CHAPTER I

PRELIMINARIES

In this chapter, we shall give some notations, definitions

and theorems used in this thesis. Our notations are:

Z = the set of all intergers,

2% = the set of all positive in;ergersf

Z = the set of all negative intergers,

7y =z Uloly

Q = the set of all rational numbers,

Q+ = the set of all positive rational numbers,
0 = otulol,

R = the set of all real numbers,

Rt = the set of all positive real numbers,

R~ = the set of all negative real numbers and

RO = R+U{0}.

In this thesis, if we do not give the definition of a binary
operation or an order on a subset of R then we shall mean the usual
binary operation and the usual order on it.

-

Definition 1.1. Let (P,<) be a partially ordered set. The opposite

partial order (or the dual partial order) on P is the relation ﬁ)

on P defined as follows: For any a,b € P, a sé b if and only if

b La.



Definition 1.2. Let (P,<) be a partially ordered set. P is a
lattice if sup {x,y} and inf {x,y} exist for all x,y € P and P is
said to be complete if every subset of P which has a lower bound has

an infimum.
In [3], page 5, it was shown that a partially ordered set P
is complete if and only if every subset of P which has an upper

3 bound has a supremum.

Definition 1.3. Let (P,<) be a totally ordered set. A nonempty

subset S of P is called strongly dense in P if for any X,y ¢ P, x <y

implies that there exists a z € S such that x <z <y

For any nonempty subset A of a partially ordered set P, let
U(A) = {xe P | a ¢<x for all a ¢ A} and

L(A) {VEP | x <a for all¥a e A}.

If A

{a1,a2,...,an}, denote U(A) = U(a1,a2,...,an) and

L(A) b L(a1,62,...,an).

Definition 1.4. A partially ordered set P is called upper [lower]

directed if U(a,b) [L(a,b)] is nonempty for all a,b € P, directed if
it is both upper and lower directed.

¢
Example 1.5. Let X be a nonempty set such that !Xl > 2. Then the set
of all proper subsets of X is lower directed but not upper directed and

the set of all nonempty subsets of X is upper directed but not lower

E directed with respect to set inclusion.



Definition 1.6. A subset C of a partially ordered set P is called

convex if for any x,y € C, z € P, x £z £y implies z ¢ C.

Note that the intersection of convex subsets of a partially

ordered set is also convex.

Definition 1.7. Let (P, and (P’,<’) be partially ordered sets.

Amap f: P - P’ is called isotone if for any x,y € P, x <y implies

f(x) <" f(y), an order isomorphism if f is bijective and f, f_1 are

isotone.

Remark 1.8. Let (P,<) and (P’,<") be totally ordered sets and

f: P » P’ an isotone bijection. Then £ Riis isotone.

1

Proof : Let x,y e P’ be such that x <" y. If f—1(y) cf. 1%

then y = f(f—1(y)) < f(f_1(x)) = X, a contradiction. Hence

£l < f—1(y). Therefore £~ isotone.
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Proposition 1.9. Let (P,< and (P7,<") be partially ordered sets,

f: P > P’ an isotone map and C’ a convex subset of P’. Then £ lpey

is a convex subset of P.

Proof : Let x,y € f_1(c') and z € P be such that x <z «y.
Then f(x) < £(z) <" f(y). But C’ is convex, so f(z) € C’. Hence

z € f_1(C'). Therefore f_1(C') is convex.

Definition 1.10. A partial order gon a semigroup (S,*) is said to be

compatible if for any x,y,z € S, x £y implies xz < yz and zx < zZy .



Definition 1.11. A system (S, *»<) is a partially [totally] ordered

semigroup if (S,*) is a semigroup and < is a compatible partial

[totall] order on S.

Example 1.12. (1) (Z,+,<,(Q,+,< and (R,+,<) are totally ordered

groups.

(2) Let € be the additive group of complex numbers. For any
a+bi,c+die ¢, define a + bi <c + di if and only if either a <c
or a=cand b £d. Then (C,+,< is a partially ordered group.

(3) In Q+, define a < b if and only if g is an integer.
Then (Q+,° »<) is a partially ordered group.

(4) Let G = {(x,y) l x,y € R}. For any u,v,x,y € R, define

(u,v)*(x,y) = (u+x, exv+y) and (u,v) < (x,y) if and only if either

u <xorus=xand v y. Then (G,*,g is a partially ordered group.

l’1 a ¢
(5) Tet MEN{I0 1 b {/ atb,c € R}.
[0 0 1
1 a @ IR BEeRt
Define 0 1 b amd ey, 1 e if and only if either 1) a < 4,
0 0 1 0 0 1

2)a=dandb<eor3)a=d,b=eandc+bd\<ab+f. Then

(M,?,g) is a partially ordered group.

Definition 1.13. Let (G,*,< be a totally ordered group.

G is called Archimedian if for any x,y € G \ {1}, x < y implies that

there exists an n € Z such that y < e




In [3], page 10, it was shown that a totally ordered group G
is Archimedean if and only if for any x,y € G\ {1}, x <y implies

that there exists an n € Z such that yn < Xx.

Proposition 1.14 ([3]). Let G be a complete totally ordered group,

Then G is Archimedean.

Theorem 1.15 ([3]). Any complete totally ordered group is order

isomorphic to exactly one of the following:
(1) ({1} 9%
(2) (2" |n2VA)Q) -

(3 R

Proposition 1.16 ([1]). For any partially ordered group G and a & G,

G is directed if and only if U(x,ao) # @ for all x € G.

Proposition 1.17 ([1]). Let G be a partially ordered group. Then

the following statements hold:
(1) If G contains an element ao such that a, > 1 and U(ao)

generates G then G is directed. Also, if G is directed and

aj eG then for any b € G there exist y,z € U(ao) such that b = yz_1.

(2) G is a lattice if and ogly if sup {x,1} exists for all

X € G.
(3) If Gis a lattice then for any x,y,z € G,

sup {xz,yz} = (supix.,y})*z and sup {zx,zy} = z.sup {x,y}.

Definition 1.18. A subset A of a group G is called an O-set of G




if it satisfies the following conditions:

(1) A0 oW
(2) ac a.

(3) xAx_1 C A for all x £ G.

Note that for any group G, {1} is an O-set of G and for any
partially ordered group G, {x € G | x > 1} which is called the

positive cone of G is an O-set of G.

Theorem 1.19 ([1]1). A subset A of a group G is an O-set of G if and
only if there exists a compatible partial order on G such that A is

the positive cone induced by <.

Proof: Assume that A is an O-set of G. Define a relation <
on G as follows: For x,y € G, x £y if and only if x—1y € A. We shall
show that < is a partial order on G. Since 1 € A, is reflexive.
Let X,y € G be such that x <y and y < x. Then x_1y, y_1x € A. But

-1 -1_,-1 -1 -1 :

x y=(y x) , sox ye€eAMA . Hence x =y. Thus (is
anti-symmetric. Let x,y,z € G be such that x <y and y <z. Then
1 o1 . 2 -1 -1 =)

X'y, Yy 2z€A.  Since AT C A, 80 X 2= (x y)y :z) & A and thug
we get that x < z. Hence <is transitive. Therefore <is a partial
order on G.

To show that < is compatible, let x,y,z € G be such that
-1 . = 4

x <y. Then x y e A. Since (zx) 1(zy) = X 1y € A, zx <zy. Since
-1 -1 -1, -1

z Az C A, so (xz) (yz) =z (x y)ze A, hence xz <yz. Therefore
< i1s compatible.

Clearly, A = {x e G ‘ x > 1}.

The converse follows from the above note.



Note that from Theorem 1.19, <is the unique compatiblepartial order

*
on G such that A is the positive cone. To prove this, assume that <

~N

is a compatible partial order on G such that A = {x e G I X *2 1}.

*
We shall show that < < . Let x,y € G be such that x <y. Then

- - * * *
X 1y € A, sOo X 1y > 1. Hencey > x. Thus < C <. Similarly,

* *
£ € & Therefore < € i

Let G be a group . Then the set of all O-sets of G and the
set of all compatible partial orders on G are partially ordered sets
with respect to set inclusion.

The following corollary is obtained from Theorem 1.19.

Corollary 1.20. Let G be a group,,a the set of all O-sets of G and

e@ the set of all compatible partial orders on G. Then «a and o@ are

order isomorphic.

Proof: Define ¢: A= 2 as follows: Let Ae (l . Then

Theorem 1.19 determines a unique compatible partial order sA on G.

Define ¢ (A) = < Clearly, ¢ is a bijection.

a7
To show that ¢ is isotone, let A,B e .l be such that A B

Then there exist compatible partial orders gA and sB’ such that

A=1{xe G| x> 1}and B =1{xe G x>B1}. We shall show that

A
¢

Vil nilf Let x,y € G be such that x <, y. Then x-1y e A. Since

A B

AC B, so x—1y € B, hence x sBy. Thus \<A—C- SB’ so ¢ (A) C ¢(B).

Hence ¢ is isotone.

i ' *
To show that ¢ L is isotone, let &, < eoa be such that

1

* - -
£C <. Letxe ¢ (L. Since¢1(<)={ysG! vy 2.4} x >, 80
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1 1

* - * * - *
x »1. But¢ () ={yeG |y >1}, 30 xe¢ (). Thus

* -
1(6 ). Hence ¢ ; is isotone.

o

Therefore ¢ is an order isomorphism.

#

Theorem 1.21 ([1]). Let P be a semigroup with identity 1. Then there

exists a partially ordered group G having P as its positive cone if and

only if

(1) P is cancellative,

(ii) Pa = aP for all a € P and

(iii) for any a,b € P, ab = 1 implies a =b = 1.

Proof : Since U(1) of a partially ordered group G has
properties (i) - (iii), so if P is isomorphic to U(1) then P also has
properties (i) - (iii).

Conversely, assume that P satisfies properties (i) - (iii).
By properties (i) and (ii) of P, we get that for any a,x € P there

exists a unique X € P such that xa = ax_ . Clearly, a_ e and 1a= 1

for all a € P. For any a,b,x,y € P, a(xy)a (xy)a = x(ya) = x(aya)=

(xa)ya = ax_y_ and (ab)xab = x(ab) = (xa)b (axa)b = a(xab) =

ab(xa)b, so by property (i) of P, (xy)a o and X p = (xa)b for

all a,b,x,y € P.
Define a relation v on P x P as follows: For a,b,c,d € P,

(a,b) v (¢,d) if and only if adb = cb. We shall show that Vv is an

equivalence relation. Clearly, Vv is reflexive. Let a,b,c,d € P be

such that (a,b) v (c,d). Then adb = cb, so we get that addbd =

ad(db)d = adbd = cbd = c(bd)bd = Cbbddbd = cbddbd. Hence ad = cbd,

so (c,d) ~v (a,b). Therefore Vv is symmetric. Let a,b,c,d,e,f € P be
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such that (a,b) ~ (c,d) and (c,d) ~ (e,f). Then adb = cb and

cfd = ed, so we get that afbdb = a(fd)b = a(dfd)b = adb(fd)b =
cb(fd)b = cfdb = edb = ebdb. Thus afb = eb, so (a,b) Vv (e,f). Hence
vis transitive. Therefore n is an equivalence relation.

1ht. 6 & — : 3 - Define an operation « on @ by

[(a,b)]*[(c,d)] = [(acb,db)] for all a,b,c,d € P. We shall show that

* is well-defined. Let VsW,X,y € P be such that (v,w) € [(a,b)] and
(x,y) € [(c,d)]. Then (a,b) n (v,w) and (c,d) ~ (x,y), so aw_ = vb

and C¥q = xd. Hence we have that (acb)(yw)db = a(c(yw)d)b = a(cydwd)b=
a(xdwd)b = a(xwd)b = a(wxwd)b & awb(xwd)b= vb(xwd)b = v(xwd)b =

(vxw)db. Thus (acb,db) 3" (vxw,yw) which implies that [(a,b)]*[(c,d)] =

[(acb,db)] = [(vxw,yw)] =-Hv;w)i*[(x,y)]. Therefore is well-defined

To show that =« is associative, let a,b,c,d,e,f € P. Then

([(a,b)]*[(c,d)])[(e,f)]

]

[(acbedb, fdb)]

I

[(a(ced)b, (£fd)b)]

[(a,b)]-[(ced, £d)]

[(a,b)]1([(c,d)] *[(e,£)]).

Hence ¢ is associative.

Clearly, [(1,1)] is the identity &f G and [(b,a)] is the
inverse of [(a,b)] for all a,b € P. Therefore G is a group. Define
i: P~ Gbyi(a) = [(a,1)] for all a ¢ P. Let a,b € P be such that
i(a) =i(b). Then (a,1) ~ (b,1), so a = b. Hence i is injective.
For any a,b € P, i(ab) = [(ab,1)] = ((a,131i(b,1)] = i(a)i(b), so

i is a homomorphism. Therefore i is a monomorphism.
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We shall show that i(P) is an O-set of G. Let .

S0h) | for some a,b € P. Thus

@« e i(P)Mi(P)”'. Then a = i(a)

i (ab) i(a)i(b) [(1,1)], so ab = 1. By property (iii) of P,

a=>b {

1. rhie e [(1,1)] .7 Beaas LPINL P < {1, 101) . i hw

i(ab) € i(P).

any a,b e P, i(a)i(b) = [(a,1)1[(b,1)] = [(ab,1)]
Hence i (P)2C i(P). Let a,b,x € P. Then [(a,b)li(x)[(a,b)1”" =

[(a,b)][(x,1)]1[(b,a)] =[(axbb,ab)]. Since aP = Pa, ax, =ya for
some y € P. Then we have that axbb = yab, so(axbb,ab) v (y,1). It

follows that [(a,b)li(x)[(a,b)1”" = [(y,1)] = i(y) € i(P). Hence
ai(P)u_1g; i(P) for all o € G. Therefore i(P) is an O-set of G.
By Theorem 1.19, there exists a compatible partial order on G such
that i (P) is the positive cone.

#

Remark 1.22. It follows from.Theorem 1.21 that if a semigroup P
with 1 satisfies properties (i) - (iii) then there exists a partially
ordered group G having P as its positive cone up to isomorphism and G
which is defined as above is the smallest partially ordered group
having P as its positive cone and it is also directed.

To prove this, let (G’,<”) be a partially ordered group and

j: P = G’ a monomorphism such that j(P) is the positive cone of G’.

Since xa = ax_ for all a,x € P, j(xa) = j(a)—1j(x)j(a) for all

d,x € P, Define f: G = G by f([(a,b)]) = j(a)j(‘l*-.))_1 for all a,b € P.
We shall show that f is well-defined. Let c,d € P be such that

(c,d) € [(a,b)]. Then (a,b) Vv (c,d), so adb = cb.

Hence (§(a)j(b)~"5(a))3(b) = 3(a)3(d,) = j(ad,) = j(cb) = j(c)3(b).
Thus j(a)j(b)—1j(d) = j(c), so j(a)j(b)_1 = j(c)j(d)_1. Therefore f

is well-defined. For each a,b,c,d € P, £([(a,b)]l<[(c,d)])




13

1 1

; . =T i B R B
f([(acb,db)]) = j(acb)j(db) = J(a)j(cb)J(b) j(a) =

5ta) (30 1515003y T 5ar~! = s(a)5m) V5@t =

f([(a,b)]1)f([(c,d)]). Hence f is a homomorphism.

To show that f is injective, let a,b,c,d € P be such that
1

£([(a,b)]¥ = £([(c,d)]1). Then §(a)j(b)~" = §(e)j(a)”!, so we get that

j(c)j(b) j(cb). Since

jad ) = j(a)j(d) = (5(a)i)~'5(d)jb)

[(c,d)]. Hence

j is injective, so adb = cb and we have that [(a,b)]
f is injective.

To show that f is isotone, let o,B € G be such that o« < B.
Since i(P) is the positive cone of G, 0—15 € i(P). Then a—1B =1i(a) =
[(a,1)] for some a € P. Thus f(a)-1f(8) = f(u_1B) = f([(a,1)]) =
j(a) € j(P). Since j(P) is the positive cone of G’, f(a) <  f(B).
Hence f is isotone.

To show that for any «,B € G, f(a) < f(B) implies o < B, let
@B € G be such that £(a) < £(B). Then £(a '8) = £(a) '£(B) & 3(P),
so f(a_1B) = j(a) = £([(a,1)]) for some a € P. Since f is injective,
a_1B = [(a,1)] =i(a) € i(P). Hence a < B.

Therefore f is an order monomorphism. For each a £ P,
(fei)(a) = £(i(a)) = £([(a,1)]) = j(a), so we get that fei = j.
To show that f is the unique order monomorphism such that foi = j,

let g: G - G’ be an order monomorphism such that gei = j. Then

1 1

for each a,b ¢ P, £([(a,b)]) = j(a)j(b)~
1

(ge i)(a)(ge i) (b))~

g(l(a,1)1)g(l(b,1)])" " = g(l(a,1)]l1,b)])

]

g(l(a,b)]). Hence f

I
«Q

Definition 1.23. A system (S,+,+) is called a distributive

seminear-ring if
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(i) (S,+) and (S,+) are semigroups and

(ii) (x+y)z = xz + yz and z(x+y) = zx + zy for all x,y,z € S.

The operations + and e« are called the addition and multiplication of
the distributive seminear-ring, respectively.

A subset H of S is called a subseminear-ring of S if (H,+,*)

is a distributive seminear-ring.

Definition 1.24. Let (S,+,*) be a distributive seminear-ring. An

element e of S is called a multiplicative [additive] identity of S

if e is the identity of the semigroup (S,*) [(S,+)]. BAn element a of

S is called a multiplicative [additive]l zero of S if a is the zero of

the semigroup (S,¢)[(S,+)]. S is called additively commutative if

(S,+) is a commutative semigroup, multiplicatively [additively]

cancellative if (S,*)[(S,+)] is a cancellative semigroup and

O-multiplicatively cancellative if for any x,y,z € S, Xy = xz and

x # 0 imply that y = z and for any x,y,z € S,yx = zx and x = § imply that y=z

Definition 1.25. An equivalence relation p on a distributive

seminear-ring S is called a congruence on S if for any x,y,z € S,
x py implies (x+z)p(y+z), (z+x)p(z+y), (xz)p(yz) and (zx)p(zy).
Given a distributive seminear-ring S and a congruence p on S,

let S/p denote the set of all congruence classes of p.

Definition 1.26. Let S and S’ be distributive seminear-rings. A

map £: S - S’ is called a homomorphism of S into S” if for any

X,y € S, f(x+y) = £(x)+£(y) and f(xy) = £(x)f(y).
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The following notation will be used in the thesis : For a

distributive seminear-ring S and x € S, let

x} and

LI (x) {yes|y+x

x}.

RIS (x) = {ye s X vy

Definition 1.27. Let (S,+,*) be a distributive seminear-ring. S is

called a distributive ratio seminear-ring if (S,*) is a group, a

distributive near-ring if (S,+) is a group, a distributive seminear-

field if (S,*) is a group with zero. A subset H of S is called a

ratio subseminear-ring if (H,+,°*) is a distributive ratio seminear-

ring. A subnear-ring and a subseminear-field are defined similarly.

Example 1.28. (1) Let (G,*) be a group. Define x +y = x [x+y = yl

for all x,y € G. Then (G,+,*) is a distributive ratio seminear-ring.

(2) Let (G,+) be a group (not necessarily abelian) with
identity 0. Define x « y =0 for all x,y € G. Then (G,+,*) is a
distributive near-ring.

(3) Let R be a noncommutative ring and G an additively
noncommutative distributive near-ring in (2). Then (G x R,+,-) is a
multiplicatively and additively noncommutztive distributive near-ring
where + and * are defined by (a,b)+(c,d) = (a+c,b+d) and (a,b)*(c,d) =
(ac bd) for all a,c e G,b,d € R.

(4) ({0,1},+,°) where + and * are defined by the operation

tables:

is a distributive seminear-field and is called the Boolean distributive

017230
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seminear-field.

(5) Let (G,°+) be a group with zero a. Define

5.1) x+y=a for all x,y € G or

5.2) . XN

a iyt x £y, s i
{ X if ixi="y

for all x,y G,

Then (G,+,°*) is a distributive seminear-field.

(6) Let D be a distributive ratio seminear-ring, 0 and «
symbols not representing any element of D. We can adjoin 0 to D and
® to D to get distributive seminear-fields DU{0} and DuU{=} by
defining x + 0 = 0 + x = x, x; 0=0°+*x=0°*0=0+0=0 and

X +®=® 4 X =® 4 ®=x ¢» ®=® e x =® e+ o= for all x e D

Remark 1.29. Let D be a distributive ratio seminear-ring such that
1+ 1 =1. For each x € D, LID(x) and RID(x) are both nonempty
since X + x = x. The following results will be used in the thesis:

(1) For any x € D, LID(x) = xLID(1).
(2) If B ® LID(1) then x" e LID(1) for all n e 2.

The statements(1) and (2) are also true for RID(X) for. all x € D}
Remark 1.30, For any distributive near-ring R, ab + cd = c¢d + ab

for all a,b,c,d € R and for any distributive seminear-field K; 1€

1+ 1 =1 then K cannot be a skew field.

Definition 1.31. Let D and D’ be distributive ratio seminear-rings

and £: D - D’ a homomorphism. The kernel of f, denoted by ker f, is

{x- e B ] Blx) = 1%
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Definition 1.32. Let D be a distributive ratio seminear-ring.

A subset C of D.is called a C-set of Dif C is a multiplicative
normal subgroup of D such that (x+1)_1(x+y), (1+x)-1(y+x) e C:for
all x€ D, y e C. A C-set Cof Dis a prime C-set in D if

(x+1)—1(x+y), (1+x)—1(y+x) 4 C for all x €D, y 4 C.

Proposition 1.33. Let D and D be distributive ratio seminear-rings

and £f: D D’ a homomorphism. Then the following statements hold:
(1) ker f is a C-set of D.
(2) If C’ is-a€=pet of Bothemf ' (C’) is a C-set of D,
(3) If f is onto and C is a C-set of D then f(C) is a C-set of

of D

Proof : (1) sSince f is a homomorphism, ker f is a -

multiplicative normal subgroup of D. Let x € D and y € ker £. Then
£00x41) "V ixey)) = (RSt terotet® s NI 55 (x41) " (x4y) € ker £.
Similarly, (1+x)—1(y+x) € ker £. Hence ker f is a C-set of D.

(2) Let C’ be a C-set of D. Since C’ is a multiplicative
normal subgroup of D’, £ Ve 'is a multiplicative normal subgroup
of D. Let x € D and y € f‘1(C'). Since C” is a C-set of D', so
£((x+1) " (x4y)) = (£G)+17 )7 (£(x)+£(y)) € C”, hence

et1) " Vixsy) ¢ £71

(C’). sSimilarly, (1+x)_1(y+x) e £ (C)
Therefore £ (C°) is a C-set éf D.

(3) Assume that f is onto and C is a C-set of D. Since C is
a multiplicative normal subgroup of D and f is onto, £(C) is a
multiplicative normal subgroup éf D’. Let ye D’ and a € C. Then

y = f(x) for some x € D. Since C is a C-set of D, (y+1')_1(y+f(a))=

(FO)+E(I) "N (E(x)+£(a)) = £((x+1) " (x4a)) € £(C). Similarly,
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(1'+y)_1(f(a)+y) e £(c). Hence £(C) is a C-set of D". #

Definition 1.34. Let R and R’ be distributive near-rings and
f: R - R a homomorphism. The kernel of f, denoted by ker f, is

fx e R | £le) =07},

Definition 1.35. Let R be a distributive near-ring. A subset J of

R is called an ideal of R if J is an additive normal subgroup of R
such that xy, yx e J for all xe R, ye J. An ideal J of Ris a
prime ideal in R if for any x,y € R, xy € J implies that

X edJor y ed.

Proposition 1.36. Let R and R’ be distributive near-rings and

f: R R’ a homomorphism. Then the following statements hold:
(1) ker f is an ideal of R.
(2) 1f J° is<an_ideal éf R’ then£ ' (J°) is an ideal of R.
(4) 1If f is onto and J is an ideal of R then £(J) is an

ideal of R’.

Proof: (1) sSince f is a homomorphism, ker f is an

additive normal subgroup of R. Let x € R and y € ker £. Then
f(xy) = £(x)f(y) = 0", so xy € ker £. Similarly, yx € ker £f. Hence
ker £ is an ideal in R.

(2) Let J° be an ideal of R’. Then £ '(J°) is an additive
normal subgroup of R. Let x € R and y ¢ f_1(J’). Then f(y) € J°,
so f(xy) = £(x)E(y) € J°. Hence xy € £ ' (J°). Similarly,

yX € f_1(J'). Therefore f—1(J') is an ideal in R.
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(3) Assume that f is onto and J is an ideal of R. Then
f(J) is an additive normal subgroup of R°. Let ye R’ and a € J.
Then y = £(x) for some x € R. Then yf(a) = f(xa) € £(J). Similarly,

f(a)y € £(J). Hence £(J) is an ideal .in R’.

Definition 1.37. A quotient ratio seminear-ring of a distributive

ratio seminear-ring D is a pair (D",$) where D’ is a distributive
ratio seminear-ring and ¢ is a homomorphism of D onto D’. A quotient

near-ring of a distributive near-ring is defined similarly.

We shall now give the construction of a quotient ratio
seminear-ring of a distributive ratio seminear-ring D and the
construction of a quotient near-ring of a distributive near-ring R

which appears in [4].

.

Let C be a C-set of D and’p1 e {(a,b) e Dx D} a be OF

Then p1 is a congruence on D and (Q/b »+,°) is a distributive ratio
1

seminear-ring where + and * are defined by [al+[b] = [a+b] and

[al*[b] = [abl. For convenience, we denote Q/p by Q/b. Note that
1

(D,.,m) is a quotient ratio seminear-ring of D where n is the natural
/c

projection map of D onto Q/C'
Let J be an ideal of R and Py = {ta,b) e Rx R | ca b e 3}

Then Py is a congruence on R and (3/b »+,°) is a distributive
2

near-ring where + and °* are defined as above. For convenience, we

denote R/pz by Rs;. Note that (E/J,n) is a quotient near-ring of R

where 1 is the natural projection map to R onto %/J'
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Remark 1.38. The following statements holds:
(1) A C-set C of a distributive ratio seminear-ring D is

prime if and only if Q/C is additively cancellative.

(2) An ideal J of a distributive near-ring R is prime if

and only if %/J is O-multiplicatively cancellative.

Proof: (1) Assume that C is a prime C-set of D. Let

x,y¥,z € D be such that [x]+[z] = [yl+[z]. Then (1+x-1z)_1(x—1y+x_1z)=
(x+z)_1(y+z) € C. By assumption, x_1y e C, so [x] = [yl. Similarly,
if [zl+[x] = [z]+[y] then [x] = [y]l. Hence D/, is additively
cancellative.

Conversely, assume that g/t is additively cancellative. Let

x e Dand y 4 C. Suppose that (x+1)—1(x+y) € C. Then [x]+[1] = [x+1]

(]

[x+y]l = [x]+[y). Hence [yl = [1], so y €C, a contradiction. Thus
(x+1)_1(x+y) ¢ C. Similarly, (1+x)—1(y+x) ¢ C. Therefore C is a

prime C-set of D.

(2) Assume that J is a prime ideal in R. Let x,y,z € R be
such that [x][z] = [yllz] and z ¢ J. Then (-x+y)z = -xz+yz € J.
By assumption, -x+y € J, so [x] = [yl. sSimilarly if [z]l[x] = [z][y]
and z 4 J then [x] = [yl. Hence B/J is O-multiplicatively
cancellative.

Conversely, assume that R/J is O-multiplicatively cancellative.
It is easily shown that for any a«,B e 3/;, aB = [0] implies o = [0]
or B = [0]. Let x,y € R be such that xy € J. Then [x][y] = [xy] =

[0], so [x] = [0] or [y] = [0]. Hence x € Jor y € J. Therefore J

is a prime ideal in R.
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Theorem 1.39 ([5)]. The smallest ratio subseminear-ring (called the

prime distributive ratio seminear-ring) of a distributive ratio

seminear-ring is either isomorphic to (Q+,+,') or {1}.

Theorem 1.40 ([5]). A multiplicative zero of a distributive

seminear-field is either an additive identity or an additive zero.

Theorem 1.40 indicates that there are two types of distributive
seminear-fields. Let K be a distributive seminear-field with a as its
multiplicative zero. If a is the additive identity of K, we call K a

distributive seminear-field of zero type and denote a by 0 and if a is

the additive zero of K, we call K a distributive seminear-field 9£

infinity type and denote a by .

Theorem 1.41 ([5]). The smallest subseminear-field (called the

prime distributive seminear-field) of a distributive seminear-field

of zero type is isomorphic to exactly one of the following:
(1) Qi)

(2) Zp, the set of all congruence classes of Z modulo a prime
P in zt.

(3) The Boolean distributive seminear-field. b

Let K be a distributive seminear-field of infinity type and

x € K. Let

]
8
—
V]
3
Q

LCor  (x) lyex|y+x

I
8
ols

RCorp (x) Iyex|x+y

Note that LCory(x) and RCorg(x) are nonempty since ®+x = X + ® = ®
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Remark 1.42. Let K be a distributive seminear-field of infinity

type. Then the following statements hold:

]

(1) LCorK(x) xLCorK(1) for all x € K\ {=},

(2) LCor (1) = {»} if and only if RCor, (1) = {=} .

(3) LCorK(1) K if and only if RCorK(1) = K.

© Ll © -1
(4) LCorK(1)\{ } = (RCorK(1)\{ T,

Proposition 1.43 ([3]). Let K be a distributive seminear-field of

zero type. If K is not a skew field then a + b # 0 for all

a,b € K\ {0}.

Proposition 1.44 ([3]). If f: (R,+,9 - (R,+,< is an order

homomorphi sm then there exists an a e Rg such that f(x) = ax for all
x € R.

+

Proposition 1.45. If £ (R, Q) (R+,',s) is an order monomorphism

then there exists an a ¢ R+ such that f(x) = x2 for all x € R+

(hence f must be a bijection).

+

Proof: Assume that f: (R ,*,< - (R+,°,s) is an order

isomorphism. Define g: (R,+,< - (R,+,< by g(x) = 1n(£(e™)) for all
x € R. For each x,y € R, g(x+y) = In(£(e™Y)) = 1n(£(®)£(eY)) =

|
1n(£(e®)) + 1In(f(e¥)) = g(x) + g(y), so we get that g is a homomorphism.

y

For any x,y € R, if x <y then e® <e¥, so £(e5) < £(e¥), hence we

have that g(x) In(£(e®)) < 1n(£(eY)) = g(y). Thus g is isotone.

By Proposition 1.44, there exists an a € R; such that g(x) = ax for

In(£(e™))
e

o eg(x) & 0

all x e R. If a =0 then g =0, so £(e*) =
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for all x € R which contradicts the fact that f is injective. Hence

a eR". Let x eR". Then x = e¥ for some y €R. Hence f(x) = f(eY) =

y
eln(f(e ) = eg(y) =02 e P Therefore f(x) = x° for all x e RT. #
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