Chapter III

Theoretical Model

According to the previous chapter, the Stoner collective electron model is
useful in the case where one is interested in the magnetic behavior of the system
containing itinerant electrons or itinerant magnetic moments. Stoner obtained a
graphical relationship between the relative saturation magnetic moment, AM/M,, and
temperature, 7. In this study, the effect of nitrogenation on the Sm-Co compounds is
looking at. The addition of nitrogen into Sm-Co compounds is assumed to be like
the addition of electrons or holes into semiconductor materials, i.e., doping. When
excess electrons are doped into semiconductor, the Fermi energy is shifted without
any change in the band structure. In the metallic compounds, doping electrons leads
to a distortion of the band structure. In our approximation, the band shape is slightly
distorted and is therefore neglected. This implied that the doping of an electrons
only change the Fermi energy level. The small distortion of the band structure is
shown in the figures 3.1 and 3.2. Figures 3.1 and 3.2 show the density of states of
Nd,Fe;; and Nd,Fe;7Nyx which have rhombohedral ThyZn;; structure, the same as
that of Sm,Co,7.

The orthogonalized linear combination of atomic orbital (OLCAO) was
used to determine the density of states of this compounds (Gu and Lai, 1992) shown
in these figures. When we compare the density of states of Nd,Fe;; in figure 3.1 to
the density of states of Nd,Fe;7Ny in figure 3.2 for each of lattice site, figure 3.1 ¢, d
and e, figure 3.2 ¢, d and e, we see that there is a small change in the shape of the
density of states. In the rigid band model, it is believed that the band structure of
transition elements especially in Ni, Fe and Co are the same. The difference

between the electronic structure of those elements is mainly the difference in the
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level of Fermi energy as shown in figure 3.3 (Madelung, 1982). We observe that
higher number of valence electrons lead to an increase in the Fermi energy. As see

in the figure 3.3. The Fermi energy of Ni is above that of Co which is above that of

the Fe.

For our propose, we are not concerned with the exact shape of the real band
structure of Co in the Sm-Co cbmpounds. We are interested in the change in a
magnetization, i.e., the change in the number of spin up and spin down electrons due

to the absorption of nitrogen which inturn will lead to excess electrons being doped

into the system.

We start with an arbitrary shape of the density of states which is assumed to

be close to the density of states of free electrons, i.e.,

E
D(E)=—E2+4sinE+3c055—sin3E+7r2. e

Figure 3.4 shows the shape of this equation. This density of states is chosen to give
a rough estimate of the different number of the spin up and down electron. If we
return to figures 3.1, 3.2 and 3.5 it is obvious that the real 3-d band structure, is more
complicated than the one shown in figure 3.4. The band structure of Fe in Nd-Fe
compounds and Ni look like a superposition of the density of state of a free electron
and a density of a rigid band model. The arbitrary shape of the density of states of
Co in Sm-Co compounds is taken to be the same with free electrons density of states

(the extra peaks in a rigid band model being dropped).

In this discussion of band structure we neglect its temperature dependence.
This corresponds to setting 7" equal to zero. At 7' = OK the highest value of an
electron energy is the Fermi energy E;. All states above Eyare unoccupied, while all

states below Eyare occupied. This leads to
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D(E) is a density of states in equation 3.1. The number of electrons in 3d band is

determined

B
n= _[D(E)f(E)dE 3.3

Emin
where f(E) -1 as T— 0K.

The density of state of 3d band split into two subband when the exchange
interaction is switched on as shown in figure 3.6. The energy gap is ugyM. The
difference in the spin up and down electrons is proportional to the difference in the

area under the two curves shown in figure 3.6, i.e.,

Ey
n=m-n = [DE)-DE-2u2m)dE 3.4

Emin
where M is replaced by nug.

The difference in the number of spin up and down electrons, », appears on both sides
of equation 3.4. The dependence of n on E is nonexplicit dependence and so the
only way to solve this relation is by numerical method. This is done by expanding
the integral on the right hand side to the finite series of a small area under the two

curves as shown in figure 3.6. Equation 3.4 becomes



k
n= D AE[D(E,) - D(E, - 2 p5m)] 3.5

This equation is valid only in the range Enin < E < Ey where E;.; = E; + AE. For
more accurate value, smaller areas i.e., small AE are required. For each Eywe get the
number of net magnetic moment in the form of n=g(n) where g(n) is obtained by
evaluated the right’ hand sides of equation 3.5, for different n values. The solution

for n is the intersection y = n and y = g(n) as shown in figure 3.7.

In the simple picture, it is reasonable to treat the energy gap 2upyM, as a
constant. In actuality, there is a small change in the energy gap when the Fermi
energy is shifted. The energy gap is slightly less than leV while the energy of 3d
band is in the order of 10 eV. The integral term in the right hand side of equation
3.4 is analytic function and the relation of n with Eyis obtained as shown in figure
38. It is obvious that there is a decrease and increase region. As one shifts the
Fermi energy one sees an increase in # until it reaches a maximum, then one sees n
decrease. This means that the magnetization will increase initially as the Fermi
energy is shifted. It increases until it reaches a maximum after which the
magnetization (or n) will decrease as the Fermi energy is further shifted. This result

corresponds to our observation which will be discussed in detail later.
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Figure 3.1 Total and partial density of state at different atom site in Nd,Fe; (a) total
(b) Nd(6c), (c)Fe(6c), (d)Fe(9d), (e)Fe(18f), (f)Fe(18h). Note that the DOS for one
spin appears to be a shifted upside DOS for the other spin electrons.
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Figure 3.2 Total and partial density of state at different atom site in Nd;Fe; 7Ny (2)
total (b) Nd(6c), (c)Fe(6c), (d)Fe(9d), (e)Fe(18f), (f)Fe(18h), (2)N(%¢). Again the
upside down DOS looks similar to the right side up DOS except for a shift it the

right.
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Figure 3.3 Schematic representation of the density of states of the transition metals
with the assumption that all these elements have approximately the same band
structure.
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Figure 3.4 Schematic representation of nearly free electron density of state in

equation 3.1
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Figure 3.5 Density of states of nickel in the energy range of the & bands.

(Madelung, 1982)
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Figure 3.6 The energy shift cause by an exchange interaction, AE = 2y’ and a

small area under the two curves.

y=g2(n)

y=gi(n)

Figure 3.7 Graphical diagram of the calculation value of », a number of total
magnetic moments which for each intersection point represent a number of total

magnetic moment for a given E.
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Figure 3.8 Graphical relation of total magnetic moments and Fermi energy employed

equation 3.1 as the density of state and the spliting energy is assumed to be constant.
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