

CHAPTER I

PRELIMINARIES

In this chapter, we shall give some notations, definitions and theorems used in this thesis. Our notations are:

Z = the set of all intergers,

 Z^+ = the set of all positive intergers,

Z = the set of all negative intergers,

 $Z_0^+ = Z^+ \cup \{0\},$

Q = the set of all rational numbers,

 Q^+ = the set of all positive rational numbers,

 $Q_0^+ = Q^+ \cup \{0\},$

R = the set of all real numbers,

R⁺ = the set of all positive real numbers,

 \mathbb{R}^- = the set of all negative real numbers and

 $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}.$

In this thesis, if we do not give the definition of a binary operation or an order on a subset of R then we shall mean the usual binary operation and the usual order on it.

Definition 1.1. Let (P,\leqslant) be a partially ordered set. The opposite partial order (or the dual partial order) on P is the relation \leqslant opp on P defined as follows: For any a,b ϵ P, a \leqslant opp b if and only if b \leqslant a.

Definition 1.2. Let (P, \leq) be a partially ordered set. P is a lattice if sup $\{x,y\}$ and inf $\{x,y\}$ exist for all $x,y \in P$ and P is said to be complete if every subset of P which has a lower bound has an infimum.

In [3], page 5, it was shown that a partially ordered set P is complete if and only if every subset of P which has an upper bound has a supremum.

<u>Definition 1.3.</u> Let (P, \leqslant) be a totally ordered set. A nonempty subset S of P is called <u>strongly dense</u> in P if for any x,y ϵ P, x < y implies that there exists a z ϵ S such that x < z < y

For any nonempty subset A of a partially ordered set P, let

 $U(A) = \{x \in P \mid a \leqslant x \text{ for all } a \in A\}$ and

 $L(A) = \{x \in P \mid x \leqslant a \text{ for all } a \in A\}.$

If $A = \{a_1, a_2, ..., a_n\}$, denote $U(A) = U(a_1, a_2, ..., a_n)$ and $L(A) = L(a_1, a_2, ..., a_n)$.

Definition 1.4. A partially ordered set P is called upper [lower] directed if U(a,b) [L(a,b)] is nonempty for all a,b ϵ P, directed if it is both upper and lower directed.

Example 1.5. Let X be a nonempty set such that $|X| \ge 2$. Then the set of all proper subsets of X is lower directed but not upper directed and the set of all nonempty subsets of X is upper directed but not lower directed with respect to set inclusion.

<u>Definition 1.6</u>. A subset C of a partially ordered set P is called convex if for any x,y ϵ C, z ϵ P, x \leq z \leq y implies z ϵ C.

Note that the intersection of convex subsets of a partially ordered set is also convex.

<u>Definition 1.7.</u> Let (P, \leqslant) and (P', \leqslant') be partially ordered sets. A map $f: P \to P'$ is called <u>isotone</u> if for any $x,y \in P$, $x \leqslant y$ implies $f(x) \leqslant' f(y)$, an <u>order isomorphism</u> if f is bijective and f, f^{-1} are isotone.

Remark 1.8. Let (P, \leq) and (P', \leq') be totally ordered sets and $f: P \to P'$ an isotone bijection. Then f^{-1} is isotone.

Proof: Let x,y ϵ P' be such that x <' y. If $f^{-1}(y) < f^{-1}(x)$ then $y = f(f^{-1}(y)) < f(f^{-1}(x)) = x$, a contradiction. Hence $f^{-1}(x) < f^{-1}(y)$. Therefore f^{-1} isotone.

Proposition 1.9. Let (P, \leqslant) and (P', \leqslant') be partially ordered sets, $f: P \to P'$ an isotone map and C' a convex subset of P'. Then $f^{-1}(C')$ is a convex subset of P.

Proof: Let x,y ε f⁻¹(C') and z ε P be such that x \leqslant z \leqslant y. Then f(x) \leqslant f(z) \leqslant f(y). But C' is convex, so f(z) ε C'. Hence z ε f⁻¹(C'). Therefore f⁻¹(C') is convex.

Definition 1.10. A partial order \leqslant on a semigroup (S,*) is said to be compatible if for any x,y,z ϵ S, x \leqslant y implies xz \leqslant yz and zx \leqslant zy.

Definition 1.11. A system (S, •, ≤) is a partially [totally] ordered semigroup if (S, •) is a semigroup and ≤ is a compatible partial [total] order on S.

Example 1.12. (1) $(Z,+,\leqslant),(Q,+,\leqslant)$ and $(R,+,\leqslant)$ are totally ordered groups.

- (2) Let C be the additive group of complex numbers. For any a + bi, $c + di \in \mathbb{C}$, define $a + bi \leqslant c + di$ if and only if either $a \leqslant c$ or a = c and $b \leqslant d$. Then $(\mathbb{C},+,\leqslant)$ is a partially ordered group.
- (3) In Q^+ , define a \leq b if and only if $\frac{b}{a}$ is an integer. Then (Q^+, \cdot, \leq) is a partially ordered group.
- (4) Let $G = \{(x,y) \mid x,y \in R\}$. For any $u,v,x,y \in R$, define $(u,v) \cdot (x,y) = (u+x, e^X v+y)$ and $(u,v) \leqslant (x,y)$ if and only if either u < x or u = x and $v \leqslant y$. Then (G,\cdot,\leqslant) is a partially ordered group.

(5) Let
$$M = \left\{ \begin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} / a,b,c \in \mathbb{R} \right\}.$$

Define $\begin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \le \begin{bmatrix} 1 & d & f \\ 0 & 1 & e \\ 0 & 0 & 1 \end{bmatrix}$ if and only if either 1) a < d,

2) a = d and b < e or 3) a = d, b = e and $c + bd \le ab + f$. Then (M, \bullet, \le) is a partially ordered group.

Definition 1.13. Let (G, \cdot, \leqslant) be a totally ordered group. G is called Archimedian if for any x,y ϵ G \{1}, x < y implies that there exists an n ϵ Z such that y < x^n . In [3], page 10, it was shown that a totally ordered group G is Archimedean if and only if for any x,y ϵ G \ {1}, x < y implies that there exists an n ϵ Z such that y^n < x.

Proposition 1.14 ([3]). Let G be a complete totally ordered group.

Then G is Archimedean.

Theorem 1.15 ([3]). Any complete totally ordered group is order isomorphic to exactly one of the following:

- (1) $(\{1\}, \cdot, \leqslant)$.
- (2) $(\{2^n \mid n \in \mathbb{Z}\}, \cdot, \leqslant)$.
- (3) $(\mathbb{R}^+, \cdot, \leqslant)$.

Proposition 1.16 ([1]). For any partially ordered group G and a ϵ G, G is directed if and only if $U(x,a_0) \neq \emptyset$ for all $x \in G$.

Proposition 1.17 ([1]). Let G be a partially ordered group. Then the following statements hold:

- (1) If G contains an element a_0 such that $a_0 \geqslant 1$ and $U(a_0)$ generates G then G is directed. Also, if G is directed and $a_0 \in G$ then for any $b \in G$ there exist $y,z \in U(a_0)$ such that $b = yz^{-1}$.
- (2) G is a lattice if and only if sup $\{x,1\}$ exists for all $x \in G$.
- (3) If G is a lattice then for any x,y,z ϵ G, sup $\{xz,yz\} = (\sup\{x,y\}) \cdot z$ and sup $\{zx,zy\} = z \cdot \sup\{x,y\}$.

Definition 1.18. A subset A of a group G is called an O-set of G

if it satisfies the following conditions:

- (1) $A \cap A^{-1} = \{1\}.$
- (2) $A^2 \subseteq A$.
- (3) $xAx^{-1} \subseteq A$ for all $x \in G$.

Note that for any group G, $\{1\}$ is an O-set of G and for any partially ordered group G, $\{x \in G \mid x \ge 1\}$ which is called the positive cone of G is an O-set of G.

Theorem 1.19 ([1]). A subset A of a group G is an O-set of G if and only if there exists a compatible partial order on G such that A is the positive cone induced by \leq .

<u>Proof:</u> Assume that A is an O-set of G. Define a relation \leqslant on G as follows: For x,y ϵ G, x \leqslant y if and only if $x^{-1}y \epsilon$ A. We shall show that \leqslant is a partial order on G. Since 1 ϵ A, \leqslant is reflexive. Let x,y ϵ G be such that x \leqslant y and y \leqslant x. Then $x^{-1}y$, $y^{-1}x \epsilon$ A. But $x^{-1}y = (y^{-1}x)^{-1}$, so $x^{-1}y \epsilon$ A \cap A \cap Hence x = y. Thus \leqslant is anti-symmetric. Let x,y,z ϵ G be such that x \leqslant y and y \leqslant z. Then $x^{-1}y$, $y^{-1}z \epsilon$ A. Since $x^{-1}z = (x^{-1}y)(y^{-1}z) \epsilon$ A and thus we get that x \leqslant z. Hence \leqslant is transitive. Therefore \leqslant is a partial order on G.

To show that \leqslant is compatible, let x,y,z ϵ G be such that $x \leqslant y$. Then $x^{-1}y \in A$. Since $(zx)^{-1}(zy) = x^{-1}y \in A$, $zx \leqslant zy$. Since $z^{-1}Az \subseteq A$, so $(xz)^{-1}(yz) = z^{-1}(x^{-1}y)z \in A$, hence $xz \leqslant yz$. Therefore \leqslant is compatible.

Clearly, $A = \{x \in G \mid x \geqslant 1\}$.

The converse follows from the above note.

Note that from Theorem 1.19, \leqslant is the unique compatible partial order on G such that A is the positive cone. To prove this, assume that \leqslant is a compatible partial order on G such that $A = \{x \in G \mid x \stackrel{*}{>} 1\}$. We shall show that $\leqslant = \leqslant^*$. Let $x,y \in G$ be such that $x \leqslant y$. Then $x^{-1}y \in A$, so $x^{-1}y \stackrel{*}{>} 1$. Hence $y \stackrel{*}{>} x$. Thus $\leqslant \subseteq \leqslant^*$. Similarly, $\leqslant^* \subseteq \leqslant$. Therefore $\leqslant = \leqslant^*$.

Let G be a group. Then the set of all O-sets of G and the set of all compatible partial orders on G are partially ordered sets with respect to set inclusion.

The following corollary is obtained from Theorem 1.19.

Corollary 1.20. Let G be a group, $\mathcal A$ the set of all O-sets of G and $\mathcal A$ the set of all compatible partial orders on G. Then $\mathcal A$ and $\mathcal A$ are order isomorphic.

Proof: Define $\phi: \mathcal{A} \to \mathcal{A}$ as follows: Let $A \in \mathcal{A}$. Then Theorem 1.19 determines a unique compatible partial order \leqslant_A on G. Define $\phi(A) = \leqslant_A$. Clearly, ϕ is a bijection.

To show that ψ is isotone, let $A,B \in \mathcal{A}$ be such that $A \subseteq B$. Then there exist compatible partial orders \leqslant_A and \leqslant_B such that $A = \{x \in G \mid x \geqslant_A 1\}$ and $B = \{x \in G \mid x \geqslant_B 1\}$. We shall show that $\leqslant_A \subseteq \leqslant_B$. Let $x,y \in G$ be such that $x \leqslant_A y$. Then $x^{-1}y \in A$. Since $A \subseteq B$, so $x^{-1}y \in B$, hence $x \leqslant_B y$. Thus $\leqslant_A \subseteq \leqslant_B$, so $\psi(A) \subseteq \psi(B)$. Hence ψ is isotone.

To show that ψ^{-1} is isotone, let \leqslant , \leqslant ϵ \mathscr{A} be such that $\leqslant \subseteq \leqslant^*$. Let $x \in \psi^{-1}(\leqslant)$. Since $\psi^{-1}(\leqslant) = \{ y \in G \mid y \geqslant 1 \}$, $x \geqslant 1$, so

 $x \stackrel{*}{>} 1$. But $\psi^{-1}(\stackrel{*}{\leqslant}) = \{ y \in G \mid y \stackrel{*}{>} 1 \}$, so $x \in \psi^{-1}(\stackrel{*}{\leqslant})$. Thus $\psi^{-1}(\stackrel{*}{\leqslant}) \subseteq \psi^{-1}(\stackrel{*}{\leqslant})$. Hence ψ^{-1} is isotone.

Therefore ψ is an order isomorphism.

Theorem 1.21 ([1]). Let P be a semigroup with identity 1. Then there exists a partially ordered group G having P as its positive cone if and only if

- (i) P is cancellative,
- (ii) Pa = aP for all $a \in P$ and
- (iii) for any a,b ϵ P, ab = 1 implies a = b = 1.

Proof: Since U(1) of a partially ordered group G has
properties (i) - (iii), so if P is isomorphic to U(1) then P also has
properties (i) - (iii).

Conversely, assume that P satisfies properties (i) - (iii). By properties (i) and (ii) of P, we get that for any a,x ϵ P there exists a unique x_a ϵ P such that $xa = ax_a$. Clearly, $a_a = a$ and $a_a = 1$ for all a ϵ P. For any a,b,x,y ϵ P, $a(xy)_a = (xy)_a = x(ya) = x(ay_a) = (xa)y_a = ax_ay_a$ and $a(ab)x_{ab} = x(ab) = (xa)b = a(x_a)b = a(x_a)b = a(x_a)b$ for all a,b,x,y ϵ P.

Define a relation $^{\circ}$ on P × P as follows: For a,b,c,d ϵ P, $(a,b) ^{\circ} (c,d)$ if and only if $ad_b = cb$. We shall show that $^{\circ}$ is an equivalence relation. Clearly, $^{\circ}$ is reflexive. Let a,b,c,d ϵ P be such that $(a,b) ^{\circ} (c,d)$. Then $ad_b = cb$, so we get that $add_{bd} = ad(d_b)_d = ad_b = cbd = c(bd)_{bd} = cb_{bd} = cb_{d}$. Hence $ad = cb_d$, so $(c,d) ^{\circ} (a,b)$. Therefore $^{\circ}$ is symmetric. Let a,b,c,d,e,f ϵ P be

such that $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Then $ad_b = cb$ and $cf_d = ed$, so we get that $af_bd_b = a(fd)_b = a(df_d)_b = ad_b(f_d)_b = cb(f_d)_b = cf_db = edb = ebd_b$. Thus $af_b = eb$, so $(a,b) \sim (e,f)$. Hence colored is transitive. Therefore colored is an equivalence relation.

Let $G = \frac{P \times P}{\sqrt{}}$. Define an operation • on G by $[(a,b)] \cdot [(c,d)] = [(ac_b,db)]$ for all $a,b,c,d \in P$. We shall show that • is well-defined. Let $v,w,x,y \in P$ be such that $(v,w) \in [(a,b)]$ and $(x,y) \in [(c,d)]$. Then $(a,b) \wedge (v,w)$ and $(c,d) \wedge (x,y)$, so $aw_b = vb$ and $cy_d = xd$. Hence we have that $(ac_b)(yw)_{db} = a(c(yw)_d)_b = a(cy_dw_d)_b = a(xdw_d)_b = a(xwd)_b = a(wx_wd)_b = aw_b(x_wd)_b = vb(x_wd)_b = v(x_wd)_b = v(x_wd$

To show that • is associative, let a,b,c,d,e,f ϵ P. Then $([(a,b)] \cdot [(c,d)])[(e,f)] = [(ac_b^e_{db}, fdb)]$ $= [(a(ce_d)_b, (fd)b)]$ $= [(a,b)] \cdot [(ce_d, fd)]$ $= [(a,b)]([(c,d)] \cdot [(e,f)]).$

Hence • is associative.

Clearly, [(1,1)] is the identity of G and [(b,a)] is the inverse of [(a,b)] for all a,b ϵ P. Therefore G is a group. Define $i: P \to G$ by i(a) = [(a,1)] for all a ϵ P. Let a,b ϵ P be such that i(a) = i(b). Then $(a,1) \lor (b,1)$, so a = b. Hence i is injective. For any a,b ϵ P, i(ab) = [(ab,1)] = [(a,1)][(b,1)] = i(a)i(b), so i is a homomorphism. Therefore i is a monomorphism.

We shall show that i(P) is an O-set of G. Let $\alpha \in i(P) \cap i(P)^{-1}$. Then $\alpha = i(a) = i(b)^{-1}$ for some a,b \in P. Thus i(ab) = i(a)i(b) = [(1,1)], so ab = 1. By property (iii) of P, a = b = 1. Thus $\alpha = [(1,1)]$. Hence $i(P) \cap i(P)^{-1} = \{[(1,1)]\}$. For any a,b \in P, $i(a)i(b) = [(a,1)][(b,1)] = [(ab,1)] = i(ab) \in i(P)$. Hence $i(P)^2 \subset i(P)$. Let a,b,x \in P. Then $[(a,b)]i(x)[(a,b)]^{-1} = [(a,b)][(x,1)][(b,a)] = [(ax_b,ab)]$. Since aP = Pa, $ax_b = ya$ for some $y \in P$. Then we have that $ax_b = ya$, so $(ax_b,ab) \sim (y,1)$. It follows that $[(a,b)]i(x)[(a,b)]^{-1} = [(y,1)] = i(y) \in i(P)$. Hence $\alpha i(P)\alpha^{-1} \subseteq i(P)$ for all $\alpha \in$ G. Therefore i(P) is an O-set of G. By Theorem 1.19, there exists a compatible partial order on G such that i(P) is the positive cone.

Remark 1.22. It follows from Theorem 1.21 that if a semigroup P with 1 satisfies properties (i) - (iii) then there exists a partially ordered group G having P as its positive cone up to isomorphism and G which is defined as above is the smallest partially ordered group having P as its positive cone and it is also directed.

To prove this, let (G', \leq') be a partially ordered group and $j \colon P \to G'$ a monomorphism such that j(P) is the positive cone of G'. Since $xa = ax_a$ for all $a, x \in P$, $j(x_a) = j(a)^{-1}j(x)j(a)$ for all $a, x \in P$. Define $f \colon G \to G'$ by $f([(a,b)]) = j(a)j(b)^{-1}$ for all $a, b \in P$. We shall show that f is well-defined. Let $c, d \in P$ be such that $(c,d) \in [(a,b)]$. Then $(a,b) \wedge (c,d)$, so $ad_b = cb$. Hence $(j(a)j(b)^{-1}j(d))j(b) = j(a)j(d_b) = j(ad_b) = j(cb) = j(c)j(b)$. Thus $j(a)j(b)^{-1}j(d) = j(c)$, so $j(a)j(b)^{-1} = j(c)j(d)^{-1}$. Therefore f is well-defined. For each $a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$, $f([(a,b)] \cdot [(c,d)]) = according for each <math>a,b,c,d \in P$.

 $f([(ac_b,db)]) = j(ac_b)j(db)^{-1} = j(a)j(c_b)j(b)^{-1}j(d)^{-1} =$ $j(a)(j(b)^{-1}j(c)j(b))j(b)^{-1}j(d)^{-1} = j(a)j(b)^{-1}j(c)j(d)^{-1} =$ f([(a,b)])f([(c,d)]). Hence f is a homomorphism.

To show that f is injective, let a,b,c,d ϵ P be such that f([(a,b)]) = f([(c,d)]). Then $j(a)j(b)^{-1} = j(c)j(d)^{-1}$, so we get that $j(ad_b) = j(a)j(d_b) = (j(a)j(b)^{-1}j(d))j(b) = j(c)j(b) = j(cb)$. Since j is injective, so $ad_b = cb$ and we have that [(a,b)] = [(c,d)]. Hence j is injective.

To show that f is isotone, let $\alpha, \beta \in G$ be such that $\alpha \leqslant \beta$. Since i(P) is the positive cone of G, $\alpha^{-1}\beta \in i(P)$. Then $\alpha^{-1}\beta = i(a) = [(a,1)]$ for some $a \in P$. Thus $f(\alpha)^{-1}f(\beta) = f(\alpha^{-1}\beta) = f([(a,1)]) = j(a) \in j(P)$. Since j(P) is the positive cone of G', $f(\alpha) \leqslant' f(\beta)$. Hence f is isotone.

To show that for any $\alpha, \beta \in G$, $f(\alpha) \leqslant' f(\beta)$ implies $\alpha \leqslant \beta$, let $\alpha, \beta \in G$ be such that $f(\alpha) \leqslant' f(\beta)$. Then $f(\alpha^{-1}\beta) = f(\alpha)^{-1}f(\beta) \in j(P)$, so $f(\alpha^{-1}\beta) = j(a) = f([(a,1)])$ for some $a \in P$. Since f is injective, $\alpha^{-1}\beta = [(a,1)] = i(a) \in i(P)$. Hence $\alpha \leqslant \beta$.

Therefore f is an order monomorphism. For each a ϵ P, $(f \circ i)(a) = f(i(a)) = f([(a,1)]) = j(a), \text{ so we get that } f \circ i = j.$ To show that f is the unique order monomorphism such that $f \circ i = j$, let $g \colon G \to G'$ be an order monomorphism such that $g \circ i = j$. Then for each a,b ϵ P, $f([(a,b)]) = j(a)j(b)^{-1} = (g \circ i)(a)(g \circ i)(b)^{-1} = g([(a,1)])g([(b,1)])^{-1} = g([(a,1)][1,b)]) = g([(a,b)]). Hence <math>f = g$.

<u>Definition 1.23</u>. A system (S,+,•) is called a <u>distributive</u> seminear-ring if

- (i) (S,+) and (S,•) are semigroups and
- (ii) (x+y)z = xz + yz and z(x+y) = zx + zy for all $x,y,z \in S$. The operations + and • are called the <u>addition</u> and <u>multiplication</u> of the distributive seminear-ring, respectively.

A subset H of S is called a <u>subseminear-ring</u> of S if (H,+,•) is a distributive seminear-ring.

Definition 1.24. Let $(S,+,\cdot)$ be a distributive seminear-ring. An element e of S is called a <u>multiplicative</u> [additive] <u>identity</u> of S if e is the identity of the semigroup (S,\cdot) [(S,+)]. An element a of S is called a <u>multiplicative</u> [additive] <u>zero</u> of S if a is the zero of the semigroup (S,\cdot) [(S,+)]. S is called <u>additively commutative</u> if (S,+) is a commutative semigroup, <u>multiplicatively</u> [additively] <u>cancellative</u> if (S,\cdot) [(S,+)] is a <u>cancellative</u> semigroup and <u>0-multiplicatively</u> cancellative if for any $x,y,z \in S$, xy = xz and $x \neq 0$ imply that y = z and for any $x,y,z \in S, yx = zx$ and $x \neq 0$ imply that y = z and for any $x,y,z \in S, yx = zx$ and $x \neq 0$ imply that y = z

Definition 1.25. An equivalence relation ρ on a distributive seminear-ring S is called a <u>congruence</u> on S if for any x,y,z ϵ S, x ρ y implies $(x+z)\rho(y+z)$, $(z+x)\rho(z+y)$, $(xz)\rho(yz)$ and $(zx)\rho(zy)$.

Given a distributive seminear-ring S and a congruence ρ on S, let $S_{/\rho}$ denote the set of all congruence classes of ρ .

Definition 1.26. Let S and S' be distributive seminear-rings. A map $f: S \to S'$ is called a homomorphism of S into S' if for any $x,y \in S$, f(x+y) = f(x)+f(y) and f(xy) = f(x)f(y).

The following notation will be used in the thesis : For a distributive seminear-ring S and x ϵ S, let

$$LI_S(x) = \{y \in S \mid y + x = x\}$$
 and $RI_S(x) = \{y \in S \mid x + y = x\}.$

Definition 1.27. Let (S,+,•) be a distributive seminear-ring. S is called a <u>distributive ratio seminear-ring</u> if (S,•) is a group, a <u>distributive near-ring</u> if (S,+) is a group, a <u>distributive seminear-field</u> if (S,•) is a group with zero. A subset H of S is called a <u>ratio subseminear-ring</u> if (H,+,•) is a distributive ratio seminear-ring. A subnear-ring and a subseminear-field are defined similarly.

Example 1.28. (1) Let (G, \cdot) be a group. Define x + y = x [x+y = y] for all $x,y \in G$. Then $(G,+,\cdot)$ is a distributive ratio seminear-ring.

- (2) Let (G,+) be a group (not necessarily abelian) with identity 0. Define $x \cdot y = 0$ for all $x,y \in G$. Then $(G,+,\cdot)$ is a distributive near-ring.
- (3) Let R be a noncommutative ring and G an additively noncommutative distributive near-ring in (2). Then $(G \times R,+,\cdot)$ is a multiplicatively and additively noncommutative distributive near-ring where + and \cdot are defined by (a,b)+(c,d)=(a+c,b+d) and $(a,b)\cdot(c,d)=(ac,bd)$ for all $a,c\in G,b,d\in R$.
- (4) $(\{0,1\},+,\bullet)$ where + and \bullet are defined by the operation tables:

is a distributive seminear-field and is called the **Boolean** distributive

seminear-field.

(5) Let (G, •) be a group with zero a. Define 5.1) x + y = a for all $x, y \in G$ or 5.2) $x + y = \begin{cases} a & \text{if } x \neq y, \\ x & \text{if } x = y \end{cases}$

for all $x,y \in G$.

Then (G,+, •) is a distributive seminear-field.

- (6) Let D be a distributive ratio seminear-ring, 0 and ∞ symbols not representing any element of D. We can adjoin 0 to D and ∞ to D to get distributive seminear-fields D(0) and D (∞) by defining x + 0 = 0 + x = x, $x \cdot 0 = 0 \cdot x = 0 \cdot 0 = 0 + 0 = 0$ and $x + \infty = \infty + x = \infty + \infty = x \cdot \infty = \infty \cdot x = \infty$ for all $x \in D$
- Remark 1.29. Let D be a distributive ratio seminear-ring such that 1 + 1 = 1. For each $x \in D$, $LI_D(x)$ and $RI_D(x)$ are both nonempty since x + x = x. The following results will be used in the thesis:
 - (1) For any $x \in D$, $LI_D(x) = xLI_D(1)$.
- (2) If $x \in LI_D(1)$ then $x^n \in LI_D(1)$ for all $n \in \mathbb{Z}^+$.

 The statements(1) and (2) are also true for $RI_D(x)$ for all $x \in D$.
- Remark 1.30. For any distributive near-ring R, ab + cd = cd + ab. for all a,b,c,d ϵ R and for any distributive seminear-field K, if 1 + 1 = 1 then K cannot be a skew field.
- Definition 1.31. Let D and D' be distributive ratio seminear-rings and f: D \rightarrow D' a homomorphism. The <u>kernel</u> of f, denoted by ker f, is $\{x \in D \mid f(x) = 1'\}$.

Definition 1.32. Let D be a distributive ratio seminear-ring.

A subset C of D is called a <u>C-set</u> of D if C is a multiplicative normal subgroup of D such that $(x+1)^{-1}(x+y)$, $(1+x)^{-1}(y+x) \in C$ for all $x \in D$, $y \in C$. A C-set C of D is a <u>prime C-set</u> in D if $(x+1)^{-1}(x+y)$, $(1+x)^{-1}(y+x) \notin C$ for all $x \in D$, $y \notin C$.

Proposition 1.33. Let D and D' be distributive ratio seminear-rings and $f: D \to D'$ a homomorphism. Then the following statements hold:

- (1) ker f is a C-set of D.
- (2) If C' is a C-set of D' then $f^{-1}(C')$ is a C-set of D.
- (3) If f is onto and C is a C-set of D then f(C) is a C-set of of D'.

<u>Proof:</u> (1) Since f is a homomorphism, ker f is a multiplicative normal subgroup of D. Let $x \in D$ and $y \in \ker f$. Then $f((x+1)^{-1}(x+y)) = (f(x)+1')^{-1}(f(x)+1') = 1' \text{ so } (x+1)^{-1}(x+y) \in \ker f.$ Similarly, $(1+x)^{-1}(y+x) \in \ker f$. Hence $\ker f$ is a C-set of D.

- (2) Let C' be a C-set of D. Since C' is a multiplicative normal subgroup of D', $f^{-1}(C')$ is a multiplicative normal subgroup of D. Let $x \in D$ and $y \in f^{-1}(C')$. Since C' is a C-set of D', so $f((x+1)^{-1}(x+y)) = (f(x)+1')^{-1}(f(x)+f(y)) \in C'$, hence $(x+1)^{-1}(x+y) \in f^{-1}(C')$. Similarly, $(1+x)^{-1}(y+x) \in f^{-1}(C')$. Therefore $f^{-1}(C')$ is a C-set of D.
- (3) Assume that f is onto and C is a C-set of D. Since C is a multiplicative normal subgroup of D and f is onto, f(C) is a multiplicative normal subgroup of D'. Let $y \in D'$ and $a \in C$. Then y = f(x) for some $x \in D$. Since C is a C-set of D, $(y+1')^{-1}(y+f(a)) = (f(x)+f(1))^{-1}(f(x)+f(a)) = f((x+1)^{-1}(x+a)) \in f(C)$. Similarly,

 $(1'+y)^{-1}(f(a)+y) \in f(c)$. Hence f(c) is a C-set of D'.

<u>Definition 1.34</u>. Let R and R' be distributive near-rings and $f: R \to R'$ a homomorphism. The <u>kernel</u> of f, denoted by ker f, is $\{x \in R \mid f(x) = 0'\}$.

Definition 1.35. Let R be a distributive near-ring. A subset J of R is called an <u>ideal</u> of R if J is an additive normal subgroup of R such that xy, yx ϵ J for all x ϵ R, y ϵ J. An ideal J of R is a <u>prime ideal</u> in R if for any x,y ϵ R, xy ϵ J implies that x ϵ J or y ϵ J.

Proposition 1.36. Let R and R' be distributive near-rings and $f: R \to R'$ a homomorphism. Then the following statements hold:

- (1) ker f is an ideal of R.
- (2) If J' is an ideal of R' then $f^{-1}(J')$ is an ideal of R.
- (4) If f is onto and J is an ideal of R then f(J) is an ideal of R'.

Proof: (1) Since f is a homomorphism, ker f is an additive normal subgroup of R. Let $x \in R$ and $y \in \ker f$. Then $f(xy) = f(x)f(y) = 0', \text{ so } xy \in \ker f. \text{ Similarly, } yx \in \ker f. \text{ Hence ker f is an ideal in } R.$

(2) Let J' be an ideal of R'. Then $f^{-1}(J')$ is an additive normal subgroup of R. Let $x \in R$ and $y \in f^{-1}(J')$. Then $f(y) \in J'$, so $f(xy) = f(x)f(y) \in J'$. Hence $xy \in f^{-1}(J')$. Similarly, $yx \in f^{-1}(J')$. Therefore $f^{-1}(J')$ is an ideal in R.

(3) Assume that f is onto and J is an ideal of R. Then f(J) is an additive normal subgroup of R'. Let $y \in R'$ and $a \in J$. Then y = f(x) for some $x \in R$. Then $yf(a) = f(xa) \in f(J)$. Similarly, $f(a)y \in f(J)$. Hence f(J) is an ideal in R'.

<u>Definition 1.37.</u> A <u>quotient ratio</u> <u>seminear-ring</u> of a distributive ratio seminear-ring D is a pair (D', ψ) where D' is a distributive ratio seminear-ring and ψ is a homomorphism of D onto D'. A quotient near-ring of a distributive near-ring is defined similarly.

We shall now give the construction of a quotient ratio seminear-ring of a distributive ratio seminear-ring D and the construction of a quotient near-ring of a distributive near-ring R which appears in [4].

Let C be a C-set of D and $\rho_1 = \{(a,b) \in D \times D \mid a^{-1}b \in C\}$.

Then ρ_1 is a congruence on D and $(D/\rho_1,+,\cdot)$ is a distributive ratio seminear-ring where + and \cdot are defined by [a]+[b]=[a+b] and $[a]\cdot[b]=[ab]$. For convenience, we denote D/ρ_1 by D/C. Note that $(D/C,\pi)$ is a quotient ratio seminear-ring of D where π is the natural projection map of D onto D/C.

Let $\bar{\iota}$ be an ideal of R and $\rho_2 = \{(a,b) \in R \times R \mid -a+b \in J\}$. Then ρ_2 is a congruence on R and $(R/\rho_2,+,\cdot)$ is a distributive near-ring where + and \cdot are defined as above. For convenience, we denote R/ρ_2 by R/J. Note that $(R/J,\pi)$ is a quotient near-ring of R where π is the natural projection map to R onto R/J.

Remark 1.38. The following statements holds:

- (1) A C-set C of a distributive ratio seminear-ring D is prime if and only if $D_{/C}$ is additively cancellative.
- (2) An ideal J of a distributive near-ring R is prime if and only if $R_{/,T}$ is 0-multiplicatively cancellative.

<u>Proof</u>: (1) Assume that C is a prime C-set of D. Let $x,y,z \in D$ be such that [x]+[z]=[y]+[z]. Then $(1+x^{-1}z)^{-1}(x^{-1}y+x^{-1}z)=(x+z)^{-1}(y+z) \in C$. By assumption, $x^{-1}y \in C$, so [x]=[y]. Similarly, if [z]+[x]=[z]+[y] then [x]=[y]. Hence D_C is additively cancellative.

Conversely, assume that D_C is additively cancellative. Let $x \in D$ and $y \notin C$. Suppose that $(x+1)^{-1}(x+y) \in C$. Then [x]+[1] = [x+1] = [x+y] = [x]+[y]. Hence [y] = [1], so $y \in C$, a contradiction. Thus $(x+1)^{-1}(x+y) \notin C$. Similarly, $(1+x)^{-1}(y+x) \notin C$. Therefore C is a prime C-set of D.

(2) Assume that J is a prime ideal in R. Let $x,y,z \in R$ be such that [x][z] = [y][z] and $z \notin J$. Then $(-x+y)z = -xz + yz \in J$. By assumption, $-x+y \in J$, so [x] = [y]. Similarly if [z][x] = [z][y] and $z \notin J$ then [x] = [y]. Hence R is 0-multiplicatively cancellative.

Conversely, assume that $R_{/J}$ is 0-multiplicatively cancellative. It is easily shown that for any $\alpha, \beta \in R_{/J}$, $\alpha\beta = [0]$ implies $\alpha = [0]$ or $\beta = [0]$. Let x,y \in R be such that xy \in J. Then [x][y] = [xy] = [0], so [x] = [0] or [y] = [0]. Hence $x \in J$ or $y \in J$. Therefore J is a prime ideal in R.

Theorem 1.39 ([5)]. The smallest ratio subseminear-ring (called the prime distributive ratio seminear-ring) of a distributive ratio seminear-ring is either isomorphic to $(Q^+,+,\cdot)$ or $\{1\}$.

Theorem 1.40 ([5]). A multiplicative zero of a distributive seminear-field is either an additive identity or an additive zero.

Theorem 1.40 indicates that there are two types of distributive seminear-fields. Let K be a distributive seminear-field with a as its multiplicative zero. If a is the additive identity of K, we call K a distributive seminear-field of zero type and denote a by 0 and if a is the additive zero of K, we call K a distributive seminear-field of infinity type and denote a by ∞ .

Theorem 1.41 ([5]). The smallest subseminear-field (called the prime distributive seminear-field) of a distributive seminear-field of zero type is isomorphic to exactly one of the following:

- (1) $(Q_0^+,+,\cdot).$
- (2) \mathbb{Z}_p , the set of all congruence classes of \mathbf{Z} modulo a prime p in \mathbf{Z}^+ .
 - (3) The Boolean distributive seminear-field.

Let K be a distributive seminear-field of infinity type and x ϵ K. Let

Note that $LCor_K(x)$ and $RCor_K(x)$ are nonempty since $\infty + x = x + \infty = \infty$.

Remark 1.42. Let K be a distributive seminear-field of infinity type. Then the following statements hold:

- (1) $LCor_K(x) = xLCor_K(1)$ for all $x \in K \setminus \{\infty\}$.
- (2) $LCor_{K}(1) = {\{\infty\}}$ if and only if $RCor_{K}(1) = {\{\infty\}}$.
- (3) $LCor_{\kappa}(1) = K$ if and only if $RCor_{\kappa}(1) = K$.
- (4) $LCor_{K}(1) \setminus {\{\infty\}} = (RCor_{K}(1) \setminus {\{\infty\}})^{-1}$.

Proposition 1.43 ([3]). Let K be a distributive seminear-field of zero type. If K is not a skew field then $a + b \neq 0$ for all a,b $\in K \setminus \{0\}$.

<u>Proposition 1.44</u> ([3]). If $f: (\mathbb{R},+,\leqslant) \to (\mathbb{R},+,\leqslant)$ is an order homomorphism then there exists an a $\epsilon \mathbb{R}_0^+$ such that f(x) = ax for all $x \in \mathbb{R}$.

<u>Proposition 1.45</u>. If $f: (\mathbb{R}^+, \cdot, <) \to (\mathbb{R}^+, \cdot, <)$ is an order monomorphism then there exists an a ε \mathbb{R}^+ such that $f(x) = x^a$ for all $x \varepsilon$ \mathbb{R}^+ (hence f must be a bijection).

Proof: Assume that $f: (\mathbb{R}^+, \cdot, \leqslant) \to (\mathbb{R}^+, \cdot, \leqslant)$ is an order isomorphism. Define $g: (\mathbb{R}, +, \leqslant) \to (\mathbb{R}, +, \leqslant)$ by $g(x) = \ln(f(e^X))$ for all $x \in \mathbb{R}$. For each $x,y \in \mathbb{R}$, $g(x+y) = \ln(f(e^{X+y})) = \ln(f(e^X)f(e^Y)) = \ln(f(e^X)) + \ln(f(e^Y)) = g(x) + g(y)$, so we get that g is a homomorphism. For any $x,y \in \mathbb{R}$, if $x \leqslant y$ then $e^X \leqslant e^Y$, so $f(e^X) \leqslant f(e^Y)$, hence we have that $g(x) = \ln(f(e^X)) \leqslant \ln(f(e^Y)) = g(y)$. Thus g is isotone. By Proposition 1.44, there exists an $a \in \mathbb{R}^+_0$ such that g(x) = ax for all $x \in \mathbb{R}$. If a = 0 then g = 0, so $f(e^X) = e^{\ln(f(e^X))} = e^{g(x)} = e^0 = 1$

for all $x \in \mathbb{R}$ which contradicts the fact that f is injective. Hence $a \in \mathbb{R}^+$. Let $x \in \mathbb{R}^+$. Then $x = e^y$ for some $y \in \mathbb{R}$. Hence $f(x) = f(e^y) = e^{\ln(f(e^y))} = e^{g(y)} = e^{ay} = x^a$. Therefore $f(x) = x^a$ for all $x \in \mathbb{R}^+$. #