CHAPTER V

CONCLUSIONS AND FUTURE SUGGESTION

5.1 Conclusions

From the experimental results, it can be summarized as follows

- 1. The optimal condition of selectivity catalytic reduction (SCR) of NO by NH $_3$ is that it has to react under the dilute gas condition in the presence of O_2 and the reaction temperature does not exceed 300° C.
- 2. A lower space velocity of about 18820 hr^{-1} yields high NO conversion.
- $3.~V_2O_5$ -TiO $_2$ is the most active catalyst for this work and V_2O_5 -TiO $_2$ with 25.61 wt% V_2O_5 content gives the highest NO conversion. Considering the case of utilization, pure V_2O_5 is better than cation exchanged zeolite. This is due to the fact that preparation step of cation exchanged zeolite is very difficult and the activity of having V_2O_5 as a catalyst is higher than that using Pt-HY and Cu-Pt-HY in the presence of O_2 .

5.2 Future suggestion

From the basic thermodynamics principle, the NO-NH $_3$ reaction with NO $_2$ incorporated is very likely to occur. So, the next research step should concentrate on the effect of the NO $_2$ addition in NO-NH $_3$ reaction and the effect of Cu in metal-HY catalyst on the NO conversion.