d)+3(c)3(by))3(@) ™ 3 (b)~
= @I+ 5@F@T by (xx5))
= f([(a,b)]) + £([(c,d)]).

Hence f is a homomorphism. Therefore f is an order monomorphi sm.

Using the same proof as in Remark 1.22 we get that f is the unique

order monomorphism such that fei = j. 4
by

Let D be an ordered distributive ratio seminear-ring such

that 1 + 1 = 1. Then for any X,y,z € D, if x,y € LID(1) and x$z gy

then z ¢ LID(1). This statement is also true for RID(1).

We shall now classify all complete ordered distributive
ratio seminear-rings such that 1 + 1 = 1. First, we shall need some

lemmas.

Lemma 2.30. Let D be a complete ordered distributive ratio seminear -
ring such that 1 + 1 = 1. Assume that LID(1) is a proper subset of D.

Then the following statements hold:

(1) If LI()M P 4 {1} then LI (1) = P
=4
(2) If LI, Mps 4 {1} then LE (L) P,
If RID(1) is a proper subset of D then the statements(1) and (2) are

also true for RID(1).

s
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Proof : (1) Assume that LI (1) MY P ¢ f1}.  Let x ¢ LI (1)

be such that x > 1. To show that PDC LID(1), let y e P Then

D*
y>1. If y <x then y e LID(1), so we are done. Assumé that x <y,
Since D is complete, by Proposition 1.14, (D,+) is Archimedean.
Hence there exists an n € Z such that y < xn. Sincey > 1, n £ 0.

If n € Z, it follows from 1 < x that Xt < 1, soy <1, a contradic-
tion. Hence n e Z'. By Remark 1.29(2), x" e LID(1). Since

1 gy <xn, y € LID(1). Therefore PD gLID(1). Suppose that

-1
PD CLID(1). Let z € LID(1)\ PD. To show that PD C_LID(H, let

w € P;. Then w 1. If w > z then w ¢ LID(1), so we are done.

Assume that w < z. Since (D, *) is Archimedean, there exists an
n € Z such that zn <w. Sincew <1, n=%=0. Ifne Z , it follows
from z <1 that 1 < zn, so 1 <w, a contradiction. Hence n € Z+,

By Remark 1.29 (2),z" ¢ LI (1). Since z0 <w <1, we LI (1). Hence

-1 -1 2 %
PD G LID(1 ). Thus PD ) PD G LID(1 ). Since D is totally ordered,

by Proposition 2.8(7), D = PDLJPI;1. This implies that LI (1) = D

which contradicts the hypothesis. Therefore PD = LID(1).

(2) The proof is similar to the proof of (1). "
Lemma 2.31. Let D be a complete ordered distributive ratio
seminear-ring such that 1 + 1 = 1 and [DI > 1. Then exactly one of

the following statements hold:

(1) 'x + y=min {x,y} for all x, v & D,
(2} x + y =max {x,y} for all x, v E D
(3) x+y=x for all x, y € D.
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(4) "x + y.=y for all x,.y-e D

Proof: Case 1: LID(1) = {1}. Let x € D. Then

1 + (1+x)‘= (1+1) + x =1 + x, so 1 € LID(1+x). By Remark 1.29(1),
LID(1+x) = (1+x)LID(1) = {14x}, so 1 =1 + x. Thus x ¢ RID(1).
Hence D;RID(H. Therefore RID(1) = D. Let x,y € D. Then

yx—1 € RIJ(1), so 1 + yx"1 = 1 which implies that x + y = x. Hence

x +y =x for all x,y € D.

Case 2: LID(1) = D. Let x,y € D. Then xy—1+ 1 =1, 80 + y = Vv.

Hence x + y = y for all x,y e D.

Case 3: {1} C LID(1)C: D/ [ EE RID(1) = {1} then LID(1) = "D by,

using a proof similar to the proof of Case 1 which is a contradiction.
If RI_(1) = D then for each xe D, 1 + gl 4 1, 80 x + 1 =x for ai}
x € D which implies that LI (1) = {1}, a contradiction. Hence

{1}C RI(1)C D. Let x¢ LIJ(1)\ {2} .

Subcase 3.1: x > 1. Then x ¢ LID(1)r\ P . By Lemma 2.30(1),
LI (1) = P,. Letye RI_(1\ {1}. We shall show that y > 1.

Suppose that y <1. Then y € RID(1)fﬁ P51. By Lemma 2.30,

RID(1) = PB1. Let a,b € D be such that a <b. Then ba_1 € PD, so

ba-1 € LID(1). Hence ba-1 +1=1, sob +a=a. But ab—1 € P51,

1 1

so ab € RID(l). Thus 1 +ab =1, sob +a=>b. This is a

contradiction since a $ b. Therefore y > 1. Then we have that
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y € RID(1)m PD. By Lemma 2.30, BID(‘I) =P Hence LID(1) = RID(1)

D"
D"
Let x,y € D. Without loss of generality, assume that x £Vy.

Thenyx_1x-:P soyx-1+1=1+yx_1=1. Thus y + X = X + y = X =

D)

min {x,y}. Therefore x + y = min {x,y} for all x,y e D.

Subcase 3.2: x <1. This proof is similar to the proof of

Subcase 3.1 and shows that x + y = max {x,y} for all x,y e D.

Theorem 2.32. Let (D,+,°,<) be a complete ordered distributive

ratio seminear-ring such that 1 + 1 = 1. Then (D,+,*,< is order
isomorphic to exactly one of the following:
1) i1}, 809
S
(2) (R ,mbe; <)
(3) (IR+,max,°,$),

(4) R g

2,',<) where x +y = X.
(5) (IR+,+r,°,\<) where x +r}’ =Y.
(6) ({2"| ne 2}, min,+,<.
(1) ({2"] ne 2z}, max,*,9.
(8y. #427} w2}, +g0%<) .
(9) ({2"] n.e 2}, + %%
Proof : If IDI = 1 then D is order isomorphic to (1).

Assume that lDl > 1. Since (D,+,g is a complete totally ordered
group, by Theorem 1.15, (D,+,<) ia order isomorphic to either

(RT,+,Q or ({2%| ne 2},-,9.
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Case 1: (D,*,g) = (R+,',<)- Then by Lemma 2.31, (D,+,*,<) is

order isomorphic to either (2), (3), (4) or (5).

Case 2: (D,*,g) = ({2n| ne 2},°,Q. Then by Lemma 2.31, (D,+,*,<)
is order isomorphic to either (6), (7), (8) or (9).

Finally, we shall show that (1) to (9) are not order
isomorphic to each other. Clearly, (1) is not order isomorphic to
any of the others and R' is not isomorphic to {2nl ne 2}. Since (4)
and (5) are not additively commutative, so (4) and (5) are not order
isomorphic to (2) and (3).

To show that (2) is not order isomorphic to (3), suppose not.
Let f: (R+,min,°,<)‘* (R+,max,',<) be an order isomorphism. Since
1 <2, so £(1) < £(2), Nence?fl2) = £(N + £(2) = £(142) = £(1), a
contradiction. Therefore (2) is not order isomorphic to (3).

To show that (4) is not order isomorphic to (5), suppose
not. Let f: (R+,+2,',<)'* (R+,+r,',<) be an order isomorphism Since
£(1) = £(2) + £Q(1) = f(2+21) = £(2), a contradiction. Hence (4) is
not order isomorphic to (5).

Similarly, (6), (7), (8) and (9) are not order isomorphic to

each other.

#

Let D be a distributive ratio seminear-ring. For each n € Z+,

we shall denote 1 + 1 + ... + 1 (n times) by n.

Definition 2.33. Let D be an ordered distributive ratio seminear -

ring such that 1 + 1 # 1. D is called Archimedean if for any x,y € D,
X <y implies that either

a) there exists an n e 2z such that y <nx or
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b) there exists an n € zf such that ny < x.

Remark 2.34.([3]). Let D be an ordered distributive ratio seminear-ring
and P the prime distributive ratio seminear-ring of D. Then

(i) a) in Definition 2.33 holds if P is order isomorphic
to (Q+)+).)<)'

(ii) b) in Definition 2.33 holds if P is order isomorphic

+

to (Q ,+,?,<5pp).

Let D be an ordered distributive ratio seminear-ring, P the
prime distributive ratio seminear-ring of D and x € D. Then we

shall use the following notations: A = {ye P |y <x} ani

= ' < v
B {lyepr | x <y}

We need the following lemmas to classify all complete ordered
distributive ratio seminear-ring which has property that 1 + 1 £
The first, second and third lemmas have been proven in [3], pages

33 - 35 and 37.

Lemma 2.35 ([3]). If D is a complete ordered distributive ratio

seminear-ring such that 1 + 1 £ 1 then D is Archimedian.

!

Pa

Lemma 2.36 ([3]). Let D be a complete ordered distributive ratio
seminear-ring such that the prime distributive ratio
seminear-ring of D 1s order isomorphic to (Q+,+,',<}. Then the
following statements hold:

(1) 1 =inf {1+n'1| ne z'}
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(2) For any x,y € D, X <y implies that nx + 1 < ny for some

(3) For any x € D there exists an ng e 2' such that for each

: : -1
n e Z’+, ng £ n implies n < x.

Lemma 2.37 ([3]). Let D be a complete ordered distributive ratio
seminear-ring and P the prime distributive ratio seminear-ring of D
which is order isomorphic to (Q+,+,°,<) . Then the following
statements hold:

(1) sup A_ =inf B. = x and A =A + A for all x,y e D.
X x X+y x 'y

(2) If £f: D - D is isotone such that f(x) = x for all x e P

then f is the identity map of D.

Lemma 2.38. Let D be a complete ordered distributive ratio seminear-
ring such that P, the prime distributive ratio seminear-ring of D, is

order isomorphic to (Q+,+,‘,$) . Then P is the strongly dense in D.

Proof: Let x,y € D be such that x <y. By Lemma 2.36(2),

m,x + 1 <moy for some m e 27. Claim that for any k € Z+, m <k

implies that kx + 1 <ky. Let k € zt be such that m k. If k =m
o o

then we are done. Assume that mo <k. Then k = 2 + mo for some

2 e zt. since x <y, so kx + 1 = (£+mo)x + 1 = £x+(mox+1)s £y'+moy =

(l+mo)y = ky. Suppose that kx + 1 = ky. Then x + k-1 = y. Since

hl =9 £ =
m <k, k1 <mo . It follows i:haty=x+k1 <x+m°1, and hence

moy < m x + 1, a contradiction. Therefore kx + 1 <ky. Hence we

have the claim. By Lemma 2.36(3), there exists an n e z* such
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that n;1 <x, s0o 1 <nx. Let Le Z' be such that m, <4n_ . By

the claim, (lno)x + 1 < (Rno)y .............. (*).

Since D is complete, by Lemma 2.35, D is Archimedian. Since

T. €2 < R(nox), so there exists an r € 2 such that (f.no)x <rel =1
Let r =min {r e Z’+| (fn )x <r}. Then r -1 £ (fn )x <r . From
o o o o o

(*), we have that r < (fn )x + 1 < (4n )y. Thus (&n )x <r < (£n )Y,
o o o o o o

1

so x < (Eno)_ r, <y. Hence P is strongly dense in D. #

Theorem 2.39 ([3]). Let (D,+,°,< be a complete ordered distributive
ratio seminear-ring such that 1 + 1 # 1. Then (D,+,*,<) is either

order isomorphic to (!R+,+, *,% or (£R+,+, .’Sopp) :
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